1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
10 #include "llvm/Analysis/BasicAliasAnalysis.h"
11 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
12 #include "llvm/Analysis/ProfileSummaryInfo.h"
13 #include "llvm/Analysis/TypeMetadataUtils.h"
14 #include "llvm/Bitcode/BitcodeWriter.h"
15 #include "llvm/IR/Constants.h"
16 #include "llvm/IR/DebugInfo.h"
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/IR/PassManager.h"
21 #include "llvm/InitializePasses.h"
22 #include "llvm/Object/ModuleSymbolTable.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Support/ScopedPrinter.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Transforms/IPO.h"
27 #include "llvm/Transforms/IPO/FunctionAttrs.h"
28 #include "llvm/Transforms/IPO/FunctionImport.h"
29 #include "llvm/Transforms/IPO/LowerTypeTests.h"
30 #include "llvm/Transforms/Utils/Cloning.h"
31 #include "llvm/Transforms/Utils/ModuleUtils.h"
32 using namespace llvm;
33 
34 namespace {
35 
36 // Determine if a promotion alias should be created for a symbol name.
37 static bool allowPromotionAlias(const std::string &Name) {
38   // Promotion aliases are used only in inline assembly. It's safe to
39   // simply skip unusual names. Subset of MCAsmInfo::isAcceptableChar()
40   // and MCAsmInfoXCOFF::isAcceptableChar().
41   for (const char &C : Name) {
42     if (isAlnum(C) || C == '_' || C == '.')
43       continue;
44     return false;
45   }
46   return true;
47 }
48 
49 // Promote each local-linkage entity defined by ExportM and used by ImportM by
50 // changing visibility and appending the given ModuleId.
51 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId,
52                       SetVector<GlobalValue *> &PromoteExtra) {
53   DenseMap<const Comdat *, Comdat *> RenamedComdats;
54   for (auto &ExportGV : ExportM.global_values()) {
55     if (!ExportGV.hasLocalLinkage())
56       continue;
57 
58     auto Name = ExportGV.getName();
59     GlobalValue *ImportGV = nullptr;
60     if (!PromoteExtra.count(&ExportGV)) {
61       ImportGV = ImportM.getNamedValue(Name);
62       if (!ImportGV)
63         continue;
64       ImportGV->removeDeadConstantUsers();
65       if (ImportGV->use_empty()) {
66         ImportGV->eraseFromParent();
67         continue;
68       }
69     }
70 
71     std::string OldName = Name.str();
72     std::string NewName = (Name + ModuleId).str();
73 
74     if (const auto *C = ExportGV.getComdat())
75       if (C->getName() == Name)
76         RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName));
77 
78     ExportGV.setName(NewName);
79     ExportGV.setLinkage(GlobalValue::ExternalLinkage);
80     ExportGV.setVisibility(GlobalValue::HiddenVisibility);
81 
82     if (ImportGV) {
83       ImportGV->setName(NewName);
84       ImportGV->setVisibility(GlobalValue::HiddenVisibility);
85     }
86 
87     if (isa<Function>(&ExportGV) && allowPromotionAlias(OldName)) {
88       // Create a local alias with the original name to avoid breaking
89       // references from inline assembly.
90       std::string Alias =
91           ".lto_set_conditional " + OldName + "," + NewName + "\n";
92       ExportM.appendModuleInlineAsm(Alias);
93     }
94   }
95 
96   if (!RenamedComdats.empty())
97     for (auto &GO : ExportM.global_objects())
98       if (auto *C = GO.getComdat()) {
99         auto Replacement = RenamedComdats.find(C);
100         if (Replacement != RenamedComdats.end())
101           GO.setComdat(Replacement->second);
102       }
103 }
104 
105 // Promote all internal (i.e. distinct) type ids used by the module by replacing
106 // them with external type ids formed using the module id.
107 //
108 // Note that this needs to be done before we clone the module because each clone
109 // will receive its own set of distinct metadata nodes.
110 void promoteTypeIds(Module &M, StringRef ModuleId) {
111   DenseMap<Metadata *, Metadata *> LocalToGlobal;
112   auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
113     Metadata *MD =
114         cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();
115 
116     if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
117       Metadata *&GlobalMD = LocalToGlobal[MD];
118       if (!GlobalMD) {
119         std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str();
120         GlobalMD = MDString::get(M.getContext(), NewName);
121       }
122 
123       CI->setArgOperand(ArgNo,
124                         MetadataAsValue::get(M.getContext(), GlobalMD));
125     }
126   };
127 
128   if (Function *TypeTestFunc =
129           M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
130     for (const Use &U : TypeTestFunc->uses()) {
131       auto CI = cast<CallInst>(U.getUser());
132       ExternalizeTypeId(CI, 1);
133     }
134   }
135 
136   if (Function *TypeCheckedLoadFunc =
137           M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
138     for (const Use &U : TypeCheckedLoadFunc->uses()) {
139       auto CI = cast<CallInst>(U.getUser());
140       ExternalizeTypeId(CI, 2);
141     }
142   }
143 
144   for (GlobalObject &GO : M.global_objects()) {
145     SmallVector<MDNode *, 1> MDs;
146     GO.getMetadata(LLVMContext::MD_type, MDs);
147 
148     GO.eraseMetadata(LLVMContext::MD_type);
149     for (auto MD : MDs) {
150       auto I = LocalToGlobal.find(MD->getOperand(1));
151       if (I == LocalToGlobal.end()) {
152         GO.addMetadata(LLVMContext::MD_type, *MD);
153         continue;
154       }
155       GO.addMetadata(
156           LLVMContext::MD_type,
157           *MDNode::get(M.getContext(), {MD->getOperand(0), I->second}));
158     }
159   }
160 }
161 
162 // Drop unused globals, and drop type information from function declarations.
163 // FIXME: If we made functions typeless then there would be no need to do this.
164 void simplifyExternals(Module &M) {
165   FunctionType *EmptyFT =
166       FunctionType::get(Type::getVoidTy(M.getContext()), false);
167 
168   for (Function &F : llvm::make_early_inc_range(M)) {
169     if (F.isDeclaration() && F.use_empty()) {
170       F.eraseFromParent();
171       continue;
172     }
173 
174     if (!F.isDeclaration() || F.getFunctionType() == EmptyFT ||
175         // Changing the type of an intrinsic may invalidate the IR.
176         F.getName().startswith("llvm."))
177       continue;
178 
179     Function *NewF =
180         Function::Create(EmptyFT, GlobalValue::ExternalLinkage,
181                          F.getAddressSpace(), "", &M);
182     NewF->copyAttributesFrom(&F);
183     // Only copy function attribtues.
184     NewF->setAttributes(AttributeList::get(M.getContext(),
185                                            AttributeList::FunctionIndex,
186                                            F.getAttributes().getFnAttrs()));
187     NewF->takeName(&F);
188     F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType()));
189     F.eraseFromParent();
190   }
191 
192   for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) {
193     if (GV.isDeclaration() && GV.use_empty()) {
194       GV.eraseFromParent();
195       continue;
196     }
197   }
198 }
199 
200 static void
201 filterModule(Module *M,
202              function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
203   std::vector<GlobalValue *> V;
204   for (GlobalValue &GV : M->global_values())
205     if (!ShouldKeepDefinition(&GV))
206       V.push_back(&GV);
207 
208   for (GlobalValue *GV : V)
209     if (!convertToDeclaration(*GV))
210       GV->eraseFromParent();
211 }
212 
213 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) {
214   if (auto *F = dyn_cast<Function>(C))
215     return Fn(F);
216   if (isa<GlobalValue>(C))
217     return;
218   for (Value *Op : C->operands())
219     forEachVirtualFunction(cast<Constant>(Op), Fn);
220 }
221 
222 // Clone any @llvm[.compiler].used over to the new module and append
223 // values whose defs were cloned into that module.
224 static void cloneUsedGlobalVariables(const Module &SrcM, Module &DestM,
225                                      bool CompilerUsed) {
226   SmallVector<GlobalValue *, 4> Used, NewUsed;
227   // First collect those in the llvm[.compiler].used set.
228   collectUsedGlobalVariables(SrcM, Used, CompilerUsed);
229   // Next build a set of the equivalent values defined in DestM.
230   for (auto *V : Used) {
231     auto *GV = DestM.getNamedValue(V->getName());
232     if (GV && !GV->isDeclaration())
233       NewUsed.push_back(GV);
234   }
235   // Finally, add them to a llvm[.compiler].used variable in DestM.
236   if (CompilerUsed)
237     appendToCompilerUsed(DestM, NewUsed);
238   else
239     appendToUsed(DestM, NewUsed);
240 }
241 
242 // If it's possible to split M into regular and thin LTO parts, do so and write
243 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a
244 // regular LTO bitcode file to OS.
245 void splitAndWriteThinLTOBitcode(
246     raw_ostream &OS, raw_ostream *ThinLinkOS,
247     function_ref<AAResults &(Function &)> AARGetter, Module &M) {
248   std::string ModuleId = getUniqueModuleId(&M);
249   if (ModuleId.empty()) {
250     // We couldn't generate a module ID for this module, write it out as a
251     // regular LTO module with an index for summary-based dead stripping.
252     ProfileSummaryInfo PSI(M);
253     M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
254     ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
255     WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index);
256 
257     if (ThinLinkOS)
258       // We don't have a ThinLTO part, but still write the module to the
259       // ThinLinkOS if requested so that the expected output file is produced.
260       WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false,
261                          &Index);
262 
263     return;
264   }
265 
266   promoteTypeIds(M, ModuleId);
267 
268   // Returns whether a global or its associated global has attached type
269   // metadata. The former may participate in CFI or whole-program
270   // devirtualization, so they need to appear in the merged module instead of
271   // the thin LTO module. Similarly, globals that are associated with globals
272   // with type metadata need to appear in the merged module because they will
273   // reference the global's section directly.
274   auto HasTypeMetadata = [](const GlobalObject *GO) {
275     if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated))
276       if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0)))
277         if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue()))
278           if (AssocGO->hasMetadata(LLVMContext::MD_type))
279             return true;
280     return GO->hasMetadata(LLVMContext::MD_type);
281   };
282 
283   // Collect the set of virtual functions that are eligible for virtual constant
284   // propagation. Each eligible function must not access memory, must return
285   // an integer of width <=64 bits, must take at least one argument, must not
286   // use its first argument (assumed to be "this") and all arguments other than
287   // the first one must be of <=64 bit integer type.
288   //
289   // Note that we test whether this copy of the function is readnone, rather
290   // than testing function attributes, which must hold for any copy of the
291   // function, even a less optimized version substituted at link time. This is
292   // sound because the virtual constant propagation optimizations effectively
293   // inline all implementations of the virtual function into each call site,
294   // rather than using function attributes to perform local optimization.
295   DenseSet<const Function *> EligibleVirtualFns;
296   // If any member of a comdat lives in MergedM, put all members of that
297   // comdat in MergedM to keep the comdat together.
298   DenseSet<const Comdat *> MergedMComdats;
299   for (GlobalVariable &GV : M.globals())
300     if (HasTypeMetadata(&GV)) {
301       if (const auto *C = GV.getComdat())
302         MergedMComdats.insert(C);
303       forEachVirtualFunction(GV.getInitializer(), [&](Function *F) {
304         auto *RT = dyn_cast<IntegerType>(F->getReturnType());
305         if (!RT || RT->getBitWidth() > 64 || F->arg_empty() ||
306             !F->arg_begin()->use_empty())
307           return;
308         for (auto &Arg : drop_begin(F->args())) {
309           auto *ArgT = dyn_cast<IntegerType>(Arg.getType());
310           if (!ArgT || ArgT->getBitWidth() > 64)
311             return;
312         }
313         if (!F->isDeclaration() &&
314             computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) ==
315                 FMRB_DoesNotAccessMemory)
316           EligibleVirtualFns.insert(F);
317       });
318     }
319 
320   ValueToValueMapTy VMap;
321   std::unique_ptr<Module> MergedM(
322       CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool {
323         if (const auto *C = GV->getComdat())
324           if (MergedMComdats.count(C))
325             return true;
326         if (auto *F = dyn_cast<Function>(GV))
327           return EligibleVirtualFns.count(F);
328         if (auto *GVar =
329                 dyn_cast_or_null<GlobalVariable>(GV->getAliaseeObject()))
330           return HasTypeMetadata(GVar);
331         return false;
332       }));
333   StripDebugInfo(*MergedM);
334   MergedM->setModuleInlineAsm("");
335 
336   // Clone any llvm.*used globals to ensure the included values are
337   // not deleted.
338   cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ false);
339   cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ true);
340 
341   for (Function &F : *MergedM)
342     if (!F.isDeclaration()) {
343       // Reset the linkage of all functions eligible for virtual constant
344       // propagation. The canonical definitions live in the thin LTO module so
345       // that they can be imported.
346       F.setLinkage(GlobalValue::AvailableExternallyLinkage);
347       F.setComdat(nullptr);
348     }
349 
350   SetVector<GlobalValue *> CfiFunctions;
351   for (auto &F : M)
352     if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F))
353       CfiFunctions.insert(&F);
354 
355   // Remove all globals with type metadata, globals with comdats that live in
356   // MergedM, and aliases pointing to such globals from the thin LTO module.
357   filterModule(&M, [&](const GlobalValue *GV) {
358     if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getAliaseeObject()))
359       if (HasTypeMetadata(GVar))
360         return false;
361     if (const auto *C = GV->getComdat())
362       if (MergedMComdats.count(C))
363         return false;
364     return true;
365   });
366 
367   promoteInternals(*MergedM, M, ModuleId, CfiFunctions);
368   promoteInternals(M, *MergedM, ModuleId, CfiFunctions);
369 
370   auto &Ctx = MergedM->getContext();
371   SmallVector<MDNode *, 8> CfiFunctionMDs;
372   for (auto V : CfiFunctions) {
373     Function &F = *cast<Function>(V);
374     SmallVector<MDNode *, 2> Types;
375     F.getMetadata(LLVMContext::MD_type, Types);
376 
377     SmallVector<Metadata *, 4> Elts;
378     Elts.push_back(MDString::get(Ctx, F.getName()));
379     CfiFunctionLinkage Linkage;
380     if (lowertypetests::isJumpTableCanonical(&F))
381       Linkage = CFL_Definition;
382     else if (F.hasExternalWeakLinkage())
383       Linkage = CFL_WeakDeclaration;
384     else
385       Linkage = CFL_Declaration;
386     Elts.push_back(ConstantAsMetadata::get(
387         llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage)));
388     append_range(Elts, Types);
389     CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts));
390   }
391 
392   if(!CfiFunctionMDs.empty()) {
393     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions");
394     for (auto MD : CfiFunctionMDs)
395       NMD->addOperand(MD);
396   }
397 
398   SmallVector<MDNode *, 8> FunctionAliases;
399   for (auto &A : M.aliases()) {
400     if (!isa<Function>(A.getAliasee()))
401       continue;
402 
403     auto *F = cast<Function>(A.getAliasee());
404 
405     Metadata *Elts[] = {
406         MDString::get(Ctx, A.getName()),
407         MDString::get(Ctx, F->getName()),
408         ConstantAsMetadata::get(
409             ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())),
410         ConstantAsMetadata::get(
411             ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())),
412     };
413 
414     FunctionAliases.push_back(MDTuple::get(Ctx, Elts));
415   }
416 
417   if (!FunctionAliases.empty()) {
418     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases");
419     for (auto MD : FunctionAliases)
420       NMD->addOperand(MD);
421   }
422 
423   SmallVector<MDNode *, 8> Symvers;
424   ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) {
425     Function *F = M.getFunction(Name);
426     if (!F || F->use_empty())
427       return;
428 
429     Symvers.push_back(MDTuple::get(
430         Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)}));
431   });
432 
433   if (!Symvers.empty()) {
434     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers");
435     for (auto MD : Symvers)
436       NMD->addOperand(MD);
437   }
438 
439   simplifyExternals(*MergedM);
440 
441   // FIXME: Try to re-use BSI and PFI from the original module here.
442   ProfileSummaryInfo PSI(M);
443   ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
444 
445   // Mark the merged module as requiring full LTO. We still want an index for
446   // it though, so that it can participate in summary-based dead stripping.
447   MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
448   ModuleSummaryIndex MergedMIndex =
449       buildModuleSummaryIndex(*MergedM, nullptr, &PSI);
450 
451   SmallVector<char, 0> Buffer;
452 
453   BitcodeWriter W(Buffer);
454   // Save the module hash produced for the full bitcode, which will
455   // be used in the backends, and use that in the minimized bitcode
456   // produced for the full link.
457   ModuleHash ModHash = {{0}};
458   W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index,
459                 /*GenerateHash=*/true, &ModHash);
460   W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex);
461   W.writeSymtab();
462   W.writeStrtab();
463   OS << Buffer;
464 
465   // If a minimized bitcode module was requested for the thin link, only
466   // the information that is needed by thin link will be written in the
467   // given OS (the merged module will be written as usual).
468   if (ThinLinkOS) {
469     Buffer.clear();
470     BitcodeWriter W2(Buffer);
471     StripDebugInfo(M);
472     W2.writeThinLinkBitcode(M, Index, ModHash);
473     W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false,
474                    &MergedMIndex);
475     W2.writeSymtab();
476     W2.writeStrtab();
477     *ThinLinkOS << Buffer;
478   }
479 }
480 
481 // Check if the LTO Unit splitting has been enabled.
482 bool enableSplitLTOUnit(Module &M) {
483   bool EnableSplitLTOUnit = false;
484   if (auto *MD = mdconst::extract_or_null<ConstantInt>(
485           M.getModuleFlag("EnableSplitLTOUnit")))
486     EnableSplitLTOUnit = MD->getZExtValue();
487   return EnableSplitLTOUnit;
488 }
489 
490 // Returns whether this module needs to be split because it uses type metadata.
491 bool hasTypeMetadata(Module &M) {
492   for (auto &GO : M.global_objects()) {
493     if (GO.hasMetadata(LLVMContext::MD_type))
494       return true;
495   }
496   return false;
497 }
498 
499 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
500                          function_ref<AAResults &(Function &)> AARGetter,
501                          Module &M, const ModuleSummaryIndex *Index) {
502   std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr;
503   // See if this module has any type metadata. If so, we try to split it
504   // or at least promote type ids to enable WPD.
505   if (hasTypeMetadata(M)) {
506     if (enableSplitLTOUnit(M))
507       return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
508     // Promote type ids as needed for index-based WPD.
509     std::string ModuleId = getUniqueModuleId(&M);
510     if (!ModuleId.empty()) {
511       promoteTypeIds(M, ModuleId);
512       // Need to rebuild the index so that it contains type metadata
513       // for the newly promoted type ids.
514       // FIXME: Probably should not bother building the index at all
515       // in the caller of writeThinLTOBitcode (which does so via the
516       // ModuleSummaryIndexAnalysis pass), since we have to rebuild it
517       // anyway whenever there is type metadata (here or in
518       // splitAndWriteThinLTOBitcode). Just always build it once via the
519       // buildModuleSummaryIndex when Module(s) are ready.
520       ProfileSummaryInfo PSI(M);
521       NewIndex = std::make_unique<ModuleSummaryIndex>(
522           buildModuleSummaryIndex(M, nullptr, &PSI));
523       Index = NewIndex.get();
524     }
525   }
526 
527   // Write it out as an unsplit ThinLTO module.
528 
529   // Save the module hash produced for the full bitcode, which will
530   // be used in the backends, and use that in the minimized bitcode
531   // produced for the full link.
532   ModuleHash ModHash = {{0}};
533   WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
534                      /*GenerateHash=*/true, &ModHash);
535   // If a minimized bitcode module was requested for the thin link, only
536   // the information that is needed by thin link will be written in the
537   // given OS.
538   if (ThinLinkOS && Index)
539     writeThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash);
540 }
541 
542 class WriteThinLTOBitcode : public ModulePass {
543   raw_ostream &OS; // raw_ostream to print on
544   // The output stream on which to emit a minimized module for use
545   // just in the thin link, if requested.
546   raw_ostream *ThinLinkOS;
547 
548 public:
549   static char ID; // Pass identification, replacement for typeid
550   WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) {
551     initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
552   }
553 
554   explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS)
555       : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) {
556     initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
557   }
558 
559   StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; }
560 
561   bool runOnModule(Module &M) override {
562     const ModuleSummaryIndex *Index =
563         &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex());
564     writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index);
565     return true;
566   }
567   void getAnalysisUsage(AnalysisUsage &AU) const override {
568     AU.setPreservesAll();
569     AU.addRequired<AssumptionCacheTracker>();
570     AU.addRequired<ModuleSummaryIndexWrapperPass>();
571     AU.addRequired<TargetLibraryInfoWrapperPass>();
572   }
573 };
574 } // anonymous namespace
575 
576 char WriteThinLTOBitcode::ID = 0;
577 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode",
578                       "Write ThinLTO Bitcode", false, true)
579 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
580 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
581 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
582 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode",
583                     "Write ThinLTO Bitcode", false, true)
584 
585 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str,
586                                                 raw_ostream *ThinLinkOS) {
587   return new WriteThinLTOBitcode(Str, ThinLinkOS);
588 }
589 
590 PreservedAnalyses
591 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) {
592   FunctionAnalysisManager &FAM =
593       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
594   writeThinLTOBitcode(OS, ThinLinkOS,
595                       [&FAM](Function &F) -> AAResults & {
596                         return FAM.getResult<AAManager>(F);
597                       },
598                       M, &AM.getResult<ModuleSummaryIndexAnalysis>(M));
599   return PreservedAnalyses::all();
600 }
601