1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
11 #include "llvm/Analysis/BasicAliasAnalysis.h"
12 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
13 #include "llvm/Analysis/ProfileSummaryInfo.h"
14 #include "llvm/Analysis/TypeMetadataUtils.h"
15 #include "llvm/Bitcode/BitcodeWriter.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/DebugInfo.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/IR/PassManager.h"
21 #include "llvm/Pass.h"
22 #include "llvm/Support/ScopedPrinter.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include "llvm/Transforms/IPO.h"
25 #include "llvm/Transforms/IPO/FunctionAttrs.h"
26 #include "llvm/Transforms/IPO/FunctionImport.h"
27 #include "llvm/Transforms/Utils/Cloning.h"
28 #include "llvm/Transforms/Utils/ModuleUtils.h"
29 using namespace llvm;
30 
31 namespace {
32 
33 // Promote each local-linkage entity defined by ExportM and used by ImportM by
34 // changing visibility and appending the given ModuleId.
35 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId,
36                       SetVector<GlobalValue *> &PromoteExtra) {
37   DenseMap<const Comdat *, Comdat *> RenamedComdats;
38   for (auto &ExportGV : ExportM.global_values()) {
39     if (!ExportGV.hasLocalLinkage())
40       continue;
41 
42     auto Name = ExportGV.getName();
43     GlobalValue *ImportGV = nullptr;
44     if (!PromoteExtra.count(&ExportGV)) {
45       ImportGV = ImportM.getNamedValue(Name);
46       if (!ImportGV)
47         continue;
48       ImportGV->removeDeadConstantUsers();
49       if (ImportGV->use_empty()) {
50         ImportGV->eraseFromParent();
51         continue;
52       }
53     }
54 
55     std::string NewName = (Name + ModuleId).str();
56 
57     if (const auto *C = ExportGV.getComdat())
58       if (C->getName() == Name)
59         RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName));
60 
61     ExportGV.setName(NewName);
62     ExportGV.setLinkage(GlobalValue::ExternalLinkage);
63     ExportGV.setVisibility(GlobalValue::HiddenVisibility);
64 
65     if (ImportGV) {
66       ImportGV->setName(NewName);
67       ImportGV->setVisibility(GlobalValue::HiddenVisibility);
68     }
69   }
70 
71   if (!RenamedComdats.empty())
72     for (auto &GO : ExportM.global_objects())
73       if (auto *C = GO.getComdat()) {
74         auto Replacement = RenamedComdats.find(C);
75         if (Replacement != RenamedComdats.end())
76           GO.setComdat(Replacement->second);
77       }
78 }
79 
80 // Promote all internal (i.e. distinct) type ids used by the module by replacing
81 // them with external type ids formed using the module id.
82 //
83 // Note that this needs to be done before we clone the module because each clone
84 // will receive its own set of distinct metadata nodes.
85 void promoteTypeIds(Module &M, StringRef ModuleId) {
86   DenseMap<Metadata *, Metadata *> LocalToGlobal;
87   auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
88     Metadata *MD =
89         cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();
90 
91     if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
92       Metadata *&GlobalMD = LocalToGlobal[MD];
93       if (!GlobalMD) {
94         std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str();
95         GlobalMD = MDString::get(M.getContext(), NewName);
96       }
97 
98       CI->setArgOperand(ArgNo,
99                         MetadataAsValue::get(M.getContext(), GlobalMD));
100     }
101   };
102 
103   if (Function *TypeTestFunc =
104           M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
105     for (const Use &U : TypeTestFunc->uses()) {
106       auto CI = cast<CallInst>(U.getUser());
107       ExternalizeTypeId(CI, 1);
108     }
109   }
110 
111   if (Function *TypeCheckedLoadFunc =
112           M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
113     for (const Use &U : TypeCheckedLoadFunc->uses()) {
114       auto CI = cast<CallInst>(U.getUser());
115       ExternalizeTypeId(CI, 2);
116     }
117   }
118 
119   for (GlobalObject &GO : M.global_objects()) {
120     SmallVector<MDNode *, 1> MDs;
121     GO.getMetadata(LLVMContext::MD_type, MDs);
122 
123     GO.eraseMetadata(LLVMContext::MD_type);
124     for (auto MD : MDs) {
125       auto I = LocalToGlobal.find(MD->getOperand(1));
126       if (I == LocalToGlobal.end()) {
127         GO.addMetadata(LLVMContext::MD_type, *MD);
128         continue;
129       }
130       GO.addMetadata(
131           LLVMContext::MD_type,
132           *MDNode::get(M.getContext(),
133                        ArrayRef<Metadata *>{MD->getOperand(0), I->second}));
134     }
135   }
136 }
137 
138 // Drop unused globals, and drop type information from function declarations.
139 // FIXME: If we made functions typeless then there would be no need to do this.
140 void simplifyExternals(Module &M) {
141   FunctionType *EmptyFT =
142       FunctionType::get(Type::getVoidTy(M.getContext()), false);
143 
144   for (auto I = M.begin(), E = M.end(); I != E;) {
145     Function &F = *I++;
146     if (F.isDeclaration() && F.use_empty()) {
147       F.eraseFromParent();
148       continue;
149     }
150 
151     if (!F.isDeclaration() || F.getFunctionType() == EmptyFT ||
152         // Changing the type of an intrinsic may invalidate the IR.
153         F.getName().startswith("llvm."))
154       continue;
155 
156     Function *NewF =
157         Function::Create(EmptyFT, GlobalValue::ExternalLinkage, "", &M);
158     NewF->setVisibility(F.getVisibility());
159     NewF->takeName(&F);
160     F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType()));
161     F.eraseFromParent();
162   }
163 
164   for (auto I = M.global_begin(), E = M.global_end(); I != E;) {
165     GlobalVariable &GV = *I++;
166     if (GV.isDeclaration() && GV.use_empty()) {
167       GV.eraseFromParent();
168       continue;
169     }
170   }
171 }
172 
173 static void
174 filterModule(Module *M,
175              function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
176   std::vector<GlobalValue *> V;
177   for (GlobalValue &GV : M->global_values())
178     if (!ShouldKeepDefinition(&GV))
179       V.push_back(&GV);
180 
181   for (GlobalValue *GV : V)
182     if (!convertToDeclaration(*GV))
183       GV->eraseFromParent();
184 }
185 
186 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) {
187   if (auto *F = dyn_cast<Function>(C))
188     return Fn(F);
189   if (isa<GlobalValue>(C))
190     return;
191   for (Value *Op : C->operands())
192     forEachVirtualFunction(cast<Constant>(Op), Fn);
193 }
194 
195 // If it's possible to split M into regular and thin LTO parts, do so and write
196 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a
197 // regular LTO bitcode file to OS.
198 void splitAndWriteThinLTOBitcode(
199     raw_ostream &OS, raw_ostream *ThinLinkOS,
200     function_ref<AAResults &(Function &)> AARGetter, Module &M) {
201   std::string ModuleId = getUniqueModuleId(&M);
202   if (ModuleId.empty()) {
203     // We couldn't generate a module ID for this module, just write it out as a
204     // regular LTO module.
205     WriteBitcodeToFile(&M, OS);
206     if (ThinLinkOS)
207       // We don't have a ThinLTO part, but still write the module to the
208       // ThinLinkOS if requested so that the expected output file is produced.
209       WriteBitcodeToFile(&M, *ThinLinkOS);
210     return;
211   }
212 
213   promoteTypeIds(M, ModuleId);
214 
215   // Returns whether a global has attached type metadata. Such globals may
216   // participate in CFI or whole-program devirtualization, so they need to
217   // appear in the merged module instead of the thin LTO module.
218   auto HasTypeMetadata = [&](const GlobalObject *GO) {
219     SmallVector<MDNode *, 1> MDs;
220     GO->getMetadata(LLVMContext::MD_type, MDs);
221     return !MDs.empty();
222   };
223 
224   // Collect the set of virtual functions that are eligible for virtual constant
225   // propagation. Each eligible function must not access memory, must return
226   // an integer of width <=64 bits, must take at least one argument, must not
227   // use its first argument (assumed to be "this") and all arguments other than
228   // the first one must be of <=64 bit integer type.
229   //
230   // Note that we test whether this copy of the function is readnone, rather
231   // than testing function attributes, which must hold for any copy of the
232   // function, even a less optimized version substituted at link time. This is
233   // sound because the virtual constant propagation optimizations effectively
234   // inline all implementations of the virtual function into each call site,
235   // rather than using function attributes to perform local optimization.
236   std::set<const Function *> EligibleVirtualFns;
237   // If any member of a comdat lives in MergedM, put all members of that
238   // comdat in MergedM to keep the comdat together.
239   DenseSet<const Comdat *> MergedMComdats;
240   for (GlobalVariable &GV : M.globals())
241     if (HasTypeMetadata(&GV)) {
242       if (const auto *C = GV.getComdat())
243         MergedMComdats.insert(C);
244       forEachVirtualFunction(GV.getInitializer(), [&](Function *F) {
245         auto *RT = dyn_cast<IntegerType>(F->getReturnType());
246         if (!RT || RT->getBitWidth() > 64 || F->arg_empty() ||
247             !F->arg_begin()->use_empty())
248           return;
249         for (auto &Arg : make_range(std::next(F->arg_begin()), F->arg_end())) {
250           auto *ArgT = dyn_cast<IntegerType>(Arg.getType());
251           if (!ArgT || ArgT->getBitWidth() > 64)
252             return;
253         }
254         if (!F->isDeclaration() &&
255             computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone)
256           EligibleVirtualFns.insert(F);
257       });
258     }
259 
260   ValueToValueMapTy VMap;
261   std::unique_ptr<Module> MergedM(
262       CloneModule(&M, VMap, [&](const GlobalValue *GV) -> bool {
263         if (const auto *C = GV->getComdat())
264           if (MergedMComdats.count(C))
265             return true;
266         if (auto *F = dyn_cast<Function>(GV))
267           return EligibleVirtualFns.count(F);
268         if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
269           return HasTypeMetadata(GVar);
270         return false;
271       }));
272   StripDebugInfo(*MergedM);
273   MergedM->setModuleInlineAsm("");
274 
275   for (Function &F : *MergedM)
276     if (!F.isDeclaration()) {
277       // Reset the linkage of all functions eligible for virtual constant
278       // propagation. The canonical definitions live in the thin LTO module so
279       // that they can be imported.
280       F.setLinkage(GlobalValue::AvailableExternallyLinkage);
281       F.setComdat(nullptr);
282     }
283 
284   SetVector<GlobalValue *> CfiFunctions;
285   for (auto &F : M)
286     if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F))
287       CfiFunctions.insert(&F);
288 
289   // Remove all globals with type metadata, globals with comdats that live in
290   // MergedM, and aliases pointing to such globals from the thin LTO module.
291   filterModule(&M, [&](const GlobalValue *GV) {
292     if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
293       if (HasTypeMetadata(GVar))
294         return false;
295     if (const auto *C = GV->getComdat())
296       if (MergedMComdats.count(C))
297         return false;
298     return true;
299   });
300 
301   promoteInternals(*MergedM, M, ModuleId, CfiFunctions);
302   promoteInternals(M, *MergedM, ModuleId, CfiFunctions);
303 
304   SmallVector<MDNode *, 8> CfiFunctionMDs;
305   for (auto V : CfiFunctions) {
306     Function &F = *cast<Function>(V);
307     SmallVector<MDNode *, 2> Types;
308     F.getMetadata(LLVMContext::MD_type, Types);
309 
310     auto &Ctx = MergedM->getContext();
311     SmallVector<Metadata *, 4> Elts;
312     Elts.push_back(MDString::get(Ctx, F.getName()));
313     CfiFunctionLinkage Linkage;
314     if (!F.isDeclarationForLinker())
315       Linkage = CFL_Definition;
316     else if (F.isWeakForLinker())
317       Linkage = CFL_WeakDeclaration;
318     else
319       Linkage = CFL_Declaration;
320     Elts.push_back(ConstantAsMetadata::get(
321         llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage)));
322     for (auto Type : Types)
323       Elts.push_back(Type);
324     CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts));
325   }
326 
327   if(!CfiFunctionMDs.empty()) {
328     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions");
329     for (auto MD : CfiFunctionMDs)
330       NMD->addOperand(MD);
331   }
332 
333   SmallVector<MDNode *, 8> FunctionAliases;
334   for (auto &A : M.aliases()) {
335     if (!isa<Function>(A.getAliasee()))
336       continue;
337 
338     auto *F = cast<Function>(A.getAliasee());
339     auto &Ctx = MergedM->getContext();
340     SmallVector<Metadata *, 4> Elts;
341 
342     Elts.push_back(MDString::get(Ctx, A.getName()));
343     Elts.push_back(MDString::get(Ctx, F->getName()));
344     Elts.push_back(ConstantAsMetadata::get(
345         llvm::ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())));
346     Elts.push_back(ConstantAsMetadata::get(
347         llvm::ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())));
348 
349     FunctionAliases.push_back(MDTuple::get(Ctx, Elts));
350   }
351 
352   if (!FunctionAliases.empty()) {
353     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases");
354     for (auto MD : FunctionAliases)
355       NMD->addOperand(MD);
356   }
357 
358   simplifyExternals(*MergedM);
359 
360   // FIXME: Try to re-use BSI and PFI from the original module here.
361   ProfileSummaryInfo PSI(M);
362   ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
363 
364   // Mark the merged module as requiring full LTO. We still want an index for
365   // it though, so that it can participate in summary-based dead stripping.
366   MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
367   ModuleSummaryIndex MergedMIndex =
368       buildModuleSummaryIndex(*MergedM, nullptr, &PSI);
369 
370   SmallVector<char, 0> Buffer;
371 
372   BitcodeWriter W(Buffer);
373   // Save the module hash produced for the full bitcode, which will
374   // be used in the backends, and use that in the minimized bitcode
375   // produced for the full link.
376   ModuleHash ModHash = {{0}};
377   W.writeModule(&M, /*ShouldPreserveUseListOrder=*/false, &Index,
378                 /*GenerateHash=*/true, &ModHash);
379   W.writeModule(MergedM.get(), /*ShouldPreserveUseListOrder=*/false,
380                 &MergedMIndex);
381   W.writeSymtab();
382   W.writeStrtab();
383   OS << Buffer;
384 
385   // If a minimized bitcode module was requested for the thin link, only
386   // the information that is needed by thin link will be written in the
387   // given OS (the merged module will be written as usual).
388   if (ThinLinkOS) {
389     Buffer.clear();
390     BitcodeWriter W2(Buffer);
391     StripDebugInfo(M);
392     W2.writeThinLinkBitcode(&M, Index, ModHash);
393     W2.writeModule(MergedM.get(), /*ShouldPreserveUseListOrder=*/false,
394                    &MergedMIndex);
395     W2.writeSymtab();
396     W2.writeStrtab();
397     *ThinLinkOS << Buffer;
398   }
399 }
400 
401 // Returns whether this module needs to be split because it uses type metadata.
402 bool requiresSplit(Module &M) {
403   SmallVector<MDNode *, 1> MDs;
404   for (auto &GO : M.global_objects()) {
405     GO.getMetadata(LLVMContext::MD_type, MDs);
406     if (!MDs.empty())
407       return true;
408   }
409 
410   return false;
411 }
412 
413 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
414                          function_ref<AAResults &(Function &)> AARGetter,
415                          Module &M, const ModuleSummaryIndex *Index) {
416   // See if this module has any type metadata. If so, we need to split it.
417   if (requiresSplit(M))
418     return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
419 
420   // Otherwise we can just write it out as a regular module.
421 
422   // Save the module hash produced for the full bitcode, which will
423   // be used in the backends, and use that in the minimized bitcode
424   // produced for the full link.
425   ModuleHash ModHash = {{0}};
426   WriteBitcodeToFile(&M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
427                      /*GenerateHash=*/true, &ModHash);
428   // If a minimized bitcode module was requested for the thin link, only
429   // the information that is needed by thin link will be written in the
430   // given OS.
431   if (ThinLinkOS && Index)
432     WriteThinLinkBitcodeToFile(&M, *ThinLinkOS, *Index, ModHash);
433 }
434 
435 class WriteThinLTOBitcode : public ModulePass {
436   raw_ostream &OS; // raw_ostream to print on
437   // The output stream on which to emit a minimized module for use
438   // just in the thin link, if requested.
439   raw_ostream *ThinLinkOS;
440 
441 public:
442   static char ID; // Pass identification, replacement for typeid
443   WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) {
444     initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
445   }
446 
447   explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS)
448       : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) {
449     initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
450   }
451 
452   StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; }
453 
454   bool runOnModule(Module &M) override {
455     const ModuleSummaryIndex *Index =
456         &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex());
457     writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index);
458     return true;
459   }
460   void getAnalysisUsage(AnalysisUsage &AU) const override {
461     AU.setPreservesAll();
462     AU.addRequired<AssumptionCacheTracker>();
463     AU.addRequired<ModuleSummaryIndexWrapperPass>();
464     AU.addRequired<TargetLibraryInfoWrapperPass>();
465   }
466 };
467 } // anonymous namespace
468 
469 char WriteThinLTOBitcode::ID = 0;
470 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode",
471                       "Write ThinLTO Bitcode", false, true)
472 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
473 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
474 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
475 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode",
476                     "Write ThinLTO Bitcode", false, true)
477 
478 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str,
479                                                 raw_ostream *ThinLinkOS) {
480   return new WriteThinLTOBitcode(Str, ThinLinkOS);
481 }
482 
483 PreservedAnalyses
484 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) {
485   FunctionAnalysisManager &FAM =
486       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
487   writeThinLTOBitcode(OS, ThinLinkOS,
488                       [&FAM](Function &F) -> AAResults & {
489                         return FAM.getResult<AAManager>(F);
490                       },
491                       M, &AM.getResult<ModuleSummaryIndexAnalysis>(M));
492   return PreservedAnalyses::all();
493 }
494