1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 10 #include "llvm/Analysis/BasicAliasAnalysis.h" 11 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 12 #include "llvm/Analysis/ProfileSummaryInfo.h" 13 #include "llvm/Analysis/TypeMetadataUtils.h" 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "llvm/IR/Constants.h" 16 #include "llvm/IR/DebugInfo.h" 17 #include "llvm/IR/Instructions.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/PassManager.h" 21 #include "llvm/InitializePasses.h" 22 #include "llvm/Object/ModuleSymbolTable.h" 23 #include "llvm/Pass.h" 24 #include "llvm/Support/ScopedPrinter.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Transforms/IPO.h" 27 #include "llvm/Transforms/IPO/FunctionAttrs.h" 28 #include "llvm/Transforms/IPO/FunctionImport.h" 29 #include "llvm/Transforms/IPO/LowerTypeTests.h" 30 #include "llvm/Transforms/Utils/Cloning.h" 31 #include "llvm/Transforms/Utils/ModuleUtils.h" 32 using namespace llvm; 33 34 namespace { 35 36 // Promote each local-linkage entity defined by ExportM and used by ImportM by 37 // changing visibility and appending the given ModuleId. 38 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId, 39 SetVector<GlobalValue *> &PromoteExtra) { 40 DenseMap<const Comdat *, Comdat *> RenamedComdats; 41 for (auto &ExportGV : ExportM.global_values()) { 42 if (!ExportGV.hasLocalLinkage()) 43 continue; 44 45 auto Name = ExportGV.getName(); 46 GlobalValue *ImportGV = nullptr; 47 if (!PromoteExtra.count(&ExportGV)) { 48 ImportGV = ImportM.getNamedValue(Name); 49 if (!ImportGV) 50 continue; 51 ImportGV->removeDeadConstantUsers(); 52 if (ImportGV->use_empty()) { 53 ImportGV->eraseFromParent(); 54 continue; 55 } 56 } 57 58 std::string OldName = Name.str(); 59 std::string NewName = (Name + ModuleId).str(); 60 61 if (const auto *C = ExportGV.getComdat()) 62 if (C->getName() == Name) 63 RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName)); 64 65 ExportGV.setName(NewName); 66 ExportGV.setLinkage(GlobalValue::ExternalLinkage); 67 ExportGV.setVisibility(GlobalValue::HiddenVisibility); 68 69 if (ImportGV) { 70 ImportGV->setName(NewName); 71 ImportGV->setVisibility(GlobalValue::HiddenVisibility); 72 } 73 74 if (Function *F = dyn_cast<Function>(&ExportGV)) { 75 // Create a local alias with the original name to avoid breaking 76 // references from inline assembly. 77 std::string Alias = ".set " + OldName + "," + NewName + "\n"; 78 ExportM.appendModuleInlineAsm(Alias); 79 } 80 } 81 82 if (!RenamedComdats.empty()) 83 for (auto &GO : ExportM.global_objects()) 84 if (auto *C = GO.getComdat()) { 85 auto Replacement = RenamedComdats.find(C); 86 if (Replacement != RenamedComdats.end()) 87 GO.setComdat(Replacement->second); 88 } 89 } 90 91 // Promote all internal (i.e. distinct) type ids used by the module by replacing 92 // them with external type ids formed using the module id. 93 // 94 // Note that this needs to be done before we clone the module because each clone 95 // will receive its own set of distinct metadata nodes. 96 void promoteTypeIds(Module &M, StringRef ModuleId) { 97 DenseMap<Metadata *, Metadata *> LocalToGlobal; 98 auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) { 99 Metadata *MD = 100 cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata(); 101 102 if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) { 103 Metadata *&GlobalMD = LocalToGlobal[MD]; 104 if (!GlobalMD) { 105 std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str(); 106 GlobalMD = MDString::get(M.getContext(), NewName); 107 } 108 109 CI->setArgOperand(ArgNo, 110 MetadataAsValue::get(M.getContext(), GlobalMD)); 111 } 112 }; 113 114 if (Function *TypeTestFunc = 115 M.getFunction(Intrinsic::getName(Intrinsic::type_test))) { 116 for (const Use &U : TypeTestFunc->uses()) { 117 auto CI = cast<CallInst>(U.getUser()); 118 ExternalizeTypeId(CI, 1); 119 } 120 } 121 122 if (Function *TypeCheckedLoadFunc = 123 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) { 124 for (const Use &U : TypeCheckedLoadFunc->uses()) { 125 auto CI = cast<CallInst>(U.getUser()); 126 ExternalizeTypeId(CI, 2); 127 } 128 } 129 130 for (GlobalObject &GO : M.global_objects()) { 131 SmallVector<MDNode *, 1> MDs; 132 GO.getMetadata(LLVMContext::MD_type, MDs); 133 134 GO.eraseMetadata(LLVMContext::MD_type); 135 for (auto MD : MDs) { 136 auto I = LocalToGlobal.find(MD->getOperand(1)); 137 if (I == LocalToGlobal.end()) { 138 GO.addMetadata(LLVMContext::MD_type, *MD); 139 continue; 140 } 141 GO.addMetadata( 142 LLVMContext::MD_type, 143 *MDNode::get(M.getContext(), {MD->getOperand(0), I->second})); 144 } 145 } 146 } 147 148 // Drop unused globals, and drop type information from function declarations. 149 // FIXME: If we made functions typeless then there would be no need to do this. 150 void simplifyExternals(Module &M) { 151 FunctionType *EmptyFT = 152 FunctionType::get(Type::getVoidTy(M.getContext()), false); 153 154 for (auto I = M.begin(), E = M.end(); I != E;) { 155 Function &F = *I++; 156 if (F.isDeclaration() && F.use_empty()) { 157 F.eraseFromParent(); 158 continue; 159 } 160 161 if (!F.isDeclaration() || F.getFunctionType() == EmptyFT || 162 // Changing the type of an intrinsic may invalidate the IR. 163 F.getName().startswith("llvm.")) 164 continue; 165 166 Function *NewF = 167 Function::Create(EmptyFT, GlobalValue::ExternalLinkage, 168 F.getAddressSpace(), "", &M); 169 NewF->copyAttributesFrom(&F); 170 // Only copy function attribtues. 171 NewF->setAttributes( 172 AttributeList::get(M.getContext(), AttributeList::FunctionIndex, 173 F.getAttributes().getFnAttributes())); 174 NewF->takeName(&F); 175 F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType())); 176 F.eraseFromParent(); 177 } 178 179 for (auto I = M.global_begin(), E = M.global_end(); I != E;) { 180 GlobalVariable &GV = *I++; 181 if (GV.isDeclaration() && GV.use_empty()) { 182 GV.eraseFromParent(); 183 continue; 184 } 185 } 186 } 187 188 static void 189 filterModule(Module *M, 190 function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) { 191 std::vector<GlobalValue *> V; 192 for (GlobalValue &GV : M->global_values()) 193 if (!ShouldKeepDefinition(&GV)) 194 V.push_back(&GV); 195 196 for (GlobalValue *GV : V) 197 if (!convertToDeclaration(*GV)) 198 GV->eraseFromParent(); 199 } 200 201 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) { 202 if (auto *F = dyn_cast<Function>(C)) 203 return Fn(F); 204 if (isa<GlobalValue>(C)) 205 return; 206 for (Value *Op : C->operands()) 207 forEachVirtualFunction(cast<Constant>(Op), Fn); 208 } 209 210 // Clone any @llvm[.compiler].used over to the new module and append 211 // values whose defs were cloned into that module. 212 static void cloneUsedGlobalVariables(const Module &SrcM, Module &DestM, 213 bool CompilerUsed) { 214 SmallVector<GlobalValue *, 4> Used, NewUsed; 215 // First collect those in the llvm[.compiler].used set. 216 collectUsedGlobalVariables(SrcM, Used, CompilerUsed); 217 // Next build a set of the equivalent values defined in DestM. 218 for (auto *V : Used) { 219 auto *GV = DestM.getNamedValue(V->getName()); 220 if (GV && !GV->isDeclaration()) 221 NewUsed.push_back(GV); 222 } 223 // Finally, add them to a llvm[.compiler].used variable in DestM. 224 if (CompilerUsed) 225 appendToCompilerUsed(DestM, NewUsed); 226 else 227 appendToUsed(DestM, NewUsed); 228 } 229 230 // If it's possible to split M into regular and thin LTO parts, do so and write 231 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a 232 // regular LTO bitcode file to OS. 233 void splitAndWriteThinLTOBitcode( 234 raw_ostream &OS, raw_ostream *ThinLinkOS, 235 function_ref<AAResults &(Function &)> AARGetter, Module &M) { 236 std::string ModuleId = getUniqueModuleId(&M); 237 if (ModuleId.empty()) { 238 // We couldn't generate a module ID for this module, write it out as a 239 // regular LTO module with an index for summary-based dead stripping. 240 ProfileSummaryInfo PSI(M); 241 M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 242 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 243 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index); 244 245 if (ThinLinkOS) 246 // We don't have a ThinLTO part, but still write the module to the 247 // ThinLinkOS if requested so that the expected output file is produced. 248 WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false, 249 &Index); 250 251 return; 252 } 253 254 promoteTypeIds(M, ModuleId); 255 256 // Returns whether a global or its associated global has attached type 257 // metadata. The former may participate in CFI or whole-program 258 // devirtualization, so they need to appear in the merged module instead of 259 // the thin LTO module. Similarly, globals that are associated with globals 260 // with type metadata need to appear in the merged module because they will 261 // reference the global's section directly. 262 auto HasTypeMetadata = [](const GlobalObject *GO) { 263 if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated)) 264 if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0))) 265 if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue())) 266 if (AssocGO->hasMetadata(LLVMContext::MD_type)) 267 return true; 268 return GO->hasMetadata(LLVMContext::MD_type); 269 }; 270 271 // Collect the set of virtual functions that are eligible for virtual constant 272 // propagation. Each eligible function must not access memory, must return 273 // an integer of width <=64 bits, must take at least one argument, must not 274 // use its first argument (assumed to be "this") and all arguments other than 275 // the first one must be of <=64 bit integer type. 276 // 277 // Note that we test whether this copy of the function is readnone, rather 278 // than testing function attributes, which must hold for any copy of the 279 // function, even a less optimized version substituted at link time. This is 280 // sound because the virtual constant propagation optimizations effectively 281 // inline all implementations of the virtual function into each call site, 282 // rather than using function attributes to perform local optimization. 283 DenseSet<const Function *> EligibleVirtualFns; 284 // If any member of a comdat lives in MergedM, put all members of that 285 // comdat in MergedM to keep the comdat together. 286 DenseSet<const Comdat *> MergedMComdats; 287 for (GlobalVariable &GV : M.globals()) 288 if (HasTypeMetadata(&GV)) { 289 if (const auto *C = GV.getComdat()) 290 MergedMComdats.insert(C); 291 forEachVirtualFunction(GV.getInitializer(), [&](Function *F) { 292 auto *RT = dyn_cast<IntegerType>(F->getReturnType()); 293 if (!RT || RT->getBitWidth() > 64 || F->arg_empty() || 294 !F->arg_begin()->use_empty()) 295 return; 296 for (auto &Arg : drop_begin(F->args())) { 297 auto *ArgT = dyn_cast<IntegerType>(Arg.getType()); 298 if (!ArgT || ArgT->getBitWidth() > 64) 299 return; 300 } 301 if (!F->isDeclaration() && 302 computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone) 303 EligibleVirtualFns.insert(F); 304 }); 305 } 306 307 ValueToValueMapTy VMap; 308 std::unique_ptr<Module> MergedM( 309 CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool { 310 if (const auto *C = GV->getComdat()) 311 if (MergedMComdats.count(C)) 312 return true; 313 if (auto *F = dyn_cast<Function>(GV)) 314 return EligibleVirtualFns.count(F); 315 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 316 return HasTypeMetadata(GVar); 317 return false; 318 })); 319 StripDebugInfo(*MergedM); 320 MergedM->setModuleInlineAsm(""); 321 322 // Clone any llvm.*used globals to ensure the included values are 323 // not deleted. 324 cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ false); 325 cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ true); 326 327 for (Function &F : *MergedM) 328 if (!F.isDeclaration()) { 329 // Reset the linkage of all functions eligible for virtual constant 330 // propagation. The canonical definitions live in the thin LTO module so 331 // that they can be imported. 332 F.setLinkage(GlobalValue::AvailableExternallyLinkage); 333 F.setComdat(nullptr); 334 } 335 336 SetVector<GlobalValue *> CfiFunctions; 337 for (auto &F : M) 338 if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F)) 339 CfiFunctions.insert(&F); 340 341 // Remove all globals with type metadata, globals with comdats that live in 342 // MergedM, and aliases pointing to such globals from the thin LTO module. 343 filterModule(&M, [&](const GlobalValue *GV) { 344 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 345 if (HasTypeMetadata(GVar)) 346 return false; 347 if (const auto *C = GV->getComdat()) 348 if (MergedMComdats.count(C)) 349 return false; 350 return true; 351 }); 352 353 promoteInternals(*MergedM, M, ModuleId, CfiFunctions); 354 promoteInternals(M, *MergedM, ModuleId, CfiFunctions); 355 356 auto &Ctx = MergedM->getContext(); 357 SmallVector<MDNode *, 8> CfiFunctionMDs; 358 for (auto V : CfiFunctions) { 359 Function &F = *cast<Function>(V); 360 SmallVector<MDNode *, 2> Types; 361 F.getMetadata(LLVMContext::MD_type, Types); 362 363 SmallVector<Metadata *, 4> Elts; 364 Elts.push_back(MDString::get(Ctx, F.getName())); 365 CfiFunctionLinkage Linkage; 366 if (lowertypetests::isJumpTableCanonical(&F)) 367 Linkage = CFL_Definition; 368 else if (F.hasExternalWeakLinkage()) 369 Linkage = CFL_WeakDeclaration; 370 else 371 Linkage = CFL_Declaration; 372 Elts.push_back(ConstantAsMetadata::get( 373 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage))); 374 append_range(Elts, Types); 375 CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts)); 376 } 377 378 if(!CfiFunctionMDs.empty()) { 379 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions"); 380 for (auto MD : CfiFunctionMDs) 381 NMD->addOperand(MD); 382 } 383 384 SmallVector<MDNode *, 8> FunctionAliases; 385 for (auto &A : M.aliases()) { 386 if (!isa<Function>(A.getAliasee())) 387 continue; 388 389 auto *F = cast<Function>(A.getAliasee()); 390 391 Metadata *Elts[] = { 392 MDString::get(Ctx, A.getName()), 393 MDString::get(Ctx, F->getName()), 394 ConstantAsMetadata::get( 395 ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())), 396 ConstantAsMetadata::get( 397 ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())), 398 }; 399 400 FunctionAliases.push_back(MDTuple::get(Ctx, Elts)); 401 } 402 403 if (!FunctionAliases.empty()) { 404 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases"); 405 for (auto MD : FunctionAliases) 406 NMD->addOperand(MD); 407 } 408 409 SmallVector<MDNode *, 8> Symvers; 410 ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) { 411 Function *F = M.getFunction(Name); 412 if (!F || F->use_empty()) 413 return; 414 415 Symvers.push_back(MDTuple::get( 416 Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)})); 417 }); 418 419 if (!Symvers.empty()) { 420 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers"); 421 for (auto MD : Symvers) 422 NMD->addOperand(MD); 423 } 424 425 simplifyExternals(*MergedM); 426 427 // FIXME: Try to re-use BSI and PFI from the original module here. 428 ProfileSummaryInfo PSI(M); 429 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 430 431 // Mark the merged module as requiring full LTO. We still want an index for 432 // it though, so that it can participate in summary-based dead stripping. 433 MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 434 ModuleSummaryIndex MergedMIndex = 435 buildModuleSummaryIndex(*MergedM, nullptr, &PSI); 436 437 SmallVector<char, 0> Buffer; 438 439 BitcodeWriter W(Buffer); 440 // Save the module hash produced for the full bitcode, which will 441 // be used in the backends, and use that in the minimized bitcode 442 // produced for the full link. 443 ModuleHash ModHash = {{0}}; 444 W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index, 445 /*GenerateHash=*/true, &ModHash); 446 W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex); 447 W.writeSymtab(); 448 W.writeStrtab(); 449 OS << Buffer; 450 451 // If a minimized bitcode module was requested for the thin link, only 452 // the information that is needed by thin link will be written in the 453 // given OS (the merged module will be written as usual). 454 if (ThinLinkOS) { 455 Buffer.clear(); 456 BitcodeWriter W2(Buffer); 457 StripDebugInfo(M); 458 W2.writeThinLinkBitcode(M, Index, ModHash); 459 W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, 460 &MergedMIndex); 461 W2.writeSymtab(); 462 W2.writeStrtab(); 463 *ThinLinkOS << Buffer; 464 } 465 } 466 467 // Check if the LTO Unit splitting has been enabled. 468 bool enableSplitLTOUnit(Module &M) { 469 bool EnableSplitLTOUnit = false; 470 if (auto *MD = mdconst::extract_or_null<ConstantInt>( 471 M.getModuleFlag("EnableSplitLTOUnit"))) 472 EnableSplitLTOUnit = MD->getZExtValue(); 473 return EnableSplitLTOUnit; 474 } 475 476 // Returns whether this module needs to be split because it uses type metadata. 477 bool hasTypeMetadata(Module &M) { 478 for (auto &GO : M.global_objects()) { 479 if (GO.hasMetadata(LLVMContext::MD_type)) 480 return true; 481 } 482 return false; 483 } 484 485 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS, 486 function_ref<AAResults &(Function &)> AARGetter, 487 Module &M, const ModuleSummaryIndex *Index) { 488 std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr; 489 // See if this module has any type metadata. If so, we try to split it 490 // or at least promote type ids to enable WPD. 491 if (hasTypeMetadata(M)) { 492 if (enableSplitLTOUnit(M)) 493 return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M); 494 // Promote type ids as needed for index-based WPD. 495 std::string ModuleId = getUniqueModuleId(&M); 496 if (!ModuleId.empty()) { 497 promoteTypeIds(M, ModuleId); 498 // Need to rebuild the index so that it contains type metadata 499 // for the newly promoted type ids. 500 // FIXME: Probably should not bother building the index at all 501 // in the caller of writeThinLTOBitcode (which does so via the 502 // ModuleSummaryIndexAnalysis pass), since we have to rebuild it 503 // anyway whenever there is type metadata (here or in 504 // splitAndWriteThinLTOBitcode). Just always build it once via the 505 // buildModuleSummaryIndex when Module(s) are ready. 506 ProfileSummaryInfo PSI(M); 507 NewIndex = std::make_unique<ModuleSummaryIndex>( 508 buildModuleSummaryIndex(M, nullptr, &PSI)); 509 Index = NewIndex.get(); 510 } 511 } 512 513 // Write it out as an unsplit ThinLTO module. 514 515 // Save the module hash produced for the full bitcode, which will 516 // be used in the backends, and use that in the minimized bitcode 517 // produced for the full link. 518 ModuleHash ModHash = {{0}}; 519 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index, 520 /*GenerateHash=*/true, &ModHash); 521 // If a minimized bitcode module was requested for the thin link, only 522 // the information that is needed by thin link will be written in the 523 // given OS. 524 if (ThinLinkOS && Index) 525 WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash); 526 } 527 528 class WriteThinLTOBitcode : public ModulePass { 529 raw_ostream &OS; // raw_ostream to print on 530 // The output stream on which to emit a minimized module for use 531 // just in the thin link, if requested. 532 raw_ostream *ThinLinkOS; 533 534 public: 535 static char ID; // Pass identification, replacement for typeid 536 WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) { 537 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 538 } 539 540 explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS) 541 : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) { 542 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 543 } 544 545 StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; } 546 547 bool runOnModule(Module &M) override { 548 const ModuleSummaryIndex *Index = 549 &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex()); 550 writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index); 551 return true; 552 } 553 void getAnalysisUsage(AnalysisUsage &AU) const override { 554 AU.setPreservesAll(); 555 AU.addRequired<AssumptionCacheTracker>(); 556 AU.addRequired<ModuleSummaryIndexWrapperPass>(); 557 AU.addRequired<TargetLibraryInfoWrapperPass>(); 558 } 559 }; 560 } // anonymous namespace 561 562 char WriteThinLTOBitcode::ID = 0; 563 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode", 564 "Write ThinLTO Bitcode", false, true) 565 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 566 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass) 567 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 568 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode", 569 "Write ThinLTO Bitcode", false, true) 570 571 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str, 572 raw_ostream *ThinLinkOS) { 573 return new WriteThinLTOBitcode(Str, ThinLinkOS); 574 } 575 576 PreservedAnalyses 577 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) { 578 FunctionAnalysisManager &FAM = 579 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 580 writeThinLTOBitcode(OS, ThinLinkOS, 581 [&FAM](Function &F) -> AAResults & { 582 return FAM.getResult<AAManager>(F); 583 }, 584 M, &AM.getResult<ModuleSummaryIndexAnalysis>(M)); 585 return PreservedAnalyses::all(); 586 } 587