1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 10 #include "llvm/Analysis/BasicAliasAnalysis.h" 11 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 12 #include "llvm/Analysis/ProfileSummaryInfo.h" 13 #include "llvm/Analysis/TypeMetadataUtils.h" 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "llvm/IR/Constants.h" 16 #include "llvm/IR/DebugInfo.h" 17 #include "llvm/IR/Instructions.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/PassManager.h" 21 #include "llvm/InitializePasses.h" 22 #include "llvm/Object/ModuleSymbolTable.h" 23 #include "llvm/Pass.h" 24 #include "llvm/Support/ScopedPrinter.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Transforms/IPO.h" 27 #include "llvm/Transforms/IPO/FunctionAttrs.h" 28 #include "llvm/Transforms/IPO/FunctionImport.h" 29 #include "llvm/Transforms/IPO/LowerTypeTests.h" 30 #include "llvm/Transforms/Utils/Cloning.h" 31 #include "llvm/Transforms/Utils/ModuleUtils.h" 32 using namespace llvm; 33 34 namespace { 35 36 // Determine if a promotion alias should be created for a symbol name. 37 static bool allowPromotionAlias(const std::string &Name) { 38 // Promotion aliases are used only in inline assembly. It's safe to 39 // simply skip unusual names. Subset of MCAsmInfo::isAcceptableChar() 40 // and MCAsmInfoXCOFF::isAcceptableChar(). 41 for (const char &C : Name) { 42 if (isAlnum(C) || C == '_' || C == '.') 43 continue; 44 return false; 45 } 46 return true; 47 } 48 49 // Promote each local-linkage entity defined by ExportM and used by ImportM by 50 // changing visibility and appending the given ModuleId. 51 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId, 52 SetVector<GlobalValue *> &PromoteExtra) { 53 DenseMap<const Comdat *, Comdat *> RenamedComdats; 54 for (auto &ExportGV : ExportM.global_values()) { 55 if (!ExportGV.hasLocalLinkage()) 56 continue; 57 58 auto Name = ExportGV.getName(); 59 GlobalValue *ImportGV = nullptr; 60 if (!PromoteExtra.count(&ExportGV)) { 61 ImportGV = ImportM.getNamedValue(Name); 62 if (!ImportGV) 63 continue; 64 ImportGV->removeDeadConstantUsers(); 65 if (ImportGV->use_empty()) { 66 ImportGV->eraseFromParent(); 67 continue; 68 } 69 } 70 71 std::string OldName = Name.str(); 72 std::string NewName = (Name + ModuleId).str(); 73 74 if (const auto *C = ExportGV.getComdat()) 75 if (C->getName() == Name) 76 RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName)); 77 78 ExportGV.setName(NewName); 79 ExportGV.setLinkage(GlobalValue::ExternalLinkage); 80 ExportGV.setVisibility(GlobalValue::HiddenVisibility); 81 82 if (ImportGV) { 83 ImportGV->setName(NewName); 84 ImportGV->setVisibility(GlobalValue::HiddenVisibility); 85 } 86 87 if (isa<Function>(&ExportGV) && allowPromotionAlias(OldName)) { 88 // Create a local alias with the original name to avoid breaking 89 // references from inline assembly. 90 std::string Alias = ".set " + OldName + "," + NewName + "\n"; 91 ExportM.appendModuleInlineAsm(Alias); 92 } 93 } 94 95 if (!RenamedComdats.empty()) 96 for (auto &GO : ExportM.global_objects()) 97 if (auto *C = GO.getComdat()) { 98 auto Replacement = RenamedComdats.find(C); 99 if (Replacement != RenamedComdats.end()) 100 GO.setComdat(Replacement->second); 101 } 102 } 103 104 // Promote all internal (i.e. distinct) type ids used by the module by replacing 105 // them with external type ids formed using the module id. 106 // 107 // Note that this needs to be done before we clone the module because each clone 108 // will receive its own set of distinct metadata nodes. 109 void promoteTypeIds(Module &M, StringRef ModuleId) { 110 DenseMap<Metadata *, Metadata *> LocalToGlobal; 111 auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) { 112 Metadata *MD = 113 cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata(); 114 115 if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) { 116 Metadata *&GlobalMD = LocalToGlobal[MD]; 117 if (!GlobalMD) { 118 std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str(); 119 GlobalMD = MDString::get(M.getContext(), NewName); 120 } 121 122 CI->setArgOperand(ArgNo, 123 MetadataAsValue::get(M.getContext(), GlobalMD)); 124 } 125 }; 126 127 if (Function *TypeTestFunc = 128 M.getFunction(Intrinsic::getName(Intrinsic::type_test))) { 129 for (const Use &U : TypeTestFunc->uses()) { 130 auto CI = cast<CallInst>(U.getUser()); 131 ExternalizeTypeId(CI, 1); 132 } 133 } 134 135 if (Function *TypeCheckedLoadFunc = 136 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) { 137 for (const Use &U : TypeCheckedLoadFunc->uses()) { 138 auto CI = cast<CallInst>(U.getUser()); 139 ExternalizeTypeId(CI, 2); 140 } 141 } 142 143 for (GlobalObject &GO : M.global_objects()) { 144 SmallVector<MDNode *, 1> MDs; 145 GO.getMetadata(LLVMContext::MD_type, MDs); 146 147 GO.eraseMetadata(LLVMContext::MD_type); 148 for (auto MD : MDs) { 149 auto I = LocalToGlobal.find(MD->getOperand(1)); 150 if (I == LocalToGlobal.end()) { 151 GO.addMetadata(LLVMContext::MD_type, *MD); 152 continue; 153 } 154 GO.addMetadata( 155 LLVMContext::MD_type, 156 *MDNode::get(M.getContext(), {MD->getOperand(0), I->second})); 157 } 158 } 159 } 160 161 // Drop unused globals, and drop type information from function declarations. 162 // FIXME: If we made functions typeless then there would be no need to do this. 163 void simplifyExternals(Module &M) { 164 FunctionType *EmptyFT = 165 FunctionType::get(Type::getVoidTy(M.getContext()), false); 166 167 for (Function &F : llvm::make_early_inc_range(M)) { 168 if (F.isDeclaration() && F.use_empty()) { 169 F.eraseFromParent(); 170 continue; 171 } 172 173 if (!F.isDeclaration() || F.getFunctionType() == EmptyFT || 174 // Changing the type of an intrinsic may invalidate the IR. 175 F.getName().startswith("llvm.")) 176 continue; 177 178 Function *NewF = 179 Function::Create(EmptyFT, GlobalValue::ExternalLinkage, 180 F.getAddressSpace(), "", &M); 181 NewF->copyAttributesFrom(&F); 182 // Only copy function attribtues. 183 NewF->setAttributes(AttributeList::get(M.getContext(), 184 AttributeList::FunctionIndex, 185 F.getAttributes().getFnAttrs())); 186 NewF->takeName(&F); 187 F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType())); 188 F.eraseFromParent(); 189 } 190 191 for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) { 192 if (GV.isDeclaration() && GV.use_empty()) { 193 GV.eraseFromParent(); 194 continue; 195 } 196 } 197 } 198 199 static void 200 filterModule(Module *M, 201 function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) { 202 std::vector<GlobalValue *> V; 203 for (GlobalValue &GV : M->global_values()) 204 if (!ShouldKeepDefinition(&GV)) 205 V.push_back(&GV); 206 207 for (GlobalValue *GV : V) 208 if (!convertToDeclaration(*GV)) 209 GV->eraseFromParent(); 210 } 211 212 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) { 213 if (auto *F = dyn_cast<Function>(C)) 214 return Fn(F); 215 if (isa<GlobalValue>(C)) 216 return; 217 for (Value *Op : C->operands()) 218 forEachVirtualFunction(cast<Constant>(Op), Fn); 219 } 220 221 // Clone any @llvm[.compiler].used over to the new module and append 222 // values whose defs were cloned into that module. 223 static void cloneUsedGlobalVariables(const Module &SrcM, Module &DestM, 224 bool CompilerUsed) { 225 SmallVector<GlobalValue *, 4> Used, NewUsed; 226 // First collect those in the llvm[.compiler].used set. 227 collectUsedGlobalVariables(SrcM, Used, CompilerUsed); 228 // Next build a set of the equivalent values defined in DestM. 229 for (auto *V : Used) { 230 auto *GV = DestM.getNamedValue(V->getName()); 231 if (GV && !GV->isDeclaration()) 232 NewUsed.push_back(GV); 233 } 234 // Finally, add them to a llvm[.compiler].used variable in DestM. 235 if (CompilerUsed) 236 appendToCompilerUsed(DestM, NewUsed); 237 else 238 appendToUsed(DestM, NewUsed); 239 } 240 241 // If it's possible to split M into regular and thin LTO parts, do so and write 242 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a 243 // regular LTO bitcode file to OS. 244 void splitAndWriteThinLTOBitcode( 245 raw_ostream &OS, raw_ostream *ThinLinkOS, 246 function_ref<AAResults &(Function &)> AARGetter, Module &M) { 247 std::string ModuleId = getUniqueModuleId(&M); 248 if (ModuleId.empty()) { 249 // We couldn't generate a module ID for this module, write it out as a 250 // regular LTO module with an index for summary-based dead stripping. 251 ProfileSummaryInfo PSI(M); 252 M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 253 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 254 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index); 255 256 if (ThinLinkOS) 257 // We don't have a ThinLTO part, but still write the module to the 258 // ThinLinkOS if requested so that the expected output file is produced. 259 WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false, 260 &Index); 261 262 return; 263 } 264 265 promoteTypeIds(M, ModuleId); 266 267 // Returns whether a global or its associated global has attached type 268 // metadata. The former may participate in CFI or whole-program 269 // devirtualization, so they need to appear in the merged module instead of 270 // the thin LTO module. Similarly, globals that are associated with globals 271 // with type metadata need to appear in the merged module because they will 272 // reference the global's section directly. 273 auto HasTypeMetadata = [](const GlobalObject *GO) { 274 if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated)) 275 if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0))) 276 if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue())) 277 if (AssocGO->hasMetadata(LLVMContext::MD_type)) 278 return true; 279 return GO->hasMetadata(LLVMContext::MD_type); 280 }; 281 282 // Collect the set of virtual functions that are eligible for virtual constant 283 // propagation. Each eligible function must not access memory, must return 284 // an integer of width <=64 bits, must take at least one argument, must not 285 // use its first argument (assumed to be "this") and all arguments other than 286 // the first one must be of <=64 bit integer type. 287 // 288 // Note that we test whether this copy of the function is readnone, rather 289 // than testing function attributes, which must hold for any copy of the 290 // function, even a less optimized version substituted at link time. This is 291 // sound because the virtual constant propagation optimizations effectively 292 // inline all implementations of the virtual function into each call site, 293 // rather than using function attributes to perform local optimization. 294 DenseSet<const Function *> EligibleVirtualFns; 295 // If any member of a comdat lives in MergedM, put all members of that 296 // comdat in MergedM to keep the comdat together. 297 DenseSet<const Comdat *> MergedMComdats; 298 for (GlobalVariable &GV : M.globals()) 299 if (HasTypeMetadata(&GV)) { 300 if (const auto *C = GV.getComdat()) 301 MergedMComdats.insert(C); 302 forEachVirtualFunction(GV.getInitializer(), [&](Function *F) { 303 auto *RT = dyn_cast<IntegerType>(F->getReturnType()); 304 if (!RT || RT->getBitWidth() > 64 || F->arg_empty() || 305 !F->arg_begin()->use_empty()) 306 return; 307 for (auto &Arg : drop_begin(F->args())) { 308 auto *ArgT = dyn_cast<IntegerType>(Arg.getType()); 309 if (!ArgT || ArgT->getBitWidth() > 64) 310 return; 311 } 312 if (!F->isDeclaration() && 313 computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone) 314 EligibleVirtualFns.insert(F); 315 }); 316 } 317 318 ValueToValueMapTy VMap; 319 std::unique_ptr<Module> MergedM( 320 CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool { 321 if (const auto *C = GV->getComdat()) 322 if (MergedMComdats.count(C)) 323 return true; 324 if (auto *F = dyn_cast<Function>(GV)) 325 return EligibleVirtualFns.count(F); 326 if (auto *GVar = 327 dyn_cast_or_null<GlobalVariable>(GV->getAliaseeObject())) 328 return HasTypeMetadata(GVar); 329 return false; 330 })); 331 StripDebugInfo(*MergedM); 332 MergedM->setModuleInlineAsm(""); 333 334 // Clone any llvm.*used globals to ensure the included values are 335 // not deleted. 336 cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ false); 337 cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ true); 338 339 for (Function &F : *MergedM) 340 if (!F.isDeclaration()) { 341 // Reset the linkage of all functions eligible for virtual constant 342 // propagation. The canonical definitions live in the thin LTO module so 343 // that they can be imported. 344 F.setLinkage(GlobalValue::AvailableExternallyLinkage); 345 F.setComdat(nullptr); 346 } 347 348 SetVector<GlobalValue *> CfiFunctions; 349 for (auto &F : M) 350 if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F)) 351 CfiFunctions.insert(&F); 352 353 // Remove all globals with type metadata, globals with comdats that live in 354 // MergedM, and aliases pointing to such globals from the thin LTO module. 355 filterModule(&M, [&](const GlobalValue *GV) { 356 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getAliaseeObject())) 357 if (HasTypeMetadata(GVar)) 358 return false; 359 if (const auto *C = GV->getComdat()) 360 if (MergedMComdats.count(C)) 361 return false; 362 return true; 363 }); 364 365 promoteInternals(*MergedM, M, ModuleId, CfiFunctions); 366 promoteInternals(M, *MergedM, ModuleId, CfiFunctions); 367 368 auto &Ctx = MergedM->getContext(); 369 SmallVector<MDNode *, 8> CfiFunctionMDs; 370 for (auto V : CfiFunctions) { 371 Function &F = *cast<Function>(V); 372 SmallVector<MDNode *, 2> Types; 373 F.getMetadata(LLVMContext::MD_type, Types); 374 375 SmallVector<Metadata *, 4> Elts; 376 Elts.push_back(MDString::get(Ctx, F.getName())); 377 CfiFunctionLinkage Linkage; 378 if (lowertypetests::isJumpTableCanonical(&F)) 379 Linkage = CFL_Definition; 380 else if (F.hasExternalWeakLinkage()) 381 Linkage = CFL_WeakDeclaration; 382 else 383 Linkage = CFL_Declaration; 384 Elts.push_back(ConstantAsMetadata::get( 385 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage))); 386 append_range(Elts, Types); 387 CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts)); 388 } 389 390 if(!CfiFunctionMDs.empty()) { 391 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions"); 392 for (auto MD : CfiFunctionMDs) 393 NMD->addOperand(MD); 394 } 395 396 SmallVector<MDNode *, 8> FunctionAliases; 397 for (auto &A : M.aliases()) { 398 if (!isa<Function>(A.getAliasee())) 399 continue; 400 401 auto *F = cast<Function>(A.getAliasee()); 402 403 Metadata *Elts[] = { 404 MDString::get(Ctx, A.getName()), 405 MDString::get(Ctx, F->getName()), 406 ConstantAsMetadata::get( 407 ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())), 408 ConstantAsMetadata::get( 409 ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())), 410 }; 411 412 FunctionAliases.push_back(MDTuple::get(Ctx, Elts)); 413 } 414 415 if (!FunctionAliases.empty()) { 416 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases"); 417 for (auto MD : FunctionAliases) 418 NMD->addOperand(MD); 419 } 420 421 SmallVector<MDNode *, 8> Symvers; 422 ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) { 423 Function *F = M.getFunction(Name); 424 if (!F || F->use_empty()) 425 return; 426 427 Symvers.push_back(MDTuple::get( 428 Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)})); 429 }); 430 431 if (!Symvers.empty()) { 432 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers"); 433 for (auto MD : Symvers) 434 NMD->addOperand(MD); 435 } 436 437 simplifyExternals(*MergedM); 438 439 // FIXME: Try to re-use BSI and PFI from the original module here. 440 ProfileSummaryInfo PSI(M); 441 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 442 443 // Mark the merged module as requiring full LTO. We still want an index for 444 // it though, so that it can participate in summary-based dead stripping. 445 MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 446 ModuleSummaryIndex MergedMIndex = 447 buildModuleSummaryIndex(*MergedM, nullptr, &PSI); 448 449 SmallVector<char, 0> Buffer; 450 451 BitcodeWriter W(Buffer); 452 // Save the module hash produced for the full bitcode, which will 453 // be used in the backends, and use that in the minimized bitcode 454 // produced for the full link. 455 ModuleHash ModHash = {{0}}; 456 W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index, 457 /*GenerateHash=*/true, &ModHash); 458 W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex); 459 W.writeSymtab(); 460 W.writeStrtab(); 461 OS << Buffer; 462 463 // If a minimized bitcode module was requested for the thin link, only 464 // the information that is needed by thin link will be written in the 465 // given OS (the merged module will be written as usual). 466 if (ThinLinkOS) { 467 Buffer.clear(); 468 BitcodeWriter W2(Buffer); 469 StripDebugInfo(M); 470 W2.writeThinLinkBitcode(M, Index, ModHash); 471 W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, 472 &MergedMIndex); 473 W2.writeSymtab(); 474 W2.writeStrtab(); 475 *ThinLinkOS << Buffer; 476 } 477 } 478 479 // Check if the LTO Unit splitting has been enabled. 480 bool enableSplitLTOUnit(Module &M) { 481 bool EnableSplitLTOUnit = false; 482 if (auto *MD = mdconst::extract_or_null<ConstantInt>( 483 M.getModuleFlag("EnableSplitLTOUnit"))) 484 EnableSplitLTOUnit = MD->getZExtValue(); 485 return EnableSplitLTOUnit; 486 } 487 488 // Returns whether this module needs to be split because it uses type metadata. 489 bool hasTypeMetadata(Module &M) { 490 for (auto &GO : M.global_objects()) { 491 if (GO.hasMetadata(LLVMContext::MD_type)) 492 return true; 493 } 494 return false; 495 } 496 497 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS, 498 function_ref<AAResults &(Function &)> AARGetter, 499 Module &M, const ModuleSummaryIndex *Index) { 500 std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr; 501 // See if this module has any type metadata. If so, we try to split it 502 // or at least promote type ids to enable WPD. 503 if (hasTypeMetadata(M)) { 504 if (enableSplitLTOUnit(M)) 505 return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M); 506 // Promote type ids as needed for index-based WPD. 507 std::string ModuleId = getUniqueModuleId(&M); 508 if (!ModuleId.empty()) { 509 promoteTypeIds(M, ModuleId); 510 // Need to rebuild the index so that it contains type metadata 511 // for the newly promoted type ids. 512 // FIXME: Probably should not bother building the index at all 513 // in the caller of writeThinLTOBitcode (which does so via the 514 // ModuleSummaryIndexAnalysis pass), since we have to rebuild it 515 // anyway whenever there is type metadata (here or in 516 // splitAndWriteThinLTOBitcode). Just always build it once via the 517 // buildModuleSummaryIndex when Module(s) are ready. 518 ProfileSummaryInfo PSI(M); 519 NewIndex = std::make_unique<ModuleSummaryIndex>( 520 buildModuleSummaryIndex(M, nullptr, &PSI)); 521 Index = NewIndex.get(); 522 } 523 } 524 525 // Write it out as an unsplit ThinLTO module. 526 527 // Save the module hash produced for the full bitcode, which will 528 // be used in the backends, and use that in the minimized bitcode 529 // produced for the full link. 530 ModuleHash ModHash = {{0}}; 531 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index, 532 /*GenerateHash=*/true, &ModHash); 533 // If a minimized bitcode module was requested for the thin link, only 534 // the information that is needed by thin link will be written in the 535 // given OS. 536 if (ThinLinkOS && Index) 537 WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash); 538 } 539 540 class WriteThinLTOBitcode : public ModulePass { 541 raw_ostream &OS; // raw_ostream to print on 542 // The output stream on which to emit a minimized module for use 543 // just in the thin link, if requested. 544 raw_ostream *ThinLinkOS; 545 546 public: 547 static char ID; // Pass identification, replacement for typeid 548 WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) { 549 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 550 } 551 552 explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS) 553 : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) { 554 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 555 } 556 557 StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; } 558 559 bool runOnModule(Module &M) override { 560 const ModuleSummaryIndex *Index = 561 &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex()); 562 writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index); 563 return true; 564 } 565 void getAnalysisUsage(AnalysisUsage &AU) const override { 566 AU.setPreservesAll(); 567 AU.addRequired<AssumptionCacheTracker>(); 568 AU.addRequired<ModuleSummaryIndexWrapperPass>(); 569 AU.addRequired<TargetLibraryInfoWrapperPass>(); 570 } 571 }; 572 } // anonymous namespace 573 574 char WriteThinLTOBitcode::ID = 0; 575 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode", 576 "Write ThinLTO Bitcode", false, true) 577 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 578 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass) 579 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 580 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode", 581 "Write ThinLTO Bitcode", false, true) 582 583 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str, 584 raw_ostream *ThinLinkOS) { 585 return new WriteThinLTOBitcode(Str, ThinLinkOS); 586 } 587 588 PreservedAnalyses 589 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) { 590 FunctionAnalysisManager &FAM = 591 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 592 writeThinLTOBitcode(OS, ThinLinkOS, 593 [&FAM](Function &F) -> AAResults & { 594 return FAM.getResult<AAManager>(F); 595 }, 596 M, &AM.getResult<ModuleSummaryIndexAnalysis>(M)); 597 return PreservedAnalyses::all(); 598 } 599