1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 11 #include "llvm/Analysis/BasicAliasAnalysis.h" 12 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 13 #include "llvm/Analysis/ProfileSummaryInfo.h" 14 #include "llvm/Analysis/TypeMetadataUtils.h" 15 #include "llvm/Bitcode/BitcodeWriter.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DebugInfo.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/PassManager.h" 21 #include "llvm/Object/ModuleSymbolTable.h" 22 #include "llvm/Pass.h" 23 #include "llvm/Support/ScopedPrinter.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include "llvm/Transforms/IPO.h" 26 #include "llvm/Transforms/IPO/FunctionAttrs.h" 27 #include "llvm/Transforms/IPO/FunctionImport.h" 28 #include "llvm/Transforms/Utils/Cloning.h" 29 #include "llvm/Transforms/Utils/ModuleUtils.h" 30 using namespace llvm; 31 32 namespace { 33 34 // Promote each local-linkage entity defined by ExportM and used by ImportM by 35 // changing visibility and appending the given ModuleId. 36 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId, 37 SetVector<GlobalValue *> &PromoteExtra) { 38 DenseMap<const Comdat *, Comdat *> RenamedComdats; 39 for (auto &ExportGV : ExportM.global_values()) { 40 if (!ExportGV.hasLocalLinkage()) 41 continue; 42 43 auto Name = ExportGV.getName(); 44 GlobalValue *ImportGV = nullptr; 45 if (!PromoteExtra.count(&ExportGV)) { 46 ImportGV = ImportM.getNamedValue(Name); 47 if (!ImportGV) 48 continue; 49 ImportGV->removeDeadConstantUsers(); 50 if (ImportGV->use_empty()) { 51 ImportGV->eraseFromParent(); 52 continue; 53 } 54 } 55 56 std::string NewName = (Name + ModuleId).str(); 57 58 if (const auto *C = ExportGV.getComdat()) 59 if (C->getName() == Name) 60 RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName)); 61 62 ExportGV.setName(NewName); 63 ExportGV.setLinkage(GlobalValue::ExternalLinkage); 64 ExportGV.setVisibility(GlobalValue::HiddenVisibility); 65 66 if (ImportGV) { 67 ImportGV->setName(NewName); 68 ImportGV->setVisibility(GlobalValue::HiddenVisibility); 69 } 70 } 71 72 if (!RenamedComdats.empty()) 73 for (auto &GO : ExportM.global_objects()) 74 if (auto *C = GO.getComdat()) { 75 auto Replacement = RenamedComdats.find(C); 76 if (Replacement != RenamedComdats.end()) 77 GO.setComdat(Replacement->second); 78 } 79 } 80 81 // Promote all internal (i.e. distinct) type ids used by the module by replacing 82 // them with external type ids formed using the module id. 83 // 84 // Note that this needs to be done before we clone the module because each clone 85 // will receive its own set of distinct metadata nodes. 86 void promoteTypeIds(Module &M, StringRef ModuleId) { 87 DenseMap<Metadata *, Metadata *> LocalToGlobal; 88 auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) { 89 Metadata *MD = 90 cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata(); 91 92 if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) { 93 Metadata *&GlobalMD = LocalToGlobal[MD]; 94 if (!GlobalMD) { 95 std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str(); 96 GlobalMD = MDString::get(M.getContext(), NewName); 97 } 98 99 CI->setArgOperand(ArgNo, 100 MetadataAsValue::get(M.getContext(), GlobalMD)); 101 } 102 }; 103 104 if (Function *TypeTestFunc = 105 M.getFunction(Intrinsic::getName(Intrinsic::type_test))) { 106 for (const Use &U : TypeTestFunc->uses()) { 107 auto CI = cast<CallInst>(U.getUser()); 108 ExternalizeTypeId(CI, 1); 109 } 110 } 111 112 if (Function *TypeCheckedLoadFunc = 113 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) { 114 for (const Use &U : TypeCheckedLoadFunc->uses()) { 115 auto CI = cast<CallInst>(U.getUser()); 116 ExternalizeTypeId(CI, 2); 117 } 118 } 119 120 for (GlobalObject &GO : M.global_objects()) { 121 SmallVector<MDNode *, 1> MDs; 122 GO.getMetadata(LLVMContext::MD_type, MDs); 123 124 GO.eraseMetadata(LLVMContext::MD_type); 125 for (auto MD : MDs) { 126 auto I = LocalToGlobal.find(MD->getOperand(1)); 127 if (I == LocalToGlobal.end()) { 128 GO.addMetadata(LLVMContext::MD_type, *MD); 129 continue; 130 } 131 GO.addMetadata( 132 LLVMContext::MD_type, 133 *MDNode::get(M.getContext(), {MD->getOperand(0), I->second})); 134 } 135 } 136 } 137 138 // Drop unused globals, and drop type information from function declarations. 139 // FIXME: If we made functions typeless then there would be no need to do this. 140 void simplifyExternals(Module &M) { 141 FunctionType *EmptyFT = 142 FunctionType::get(Type::getVoidTy(M.getContext()), false); 143 144 for (auto I = M.begin(), E = M.end(); I != E;) { 145 Function &F = *I++; 146 if (F.isDeclaration() && F.use_empty()) { 147 F.eraseFromParent(); 148 continue; 149 } 150 151 if (!F.isDeclaration() || F.getFunctionType() == EmptyFT || 152 // Changing the type of an intrinsic may invalidate the IR. 153 F.getName().startswith("llvm.")) 154 continue; 155 156 Function *NewF = 157 Function::Create(EmptyFT, GlobalValue::ExternalLinkage, 158 F.getAddressSpace(), "", &M); 159 NewF->setVisibility(F.getVisibility()); 160 NewF->takeName(&F); 161 F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType())); 162 F.eraseFromParent(); 163 } 164 165 for (auto I = M.global_begin(), E = M.global_end(); I != E;) { 166 GlobalVariable &GV = *I++; 167 if (GV.isDeclaration() && GV.use_empty()) { 168 GV.eraseFromParent(); 169 continue; 170 } 171 } 172 } 173 174 static void 175 filterModule(Module *M, 176 function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) { 177 std::vector<GlobalValue *> V; 178 for (GlobalValue &GV : M->global_values()) 179 if (!ShouldKeepDefinition(&GV)) 180 V.push_back(&GV); 181 182 for (GlobalValue *GV : V) 183 if (!convertToDeclaration(*GV)) 184 GV->eraseFromParent(); 185 } 186 187 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) { 188 if (auto *F = dyn_cast<Function>(C)) 189 return Fn(F); 190 if (isa<GlobalValue>(C)) 191 return; 192 for (Value *Op : C->operands()) 193 forEachVirtualFunction(cast<Constant>(Op), Fn); 194 } 195 196 // If it's possible to split M into regular and thin LTO parts, do so and write 197 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a 198 // regular LTO bitcode file to OS. 199 void splitAndWriteThinLTOBitcode( 200 raw_ostream &OS, raw_ostream *ThinLinkOS, 201 function_ref<AAResults &(Function &)> AARGetter, Module &M) { 202 std::string ModuleId = getUniqueModuleId(&M); 203 if (ModuleId.empty()) { 204 // We couldn't generate a module ID for this module, write it out as a 205 // regular LTO module with an index for summary-based dead stripping. 206 ProfileSummaryInfo PSI(M); 207 M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 208 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 209 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index); 210 211 if (ThinLinkOS) 212 // We don't have a ThinLTO part, but still write the module to the 213 // ThinLinkOS if requested so that the expected output file is produced. 214 WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false, 215 &Index); 216 217 return; 218 } 219 220 promoteTypeIds(M, ModuleId); 221 222 // Returns whether a global has attached type metadata. Such globals may 223 // participate in CFI or whole-program devirtualization, so they need to 224 // appear in the merged module instead of the thin LTO module. 225 auto HasTypeMetadata = [](const GlobalObject *GO) { 226 return GO->hasMetadata(LLVMContext::MD_type); 227 }; 228 229 // Collect the set of virtual functions that are eligible for virtual constant 230 // propagation. Each eligible function must not access memory, must return 231 // an integer of width <=64 bits, must take at least one argument, must not 232 // use its first argument (assumed to be "this") and all arguments other than 233 // the first one must be of <=64 bit integer type. 234 // 235 // Note that we test whether this copy of the function is readnone, rather 236 // than testing function attributes, which must hold for any copy of the 237 // function, even a less optimized version substituted at link time. This is 238 // sound because the virtual constant propagation optimizations effectively 239 // inline all implementations of the virtual function into each call site, 240 // rather than using function attributes to perform local optimization. 241 DenseSet<const Function *> EligibleVirtualFns; 242 // If any member of a comdat lives in MergedM, put all members of that 243 // comdat in MergedM to keep the comdat together. 244 DenseSet<const Comdat *> MergedMComdats; 245 for (GlobalVariable &GV : M.globals()) 246 if (HasTypeMetadata(&GV)) { 247 if (const auto *C = GV.getComdat()) 248 MergedMComdats.insert(C); 249 forEachVirtualFunction(GV.getInitializer(), [&](Function *F) { 250 auto *RT = dyn_cast<IntegerType>(F->getReturnType()); 251 if (!RT || RT->getBitWidth() > 64 || F->arg_empty() || 252 !F->arg_begin()->use_empty()) 253 return; 254 for (auto &Arg : make_range(std::next(F->arg_begin()), F->arg_end())) { 255 auto *ArgT = dyn_cast<IntegerType>(Arg.getType()); 256 if (!ArgT || ArgT->getBitWidth() > 64) 257 return; 258 } 259 if (!F->isDeclaration() && 260 computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone) 261 EligibleVirtualFns.insert(F); 262 }); 263 } 264 265 ValueToValueMapTy VMap; 266 std::unique_ptr<Module> MergedM( 267 CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool { 268 if (const auto *C = GV->getComdat()) 269 if (MergedMComdats.count(C)) 270 return true; 271 if (auto *F = dyn_cast<Function>(GV)) 272 return EligibleVirtualFns.count(F); 273 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 274 return HasTypeMetadata(GVar); 275 return false; 276 })); 277 StripDebugInfo(*MergedM); 278 MergedM->setModuleInlineAsm(""); 279 280 for (Function &F : *MergedM) 281 if (!F.isDeclaration()) { 282 // Reset the linkage of all functions eligible for virtual constant 283 // propagation. The canonical definitions live in the thin LTO module so 284 // that they can be imported. 285 F.setLinkage(GlobalValue::AvailableExternallyLinkage); 286 F.setComdat(nullptr); 287 } 288 289 SetVector<GlobalValue *> CfiFunctions; 290 for (auto &F : M) 291 if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F)) 292 CfiFunctions.insert(&F); 293 294 // Remove all globals with type metadata, globals with comdats that live in 295 // MergedM, and aliases pointing to such globals from the thin LTO module. 296 filterModule(&M, [&](const GlobalValue *GV) { 297 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 298 if (HasTypeMetadata(GVar)) 299 return false; 300 if (const auto *C = GV->getComdat()) 301 if (MergedMComdats.count(C)) 302 return false; 303 return true; 304 }); 305 306 promoteInternals(*MergedM, M, ModuleId, CfiFunctions); 307 promoteInternals(M, *MergedM, ModuleId, CfiFunctions); 308 309 auto &Ctx = MergedM->getContext(); 310 SmallVector<MDNode *, 8> CfiFunctionMDs; 311 for (auto V : CfiFunctions) { 312 Function &F = *cast<Function>(V); 313 SmallVector<MDNode *, 2> Types; 314 F.getMetadata(LLVMContext::MD_type, Types); 315 316 SmallVector<Metadata *, 4> Elts; 317 Elts.push_back(MDString::get(Ctx, F.getName())); 318 CfiFunctionLinkage Linkage; 319 if (!F.isDeclarationForLinker()) 320 Linkage = CFL_Definition; 321 else if (F.isWeakForLinker()) 322 Linkage = CFL_WeakDeclaration; 323 else 324 Linkage = CFL_Declaration; 325 Elts.push_back(ConstantAsMetadata::get( 326 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage))); 327 for (auto Type : Types) 328 Elts.push_back(Type); 329 CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts)); 330 } 331 332 if(!CfiFunctionMDs.empty()) { 333 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions"); 334 for (auto MD : CfiFunctionMDs) 335 NMD->addOperand(MD); 336 } 337 338 SmallVector<MDNode *, 8> FunctionAliases; 339 for (auto &A : M.aliases()) { 340 if (!isa<Function>(A.getAliasee())) 341 continue; 342 343 auto *F = cast<Function>(A.getAliasee()); 344 345 Metadata *Elts[] = { 346 MDString::get(Ctx, A.getName()), 347 MDString::get(Ctx, F->getName()), 348 ConstantAsMetadata::get( 349 ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())), 350 ConstantAsMetadata::get( 351 ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())), 352 }; 353 354 FunctionAliases.push_back(MDTuple::get(Ctx, Elts)); 355 } 356 357 if (!FunctionAliases.empty()) { 358 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases"); 359 for (auto MD : FunctionAliases) 360 NMD->addOperand(MD); 361 } 362 363 SmallVector<MDNode *, 8> Symvers; 364 ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) { 365 Function *F = M.getFunction(Name); 366 if (!F || F->use_empty()) 367 return; 368 369 Symvers.push_back(MDTuple::get( 370 Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)})); 371 }); 372 373 if (!Symvers.empty()) { 374 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers"); 375 for (auto MD : Symvers) 376 NMD->addOperand(MD); 377 } 378 379 simplifyExternals(*MergedM); 380 381 // FIXME: Try to re-use BSI and PFI from the original module here. 382 ProfileSummaryInfo PSI(M); 383 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 384 385 // Mark the merged module as requiring full LTO. We still want an index for 386 // it though, so that it can participate in summary-based dead stripping. 387 MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 388 ModuleSummaryIndex MergedMIndex = 389 buildModuleSummaryIndex(*MergedM, nullptr, &PSI); 390 391 SmallVector<char, 0> Buffer; 392 393 BitcodeWriter W(Buffer); 394 // Save the module hash produced for the full bitcode, which will 395 // be used in the backends, and use that in the minimized bitcode 396 // produced for the full link. 397 ModuleHash ModHash = {{0}}; 398 W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index, 399 /*GenerateHash=*/true, &ModHash); 400 W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex); 401 W.writeSymtab(); 402 W.writeStrtab(); 403 OS << Buffer; 404 405 // If a minimized bitcode module was requested for the thin link, only 406 // the information that is needed by thin link will be written in the 407 // given OS (the merged module will be written as usual). 408 if (ThinLinkOS) { 409 Buffer.clear(); 410 BitcodeWriter W2(Buffer); 411 StripDebugInfo(M); 412 W2.writeThinLinkBitcode(M, Index, ModHash); 413 W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, 414 &MergedMIndex); 415 W2.writeSymtab(); 416 W2.writeStrtab(); 417 *ThinLinkOS << Buffer; 418 } 419 } 420 421 // Returns whether this module needs to be split because it uses type metadata. 422 bool requiresSplit(Module &M) { 423 for (auto &GO : M.global_objects()) { 424 if (GO.hasMetadata(LLVMContext::MD_type)) 425 return true; 426 } 427 428 return false; 429 } 430 431 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS, 432 function_ref<AAResults &(Function &)> AARGetter, 433 Module &M, const ModuleSummaryIndex *Index) { 434 // See if this module has any type metadata. If so, we need to split it. 435 if (requiresSplit(M)) 436 return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M); 437 438 // Otherwise we can just write it out as a regular module. 439 440 // Save the module hash produced for the full bitcode, which will 441 // be used in the backends, and use that in the minimized bitcode 442 // produced for the full link. 443 ModuleHash ModHash = {{0}}; 444 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index, 445 /*GenerateHash=*/true, &ModHash); 446 // If a minimized bitcode module was requested for the thin link, only 447 // the information that is needed by thin link will be written in the 448 // given OS. 449 if (ThinLinkOS && Index) 450 WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash); 451 } 452 453 class WriteThinLTOBitcode : public ModulePass { 454 raw_ostream &OS; // raw_ostream to print on 455 // The output stream on which to emit a minimized module for use 456 // just in the thin link, if requested. 457 raw_ostream *ThinLinkOS; 458 459 public: 460 static char ID; // Pass identification, replacement for typeid 461 WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) { 462 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 463 } 464 465 explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS) 466 : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) { 467 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 468 } 469 470 StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; } 471 472 bool runOnModule(Module &M) override { 473 const ModuleSummaryIndex *Index = 474 &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex()); 475 writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index); 476 return true; 477 } 478 void getAnalysisUsage(AnalysisUsage &AU) const override { 479 AU.setPreservesAll(); 480 AU.addRequired<AssumptionCacheTracker>(); 481 AU.addRequired<ModuleSummaryIndexWrapperPass>(); 482 AU.addRequired<TargetLibraryInfoWrapperPass>(); 483 } 484 }; 485 } // anonymous namespace 486 487 char WriteThinLTOBitcode::ID = 0; 488 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode", 489 "Write ThinLTO Bitcode", false, true) 490 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 491 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass) 492 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 493 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode", 494 "Write ThinLTO Bitcode", false, true) 495 496 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str, 497 raw_ostream *ThinLinkOS) { 498 return new WriteThinLTOBitcode(Str, ThinLinkOS); 499 } 500 501 PreservedAnalyses 502 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) { 503 FunctionAnalysisManager &FAM = 504 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 505 writeThinLTOBitcode(OS, ThinLinkOS, 506 [&FAM](Function &F) -> AAResults & { 507 return FAM.getResult<AAManager>(F); 508 }, 509 M, &AM.getResult<ModuleSummaryIndexAnalysis>(M)); 510 return PreservedAnalyses::all(); 511 } 512