1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 10 #include "llvm/Analysis/BasicAliasAnalysis.h" 11 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 12 #include "llvm/Analysis/ProfileSummaryInfo.h" 13 #include "llvm/Analysis/TypeMetadataUtils.h" 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "llvm/IR/Constants.h" 16 #include "llvm/IR/DebugInfo.h" 17 #include "llvm/IR/Instructions.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/PassManager.h" 21 #include "llvm/InitializePasses.h" 22 #include "llvm/Object/ModuleSymbolTable.h" 23 #include "llvm/Pass.h" 24 #include "llvm/Support/ScopedPrinter.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Transforms/IPO.h" 27 #include "llvm/Transforms/IPO/FunctionAttrs.h" 28 #include "llvm/Transforms/IPO/FunctionImport.h" 29 #include "llvm/Transforms/IPO/LowerTypeTests.h" 30 #include "llvm/Transforms/Utils/Cloning.h" 31 #include "llvm/Transforms/Utils/ModuleUtils.h" 32 using namespace llvm; 33 34 namespace { 35 36 // Promote each local-linkage entity defined by ExportM and used by ImportM by 37 // changing visibility and appending the given ModuleId. 38 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId, 39 SetVector<GlobalValue *> &PromoteExtra) { 40 DenseMap<const Comdat *, Comdat *> RenamedComdats; 41 for (auto &ExportGV : ExportM.global_values()) { 42 if (!ExportGV.hasLocalLinkage()) 43 continue; 44 45 auto Name = ExportGV.getName(); 46 GlobalValue *ImportGV = nullptr; 47 if (!PromoteExtra.count(&ExportGV)) { 48 ImportGV = ImportM.getNamedValue(Name); 49 if (!ImportGV) 50 continue; 51 ImportGV->removeDeadConstantUsers(); 52 if (ImportGV->use_empty()) { 53 ImportGV->eraseFromParent(); 54 continue; 55 } 56 } 57 58 std::string NewName = (Name + ModuleId).str(); 59 60 if (const auto *C = ExportGV.getComdat()) 61 if (C->getName() == Name) 62 RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName)); 63 64 ExportGV.setName(NewName); 65 ExportGV.setLinkage(GlobalValue::ExternalLinkage); 66 ExportGV.setVisibility(GlobalValue::HiddenVisibility); 67 68 if (ImportGV) { 69 ImportGV->setName(NewName); 70 ImportGV->setVisibility(GlobalValue::HiddenVisibility); 71 } 72 } 73 74 if (!RenamedComdats.empty()) 75 for (auto &GO : ExportM.global_objects()) 76 if (auto *C = GO.getComdat()) { 77 auto Replacement = RenamedComdats.find(C); 78 if (Replacement != RenamedComdats.end()) 79 GO.setComdat(Replacement->second); 80 } 81 } 82 83 // Promote all internal (i.e. distinct) type ids used by the module by replacing 84 // them with external type ids formed using the module id. 85 // 86 // Note that this needs to be done before we clone the module because each clone 87 // will receive its own set of distinct metadata nodes. 88 void promoteTypeIds(Module &M, StringRef ModuleId) { 89 DenseMap<Metadata *, Metadata *> LocalToGlobal; 90 auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) { 91 Metadata *MD = 92 cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata(); 93 94 if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) { 95 Metadata *&GlobalMD = LocalToGlobal[MD]; 96 if (!GlobalMD) { 97 std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str(); 98 GlobalMD = MDString::get(M.getContext(), NewName); 99 } 100 101 CI->setArgOperand(ArgNo, 102 MetadataAsValue::get(M.getContext(), GlobalMD)); 103 } 104 }; 105 106 if (Function *TypeTestFunc = 107 M.getFunction(Intrinsic::getName(Intrinsic::type_test))) { 108 for (const Use &U : TypeTestFunc->uses()) { 109 auto CI = cast<CallInst>(U.getUser()); 110 ExternalizeTypeId(CI, 1); 111 } 112 } 113 114 if (Function *TypeCheckedLoadFunc = 115 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) { 116 for (const Use &U : TypeCheckedLoadFunc->uses()) { 117 auto CI = cast<CallInst>(U.getUser()); 118 ExternalizeTypeId(CI, 2); 119 } 120 } 121 122 for (GlobalObject &GO : M.global_objects()) { 123 SmallVector<MDNode *, 1> MDs; 124 GO.getMetadata(LLVMContext::MD_type, MDs); 125 126 GO.eraseMetadata(LLVMContext::MD_type); 127 for (auto MD : MDs) { 128 auto I = LocalToGlobal.find(MD->getOperand(1)); 129 if (I == LocalToGlobal.end()) { 130 GO.addMetadata(LLVMContext::MD_type, *MD); 131 continue; 132 } 133 GO.addMetadata( 134 LLVMContext::MD_type, 135 *MDNode::get(M.getContext(), {MD->getOperand(0), I->second})); 136 } 137 } 138 } 139 140 // Drop unused globals, and drop type information from function declarations. 141 // FIXME: If we made functions typeless then there would be no need to do this. 142 void simplifyExternals(Module &M) { 143 FunctionType *EmptyFT = 144 FunctionType::get(Type::getVoidTy(M.getContext()), false); 145 146 for (auto I = M.begin(), E = M.end(); I != E;) { 147 Function &F = *I++; 148 if (F.isDeclaration() && F.use_empty()) { 149 F.eraseFromParent(); 150 continue; 151 } 152 153 if (!F.isDeclaration() || F.getFunctionType() == EmptyFT || 154 // Changing the type of an intrinsic may invalidate the IR. 155 F.getName().startswith("llvm.")) 156 continue; 157 158 Function *NewF = 159 Function::Create(EmptyFT, GlobalValue::ExternalLinkage, 160 F.getAddressSpace(), "", &M); 161 NewF->setVisibility(F.getVisibility()); 162 NewF->takeName(&F); 163 F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType())); 164 F.eraseFromParent(); 165 } 166 167 for (auto I = M.global_begin(), E = M.global_end(); I != E;) { 168 GlobalVariable &GV = *I++; 169 if (GV.isDeclaration() && GV.use_empty()) { 170 GV.eraseFromParent(); 171 continue; 172 } 173 } 174 } 175 176 static void 177 filterModule(Module *M, 178 function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) { 179 std::vector<GlobalValue *> V; 180 for (GlobalValue &GV : M->global_values()) 181 if (!ShouldKeepDefinition(&GV)) 182 V.push_back(&GV); 183 184 for (GlobalValue *GV : V) 185 if (!convertToDeclaration(*GV)) 186 GV->eraseFromParent(); 187 } 188 189 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) { 190 if (auto *F = dyn_cast<Function>(C)) 191 return Fn(F); 192 if (isa<GlobalValue>(C)) 193 return; 194 for (Value *Op : C->operands()) 195 forEachVirtualFunction(cast<Constant>(Op), Fn); 196 } 197 198 // Clone any @llvm[.compiler].used over to the new module and append 199 // values whose defs were cloned into that module. 200 static void cloneUsedGlobalVariables(const Module &SrcM, Module &DestM, 201 bool CompilerUsed) { 202 SmallPtrSet<GlobalValue *, 8> Used; 203 SmallPtrSet<GlobalValue *, 8> NewUsed; 204 // First collect those in the llvm[.compiler].used set. 205 collectUsedGlobalVariables(SrcM, Used, CompilerUsed); 206 // Next build a set of the equivalent values defined in DestM. 207 for (auto *V : Used) { 208 auto *GV = DestM.getNamedValue(V->getName()); 209 if (GV && !GV->isDeclaration()) 210 NewUsed.insert(GV); 211 } 212 // Finally, add them to a llvm[.compiler].used variable in DestM. 213 if (CompilerUsed) 214 appendToCompilerUsed( 215 DestM, std::vector<GlobalValue *>(NewUsed.begin(), NewUsed.end())); 216 else 217 appendToUsed(DestM, 218 std::vector<GlobalValue *>(NewUsed.begin(), NewUsed.end())); 219 } 220 221 // If it's possible to split M into regular and thin LTO parts, do so and write 222 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a 223 // regular LTO bitcode file to OS. 224 void splitAndWriteThinLTOBitcode( 225 raw_ostream &OS, raw_ostream *ThinLinkOS, 226 function_ref<AAResults &(Function &)> AARGetter, Module &M) { 227 std::string ModuleId = getUniqueModuleId(&M); 228 if (ModuleId.empty()) { 229 // We couldn't generate a module ID for this module, write it out as a 230 // regular LTO module with an index for summary-based dead stripping. 231 ProfileSummaryInfo PSI(M); 232 M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 233 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 234 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index); 235 236 if (ThinLinkOS) 237 // We don't have a ThinLTO part, but still write the module to the 238 // ThinLinkOS if requested so that the expected output file is produced. 239 WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false, 240 &Index); 241 242 return; 243 } 244 245 promoteTypeIds(M, ModuleId); 246 247 // Returns whether a global or its associated global has attached type 248 // metadata. The former may participate in CFI or whole-program 249 // devirtualization, so they need to appear in the merged module instead of 250 // the thin LTO module. Similarly, globals that are associated with globals 251 // with type metadata need to appear in the merged module because they will 252 // reference the global's section directly. 253 auto HasTypeMetadata = [](const GlobalObject *GO) { 254 if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated)) 255 if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0))) 256 if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue())) 257 if (AssocGO->hasMetadata(LLVMContext::MD_type)) 258 return true; 259 return GO->hasMetadata(LLVMContext::MD_type); 260 }; 261 262 // Collect the set of virtual functions that are eligible for virtual constant 263 // propagation. Each eligible function must not access memory, must return 264 // an integer of width <=64 bits, must take at least one argument, must not 265 // use its first argument (assumed to be "this") and all arguments other than 266 // the first one must be of <=64 bit integer type. 267 // 268 // Note that we test whether this copy of the function is readnone, rather 269 // than testing function attributes, which must hold for any copy of the 270 // function, even a less optimized version substituted at link time. This is 271 // sound because the virtual constant propagation optimizations effectively 272 // inline all implementations of the virtual function into each call site, 273 // rather than using function attributes to perform local optimization. 274 DenseSet<const Function *> EligibleVirtualFns; 275 // If any member of a comdat lives in MergedM, put all members of that 276 // comdat in MergedM to keep the comdat together. 277 DenseSet<const Comdat *> MergedMComdats; 278 for (GlobalVariable &GV : M.globals()) 279 if (HasTypeMetadata(&GV)) { 280 if (const auto *C = GV.getComdat()) 281 MergedMComdats.insert(C); 282 forEachVirtualFunction(GV.getInitializer(), [&](Function *F) { 283 auto *RT = dyn_cast<IntegerType>(F->getReturnType()); 284 if (!RT || RT->getBitWidth() > 64 || F->arg_empty() || 285 !F->arg_begin()->use_empty()) 286 return; 287 for (auto &Arg : drop_begin(F->args())) { 288 auto *ArgT = dyn_cast<IntegerType>(Arg.getType()); 289 if (!ArgT || ArgT->getBitWidth() > 64) 290 return; 291 } 292 if (!F->isDeclaration() && 293 computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone) 294 EligibleVirtualFns.insert(F); 295 }); 296 } 297 298 ValueToValueMapTy VMap; 299 std::unique_ptr<Module> MergedM( 300 CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool { 301 if (const auto *C = GV->getComdat()) 302 if (MergedMComdats.count(C)) 303 return true; 304 if (auto *F = dyn_cast<Function>(GV)) 305 return EligibleVirtualFns.count(F); 306 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 307 return HasTypeMetadata(GVar); 308 return false; 309 })); 310 StripDebugInfo(*MergedM); 311 MergedM->setModuleInlineAsm(""); 312 313 // Clone any llvm.*used globals to ensure the included values are 314 // not deleted. 315 cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ false); 316 cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ true); 317 318 for (Function &F : *MergedM) 319 if (!F.isDeclaration()) { 320 // Reset the linkage of all functions eligible for virtual constant 321 // propagation. The canonical definitions live in the thin LTO module so 322 // that they can be imported. 323 F.setLinkage(GlobalValue::AvailableExternallyLinkage); 324 F.setComdat(nullptr); 325 } 326 327 SetVector<GlobalValue *> CfiFunctions; 328 for (auto &F : M) 329 if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F)) 330 CfiFunctions.insert(&F); 331 332 // Remove all globals with type metadata, globals with comdats that live in 333 // MergedM, and aliases pointing to such globals from the thin LTO module. 334 filterModule(&M, [&](const GlobalValue *GV) { 335 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 336 if (HasTypeMetadata(GVar)) 337 return false; 338 if (const auto *C = GV->getComdat()) 339 if (MergedMComdats.count(C)) 340 return false; 341 return true; 342 }); 343 344 promoteInternals(*MergedM, M, ModuleId, CfiFunctions); 345 promoteInternals(M, *MergedM, ModuleId, CfiFunctions); 346 347 auto &Ctx = MergedM->getContext(); 348 SmallVector<MDNode *, 8> CfiFunctionMDs; 349 for (auto V : CfiFunctions) { 350 Function &F = *cast<Function>(V); 351 SmallVector<MDNode *, 2> Types; 352 F.getMetadata(LLVMContext::MD_type, Types); 353 354 SmallVector<Metadata *, 4> Elts; 355 Elts.push_back(MDString::get(Ctx, F.getName())); 356 CfiFunctionLinkage Linkage; 357 if (lowertypetests::isJumpTableCanonical(&F)) 358 Linkage = CFL_Definition; 359 else if (F.hasExternalWeakLinkage()) 360 Linkage = CFL_WeakDeclaration; 361 else 362 Linkage = CFL_Declaration; 363 Elts.push_back(ConstantAsMetadata::get( 364 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage))); 365 append_range(Elts, Types); 366 CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts)); 367 } 368 369 if(!CfiFunctionMDs.empty()) { 370 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions"); 371 for (auto MD : CfiFunctionMDs) 372 NMD->addOperand(MD); 373 } 374 375 SmallVector<MDNode *, 8> FunctionAliases; 376 for (auto &A : M.aliases()) { 377 if (!isa<Function>(A.getAliasee())) 378 continue; 379 380 auto *F = cast<Function>(A.getAliasee()); 381 382 Metadata *Elts[] = { 383 MDString::get(Ctx, A.getName()), 384 MDString::get(Ctx, F->getName()), 385 ConstantAsMetadata::get( 386 ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())), 387 ConstantAsMetadata::get( 388 ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())), 389 }; 390 391 FunctionAliases.push_back(MDTuple::get(Ctx, Elts)); 392 } 393 394 if (!FunctionAliases.empty()) { 395 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases"); 396 for (auto MD : FunctionAliases) 397 NMD->addOperand(MD); 398 } 399 400 SmallVector<MDNode *, 8> Symvers; 401 ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) { 402 Function *F = M.getFunction(Name); 403 if (!F || F->use_empty()) 404 return; 405 406 Symvers.push_back(MDTuple::get( 407 Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)})); 408 }); 409 410 if (!Symvers.empty()) { 411 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers"); 412 for (auto MD : Symvers) 413 NMD->addOperand(MD); 414 } 415 416 simplifyExternals(*MergedM); 417 418 // FIXME: Try to re-use BSI and PFI from the original module here. 419 ProfileSummaryInfo PSI(M); 420 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 421 422 // Mark the merged module as requiring full LTO. We still want an index for 423 // it though, so that it can participate in summary-based dead stripping. 424 MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 425 ModuleSummaryIndex MergedMIndex = 426 buildModuleSummaryIndex(*MergedM, nullptr, &PSI); 427 428 SmallVector<char, 0> Buffer; 429 430 BitcodeWriter W(Buffer); 431 // Save the module hash produced for the full bitcode, which will 432 // be used in the backends, and use that in the minimized bitcode 433 // produced for the full link. 434 ModuleHash ModHash = {{0}}; 435 W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index, 436 /*GenerateHash=*/true, &ModHash); 437 W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex); 438 W.writeSymtab(); 439 W.writeStrtab(); 440 OS << Buffer; 441 442 // If a minimized bitcode module was requested for the thin link, only 443 // the information that is needed by thin link will be written in the 444 // given OS (the merged module will be written as usual). 445 if (ThinLinkOS) { 446 Buffer.clear(); 447 BitcodeWriter W2(Buffer); 448 StripDebugInfo(M); 449 W2.writeThinLinkBitcode(M, Index, ModHash); 450 W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, 451 &MergedMIndex); 452 W2.writeSymtab(); 453 W2.writeStrtab(); 454 *ThinLinkOS << Buffer; 455 } 456 } 457 458 // Check if the LTO Unit splitting has been enabled. 459 bool enableSplitLTOUnit(Module &M) { 460 bool EnableSplitLTOUnit = false; 461 if (auto *MD = mdconst::extract_or_null<ConstantInt>( 462 M.getModuleFlag("EnableSplitLTOUnit"))) 463 EnableSplitLTOUnit = MD->getZExtValue(); 464 return EnableSplitLTOUnit; 465 } 466 467 // Returns whether this module needs to be split because it uses type metadata. 468 bool hasTypeMetadata(Module &M) { 469 for (auto &GO : M.global_objects()) { 470 if (GO.hasMetadata(LLVMContext::MD_type)) 471 return true; 472 } 473 return false; 474 } 475 476 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS, 477 function_ref<AAResults &(Function &)> AARGetter, 478 Module &M, const ModuleSummaryIndex *Index) { 479 std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr; 480 // See if this module has any type metadata. If so, we try to split it 481 // or at least promote type ids to enable WPD. 482 if (hasTypeMetadata(M)) { 483 if (enableSplitLTOUnit(M)) 484 return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M); 485 // Promote type ids as needed for index-based WPD. 486 std::string ModuleId = getUniqueModuleId(&M); 487 if (!ModuleId.empty()) { 488 promoteTypeIds(M, ModuleId); 489 // Need to rebuild the index so that it contains type metadata 490 // for the newly promoted type ids. 491 // FIXME: Probably should not bother building the index at all 492 // in the caller of writeThinLTOBitcode (which does so via the 493 // ModuleSummaryIndexAnalysis pass), since we have to rebuild it 494 // anyway whenever there is type metadata (here or in 495 // splitAndWriteThinLTOBitcode). Just always build it once via the 496 // buildModuleSummaryIndex when Module(s) are ready. 497 ProfileSummaryInfo PSI(M); 498 NewIndex = std::make_unique<ModuleSummaryIndex>( 499 buildModuleSummaryIndex(M, nullptr, &PSI)); 500 Index = NewIndex.get(); 501 } 502 } 503 504 // Write it out as an unsplit ThinLTO module. 505 506 // Save the module hash produced for the full bitcode, which will 507 // be used in the backends, and use that in the minimized bitcode 508 // produced for the full link. 509 ModuleHash ModHash = {{0}}; 510 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index, 511 /*GenerateHash=*/true, &ModHash); 512 // If a minimized bitcode module was requested for the thin link, only 513 // the information that is needed by thin link will be written in the 514 // given OS. 515 if (ThinLinkOS && Index) 516 WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash); 517 } 518 519 class WriteThinLTOBitcode : public ModulePass { 520 raw_ostream &OS; // raw_ostream to print on 521 // The output stream on which to emit a minimized module for use 522 // just in the thin link, if requested. 523 raw_ostream *ThinLinkOS; 524 525 public: 526 static char ID; // Pass identification, replacement for typeid 527 WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) { 528 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 529 } 530 531 explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS) 532 : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) { 533 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 534 } 535 536 StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; } 537 538 bool runOnModule(Module &M) override { 539 const ModuleSummaryIndex *Index = 540 &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex()); 541 writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index); 542 return true; 543 } 544 void getAnalysisUsage(AnalysisUsage &AU) const override { 545 AU.setPreservesAll(); 546 AU.addRequired<AssumptionCacheTracker>(); 547 AU.addRequired<ModuleSummaryIndexWrapperPass>(); 548 AU.addRequired<TargetLibraryInfoWrapperPass>(); 549 } 550 }; 551 } // anonymous namespace 552 553 char WriteThinLTOBitcode::ID = 0; 554 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode", 555 "Write ThinLTO Bitcode", false, true) 556 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 557 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass) 558 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 559 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode", 560 "Write ThinLTO Bitcode", false, true) 561 562 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str, 563 raw_ostream *ThinLinkOS) { 564 return new WriteThinLTOBitcode(Str, ThinLinkOS); 565 } 566 567 PreservedAnalyses 568 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) { 569 FunctionAnalysisManager &FAM = 570 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 571 writeThinLTOBitcode(OS, ThinLinkOS, 572 [&FAM](Function &F) -> AAResults & { 573 return FAM.getResult<AAManager>(F); 574 }, 575 M, &AM.getResult<ModuleSummaryIndexAnalysis>(M)); 576 return PreservedAnalyses::all(); 577 } 578