1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass prepares a module containing type metadata for ThinLTO by splitting 11 // it into regular and thin LTO parts if possible, and writing both parts to 12 // a multi-module bitcode file. Modules that do not contain type metadata are 13 // written unmodified as a single module. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 19 #include "llvm/Analysis/TypeMetadataUtils.h" 20 #include "llvm/Bitcode/BitcodeWriter.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfo.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/PassManager.h" 26 #include "llvm/Pass.h" 27 #include "llvm/Support/FileSystem.h" 28 #include "llvm/Support/ScopedPrinter.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Transforms/IPO.h" 31 #include "llvm/Transforms/IPO/FunctionAttrs.h" 32 #include "llvm/Transforms/Utils/Cloning.h" 33 using namespace llvm; 34 35 namespace { 36 37 // Produce a unique identifier for this module by taking the MD5 sum of the 38 // names of the module's strong external symbols. This identifier is 39 // normally guaranteed to be unique, or the program would fail to link due to 40 // multiply defined symbols. 41 // 42 // If the module has no strong external symbols (such a module may still have a 43 // semantic effect if it performs global initialization), we cannot produce a 44 // unique identifier for this module, so we return the empty string, which 45 // causes the entire module to be written as a regular LTO module. 46 std::string getModuleId(Module *M) { 47 MD5 Md5; 48 bool ExportsSymbols = false; 49 for (auto &GV : M->global_values()) { 50 if (GV.isDeclaration() || GV.getName().startswith("llvm.") || 51 !GV.hasExternalLinkage()) 52 continue; 53 ExportsSymbols = true; 54 Md5.update(GV.getName()); 55 Md5.update(ArrayRef<uint8_t>{0}); 56 } 57 58 if (!ExportsSymbols) 59 return ""; 60 61 MD5::MD5Result R; 62 Md5.final(R); 63 64 SmallString<32> Str; 65 MD5::stringifyResult(R, Str); 66 return ("$" + Str).str(); 67 } 68 69 // Promote each local-linkage entity defined by ExportM and used by ImportM by 70 // changing visibility and appending the given ModuleId. 71 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId) { 72 for (auto &ExportGV : ExportM.global_values()) { 73 if (!ExportGV.hasLocalLinkage()) 74 continue; 75 76 GlobalValue *ImportGV = ImportM.getNamedValue(ExportGV.getName()); 77 if (!ImportGV || ImportGV->use_empty()) 78 continue; 79 80 std::string NewName = (ExportGV.getName() + ModuleId).str(); 81 82 ExportGV.setName(NewName); 83 ExportGV.setLinkage(GlobalValue::ExternalLinkage); 84 ExportGV.setVisibility(GlobalValue::HiddenVisibility); 85 86 ImportGV->setName(NewName); 87 ImportGV->setVisibility(GlobalValue::HiddenVisibility); 88 } 89 } 90 91 // Promote all internal (i.e. distinct) type ids used by the module by replacing 92 // them with external type ids formed using the module id. 93 // 94 // Note that this needs to be done before we clone the module because each clone 95 // will receive its own set of distinct metadata nodes. 96 void promoteTypeIds(Module &M, StringRef ModuleId) { 97 DenseMap<Metadata *, Metadata *> LocalToGlobal; 98 auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) { 99 Metadata *MD = 100 cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata(); 101 102 if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) { 103 Metadata *&GlobalMD = LocalToGlobal[MD]; 104 if (!GlobalMD) { 105 std::string NewName = 106 (to_string(LocalToGlobal.size()) + ModuleId).str(); 107 GlobalMD = MDString::get(M.getContext(), NewName); 108 } 109 110 CI->setArgOperand(ArgNo, 111 MetadataAsValue::get(M.getContext(), GlobalMD)); 112 } 113 }; 114 115 if (Function *TypeTestFunc = 116 M.getFunction(Intrinsic::getName(Intrinsic::type_test))) { 117 for (const Use &U : TypeTestFunc->uses()) { 118 auto CI = cast<CallInst>(U.getUser()); 119 ExternalizeTypeId(CI, 1); 120 } 121 } 122 123 if (Function *TypeCheckedLoadFunc = 124 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) { 125 for (const Use &U : TypeCheckedLoadFunc->uses()) { 126 auto CI = cast<CallInst>(U.getUser()); 127 ExternalizeTypeId(CI, 2); 128 } 129 } 130 131 for (GlobalObject &GO : M.global_objects()) { 132 SmallVector<MDNode *, 1> MDs; 133 GO.getMetadata(LLVMContext::MD_type, MDs); 134 135 GO.eraseMetadata(LLVMContext::MD_type); 136 for (auto MD : MDs) { 137 auto I = LocalToGlobal.find(MD->getOperand(1)); 138 if (I == LocalToGlobal.end()) { 139 GO.addMetadata(LLVMContext::MD_type, *MD); 140 continue; 141 } 142 GO.addMetadata( 143 LLVMContext::MD_type, 144 *MDNode::get(M.getContext(), 145 ArrayRef<Metadata *>{MD->getOperand(0), I->second})); 146 } 147 } 148 } 149 150 // Drop unused globals, and drop type information from function declarations. 151 // FIXME: If we made functions typeless then there would be no need to do this. 152 void simplifyExternals(Module &M) { 153 FunctionType *EmptyFT = 154 FunctionType::get(Type::getVoidTy(M.getContext()), false); 155 156 for (auto I = M.begin(), E = M.end(); I != E;) { 157 Function &F = *I++; 158 if (F.isDeclaration() && F.use_empty()) { 159 F.eraseFromParent(); 160 continue; 161 } 162 163 if (!F.isDeclaration() || F.getFunctionType() == EmptyFT) 164 continue; 165 166 Function *NewF = 167 Function::Create(EmptyFT, GlobalValue::ExternalLinkage, "", &M); 168 NewF->setVisibility(F.getVisibility()); 169 NewF->takeName(&F); 170 F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType())); 171 F.eraseFromParent(); 172 } 173 174 for (auto I = M.global_begin(), E = M.global_end(); I != E;) { 175 GlobalVariable &GV = *I++; 176 if (GV.isDeclaration() && GV.use_empty()) { 177 GV.eraseFromParent(); 178 continue; 179 } 180 } 181 } 182 183 void filterModule( 184 Module *M, function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) { 185 for (Module::alias_iterator I = M->alias_begin(), E = M->alias_end(); 186 I != E;) { 187 GlobalAlias *GA = &*I++; 188 if (ShouldKeepDefinition(GA)) 189 continue; 190 191 GlobalObject *GO; 192 if (GA->getValueType()->isFunctionTy()) 193 GO = Function::Create(cast<FunctionType>(GA->getValueType()), 194 GlobalValue::ExternalLinkage, "", M); 195 else 196 GO = new GlobalVariable( 197 *M, GA->getValueType(), false, GlobalValue::ExternalLinkage, 198 (Constant *)nullptr, "", (GlobalVariable *)nullptr, 199 GA->getThreadLocalMode(), GA->getType()->getAddressSpace()); 200 GO->takeName(GA); 201 GA->replaceAllUsesWith(GO); 202 GA->eraseFromParent(); 203 } 204 205 for (Function &F : *M) { 206 if (ShouldKeepDefinition(&F)) 207 continue; 208 209 F.deleteBody(); 210 F.setComdat(nullptr); 211 F.clearMetadata(); 212 } 213 214 for (GlobalVariable &GV : M->globals()) { 215 if (ShouldKeepDefinition(&GV)) 216 continue; 217 218 GV.setInitializer(nullptr); 219 GV.setLinkage(GlobalValue::ExternalLinkage); 220 GV.setComdat(nullptr); 221 GV.clearMetadata(); 222 } 223 } 224 225 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) { 226 if (auto *F = dyn_cast<Function>(C)) 227 return Fn(F); 228 if (isa<GlobalValue>(C)) 229 return; 230 for (Value *Op : C->operands()) 231 forEachVirtualFunction(cast<Constant>(Op), Fn); 232 } 233 234 // If it's possible to split M into regular and thin LTO parts, do so and write 235 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a 236 // regular LTO bitcode file to OS. 237 void splitAndWriteThinLTOBitcode( 238 raw_ostream &OS, raw_ostream *ThinLinkOS, 239 function_ref<AAResults &(Function &)> AARGetter, Module &M) { 240 std::string ModuleId = getModuleId(&M); 241 if (ModuleId.empty()) { 242 // We couldn't generate a module ID for this module, just write it out as a 243 // regular LTO module. 244 WriteBitcodeToFile(&M, OS); 245 if (ThinLinkOS) 246 // We don't have a ThinLTO part, but still write the module to the 247 // ThinLinkOS if requested so that the expected output file is produced. 248 WriteBitcodeToFile(&M, *ThinLinkOS); 249 return; 250 } 251 252 promoteTypeIds(M, ModuleId); 253 254 // Returns whether a global has attached type metadata. Such globals may 255 // participate in CFI or whole-program devirtualization, so they need to 256 // appear in the merged module instead of the thin LTO module. 257 auto HasTypeMetadata = [&](const GlobalObject *GO) { 258 SmallVector<MDNode *, 1> MDs; 259 GO->getMetadata(LLVMContext::MD_type, MDs); 260 return !MDs.empty(); 261 }; 262 263 // Collect the set of virtual functions that are eligible for virtual constant 264 // propagation. Each eligible function must not access memory, must return 265 // an integer of width <=64 bits, must take at least one argument, must not 266 // use its first argument (assumed to be "this") and all arguments other than 267 // the first one must be of <=64 bit integer type. 268 // 269 // Note that we test whether this copy of the function is readnone, rather 270 // than testing function attributes, which must hold for any copy of the 271 // function, even a less optimized version substituted at link time. This is 272 // sound because the virtual constant propagation optimizations effectively 273 // inline all implementations of the virtual function into each call site, 274 // rather than using function attributes to perform local optimization. 275 std::set<const Function *> EligibleVirtualFns; 276 for (GlobalVariable &GV : M.globals()) 277 if (HasTypeMetadata(&GV)) 278 forEachVirtualFunction(GV.getInitializer(), [&](Function *F) { 279 auto *RT = dyn_cast<IntegerType>(F->getReturnType()); 280 if (!RT || RT->getBitWidth() > 64 || F->arg_empty() || 281 !F->arg_begin()->use_empty()) 282 return; 283 for (auto &Arg : make_range(std::next(F->arg_begin()), F->arg_end())) { 284 auto *ArgT = dyn_cast<IntegerType>(Arg.getType()); 285 if (!ArgT || ArgT->getBitWidth() > 64) 286 return; 287 } 288 if (computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone) 289 EligibleVirtualFns.insert(F); 290 }); 291 292 ValueToValueMapTy VMap; 293 std::unique_ptr<Module> MergedM( 294 CloneModule(&M, VMap, [&](const GlobalValue *GV) -> bool { 295 if (auto *F = dyn_cast<Function>(GV)) 296 return EligibleVirtualFns.count(F); 297 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 298 return HasTypeMetadata(GVar); 299 return false; 300 })); 301 StripDebugInfo(*MergedM); 302 303 for (Function &F : *MergedM) 304 if (!F.isDeclaration()) { 305 // Reset the linkage of all functions eligible for virtual constant 306 // propagation. The canonical definitions live in the thin LTO module so 307 // that they can be imported. 308 F.setLinkage(GlobalValue::AvailableExternallyLinkage); 309 F.setComdat(nullptr); 310 } 311 312 // Remove all globals with type metadata, as well as aliases pointing to them, 313 // from the thin LTO module. 314 filterModule(&M, [&](const GlobalValue *GV) { 315 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 316 return !HasTypeMetadata(GVar); 317 return true; 318 }); 319 320 promoteInternals(*MergedM, M, ModuleId); 321 promoteInternals(M, *MergedM, ModuleId); 322 323 simplifyExternals(*MergedM); 324 325 326 // FIXME: Try to re-use BSI and PFI from the original module here. 327 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, nullptr); 328 329 SmallVector<char, 0> Buffer; 330 331 BitcodeWriter W(Buffer); 332 // Save the module hash produced for the full bitcode, which will 333 // be used in the backends, and use that in the minimized bitcode 334 // produced for the full link. 335 ModuleHash ModHash = {{0}}; 336 W.writeModule(&M, /*ShouldPreserveUseListOrder=*/false, &Index, 337 /*GenerateHash=*/true, &ModHash); 338 W.writeModule(MergedM.get()); 339 OS << Buffer; 340 341 // If a minimized bitcode module was requested for the thin link, 342 // strip the debug info (the merged module was already stripped above) 343 // and write it to the given OS. 344 if (ThinLinkOS) { 345 Buffer.clear(); 346 BitcodeWriter W2(Buffer); 347 StripDebugInfo(M); 348 W2.writeModule(&M, /*ShouldPreserveUseListOrder=*/false, &Index, 349 /*GenerateHash=*/false, &ModHash); 350 W2.writeModule(MergedM.get()); 351 *ThinLinkOS << Buffer; 352 } 353 } 354 355 // Returns whether this module needs to be split because it uses type metadata. 356 bool requiresSplit(Module &M) { 357 SmallVector<MDNode *, 1> MDs; 358 for (auto &GO : M.global_objects()) { 359 GO.getMetadata(LLVMContext::MD_type, MDs); 360 if (!MDs.empty()) 361 return true; 362 } 363 364 return false; 365 } 366 367 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS, 368 function_ref<AAResults &(Function &)> AARGetter, 369 Module &M, const ModuleSummaryIndex *Index) { 370 // See if this module has any type metadata. If so, we need to split it. 371 if (requiresSplit(M)) 372 return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M); 373 374 // Otherwise we can just write it out as a regular module. 375 376 // Save the module hash produced for the full bitcode, which will 377 // be used in the backends, and use that in the minimized bitcode 378 // produced for the full link. 379 ModuleHash ModHash = {{0}}; 380 WriteBitcodeToFile(&M, OS, /*ShouldPreserveUseListOrder=*/false, Index, 381 /*GenerateHash=*/true, &ModHash); 382 // If a minimized bitcode module was requested for the thin link, 383 // strip the debug info and write it to the given OS. 384 if (ThinLinkOS) { 385 StripDebugInfo(M); 386 WriteBitcodeToFile(&M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false, 387 Index, 388 /*GenerateHash=*/false, &ModHash); 389 } 390 } 391 392 class WriteThinLTOBitcode : public ModulePass { 393 raw_ostream &OS; // raw_ostream to print on 394 // The output stream on which to emit a minimized module for use 395 // just in the thin link, if requested. 396 raw_ostream *ThinLinkOS; 397 398 public: 399 static char ID; // Pass identification, replacement for typeid 400 WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) { 401 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 402 } 403 404 explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS) 405 : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) { 406 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 407 } 408 409 StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; } 410 411 bool runOnModule(Module &M) override { 412 const ModuleSummaryIndex *Index = 413 &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex()); 414 writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index); 415 return true; 416 } 417 void getAnalysisUsage(AnalysisUsage &AU) const override { 418 AU.setPreservesAll(); 419 AU.addRequired<AssumptionCacheTracker>(); 420 AU.addRequired<ModuleSummaryIndexWrapperPass>(); 421 AU.addRequired<TargetLibraryInfoWrapperPass>(); 422 } 423 }; 424 } // anonymous namespace 425 426 char WriteThinLTOBitcode::ID = 0; 427 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode", 428 "Write ThinLTO Bitcode", false, true) 429 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 430 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass) 431 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 432 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode", 433 "Write ThinLTO Bitcode", false, true) 434 435 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str, 436 raw_ostream *ThinLinkOS) { 437 return new WriteThinLTOBitcode(Str, ThinLinkOS); 438 } 439