1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 11 #include "llvm/Analysis/BasicAliasAnalysis.h" 12 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 13 #include "llvm/Analysis/ProfileSummaryInfo.h" 14 #include "llvm/Analysis/TypeMetadataUtils.h" 15 #include "llvm/Bitcode/BitcodeWriter.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DebugInfo.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/PassManager.h" 21 #include "llvm/Object/ModuleSymbolTable.h" 22 #include "llvm/Pass.h" 23 #include "llvm/Support/ScopedPrinter.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include "llvm/Transforms/IPO.h" 26 #include "llvm/Transforms/IPO/FunctionAttrs.h" 27 #include "llvm/Transforms/IPO/FunctionImport.h" 28 #include "llvm/Transforms/Utils/Cloning.h" 29 #include "llvm/Transforms/Utils/ModuleUtils.h" 30 using namespace llvm; 31 32 namespace { 33 34 // Promote each local-linkage entity defined by ExportM and used by ImportM by 35 // changing visibility and appending the given ModuleId. 36 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId, 37 SetVector<GlobalValue *> &PromoteExtra) { 38 DenseMap<const Comdat *, Comdat *> RenamedComdats; 39 for (auto &ExportGV : ExportM.global_values()) { 40 if (!ExportGV.hasLocalLinkage()) 41 continue; 42 43 auto Name = ExportGV.getName(); 44 GlobalValue *ImportGV = nullptr; 45 if (!PromoteExtra.count(&ExportGV)) { 46 ImportGV = ImportM.getNamedValue(Name); 47 if (!ImportGV) 48 continue; 49 ImportGV->removeDeadConstantUsers(); 50 if (ImportGV->use_empty()) { 51 ImportGV->eraseFromParent(); 52 continue; 53 } 54 } 55 56 std::string NewName = (Name + ModuleId).str(); 57 58 if (const auto *C = ExportGV.getComdat()) 59 if (C->getName() == Name) 60 RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName)); 61 62 ExportGV.setName(NewName); 63 ExportGV.setLinkage(GlobalValue::ExternalLinkage); 64 ExportGV.setVisibility(GlobalValue::HiddenVisibility); 65 66 if (ImportGV) { 67 ImportGV->setName(NewName); 68 ImportGV->setVisibility(GlobalValue::HiddenVisibility); 69 } 70 } 71 72 if (!RenamedComdats.empty()) 73 for (auto &GO : ExportM.global_objects()) 74 if (auto *C = GO.getComdat()) { 75 auto Replacement = RenamedComdats.find(C); 76 if (Replacement != RenamedComdats.end()) 77 GO.setComdat(Replacement->second); 78 } 79 } 80 81 // Promote all internal (i.e. distinct) type ids used by the module by replacing 82 // them with external type ids formed using the module id. 83 // 84 // Note that this needs to be done before we clone the module because each clone 85 // will receive its own set of distinct metadata nodes. 86 void promoteTypeIds(Module &M, StringRef ModuleId) { 87 DenseMap<Metadata *, Metadata *> LocalToGlobal; 88 auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) { 89 Metadata *MD = 90 cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata(); 91 92 if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) { 93 Metadata *&GlobalMD = LocalToGlobal[MD]; 94 if (!GlobalMD) { 95 std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str(); 96 GlobalMD = MDString::get(M.getContext(), NewName); 97 } 98 99 CI->setArgOperand(ArgNo, 100 MetadataAsValue::get(M.getContext(), GlobalMD)); 101 } 102 }; 103 104 if (Function *TypeTestFunc = 105 M.getFunction(Intrinsic::getName(Intrinsic::type_test))) { 106 for (const Use &U : TypeTestFunc->uses()) { 107 auto CI = cast<CallInst>(U.getUser()); 108 ExternalizeTypeId(CI, 1); 109 } 110 } 111 112 if (Function *TypeCheckedLoadFunc = 113 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) { 114 for (const Use &U : TypeCheckedLoadFunc->uses()) { 115 auto CI = cast<CallInst>(U.getUser()); 116 ExternalizeTypeId(CI, 2); 117 } 118 } 119 120 for (GlobalObject &GO : M.global_objects()) { 121 SmallVector<MDNode *, 1> MDs; 122 GO.getMetadata(LLVMContext::MD_type, MDs); 123 124 GO.eraseMetadata(LLVMContext::MD_type); 125 for (auto MD : MDs) { 126 auto I = LocalToGlobal.find(MD->getOperand(1)); 127 if (I == LocalToGlobal.end()) { 128 GO.addMetadata(LLVMContext::MD_type, *MD); 129 continue; 130 } 131 GO.addMetadata( 132 LLVMContext::MD_type, 133 *MDNode::get(M.getContext(), {MD->getOperand(0), I->second})); 134 } 135 } 136 } 137 138 // Drop unused globals, and drop type information from function declarations. 139 // FIXME: If we made functions typeless then there would be no need to do this. 140 void simplifyExternals(Module &M) { 141 FunctionType *EmptyFT = 142 FunctionType::get(Type::getVoidTy(M.getContext()), false); 143 144 for (auto I = M.begin(), E = M.end(); I != E;) { 145 Function &F = *I++; 146 if (F.isDeclaration() && F.use_empty()) { 147 F.eraseFromParent(); 148 continue; 149 } 150 151 if (!F.isDeclaration() || F.getFunctionType() == EmptyFT || 152 // Changing the type of an intrinsic may invalidate the IR. 153 F.getName().startswith("llvm.")) 154 continue; 155 156 Function *NewF = 157 Function::Create(EmptyFT, GlobalValue::ExternalLinkage, "", &M); 158 NewF->setVisibility(F.getVisibility()); 159 NewF->takeName(&F); 160 F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType())); 161 F.eraseFromParent(); 162 } 163 164 for (auto I = M.global_begin(), E = M.global_end(); I != E;) { 165 GlobalVariable &GV = *I++; 166 if (GV.isDeclaration() && GV.use_empty()) { 167 GV.eraseFromParent(); 168 continue; 169 } 170 } 171 } 172 173 static void 174 filterModule(Module *M, 175 function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) { 176 std::vector<GlobalValue *> V; 177 for (GlobalValue &GV : M->global_values()) 178 if (!ShouldKeepDefinition(&GV)) 179 V.push_back(&GV); 180 181 for (GlobalValue *GV : V) 182 if (!convertToDeclaration(*GV)) 183 GV->eraseFromParent(); 184 } 185 186 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) { 187 if (auto *F = dyn_cast<Function>(C)) 188 return Fn(F); 189 if (isa<GlobalValue>(C)) 190 return; 191 for (Value *Op : C->operands()) 192 forEachVirtualFunction(cast<Constant>(Op), Fn); 193 } 194 195 // If it's possible to split M into regular and thin LTO parts, do so and write 196 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a 197 // regular LTO bitcode file to OS. 198 void splitAndWriteThinLTOBitcode( 199 raw_ostream &OS, raw_ostream *ThinLinkOS, 200 function_ref<AAResults &(Function &)> AARGetter, Module &M) { 201 std::string ModuleId = getUniqueModuleId(&M); 202 if (ModuleId.empty()) { 203 // We couldn't generate a module ID for this module, just write it out as a 204 // regular LTO module. 205 WriteBitcodeToFile(M, OS); 206 if (ThinLinkOS) 207 // We don't have a ThinLTO part, but still write the module to the 208 // ThinLinkOS if requested so that the expected output file is produced. 209 WriteBitcodeToFile(M, *ThinLinkOS); 210 return; 211 } 212 213 promoteTypeIds(M, ModuleId); 214 215 // Returns whether a global has attached type metadata. Such globals may 216 // participate in CFI or whole-program devirtualization, so they need to 217 // appear in the merged module instead of the thin LTO module. 218 auto HasTypeMetadata = [](const GlobalObject *GO) { 219 return GO->hasMetadata(LLVMContext::MD_type); 220 }; 221 222 // Collect the set of virtual functions that are eligible for virtual constant 223 // propagation. Each eligible function must not access memory, must return 224 // an integer of width <=64 bits, must take at least one argument, must not 225 // use its first argument (assumed to be "this") and all arguments other than 226 // the first one must be of <=64 bit integer type. 227 // 228 // Note that we test whether this copy of the function is readnone, rather 229 // than testing function attributes, which must hold for any copy of the 230 // function, even a less optimized version substituted at link time. This is 231 // sound because the virtual constant propagation optimizations effectively 232 // inline all implementations of the virtual function into each call site, 233 // rather than using function attributes to perform local optimization. 234 std::set<const Function *> EligibleVirtualFns; 235 // If any member of a comdat lives in MergedM, put all members of that 236 // comdat in MergedM to keep the comdat together. 237 DenseSet<const Comdat *> MergedMComdats; 238 for (GlobalVariable &GV : M.globals()) 239 if (HasTypeMetadata(&GV)) { 240 if (const auto *C = GV.getComdat()) 241 MergedMComdats.insert(C); 242 forEachVirtualFunction(GV.getInitializer(), [&](Function *F) { 243 auto *RT = dyn_cast<IntegerType>(F->getReturnType()); 244 if (!RT || RT->getBitWidth() > 64 || F->arg_empty() || 245 !F->arg_begin()->use_empty()) 246 return; 247 for (auto &Arg : make_range(std::next(F->arg_begin()), F->arg_end())) { 248 auto *ArgT = dyn_cast<IntegerType>(Arg.getType()); 249 if (!ArgT || ArgT->getBitWidth() > 64) 250 return; 251 } 252 if (!F->isDeclaration() && 253 computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone) 254 EligibleVirtualFns.insert(F); 255 }); 256 } 257 258 ValueToValueMapTy VMap; 259 std::unique_ptr<Module> MergedM( 260 CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool { 261 if (const auto *C = GV->getComdat()) 262 if (MergedMComdats.count(C)) 263 return true; 264 if (auto *F = dyn_cast<Function>(GV)) 265 return EligibleVirtualFns.count(F); 266 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 267 return HasTypeMetadata(GVar); 268 return false; 269 })); 270 StripDebugInfo(*MergedM); 271 MergedM->setModuleInlineAsm(""); 272 273 for (Function &F : *MergedM) 274 if (!F.isDeclaration()) { 275 // Reset the linkage of all functions eligible for virtual constant 276 // propagation. The canonical definitions live in the thin LTO module so 277 // that they can be imported. 278 F.setLinkage(GlobalValue::AvailableExternallyLinkage); 279 F.setComdat(nullptr); 280 } 281 282 SetVector<GlobalValue *> CfiFunctions; 283 for (auto &F : M) 284 if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F)) 285 CfiFunctions.insert(&F); 286 287 // Remove all globals with type metadata, globals with comdats that live in 288 // MergedM, and aliases pointing to such globals from the thin LTO module. 289 filterModule(&M, [&](const GlobalValue *GV) { 290 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 291 if (HasTypeMetadata(GVar)) 292 return false; 293 if (const auto *C = GV->getComdat()) 294 if (MergedMComdats.count(C)) 295 return false; 296 return true; 297 }); 298 299 promoteInternals(*MergedM, M, ModuleId, CfiFunctions); 300 promoteInternals(M, *MergedM, ModuleId, CfiFunctions); 301 302 auto &Ctx = MergedM->getContext(); 303 SmallVector<MDNode *, 8> CfiFunctionMDs; 304 for (auto V : CfiFunctions) { 305 Function &F = *cast<Function>(V); 306 SmallVector<MDNode *, 2> Types; 307 F.getMetadata(LLVMContext::MD_type, Types); 308 309 SmallVector<Metadata *, 4> Elts; 310 Elts.push_back(MDString::get(Ctx, F.getName())); 311 CfiFunctionLinkage Linkage; 312 if (!F.isDeclarationForLinker()) 313 Linkage = CFL_Definition; 314 else if (F.isWeakForLinker()) 315 Linkage = CFL_WeakDeclaration; 316 else 317 Linkage = CFL_Declaration; 318 Elts.push_back(ConstantAsMetadata::get( 319 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage))); 320 for (auto Type : Types) 321 Elts.push_back(Type); 322 CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts)); 323 } 324 325 if(!CfiFunctionMDs.empty()) { 326 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions"); 327 for (auto MD : CfiFunctionMDs) 328 NMD->addOperand(MD); 329 } 330 331 SmallVector<MDNode *, 8> FunctionAliases; 332 for (auto &A : M.aliases()) { 333 if (!isa<Function>(A.getAliasee())) 334 continue; 335 336 auto *F = cast<Function>(A.getAliasee()); 337 338 Metadata *Elts[] = { 339 MDString::get(Ctx, A.getName()), 340 MDString::get(Ctx, F->getName()), 341 ConstantAsMetadata::get( 342 ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())), 343 ConstantAsMetadata::get( 344 ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())), 345 }; 346 347 FunctionAliases.push_back(MDTuple::get(Ctx, Elts)); 348 } 349 350 if (!FunctionAliases.empty()) { 351 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases"); 352 for (auto MD : FunctionAliases) 353 NMD->addOperand(MD); 354 } 355 356 SmallVector<MDNode *, 8> Symvers; 357 ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) { 358 Function *F = M.getFunction(Name); 359 if (!F || F->use_empty()) 360 return; 361 362 Symvers.push_back(MDTuple::get( 363 Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)})); 364 }); 365 366 if (!Symvers.empty()) { 367 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers"); 368 for (auto MD : Symvers) 369 NMD->addOperand(MD); 370 } 371 372 simplifyExternals(*MergedM); 373 374 // FIXME: Try to re-use BSI and PFI from the original module here. 375 ProfileSummaryInfo PSI(M); 376 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 377 378 // Mark the merged module as requiring full LTO. We still want an index for 379 // it though, so that it can participate in summary-based dead stripping. 380 MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 381 ModuleSummaryIndex MergedMIndex = 382 buildModuleSummaryIndex(*MergedM, nullptr, &PSI); 383 384 SmallVector<char, 0> Buffer; 385 386 BitcodeWriter W(Buffer); 387 // Save the module hash produced for the full bitcode, which will 388 // be used in the backends, and use that in the minimized bitcode 389 // produced for the full link. 390 ModuleHash ModHash = {{0}}; 391 W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index, 392 /*GenerateHash=*/true, &ModHash); 393 W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex); 394 W.writeSymtab(); 395 W.writeStrtab(); 396 OS << Buffer; 397 398 // If a minimized bitcode module was requested for the thin link, only 399 // the information that is needed by thin link will be written in the 400 // given OS (the merged module will be written as usual). 401 if (ThinLinkOS) { 402 Buffer.clear(); 403 BitcodeWriter W2(Buffer); 404 StripDebugInfo(M); 405 W2.writeThinLinkBitcode(M, Index, ModHash); 406 W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, 407 &MergedMIndex); 408 W2.writeSymtab(); 409 W2.writeStrtab(); 410 *ThinLinkOS << Buffer; 411 } 412 } 413 414 // Returns whether this module needs to be split because it uses type metadata. 415 bool requiresSplit(Module &M) { 416 for (auto &GO : M.global_objects()) { 417 if (GO.hasMetadata(LLVMContext::MD_type)) 418 return true; 419 } 420 421 return false; 422 } 423 424 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS, 425 function_ref<AAResults &(Function &)> AARGetter, 426 Module &M, const ModuleSummaryIndex *Index) { 427 // See if this module has any type metadata. If so, we need to split it. 428 if (requiresSplit(M)) 429 return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M); 430 431 // Otherwise we can just write it out as a regular module. 432 433 // Save the module hash produced for the full bitcode, which will 434 // be used in the backends, and use that in the minimized bitcode 435 // produced for the full link. 436 ModuleHash ModHash = {{0}}; 437 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index, 438 /*GenerateHash=*/true, &ModHash); 439 // If a minimized bitcode module was requested for the thin link, only 440 // the information that is needed by thin link will be written in the 441 // given OS. 442 if (ThinLinkOS && Index) 443 WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash); 444 } 445 446 class WriteThinLTOBitcode : public ModulePass { 447 raw_ostream &OS; // raw_ostream to print on 448 // The output stream on which to emit a minimized module for use 449 // just in the thin link, if requested. 450 raw_ostream *ThinLinkOS; 451 452 public: 453 static char ID; // Pass identification, replacement for typeid 454 WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) { 455 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 456 } 457 458 explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS) 459 : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) { 460 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 461 } 462 463 StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; } 464 465 bool runOnModule(Module &M) override { 466 const ModuleSummaryIndex *Index = 467 &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex()); 468 writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index); 469 return true; 470 } 471 void getAnalysisUsage(AnalysisUsage &AU) const override { 472 AU.setPreservesAll(); 473 AU.addRequired<AssumptionCacheTracker>(); 474 AU.addRequired<ModuleSummaryIndexWrapperPass>(); 475 AU.addRequired<TargetLibraryInfoWrapperPass>(); 476 } 477 }; 478 } // anonymous namespace 479 480 char WriteThinLTOBitcode::ID = 0; 481 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode", 482 "Write ThinLTO Bitcode", false, true) 483 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 484 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass) 485 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 486 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode", 487 "Write ThinLTO Bitcode", false, true) 488 489 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str, 490 raw_ostream *ThinLinkOS) { 491 return new WriteThinLTOBitcode(Str, ThinLinkOS); 492 } 493 494 PreservedAnalyses 495 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) { 496 FunctionAnalysisManager &FAM = 497 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 498 writeThinLTOBitcode(OS, ThinLinkOS, 499 [&FAM](Function &F) -> AAResults & { 500 return FAM.getResult<AAManager>(F); 501 }, 502 M, &AM.getResult<ModuleSummaryIndexAnalysis>(M)); 503 return PreservedAnalyses::all(); 504 } 505