1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 11 #include "llvm/Analysis/BasicAliasAnalysis.h" 12 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 13 #include "llvm/Analysis/ProfileSummaryInfo.h" 14 #include "llvm/Analysis/TypeMetadataUtils.h" 15 #include "llvm/Bitcode/BitcodeWriter.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DebugInfo.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/PassManager.h" 21 #include "llvm/Object/ModuleSymbolTable.h" 22 #include "llvm/Pass.h" 23 #include "llvm/Support/ScopedPrinter.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include "llvm/Transforms/IPO.h" 26 #include "llvm/Transforms/IPO/FunctionAttrs.h" 27 #include "llvm/Transforms/IPO/FunctionImport.h" 28 #include "llvm/Transforms/Utils/Cloning.h" 29 #include "llvm/Transforms/Utils/ModuleUtils.h" 30 using namespace llvm; 31 32 namespace { 33 34 // Promote each local-linkage entity defined by ExportM and used by ImportM by 35 // changing visibility and appending the given ModuleId. 36 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId, 37 SetVector<GlobalValue *> &PromoteExtra) { 38 DenseMap<const Comdat *, Comdat *> RenamedComdats; 39 for (auto &ExportGV : ExportM.global_values()) { 40 if (!ExportGV.hasLocalLinkage()) 41 continue; 42 43 auto Name = ExportGV.getName(); 44 GlobalValue *ImportGV = nullptr; 45 if (!PromoteExtra.count(&ExportGV)) { 46 ImportGV = ImportM.getNamedValue(Name); 47 if (!ImportGV) 48 continue; 49 ImportGV->removeDeadConstantUsers(); 50 if (ImportGV->use_empty()) { 51 ImportGV->eraseFromParent(); 52 continue; 53 } 54 } 55 56 std::string NewName = (Name + ModuleId).str(); 57 58 if (const auto *C = ExportGV.getComdat()) 59 if (C->getName() == Name) 60 RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName)); 61 62 ExportGV.setName(NewName); 63 ExportGV.setLinkage(GlobalValue::ExternalLinkage); 64 ExportGV.setVisibility(GlobalValue::HiddenVisibility); 65 66 if (ImportGV) { 67 ImportGV->setName(NewName); 68 ImportGV->setVisibility(GlobalValue::HiddenVisibility); 69 } 70 } 71 72 if (!RenamedComdats.empty()) 73 for (auto &GO : ExportM.global_objects()) 74 if (auto *C = GO.getComdat()) { 75 auto Replacement = RenamedComdats.find(C); 76 if (Replacement != RenamedComdats.end()) 77 GO.setComdat(Replacement->second); 78 } 79 } 80 81 // Promote all internal (i.e. distinct) type ids used by the module by replacing 82 // them with external type ids formed using the module id. 83 // 84 // Note that this needs to be done before we clone the module because each clone 85 // will receive its own set of distinct metadata nodes. 86 void promoteTypeIds(Module &M, StringRef ModuleId) { 87 DenseMap<Metadata *, Metadata *> LocalToGlobal; 88 auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) { 89 Metadata *MD = 90 cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata(); 91 92 if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) { 93 Metadata *&GlobalMD = LocalToGlobal[MD]; 94 if (!GlobalMD) { 95 std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str(); 96 GlobalMD = MDString::get(M.getContext(), NewName); 97 } 98 99 CI->setArgOperand(ArgNo, 100 MetadataAsValue::get(M.getContext(), GlobalMD)); 101 } 102 }; 103 104 if (Function *TypeTestFunc = 105 M.getFunction(Intrinsic::getName(Intrinsic::type_test))) { 106 for (const Use &U : TypeTestFunc->uses()) { 107 auto CI = cast<CallInst>(U.getUser()); 108 ExternalizeTypeId(CI, 1); 109 } 110 } 111 112 if (Function *TypeCheckedLoadFunc = 113 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) { 114 for (const Use &U : TypeCheckedLoadFunc->uses()) { 115 auto CI = cast<CallInst>(U.getUser()); 116 ExternalizeTypeId(CI, 2); 117 } 118 } 119 120 for (GlobalObject &GO : M.global_objects()) { 121 SmallVector<MDNode *, 1> MDs; 122 GO.getMetadata(LLVMContext::MD_type, MDs); 123 124 GO.eraseMetadata(LLVMContext::MD_type); 125 for (auto MD : MDs) { 126 auto I = LocalToGlobal.find(MD->getOperand(1)); 127 if (I == LocalToGlobal.end()) { 128 GO.addMetadata(LLVMContext::MD_type, *MD); 129 continue; 130 } 131 GO.addMetadata( 132 LLVMContext::MD_type, 133 *MDNode::get(M.getContext(), 134 ArrayRef<Metadata *>{MD->getOperand(0), I->second})); 135 } 136 } 137 } 138 139 // Drop unused globals, and drop type information from function declarations. 140 // FIXME: If we made functions typeless then there would be no need to do this. 141 void simplifyExternals(Module &M) { 142 FunctionType *EmptyFT = 143 FunctionType::get(Type::getVoidTy(M.getContext()), false); 144 145 for (auto I = M.begin(), E = M.end(); I != E;) { 146 Function &F = *I++; 147 if (F.isDeclaration() && F.use_empty()) { 148 F.eraseFromParent(); 149 continue; 150 } 151 152 if (!F.isDeclaration() || F.getFunctionType() == EmptyFT || 153 // Changing the type of an intrinsic may invalidate the IR. 154 F.getName().startswith("llvm.")) 155 continue; 156 157 Function *NewF = 158 Function::Create(EmptyFT, GlobalValue::ExternalLinkage, "", &M); 159 NewF->setVisibility(F.getVisibility()); 160 NewF->takeName(&F); 161 F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType())); 162 F.eraseFromParent(); 163 } 164 165 for (auto I = M.global_begin(), E = M.global_end(); I != E;) { 166 GlobalVariable &GV = *I++; 167 if (GV.isDeclaration() && GV.use_empty()) { 168 GV.eraseFromParent(); 169 continue; 170 } 171 } 172 } 173 174 static void 175 filterModule(Module *M, 176 function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) { 177 std::vector<GlobalValue *> V; 178 for (GlobalValue &GV : M->global_values()) 179 if (!ShouldKeepDefinition(&GV)) 180 V.push_back(&GV); 181 182 for (GlobalValue *GV : V) 183 if (!convertToDeclaration(*GV)) 184 GV->eraseFromParent(); 185 } 186 187 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) { 188 if (auto *F = dyn_cast<Function>(C)) 189 return Fn(F); 190 if (isa<GlobalValue>(C)) 191 return; 192 for (Value *Op : C->operands()) 193 forEachVirtualFunction(cast<Constant>(Op), Fn); 194 } 195 196 // If it's possible to split M into regular and thin LTO parts, do so and write 197 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a 198 // regular LTO bitcode file to OS. 199 void splitAndWriteThinLTOBitcode( 200 raw_ostream &OS, raw_ostream *ThinLinkOS, 201 function_ref<AAResults &(Function &)> AARGetter, Module &M) { 202 std::string ModuleId = getUniqueModuleId(&M); 203 if (ModuleId.empty()) { 204 // We couldn't generate a module ID for this module, just write it out as a 205 // regular LTO module. 206 WriteBitcodeToFile(M, OS); 207 if (ThinLinkOS) 208 // We don't have a ThinLTO part, but still write the module to the 209 // ThinLinkOS if requested so that the expected output file is produced. 210 WriteBitcodeToFile(M, *ThinLinkOS); 211 return; 212 } 213 214 promoteTypeIds(M, ModuleId); 215 216 // Returns whether a global has attached type metadata. Such globals may 217 // participate in CFI or whole-program devirtualization, so they need to 218 // appear in the merged module instead of the thin LTO module. 219 auto HasTypeMetadata = [&](const GlobalObject *GO) { 220 SmallVector<MDNode *, 1> MDs; 221 GO->getMetadata(LLVMContext::MD_type, MDs); 222 return !MDs.empty(); 223 }; 224 225 // Collect the set of virtual functions that are eligible for virtual constant 226 // propagation. Each eligible function must not access memory, must return 227 // an integer of width <=64 bits, must take at least one argument, must not 228 // use its first argument (assumed to be "this") and all arguments other than 229 // the first one must be of <=64 bit integer type. 230 // 231 // Note that we test whether this copy of the function is readnone, rather 232 // than testing function attributes, which must hold for any copy of the 233 // function, even a less optimized version substituted at link time. This is 234 // sound because the virtual constant propagation optimizations effectively 235 // inline all implementations of the virtual function into each call site, 236 // rather than using function attributes to perform local optimization. 237 std::set<const Function *> EligibleVirtualFns; 238 // If any member of a comdat lives in MergedM, put all members of that 239 // comdat in MergedM to keep the comdat together. 240 DenseSet<const Comdat *> MergedMComdats; 241 for (GlobalVariable &GV : M.globals()) 242 if (HasTypeMetadata(&GV)) { 243 if (const auto *C = GV.getComdat()) 244 MergedMComdats.insert(C); 245 forEachVirtualFunction(GV.getInitializer(), [&](Function *F) { 246 auto *RT = dyn_cast<IntegerType>(F->getReturnType()); 247 if (!RT || RT->getBitWidth() > 64 || F->arg_empty() || 248 !F->arg_begin()->use_empty()) 249 return; 250 for (auto &Arg : make_range(std::next(F->arg_begin()), F->arg_end())) { 251 auto *ArgT = dyn_cast<IntegerType>(Arg.getType()); 252 if (!ArgT || ArgT->getBitWidth() > 64) 253 return; 254 } 255 if (!F->isDeclaration() && 256 computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone) 257 EligibleVirtualFns.insert(F); 258 }); 259 } 260 261 ValueToValueMapTy VMap; 262 std::unique_ptr<Module> MergedM( 263 CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool { 264 if (const auto *C = GV->getComdat()) 265 if (MergedMComdats.count(C)) 266 return true; 267 if (auto *F = dyn_cast<Function>(GV)) 268 return EligibleVirtualFns.count(F); 269 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 270 return HasTypeMetadata(GVar); 271 return false; 272 })); 273 StripDebugInfo(*MergedM); 274 MergedM->setModuleInlineAsm(""); 275 276 for (Function &F : *MergedM) 277 if (!F.isDeclaration()) { 278 // Reset the linkage of all functions eligible for virtual constant 279 // propagation. The canonical definitions live in the thin LTO module so 280 // that they can be imported. 281 F.setLinkage(GlobalValue::AvailableExternallyLinkage); 282 F.setComdat(nullptr); 283 } 284 285 SetVector<GlobalValue *> CfiFunctions; 286 for (auto &F : M) 287 if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F)) 288 CfiFunctions.insert(&F); 289 290 // Remove all globals with type metadata, globals with comdats that live in 291 // MergedM, and aliases pointing to such globals from the thin LTO module. 292 filterModule(&M, [&](const GlobalValue *GV) { 293 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 294 if (HasTypeMetadata(GVar)) 295 return false; 296 if (const auto *C = GV->getComdat()) 297 if (MergedMComdats.count(C)) 298 return false; 299 return true; 300 }); 301 302 promoteInternals(*MergedM, M, ModuleId, CfiFunctions); 303 promoteInternals(M, *MergedM, ModuleId, CfiFunctions); 304 305 auto &Ctx = MergedM->getContext(); 306 SmallVector<MDNode *, 8> CfiFunctionMDs; 307 for (auto V : CfiFunctions) { 308 Function &F = *cast<Function>(V); 309 SmallVector<MDNode *, 2> Types; 310 F.getMetadata(LLVMContext::MD_type, Types); 311 312 SmallVector<Metadata *, 4> Elts; 313 Elts.push_back(MDString::get(Ctx, F.getName())); 314 CfiFunctionLinkage Linkage; 315 if (!F.isDeclarationForLinker()) 316 Linkage = CFL_Definition; 317 else if (F.isWeakForLinker()) 318 Linkage = CFL_WeakDeclaration; 319 else 320 Linkage = CFL_Declaration; 321 Elts.push_back(ConstantAsMetadata::get( 322 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage))); 323 for (auto Type : Types) 324 Elts.push_back(Type); 325 CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts)); 326 } 327 328 if(!CfiFunctionMDs.empty()) { 329 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions"); 330 for (auto MD : CfiFunctionMDs) 331 NMD->addOperand(MD); 332 } 333 334 SmallVector<MDNode *, 8> FunctionAliases; 335 for (auto &A : M.aliases()) { 336 if (!isa<Function>(A.getAliasee())) 337 continue; 338 339 auto *F = cast<Function>(A.getAliasee()); 340 SmallVector<Metadata *, 4> Elts; 341 342 Elts.push_back(MDString::get(Ctx, A.getName())); 343 Elts.push_back(MDString::get(Ctx, F->getName())); 344 Elts.push_back(ConstantAsMetadata::get( 345 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility()))); 346 Elts.push_back(ConstantAsMetadata::get( 347 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker()))); 348 349 FunctionAliases.push_back(MDTuple::get(Ctx, Elts)); 350 } 351 352 if (!FunctionAliases.empty()) { 353 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases"); 354 for (auto MD : FunctionAliases) 355 NMD->addOperand(MD); 356 } 357 358 SmallVector<MDNode *, 8> Symvers; 359 ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) { 360 Function *F = M.getFunction(Name); 361 if (!F || F->use_empty()) 362 return; 363 364 SmallVector<Metadata *, 2> Elts; 365 Elts.push_back(MDString::get(Ctx, Name)); 366 Elts.push_back(MDString::get(Ctx, Alias)); 367 368 Symvers.push_back(MDTuple::get(Ctx, Elts)); 369 }); 370 371 if (!Symvers.empty()) { 372 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers"); 373 for (auto MD : Symvers) 374 NMD->addOperand(MD); 375 } 376 377 simplifyExternals(*MergedM); 378 379 // FIXME: Try to re-use BSI and PFI from the original module here. 380 ProfileSummaryInfo PSI(M); 381 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 382 383 // Mark the merged module as requiring full LTO. We still want an index for 384 // it though, so that it can participate in summary-based dead stripping. 385 MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 386 ModuleSummaryIndex MergedMIndex = 387 buildModuleSummaryIndex(*MergedM, nullptr, &PSI); 388 389 SmallVector<char, 0> Buffer; 390 391 BitcodeWriter W(Buffer); 392 // Save the module hash produced for the full bitcode, which will 393 // be used in the backends, and use that in the minimized bitcode 394 // produced for the full link. 395 ModuleHash ModHash = {{0}}; 396 W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index, 397 /*GenerateHash=*/true, &ModHash); 398 W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex); 399 W.writeSymtab(); 400 W.writeStrtab(); 401 OS << Buffer; 402 403 // If a minimized bitcode module was requested for the thin link, only 404 // the information that is needed by thin link will be written in the 405 // given OS (the merged module will be written as usual). 406 if (ThinLinkOS) { 407 Buffer.clear(); 408 BitcodeWriter W2(Buffer); 409 StripDebugInfo(M); 410 W2.writeThinLinkBitcode(M, Index, ModHash); 411 W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, 412 &MergedMIndex); 413 W2.writeSymtab(); 414 W2.writeStrtab(); 415 *ThinLinkOS << Buffer; 416 } 417 } 418 419 // Returns whether this module needs to be split because it uses type metadata. 420 bool requiresSplit(Module &M) { 421 SmallVector<MDNode *, 1> MDs; 422 for (auto &GO : M.global_objects()) { 423 GO.getMetadata(LLVMContext::MD_type, MDs); 424 if (!MDs.empty()) 425 return true; 426 } 427 428 return false; 429 } 430 431 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS, 432 function_ref<AAResults &(Function &)> AARGetter, 433 Module &M, const ModuleSummaryIndex *Index) { 434 // See if this module has any type metadata. If so, we need to split it. 435 if (requiresSplit(M)) 436 return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M); 437 438 // Otherwise we can just write it out as a regular module. 439 440 // Save the module hash produced for the full bitcode, which will 441 // be used in the backends, and use that in the minimized bitcode 442 // produced for the full link. 443 ModuleHash ModHash = {{0}}; 444 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index, 445 /*GenerateHash=*/true, &ModHash); 446 // If a minimized bitcode module was requested for the thin link, only 447 // the information that is needed by thin link will be written in the 448 // given OS. 449 if (ThinLinkOS && Index) 450 WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash); 451 } 452 453 class WriteThinLTOBitcode : public ModulePass { 454 raw_ostream &OS; // raw_ostream to print on 455 // The output stream on which to emit a minimized module for use 456 // just in the thin link, if requested. 457 raw_ostream *ThinLinkOS; 458 459 public: 460 static char ID; // Pass identification, replacement for typeid 461 WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) { 462 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 463 } 464 465 explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS) 466 : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) { 467 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 468 } 469 470 StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; } 471 472 bool runOnModule(Module &M) override { 473 const ModuleSummaryIndex *Index = 474 &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex()); 475 writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index); 476 return true; 477 } 478 void getAnalysisUsage(AnalysisUsage &AU) const override { 479 AU.setPreservesAll(); 480 AU.addRequired<AssumptionCacheTracker>(); 481 AU.addRequired<ModuleSummaryIndexWrapperPass>(); 482 AU.addRequired<TargetLibraryInfoWrapperPass>(); 483 } 484 }; 485 } // anonymous namespace 486 487 char WriteThinLTOBitcode::ID = 0; 488 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode", 489 "Write ThinLTO Bitcode", false, true) 490 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 491 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass) 492 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 493 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode", 494 "Write ThinLTO Bitcode", false, true) 495 496 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str, 497 raw_ostream *ThinLinkOS) { 498 return new WriteThinLTOBitcode(Str, ThinLinkOS); 499 } 500 501 PreservedAnalyses 502 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) { 503 FunctionAnalysisManager &FAM = 504 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 505 writeThinLTOBitcode(OS, ThinLinkOS, 506 [&FAM](Function &F) -> AAResults & { 507 return FAM.getResult<AAManager>(F); 508 }, 509 M, &AM.getResult<ModuleSummaryIndexAnalysis>(M)); 510 return PreservedAnalyses::all(); 511 } 512