1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 10 #include "llvm/Analysis/BasicAliasAnalysis.h" 11 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 12 #include "llvm/Analysis/ProfileSummaryInfo.h" 13 #include "llvm/Analysis/TypeMetadataUtils.h" 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "llvm/IR/Constants.h" 16 #include "llvm/IR/DebugInfo.h" 17 #include "llvm/IR/Instructions.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/PassManager.h" 21 #include "llvm/InitializePasses.h" 22 #include "llvm/Object/ModuleSymbolTable.h" 23 #include "llvm/Pass.h" 24 #include "llvm/Support/ScopedPrinter.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Transforms/IPO.h" 27 #include "llvm/Transforms/IPO/FunctionAttrs.h" 28 #include "llvm/Transforms/IPO/FunctionImport.h" 29 #include "llvm/Transforms/IPO/LowerTypeTests.h" 30 #include "llvm/Transforms/Utils/Cloning.h" 31 #include "llvm/Transforms/Utils/ModuleUtils.h" 32 using namespace llvm; 33 34 namespace { 35 36 // Promote each local-linkage entity defined by ExportM and used by ImportM by 37 // changing visibility and appending the given ModuleId. 38 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId, 39 SetVector<GlobalValue *> &PromoteExtra) { 40 DenseMap<const Comdat *, Comdat *> RenamedComdats; 41 for (auto &ExportGV : ExportM.global_values()) { 42 if (!ExportGV.hasLocalLinkage()) 43 continue; 44 45 auto Name = ExportGV.getName(); 46 GlobalValue *ImportGV = nullptr; 47 if (!PromoteExtra.count(&ExportGV)) { 48 ImportGV = ImportM.getNamedValue(Name); 49 if (!ImportGV) 50 continue; 51 ImportGV->removeDeadConstantUsers(); 52 if (ImportGV->use_empty()) { 53 ImportGV->eraseFromParent(); 54 continue; 55 } 56 } 57 58 std::string NewName = (Name + ModuleId).str(); 59 60 if (const auto *C = ExportGV.getComdat()) 61 if (C->getName() == Name) 62 RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName)); 63 64 ExportGV.setName(NewName); 65 ExportGV.setLinkage(GlobalValue::ExternalLinkage); 66 ExportGV.setVisibility(GlobalValue::HiddenVisibility); 67 68 if (ImportGV) { 69 ImportGV->setName(NewName); 70 ImportGV->setVisibility(GlobalValue::HiddenVisibility); 71 } 72 73 if (Function *F = dyn_cast<Function>(&ExportGV)) { 74 // Create a local alias with the original name to avoid breaking 75 // references from inline assembly. 76 GlobalAlias *A = 77 GlobalAlias::create(F->getValueType(), F->getAddressSpace(), 78 GlobalValue::InternalLinkage, Name, F, &ExportM); 79 appendToCompilerUsed(ExportM, A); 80 } 81 } 82 83 if (!RenamedComdats.empty()) 84 for (auto &GO : ExportM.global_objects()) 85 if (auto *C = GO.getComdat()) { 86 auto Replacement = RenamedComdats.find(C); 87 if (Replacement != RenamedComdats.end()) 88 GO.setComdat(Replacement->second); 89 } 90 } 91 92 // Promote all internal (i.e. distinct) type ids used by the module by replacing 93 // them with external type ids formed using the module id. 94 // 95 // Note that this needs to be done before we clone the module because each clone 96 // will receive its own set of distinct metadata nodes. 97 void promoteTypeIds(Module &M, StringRef ModuleId) { 98 DenseMap<Metadata *, Metadata *> LocalToGlobal; 99 auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) { 100 Metadata *MD = 101 cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata(); 102 103 if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) { 104 Metadata *&GlobalMD = LocalToGlobal[MD]; 105 if (!GlobalMD) { 106 std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str(); 107 GlobalMD = MDString::get(M.getContext(), NewName); 108 } 109 110 CI->setArgOperand(ArgNo, 111 MetadataAsValue::get(M.getContext(), GlobalMD)); 112 } 113 }; 114 115 if (Function *TypeTestFunc = 116 M.getFunction(Intrinsic::getName(Intrinsic::type_test))) { 117 for (const Use &U : TypeTestFunc->uses()) { 118 auto CI = cast<CallInst>(U.getUser()); 119 ExternalizeTypeId(CI, 1); 120 } 121 } 122 123 if (Function *TypeCheckedLoadFunc = 124 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) { 125 for (const Use &U : TypeCheckedLoadFunc->uses()) { 126 auto CI = cast<CallInst>(U.getUser()); 127 ExternalizeTypeId(CI, 2); 128 } 129 } 130 131 for (GlobalObject &GO : M.global_objects()) { 132 SmallVector<MDNode *, 1> MDs; 133 GO.getMetadata(LLVMContext::MD_type, MDs); 134 135 GO.eraseMetadata(LLVMContext::MD_type); 136 for (auto MD : MDs) { 137 auto I = LocalToGlobal.find(MD->getOperand(1)); 138 if (I == LocalToGlobal.end()) { 139 GO.addMetadata(LLVMContext::MD_type, *MD); 140 continue; 141 } 142 GO.addMetadata( 143 LLVMContext::MD_type, 144 *MDNode::get(M.getContext(), {MD->getOperand(0), I->second})); 145 } 146 } 147 } 148 149 // Drop unused globals, and drop type information from function declarations. 150 // FIXME: If we made functions typeless then there would be no need to do this. 151 void simplifyExternals(Module &M) { 152 FunctionType *EmptyFT = 153 FunctionType::get(Type::getVoidTy(M.getContext()), false); 154 155 for (auto I = M.begin(), E = M.end(); I != E;) { 156 Function &F = *I++; 157 if (F.isDeclaration() && F.use_empty()) { 158 F.eraseFromParent(); 159 continue; 160 } 161 162 if (!F.isDeclaration() || F.getFunctionType() == EmptyFT || 163 // Changing the type of an intrinsic may invalidate the IR. 164 F.getName().startswith("llvm.")) 165 continue; 166 167 Function *NewF = 168 Function::Create(EmptyFT, GlobalValue::ExternalLinkage, 169 F.getAddressSpace(), "", &M); 170 NewF->copyAttributesFrom(&F); 171 // Only copy function attribtues. 172 NewF->setAttributes( 173 AttributeList::get(M.getContext(), AttributeList::FunctionIndex, 174 F.getAttributes().getFnAttributes())); 175 NewF->takeName(&F); 176 F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType())); 177 F.eraseFromParent(); 178 } 179 180 for (auto I = M.global_begin(), E = M.global_end(); I != E;) { 181 GlobalVariable &GV = *I++; 182 if (GV.isDeclaration() && GV.use_empty()) { 183 GV.eraseFromParent(); 184 continue; 185 } 186 } 187 } 188 189 static void 190 filterModule(Module *M, 191 function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) { 192 std::vector<GlobalValue *> V; 193 for (GlobalValue &GV : M->global_values()) 194 if (!ShouldKeepDefinition(&GV)) 195 V.push_back(&GV); 196 197 for (GlobalValue *GV : V) 198 if (!convertToDeclaration(*GV)) 199 GV->eraseFromParent(); 200 } 201 202 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) { 203 if (auto *F = dyn_cast<Function>(C)) 204 return Fn(F); 205 if (isa<GlobalValue>(C)) 206 return; 207 for (Value *Op : C->operands()) 208 forEachVirtualFunction(cast<Constant>(Op), Fn); 209 } 210 211 // Clone any @llvm[.compiler].used over to the new module and append 212 // values whose defs were cloned into that module. 213 static void cloneUsedGlobalVariables(const Module &SrcM, Module &DestM, 214 bool CompilerUsed) { 215 SmallVector<GlobalValue *, 4> Used, NewUsed; 216 // First collect those in the llvm[.compiler].used set. 217 collectUsedGlobalVariables(SrcM, Used, CompilerUsed); 218 // Next build a set of the equivalent values defined in DestM. 219 for (auto *V : Used) { 220 auto *GV = DestM.getNamedValue(V->getName()); 221 if (GV && !GV->isDeclaration()) 222 NewUsed.push_back(GV); 223 } 224 // Finally, add them to a llvm[.compiler].used variable in DestM. 225 if (CompilerUsed) 226 appendToCompilerUsed(DestM, NewUsed); 227 else 228 appendToUsed(DestM, NewUsed); 229 } 230 231 // If it's possible to split M into regular and thin LTO parts, do so and write 232 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a 233 // regular LTO bitcode file to OS. 234 void splitAndWriteThinLTOBitcode( 235 raw_ostream &OS, raw_ostream *ThinLinkOS, 236 function_ref<AAResults &(Function &)> AARGetter, Module &M) { 237 std::string ModuleId = getUniqueModuleId(&M); 238 if (ModuleId.empty()) { 239 // We couldn't generate a module ID for this module, write it out as a 240 // regular LTO module with an index for summary-based dead stripping. 241 ProfileSummaryInfo PSI(M); 242 M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 243 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 244 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index); 245 246 if (ThinLinkOS) 247 // We don't have a ThinLTO part, but still write the module to the 248 // ThinLinkOS if requested so that the expected output file is produced. 249 WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false, 250 &Index); 251 252 return; 253 } 254 255 promoteTypeIds(M, ModuleId); 256 257 // Returns whether a global or its associated global has attached type 258 // metadata. The former may participate in CFI or whole-program 259 // devirtualization, so they need to appear in the merged module instead of 260 // the thin LTO module. Similarly, globals that are associated with globals 261 // with type metadata need to appear in the merged module because they will 262 // reference the global's section directly. 263 auto HasTypeMetadata = [](const GlobalObject *GO) { 264 if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated)) 265 if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0))) 266 if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue())) 267 if (AssocGO->hasMetadata(LLVMContext::MD_type)) 268 return true; 269 return GO->hasMetadata(LLVMContext::MD_type); 270 }; 271 272 // Collect the set of virtual functions that are eligible for virtual constant 273 // propagation. Each eligible function must not access memory, must return 274 // an integer of width <=64 bits, must take at least one argument, must not 275 // use its first argument (assumed to be "this") and all arguments other than 276 // the first one must be of <=64 bit integer type. 277 // 278 // Note that we test whether this copy of the function is readnone, rather 279 // than testing function attributes, which must hold for any copy of the 280 // function, even a less optimized version substituted at link time. This is 281 // sound because the virtual constant propagation optimizations effectively 282 // inline all implementations of the virtual function into each call site, 283 // rather than using function attributes to perform local optimization. 284 DenseSet<const Function *> EligibleVirtualFns; 285 // If any member of a comdat lives in MergedM, put all members of that 286 // comdat in MergedM to keep the comdat together. 287 DenseSet<const Comdat *> MergedMComdats; 288 for (GlobalVariable &GV : M.globals()) 289 if (HasTypeMetadata(&GV)) { 290 if (const auto *C = GV.getComdat()) 291 MergedMComdats.insert(C); 292 forEachVirtualFunction(GV.getInitializer(), [&](Function *F) { 293 auto *RT = dyn_cast<IntegerType>(F->getReturnType()); 294 if (!RT || RT->getBitWidth() > 64 || F->arg_empty() || 295 !F->arg_begin()->use_empty()) 296 return; 297 for (auto &Arg : drop_begin(F->args())) { 298 auto *ArgT = dyn_cast<IntegerType>(Arg.getType()); 299 if (!ArgT || ArgT->getBitWidth() > 64) 300 return; 301 } 302 if (!F->isDeclaration() && 303 computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone) 304 EligibleVirtualFns.insert(F); 305 }); 306 } 307 308 ValueToValueMapTy VMap; 309 std::unique_ptr<Module> MergedM( 310 CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool { 311 if (const auto *C = GV->getComdat()) 312 if (MergedMComdats.count(C)) 313 return true; 314 if (auto *F = dyn_cast<Function>(GV)) 315 return EligibleVirtualFns.count(F); 316 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 317 return HasTypeMetadata(GVar); 318 return false; 319 })); 320 StripDebugInfo(*MergedM); 321 MergedM->setModuleInlineAsm(""); 322 323 // Clone any llvm.*used globals to ensure the included values are 324 // not deleted. 325 cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ false); 326 cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ true); 327 328 for (Function &F : *MergedM) 329 if (!F.isDeclaration()) { 330 // Reset the linkage of all functions eligible for virtual constant 331 // propagation. The canonical definitions live in the thin LTO module so 332 // that they can be imported. 333 F.setLinkage(GlobalValue::AvailableExternallyLinkage); 334 F.setComdat(nullptr); 335 } 336 337 SetVector<GlobalValue *> CfiFunctions; 338 for (auto &F : M) 339 if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F)) 340 CfiFunctions.insert(&F); 341 342 // Remove all globals with type metadata, globals with comdats that live in 343 // MergedM, and aliases pointing to such globals from the thin LTO module. 344 filterModule(&M, [&](const GlobalValue *GV) { 345 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 346 if (HasTypeMetadata(GVar)) 347 return false; 348 if (const auto *C = GV->getComdat()) 349 if (MergedMComdats.count(C)) 350 return false; 351 return true; 352 }); 353 354 promoteInternals(*MergedM, M, ModuleId, CfiFunctions); 355 promoteInternals(M, *MergedM, ModuleId, CfiFunctions); 356 357 auto &Ctx = MergedM->getContext(); 358 SmallVector<MDNode *, 8> CfiFunctionMDs; 359 for (auto V : CfiFunctions) { 360 Function &F = *cast<Function>(V); 361 SmallVector<MDNode *, 2> Types; 362 F.getMetadata(LLVMContext::MD_type, Types); 363 364 SmallVector<Metadata *, 4> Elts; 365 Elts.push_back(MDString::get(Ctx, F.getName())); 366 CfiFunctionLinkage Linkage; 367 if (lowertypetests::isJumpTableCanonical(&F)) 368 Linkage = CFL_Definition; 369 else if (F.hasExternalWeakLinkage()) 370 Linkage = CFL_WeakDeclaration; 371 else 372 Linkage = CFL_Declaration; 373 Elts.push_back(ConstantAsMetadata::get( 374 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage))); 375 append_range(Elts, Types); 376 CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts)); 377 } 378 379 if(!CfiFunctionMDs.empty()) { 380 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions"); 381 for (auto MD : CfiFunctionMDs) 382 NMD->addOperand(MD); 383 } 384 385 SmallVector<MDNode *, 8> FunctionAliases; 386 for (auto &A : M.aliases()) { 387 if (!isa<Function>(A.getAliasee())) 388 continue; 389 390 auto *F = cast<Function>(A.getAliasee()); 391 392 Metadata *Elts[] = { 393 MDString::get(Ctx, A.getName()), 394 MDString::get(Ctx, F->getName()), 395 ConstantAsMetadata::get( 396 ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())), 397 ConstantAsMetadata::get( 398 ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())), 399 }; 400 401 FunctionAliases.push_back(MDTuple::get(Ctx, Elts)); 402 } 403 404 if (!FunctionAliases.empty()) { 405 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases"); 406 for (auto MD : FunctionAliases) 407 NMD->addOperand(MD); 408 } 409 410 SmallVector<MDNode *, 8> Symvers; 411 ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) { 412 Function *F = M.getFunction(Name); 413 if (!F || F->use_empty()) 414 return; 415 416 Symvers.push_back(MDTuple::get( 417 Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)})); 418 }); 419 420 if (!Symvers.empty()) { 421 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers"); 422 for (auto MD : Symvers) 423 NMD->addOperand(MD); 424 } 425 426 simplifyExternals(*MergedM); 427 428 // FIXME: Try to re-use BSI and PFI from the original module here. 429 ProfileSummaryInfo PSI(M); 430 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 431 432 // Mark the merged module as requiring full LTO. We still want an index for 433 // it though, so that it can participate in summary-based dead stripping. 434 MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 435 ModuleSummaryIndex MergedMIndex = 436 buildModuleSummaryIndex(*MergedM, nullptr, &PSI); 437 438 SmallVector<char, 0> Buffer; 439 440 BitcodeWriter W(Buffer); 441 // Save the module hash produced for the full bitcode, which will 442 // be used in the backends, and use that in the minimized bitcode 443 // produced for the full link. 444 ModuleHash ModHash = {{0}}; 445 W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index, 446 /*GenerateHash=*/true, &ModHash); 447 W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex); 448 W.writeSymtab(); 449 W.writeStrtab(); 450 OS << Buffer; 451 452 // If a minimized bitcode module was requested for the thin link, only 453 // the information that is needed by thin link will be written in the 454 // given OS (the merged module will be written as usual). 455 if (ThinLinkOS) { 456 Buffer.clear(); 457 BitcodeWriter W2(Buffer); 458 StripDebugInfo(M); 459 W2.writeThinLinkBitcode(M, Index, ModHash); 460 W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, 461 &MergedMIndex); 462 W2.writeSymtab(); 463 W2.writeStrtab(); 464 *ThinLinkOS << Buffer; 465 } 466 } 467 468 // Check if the LTO Unit splitting has been enabled. 469 bool enableSplitLTOUnit(Module &M) { 470 bool EnableSplitLTOUnit = false; 471 if (auto *MD = mdconst::extract_or_null<ConstantInt>( 472 M.getModuleFlag("EnableSplitLTOUnit"))) 473 EnableSplitLTOUnit = MD->getZExtValue(); 474 return EnableSplitLTOUnit; 475 } 476 477 // Returns whether this module needs to be split because it uses type metadata. 478 bool hasTypeMetadata(Module &M) { 479 for (auto &GO : M.global_objects()) { 480 if (GO.hasMetadata(LLVMContext::MD_type)) 481 return true; 482 } 483 return false; 484 } 485 486 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS, 487 function_ref<AAResults &(Function &)> AARGetter, 488 Module &M, const ModuleSummaryIndex *Index) { 489 std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr; 490 // See if this module has any type metadata. If so, we try to split it 491 // or at least promote type ids to enable WPD. 492 if (hasTypeMetadata(M)) { 493 if (enableSplitLTOUnit(M)) 494 return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M); 495 // Promote type ids as needed for index-based WPD. 496 std::string ModuleId = getUniqueModuleId(&M); 497 if (!ModuleId.empty()) { 498 promoteTypeIds(M, ModuleId); 499 // Need to rebuild the index so that it contains type metadata 500 // for the newly promoted type ids. 501 // FIXME: Probably should not bother building the index at all 502 // in the caller of writeThinLTOBitcode (which does so via the 503 // ModuleSummaryIndexAnalysis pass), since we have to rebuild it 504 // anyway whenever there is type metadata (here or in 505 // splitAndWriteThinLTOBitcode). Just always build it once via the 506 // buildModuleSummaryIndex when Module(s) are ready. 507 ProfileSummaryInfo PSI(M); 508 NewIndex = std::make_unique<ModuleSummaryIndex>( 509 buildModuleSummaryIndex(M, nullptr, &PSI)); 510 Index = NewIndex.get(); 511 } 512 } 513 514 // Write it out as an unsplit ThinLTO module. 515 516 // Save the module hash produced for the full bitcode, which will 517 // be used in the backends, and use that in the minimized bitcode 518 // produced for the full link. 519 ModuleHash ModHash = {{0}}; 520 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index, 521 /*GenerateHash=*/true, &ModHash); 522 // If a minimized bitcode module was requested for the thin link, only 523 // the information that is needed by thin link will be written in the 524 // given OS. 525 if (ThinLinkOS && Index) 526 WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash); 527 } 528 529 class WriteThinLTOBitcode : public ModulePass { 530 raw_ostream &OS; // raw_ostream to print on 531 // The output stream on which to emit a minimized module for use 532 // just in the thin link, if requested. 533 raw_ostream *ThinLinkOS; 534 535 public: 536 static char ID; // Pass identification, replacement for typeid 537 WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) { 538 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 539 } 540 541 explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS) 542 : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) { 543 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 544 } 545 546 StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; } 547 548 bool runOnModule(Module &M) override { 549 const ModuleSummaryIndex *Index = 550 &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex()); 551 writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index); 552 return true; 553 } 554 void getAnalysisUsage(AnalysisUsage &AU) const override { 555 AU.setPreservesAll(); 556 AU.addRequired<AssumptionCacheTracker>(); 557 AU.addRequired<ModuleSummaryIndexWrapperPass>(); 558 AU.addRequired<TargetLibraryInfoWrapperPass>(); 559 } 560 }; 561 } // anonymous namespace 562 563 char WriteThinLTOBitcode::ID = 0; 564 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode", 565 "Write ThinLTO Bitcode", false, true) 566 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 567 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass) 568 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 569 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode", 570 "Write ThinLTO Bitcode", false, true) 571 572 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str, 573 raw_ostream *ThinLinkOS) { 574 return new WriteThinLTOBitcode(Str, ThinLinkOS); 575 } 576 577 PreservedAnalyses 578 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) { 579 FunctionAnalysisManager &FAM = 580 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 581 writeThinLTOBitcode(OS, ThinLinkOS, 582 [&FAM](Function &F) -> AAResults & { 583 return FAM.getResult<AAManager>(F); 584 }, 585 M, &AM.getResult<ModuleSummaryIndexAnalysis>(M)); 586 return PreservedAnalyses::all(); 587 } 588