1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
11 #include "llvm/Analysis/BasicAliasAnalysis.h"
12 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
13 #include "llvm/Analysis/ProfileSummaryInfo.h"
14 #include "llvm/Analysis/TypeMetadataUtils.h"
15 #include "llvm/Bitcode/BitcodeWriter.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/DebugInfo.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/IR/PassManager.h"
21 #include "llvm/Object/ModuleSymbolTable.h"
22 #include "llvm/Pass.h"
23 #include "llvm/Support/ScopedPrinter.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Transforms/IPO.h"
26 #include "llvm/Transforms/IPO/FunctionAttrs.h"
27 #include "llvm/Transforms/IPO/FunctionImport.h"
28 #include "llvm/Transforms/Utils/Cloning.h"
29 #include "llvm/Transforms/Utils/ModuleUtils.h"
30 using namespace llvm;
31 
32 namespace {
33 
34 // Promote each local-linkage entity defined by ExportM and used by ImportM by
35 // changing visibility and appending the given ModuleId.
36 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId,
37                       SetVector<GlobalValue *> &PromoteExtra) {
38   DenseMap<const Comdat *, Comdat *> RenamedComdats;
39   for (auto &ExportGV : ExportM.global_values()) {
40     if (!ExportGV.hasLocalLinkage())
41       continue;
42 
43     auto Name = ExportGV.getName();
44     GlobalValue *ImportGV = nullptr;
45     if (!PromoteExtra.count(&ExportGV)) {
46       ImportGV = ImportM.getNamedValue(Name);
47       if (!ImportGV)
48         continue;
49       ImportGV->removeDeadConstantUsers();
50       if (ImportGV->use_empty()) {
51         ImportGV->eraseFromParent();
52         continue;
53       }
54     }
55 
56     std::string NewName = (Name + ModuleId).str();
57 
58     if (const auto *C = ExportGV.getComdat())
59       if (C->getName() == Name)
60         RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName));
61 
62     ExportGV.setName(NewName);
63     ExportGV.setLinkage(GlobalValue::ExternalLinkage);
64     ExportGV.setVisibility(GlobalValue::HiddenVisibility);
65 
66     if (ImportGV) {
67       ImportGV->setName(NewName);
68       ImportGV->setVisibility(GlobalValue::HiddenVisibility);
69     }
70   }
71 
72   if (!RenamedComdats.empty())
73     for (auto &GO : ExportM.global_objects())
74       if (auto *C = GO.getComdat()) {
75         auto Replacement = RenamedComdats.find(C);
76         if (Replacement != RenamedComdats.end())
77           GO.setComdat(Replacement->second);
78       }
79 }
80 
81 // Promote all internal (i.e. distinct) type ids used by the module by replacing
82 // them with external type ids formed using the module id.
83 //
84 // Note that this needs to be done before we clone the module because each clone
85 // will receive its own set of distinct metadata nodes.
86 void promoteTypeIds(Module &M, StringRef ModuleId) {
87   DenseMap<Metadata *, Metadata *> LocalToGlobal;
88   auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
89     Metadata *MD =
90         cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();
91 
92     if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
93       Metadata *&GlobalMD = LocalToGlobal[MD];
94       if (!GlobalMD) {
95         std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str();
96         GlobalMD = MDString::get(M.getContext(), NewName);
97       }
98 
99       CI->setArgOperand(ArgNo,
100                         MetadataAsValue::get(M.getContext(), GlobalMD));
101     }
102   };
103 
104   if (Function *TypeTestFunc =
105           M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
106     for (const Use &U : TypeTestFunc->uses()) {
107       auto CI = cast<CallInst>(U.getUser());
108       ExternalizeTypeId(CI, 1);
109     }
110   }
111 
112   if (Function *TypeCheckedLoadFunc =
113           M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
114     for (const Use &U : TypeCheckedLoadFunc->uses()) {
115       auto CI = cast<CallInst>(U.getUser());
116       ExternalizeTypeId(CI, 2);
117     }
118   }
119 
120   for (GlobalObject &GO : M.global_objects()) {
121     SmallVector<MDNode *, 1> MDs;
122     GO.getMetadata(LLVMContext::MD_type, MDs);
123 
124     GO.eraseMetadata(LLVMContext::MD_type);
125     for (auto MD : MDs) {
126       auto I = LocalToGlobal.find(MD->getOperand(1));
127       if (I == LocalToGlobal.end()) {
128         GO.addMetadata(LLVMContext::MD_type, *MD);
129         continue;
130       }
131       GO.addMetadata(
132           LLVMContext::MD_type,
133           *MDNode::get(M.getContext(), {MD->getOperand(0), I->second}));
134     }
135   }
136 }
137 
138 // Drop unused globals, and drop type information from function declarations.
139 // FIXME: If we made functions typeless then there would be no need to do this.
140 void simplifyExternals(Module &M) {
141   FunctionType *EmptyFT =
142       FunctionType::get(Type::getVoidTy(M.getContext()), false);
143 
144   for (auto I = M.begin(), E = M.end(); I != E;) {
145     Function &F = *I++;
146     if (F.isDeclaration() && F.use_empty()) {
147       F.eraseFromParent();
148       continue;
149     }
150 
151     if (!F.isDeclaration() || F.getFunctionType() == EmptyFT ||
152         // Changing the type of an intrinsic may invalidate the IR.
153         F.getName().startswith("llvm."))
154       continue;
155 
156     Function *NewF =
157         Function::Create(EmptyFT, GlobalValue::ExternalLinkage, "", &M);
158     NewF->setVisibility(F.getVisibility());
159     NewF->takeName(&F);
160     F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType()));
161     F.eraseFromParent();
162   }
163 
164   for (auto I = M.global_begin(), E = M.global_end(); I != E;) {
165     GlobalVariable &GV = *I++;
166     if (GV.isDeclaration() && GV.use_empty()) {
167       GV.eraseFromParent();
168       continue;
169     }
170   }
171 }
172 
173 static void
174 filterModule(Module *M,
175              function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
176   std::vector<GlobalValue *> V;
177   for (GlobalValue &GV : M->global_values())
178     if (!ShouldKeepDefinition(&GV))
179       V.push_back(&GV);
180 
181   for (GlobalValue *GV : V)
182     if (!convertToDeclaration(*GV))
183       GV->eraseFromParent();
184 }
185 
186 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) {
187   if (auto *F = dyn_cast<Function>(C))
188     return Fn(F);
189   if (isa<GlobalValue>(C))
190     return;
191   for (Value *Op : C->operands())
192     forEachVirtualFunction(cast<Constant>(Op), Fn);
193 }
194 
195 // If it's possible to split M into regular and thin LTO parts, do so and write
196 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a
197 // regular LTO bitcode file to OS.
198 void splitAndWriteThinLTOBitcode(
199     raw_ostream &OS, raw_ostream *ThinLinkOS,
200     function_ref<AAResults &(Function &)> AARGetter, Module &M) {
201   std::string ModuleId = getUniqueModuleId(&M);
202   if (ModuleId.empty()) {
203     // We couldn't generate a module ID for this module, just write it out as a
204     // regular LTO module.
205     WriteBitcodeToFile(M, OS);
206     if (ThinLinkOS)
207       // We don't have a ThinLTO part, but still write the module to the
208       // ThinLinkOS if requested so that the expected output file is produced.
209       WriteBitcodeToFile(M, *ThinLinkOS);
210     return;
211   }
212 
213   promoteTypeIds(M, ModuleId);
214 
215   // Returns whether a global has attached type metadata. Such globals may
216   // participate in CFI or whole-program devirtualization, so they need to
217   // appear in the merged module instead of the thin LTO module.
218   auto HasTypeMetadata = [](const GlobalObject *GO) {
219     return GO->hasMetadata(LLVMContext::MD_type);
220   };
221 
222   // Collect the set of virtual functions that are eligible for virtual constant
223   // propagation. Each eligible function must not access memory, must return
224   // an integer of width <=64 bits, must take at least one argument, must not
225   // use its first argument (assumed to be "this") and all arguments other than
226   // the first one must be of <=64 bit integer type.
227   //
228   // Note that we test whether this copy of the function is readnone, rather
229   // than testing function attributes, which must hold for any copy of the
230   // function, even a less optimized version substituted at link time. This is
231   // sound because the virtual constant propagation optimizations effectively
232   // inline all implementations of the virtual function into each call site,
233   // rather than using function attributes to perform local optimization.
234   std::set<const Function *> EligibleVirtualFns;
235   // If any member of a comdat lives in MergedM, put all members of that
236   // comdat in MergedM to keep the comdat together.
237   DenseSet<const Comdat *> MergedMComdats;
238   for (GlobalVariable &GV : M.globals())
239     if (HasTypeMetadata(&GV)) {
240       if (const auto *C = GV.getComdat())
241         MergedMComdats.insert(C);
242       forEachVirtualFunction(GV.getInitializer(), [&](Function *F) {
243         auto *RT = dyn_cast<IntegerType>(F->getReturnType());
244         if (!RT || RT->getBitWidth() > 64 || F->arg_empty() ||
245             !F->arg_begin()->use_empty())
246           return;
247         for (auto &Arg : make_range(std::next(F->arg_begin()), F->arg_end())) {
248           auto *ArgT = dyn_cast<IntegerType>(Arg.getType());
249           if (!ArgT || ArgT->getBitWidth() > 64)
250             return;
251         }
252         if (!F->isDeclaration() &&
253             computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone)
254           EligibleVirtualFns.insert(F);
255       });
256     }
257 
258   ValueToValueMapTy VMap;
259   std::unique_ptr<Module> MergedM(
260       CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool {
261         if (const auto *C = GV->getComdat())
262           if (MergedMComdats.count(C))
263             return true;
264         if (auto *F = dyn_cast<Function>(GV))
265           return EligibleVirtualFns.count(F);
266         if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
267           return HasTypeMetadata(GVar);
268         return false;
269       }));
270   StripDebugInfo(*MergedM);
271   MergedM->setModuleInlineAsm("");
272 
273   for (Function &F : *MergedM)
274     if (!F.isDeclaration()) {
275       // Reset the linkage of all functions eligible for virtual constant
276       // propagation. The canonical definitions live in the thin LTO module so
277       // that they can be imported.
278       F.setLinkage(GlobalValue::AvailableExternallyLinkage);
279       F.setComdat(nullptr);
280     }
281 
282   SetVector<GlobalValue *> CfiFunctions;
283   for (auto &F : M)
284     if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F))
285       CfiFunctions.insert(&F);
286 
287   // Remove all globals with type metadata, globals with comdats that live in
288   // MergedM, and aliases pointing to such globals from the thin LTO module.
289   filterModule(&M, [&](const GlobalValue *GV) {
290     if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
291       if (HasTypeMetadata(GVar))
292         return false;
293     if (const auto *C = GV->getComdat())
294       if (MergedMComdats.count(C))
295         return false;
296     return true;
297   });
298 
299   promoteInternals(*MergedM, M, ModuleId, CfiFunctions);
300   promoteInternals(M, *MergedM, ModuleId, CfiFunctions);
301 
302   auto &Ctx = MergedM->getContext();
303   SmallVector<MDNode *, 8> CfiFunctionMDs;
304   for (auto V : CfiFunctions) {
305     Function &F = *cast<Function>(V);
306     SmallVector<MDNode *, 2> Types;
307     F.getMetadata(LLVMContext::MD_type, Types);
308 
309     SmallVector<Metadata *, 4> Elts;
310     Elts.push_back(MDString::get(Ctx, F.getName()));
311     CfiFunctionLinkage Linkage;
312     if (!F.isDeclarationForLinker())
313       Linkage = CFL_Definition;
314     else if (F.isWeakForLinker())
315       Linkage = CFL_WeakDeclaration;
316     else
317       Linkage = CFL_Declaration;
318     Elts.push_back(ConstantAsMetadata::get(
319         llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage)));
320     for (auto Type : Types)
321       Elts.push_back(Type);
322     CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts));
323   }
324 
325   if(!CfiFunctionMDs.empty()) {
326     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions");
327     for (auto MD : CfiFunctionMDs)
328       NMD->addOperand(MD);
329   }
330 
331   SmallVector<MDNode *, 8> FunctionAliases;
332   for (auto &A : M.aliases()) {
333     if (!isa<Function>(A.getAliasee()))
334       continue;
335 
336     auto *F = cast<Function>(A.getAliasee());
337 
338     Metadata *Elts[] = {
339         MDString::get(Ctx, A.getName()),
340         MDString::get(Ctx, F->getName()),
341         ConstantAsMetadata::get(
342             ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())),
343         ConstantAsMetadata::get(
344             ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())),
345     };
346 
347     FunctionAliases.push_back(MDTuple::get(Ctx, Elts));
348   }
349 
350   if (!FunctionAliases.empty()) {
351     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases");
352     for (auto MD : FunctionAliases)
353       NMD->addOperand(MD);
354   }
355 
356   SmallVector<MDNode *, 8> Symvers;
357   ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) {
358     Function *F = M.getFunction(Name);
359     if (!F || F->use_empty())
360       return;
361 
362     Symvers.push_back(MDTuple::get(
363         Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)}));
364   });
365 
366   if (!Symvers.empty()) {
367     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers");
368     for (auto MD : Symvers)
369       NMD->addOperand(MD);
370   }
371 
372   simplifyExternals(*MergedM);
373 
374   // FIXME: Try to re-use BSI and PFI from the original module here.
375   ProfileSummaryInfo PSI(M);
376   ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
377 
378   // Mark the merged module as requiring full LTO. We still want an index for
379   // it though, so that it can participate in summary-based dead stripping.
380   MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
381   ModuleSummaryIndex MergedMIndex =
382       buildModuleSummaryIndex(*MergedM, nullptr, &PSI);
383 
384   SmallVector<char, 0> Buffer;
385 
386   BitcodeWriter W(Buffer);
387   // Save the module hash produced for the full bitcode, which will
388   // be used in the backends, and use that in the minimized bitcode
389   // produced for the full link.
390   ModuleHash ModHash = {{0}};
391   W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index,
392                 /*GenerateHash=*/true, &ModHash);
393   W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex);
394   W.writeSymtab();
395   W.writeStrtab();
396   OS << Buffer;
397 
398   // If a minimized bitcode module was requested for the thin link, only
399   // the information that is needed by thin link will be written in the
400   // given OS (the merged module will be written as usual).
401   if (ThinLinkOS) {
402     Buffer.clear();
403     BitcodeWriter W2(Buffer);
404     StripDebugInfo(M);
405     W2.writeThinLinkBitcode(M, Index, ModHash);
406     W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false,
407                    &MergedMIndex);
408     W2.writeSymtab();
409     W2.writeStrtab();
410     *ThinLinkOS << Buffer;
411   }
412 }
413 
414 // Returns whether this module needs to be split because it uses type metadata.
415 bool requiresSplit(Module &M) {
416   for (auto &GO : M.global_objects()) {
417     if (GO.hasMetadata(LLVMContext::MD_type))
418       return true;
419   }
420 
421   return false;
422 }
423 
424 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
425                          function_ref<AAResults &(Function &)> AARGetter,
426                          Module &M, const ModuleSummaryIndex *Index) {
427   // See if this module has any type metadata. If so, we need to split it.
428   if (requiresSplit(M))
429     return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
430 
431   // Otherwise we can just write it out as a regular module.
432 
433   // Save the module hash produced for the full bitcode, which will
434   // be used in the backends, and use that in the minimized bitcode
435   // produced for the full link.
436   ModuleHash ModHash = {{0}};
437   WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
438                      /*GenerateHash=*/true, &ModHash);
439   // If a minimized bitcode module was requested for the thin link, only
440   // the information that is needed by thin link will be written in the
441   // given OS.
442   if (ThinLinkOS && Index)
443     WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash);
444 }
445 
446 class WriteThinLTOBitcode : public ModulePass {
447   raw_ostream &OS; // raw_ostream to print on
448   // The output stream on which to emit a minimized module for use
449   // just in the thin link, if requested.
450   raw_ostream *ThinLinkOS;
451 
452 public:
453   static char ID; // Pass identification, replacement for typeid
454   WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) {
455     initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
456   }
457 
458   explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS)
459       : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) {
460     initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
461   }
462 
463   StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; }
464 
465   bool runOnModule(Module &M) override {
466     const ModuleSummaryIndex *Index =
467         &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex());
468     writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index);
469     return true;
470   }
471   void getAnalysisUsage(AnalysisUsage &AU) const override {
472     AU.setPreservesAll();
473     AU.addRequired<AssumptionCacheTracker>();
474     AU.addRequired<ModuleSummaryIndexWrapperPass>();
475     AU.addRequired<TargetLibraryInfoWrapperPass>();
476   }
477 };
478 } // anonymous namespace
479 
480 char WriteThinLTOBitcode::ID = 0;
481 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode",
482                       "Write ThinLTO Bitcode", false, true)
483 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
484 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
485 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
486 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode",
487                     "Write ThinLTO Bitcode", false, true)
488 
489 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str,
490                                                 raw_ostream *ThinLinkOS) {
491   return new WriteThinLTOBitcode(Str, ThinLinkOS);
492 }
493 
494 PreservedAnalyses
495 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) {
496   FunctionAnalysisManager &FAM =
497       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
498   writeThinLTOBitcode(OS, ThinLinkOS,
499                       [&FAM](Function &F) -> AAResults & {
500                         return FAM.getResult<AAManager>(F);
501                       },
502                       M, &AM.getResult<ModuleSummaryIndexAnalysis>(M));
503   return PreservedAnalyses::all();
504 }
505