1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 11 #include "llvm/Analysis/BasicAliasAnalysis.h" 12 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 13 #include "llvm/Analysis/ProfileSummaryInfo.h" 14 #include "llvm/Analysis/TypeMetadataUtils.h" 15 #include "llvm/Bitcode/BitcodeWriter.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DebugInfo.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/PassManager.h" 21 #include "llvm/Pass.h" 22 #include "llvm/Support/ScopedPrinter.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include "llvm/Transforms/IPO.h" 25 #include "llvm/Transforms/IPO/FunctionAttrs.h" 26 #include "llvm/Transforms/IPO/FunctionImport.h" 27 #include "llvm/Transforms/Utils/Cloning.h" 28 #include "llvm/Transforms/Utils/ModuleUtils.h" 29 using namespace llvm; 30 31 namespace { 32 33 // Promote each local-linkage entity defined by ExportM and used by ImportM by 34 // changing visibility and appending the given ModuleId. 35 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId, 36 SetVector<GlobalValue *> &PromoteExtra) { 37 DenseMap<const Comdat *, Comdat *> RenamedComdats; 38 for (auto &ExportGV : ExportM.global_values()) { 39 if (!ExportGV.hasLocalLinkage()) 40 continue; 41 42 auto Name = ExportGV.getName(); 43 GlobalValue *ImportGV = nullptr; 44 if (!PromoteExtra.count(&ExportGV)) { 45 ImportGV = ImportM.getNamedValue(Name); 46 if (!ImportGV) 47 continue; 48 ImportGV->removeDeadConstantUsers(); 49 if (ImportGV->use_empty()) { 50 ImportGV->eraseFromParent(); 51 continue; 52 } 53 } 54 55 std::string NewName = (Name + ModuleId).str(); 56 57 if (const auto *C = ExportGV.getComdat()) 58 if (C->getName() == Name) 59 RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName)); 60 61 ExportGV.setName(NewName); 62 ExportGV.setLinkage(GlobalValue::ExternalLinkage); 63 ExportGV.setVisibility(GlobalValue::HiddenVisibility); 64 65 if (ImportGV) { 66 ImportGV->setName(NewName); 67 ImportGV->setVisibility(GlobalValue::HiddenVisibility); 68 } 69 } 70 71 if (!RenamedComdats.empty()) 72 for (auto &GO : ExportM.global_objects()) 73 if (auto *C = GO.getComdat()) { 74 auto Replacement = RenamedComdats.find(C); 75 if (Replacement != RenamedComdats.end()) 76 GO.setComdat(Replacement->second); 77 } 78 } 79 80 // Promote all internal (i.e. distinct) type ids used by the module by replacing 81 // them with external type ids formed using the module id. 82 // 83 // Note that this needs to be done before we clone the module because each clone 84 // will receive its own set of distinct metadata nodes. 85 void promoteTypeIds(Module &M, StringRef ModuleId) { 86 DenseMap<Metadata *, Metadata *> LocalToGlobal; 87 auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) { 88 Metadata *MD = 89 cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata(); 90 91 if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) { 92 Metadata *&GlobalMD = LocalToGlobal[MD]; 93 if (!GlobalMD) { 94 std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str(); 95 GlobalMD = MDString::get(M.getContext(), NewName); 96 } 97 98 CI->setArgOperand(ArgNo, 99 MetadataAsValue::get(M.getContext(), GlobalMD)); 100 } 101 }; 102 103 if (Function *TypeTestFunc = 104 M.getFunction(Intrinsic::getName(Intrinsic::type_test))) { 105 for (const Use &U : TypeTestFunc->uses()) { 106 auto CI = cast<CallInst>(U.getUser()); 107 ExternalizeTypeId(CI, 1); 108 } 109 } 110 111 if (Function *TypeCheckedLoadFunc = 112 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) { 113 for (const Use &U : TypeCheckedLoadFunc->uses()) { 114 auto CI = cast<CallInst>(U.getUser()); 115 ExternalizeTypeId(CI, 2); 116 } 117 } 118 119 for (GlobalObject &GO : M.global_objects()) { 120 SmallVector<MDNode *, 1> MDs; 121 GO.getMetadata(LLVMContext::MD_type, MDs); 122 123 GO.eraseMetadata(LLVMContext::MD_type); 124 for (auto MD : MDs) { 125 auto I = LocalToGlobal.find(MD->getOperand(1)); 126 if (I == LocalToGlobal.end()) { 127 GO.addMetadata(LLVMContext::MD_type, *MD); 128 continue; 129 } 130 GO.addMetadata( 131 LLVMContext::MD_type, 132 *MDNode::get(M.getContext(), 133 ArrayRef<Metadata *>{MD->getOperand(0), I->second})); 134 } 135 } 136 } 137 138 // Drop unused globals, and drop type information from function declarations. 139 // FIXME: If we made functions typeless then there would be no need to do this. 140 void simplifyExternals(Module &M) { 141 FunctionType *EmptyFT = 142 FunctionType::get(Type::getVoidTy(M.getContext()), false); 143 144 for (auto I = M.begin(), E = M.end(); I != E;) { 145 Function &F = *I++; 146 if (F.isDeclaration() && F.use_empty()) { 147 F.eraseFromParent(); 148 continue; 149 } 150 151 if (!F.isDeclaration() || F.getFunctionType() == EmptyFT || 152 // Changing the type of an intrinsic may invalidate the IR. 153 F.getName().startswith("llvm.")) 154 continue; 155 156 Function *NewF = 157 Function::Create(EmptyFT, GlobalValue::ExternalLinkage, "", &M); 158 NewF->setVisibility(F.getVisibility()); 159 NewF->takeName(&F); 160 F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType())); 161 F.eraseFromParent(); 162 } 163 164 for (auto I = M.global_begin(), E = M.global_end(); I != E;) { 165 GlobalVariable &GV = *I++; 166 if (GV.isDeclaration() && GV.use_empty()) { 167 GV.eraseFromParent(); 168 continue; 169 } 170 } 171 } 172 173 static void 174 filterModule(Module *M, 175 function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) { 176 std::vector<GlobalValue *> V; 177 for (GlobalValue &GV : M->global_values()) 178 if (!ShouldKeepDefinition(&GV)) 179 V.push_back(&GV); 180 181 for (GlobalValue *GV : V) 182 if (!convertToDeclaration(*GV)) 183 GV->eraseFromParent(); 184 } 185 186 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) { 187 if (auto *F = dyn_cast<Function>(C)) 188 return Fn(F); 189 if (isa<GlobalValue>(C)) 190 return; 191 for (Value *Op : C->operands()) 192 forEachVirtualFunction(cast<Constant>(Op), Fn); 193 } 194 195 // If it's possible to split M into regular and thin LTO parts, do so and write 196 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a 197 // regular LTO bitcode file to OS. 198 void splitAndWriteThinLTOBitcode( 199 raw_ostream &OS, raw_ostream *ThinLinkOS, 200 function_ref<AAResults &(Function &)> AARGetter, Module &M) { 201 std::string ModuleId = getUniqueModuleId(&M); 202 if (ModuleId.empty()) { 203 // We couldn't generate a module ID for this module, just write it out as a 204 // regular LTO module. 205 WriteBitcodeToFile(&M, OS); 206 if (ThinLinkOS) 207 // We don't have a ThinLTO part, but still write the module to the 208 // ThinLinkOS if requested so that the expected output file is produced. 209 WriteBitcodeToFile(&M, *ThinLinkOS); 210 return; 211 } 212 213 promoteTypeIds(M, ModuleId); 214 215 // Returns whether a global has attached type metadata. Such globals may 216 // participate in CFI or whole-program devirtualization, so they need to 217 // appear in the merged module instead of the thin LTO module. 218 auto HasTypeMetadata = [&](const GlobalObject *GO) { 219 SmallVector<MDNode *, 1> MDs; 220 GO->getMetadata(LLVMContext::MD_type, MDs); 221 return !MDs.empty(); 222 }; 223 224 // Collect the set of virtual functions that are eligible for virtual constant 225 // propagation. Each eligible function must not access memory, must return 226 // an integer of width <=64 bits, must take at least one argument, must not 227 // use its first argument (assumed to be "this") and all arguments other than 228 // the first one must be of <=64 bit integer type. 229 // 230 // Note that we test whether this copy of the function is readnone, rather 231 // than testing function attributes, which must hold for any copy of the 232 // function, even a less optimized version substituted at link time. This is 233 // sound because the virtual constant propagation optimizations effectively 234 // inline all implementations of the virtual function into each call site, 235 // rather than using function attributes to perform local optimization. 236 std::set<const Function *> EligibleVirtualFns; 237 // If any member of a comdat lives in MergedM, put all members of that 238 // comdat in MergedM to keep the comdat together. 239 DenseSet<const Comdat *> MergedMComdats; 240 for (GlobalVariable &GV : M.globals()) 241 if (HasTypeMetadata(&GV)) { 242 if (const auto *C = GV.getComdat()) 243 MergedMComdats.insert(C); 244 forEachVirtualFunction(GV.getInitializer(), [&](Function *F) { 245 auto *RT = dyn_cast<IntegerType>(F->getReturnType()); 246 if (!RT || RT->getBitWidth() > 64 || F->arg_empty() || 247 !F->arg_begin()->use_empty()) 248 return; 249 for (auto &Arg : make_range(std::next(F->arg_begin()), F->arg_end())) { 250 auto *ArgT = dyn_cast<IntegerType>(Arg.getType()); 251 if (!ArgT || ArgT->getBitWidth() > 64) 252 return; 253 } 254 if (!F->isDeclaration() && 255 computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone) 256 EligibleVirtualFns.insert(F); 257 }); 258 } 259 260 ValueToValueMapTy VMap; 261 std::unique_ptr<Module> MergedM( 262 CloneModule(&M, VMap, [&](const GlobalValue *GV) -> bool { 263 if (const auto *C = GV->getComdat()) 264 if (MergedMComdats.count(C)) 265 return true; 266 if (auto *F = dyn_cast<Function>(GV)) 267 return EligibleVirtualFns.count(F); 268 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 269 return HasTypeMetadata(GVar); 270 return false; 271 })); 272 StripDebugInfo(*MergedM); 273 MergedM->setModuleInlineAsm(""); 274 275 for (Function &F : *MergedM) 276 if (!F.isDeclaration()) { 277 // Reset the linkage of all functions eligible for virtual constant 278 // propagation. The canonical definitions live in the thin LTO module so 279 // that they can be imported. 280 F.setLinkage(GlobalValue::AvailableExternallyLinkage); 281 F.setComdat(nullptr); 282 } 283 284 SetVector<GlobalValue *> CfiFunctions; 285 for (auto &F : M) 286 if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F)) 287 CfiFunctions.insert(&F); 288 289 // Remove all globals with type metadata, globals with comdats that live in 290 // MergedM, and aliases pointing to such globals from the thin LTO module. 291 filterModule(&M, [&](const GlobalValue *GV) { 292 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 293 if (HasTypeMetadata(GVar)) 294 return false; 295 if (const auto *C = GV->getComdat()) 296 if (MergedMComdats.count(C)) 297 return false; 298 return true; 299 }); 300 301 promoteInternals(*MergedM, M, ModuleId, CfiFunctions); 302 promoteInternals(M, *MergedM, ModuleId, CfiFunctions); 303 304 SmallVector<MDNode *, 8> CfiFunctionMDs; 305 for (auto V : CfiFunctions) { 306 Function &F = *cast<Function>(V); 307 SmallVector<MDNode *, 2> Types; 308 F.getMetadata(LLVMContext::MD_type, Types); 309 310 auto &Ctx = MergedM->getContext(); 311 SmallVector<Metadata *, 4> Elts; 312 Elts.push_back(MDString::get(Ctx, F.getName())); 313 CfiFunctionLinkage Linkage; 314 if (!F.isDeclarationForLinker()) 315 Linkage = CFL_Definition; 316 else if (F.isWeakForLinker()) 317 Linkage = CFL_WeakDeclaration; 318 else 319 Linkage = CFL_Declaration; 320 Elts.push_back(ConstantAsMetadata::get( 321 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage))); 322 for (auto Type : Types) 323 Elts.push_back(Type); 324 CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts)); 325 } 326 327 if(!CfiFunctionMDs.empty()) { 328 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions"); 329 for (auto MD : CfiFunctionMDs) 330 NMD->addOperand(MD); 331 } 332 333 SmallVector<MDNode *, 8> FunctionAliases; 334 for (auto &A : M.aliases()) { 335 if (!isa<Function>(A.getAliasee())) 336 continue; 337 338 auto *F = cast<Function>(A.getAliasee()); 339 auto &Ctx = MergedM->getContext(); 340 SmallVector<Metadata *, 4> Elts; 341 342 Elts.push_back(MDString::get(Ctx, A.getName())); 343 Elts.push_back(MDString::get(Ctx, F->getName())); 344 Elts.push_back(ConstantAsMetadata::get( 345 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility()))); 346 Elts.push_back(ConstantAsMetadata::get( 347 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker()))); 348 349 FunctionAliases.push_back(MDTuple::get(Ctx, Elts)); 350 } 351 352 if (!FunctionAliases.empty()) { 353 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases"); 354 for (auto MD : FunctionAliases) 355 NMD->addOperand(MD); 356 } 357 358 simplifyExternals(*MergedM); 359 360 // FIXME: Try to re-use BSI and PFI from the original module here. 361 ProfileSummaryInfo PSI(M); 362 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 363 364 // Mark the merged module as requiring full LTO. We still want an index for 365 // it though, so that it can participate in summary-based dead stripping. 366 MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 367 ModuleSummaryIndex MergedMIndex = 368 buildModuleSummaryIndex(*MergedM, nullptr, &PSI); 369 370 SmallVector<char, 0> Buffer; 371 372 BitcodeWriter W(Buffer); 373 // Save the module hash produced for the full bitcode, which will 374 // be used in the backends, and use that in the minimized bitcode 375 // produced for the full link. 376 ModuleHash ModHash = {{0}}; 377 W.writeModule(&M, /*ShouldPreserveUseListOrder=*/false, &Index, 378 /*GenerateHash=*/true, &ModHash); 379 W.writeModule(MergedM.get(), /*ShouldPreserveUseListOrder=*/false, 380 &MergedMIndex); 381 W.writeSymtab(); 382 W.writeStrtab(); 383 OS << Buffer; 384 385 // If a minimized bitcode module was requested for the thin link, only 386 // the information that is needed by thin link will be written in the 387 // given OS (the merged module will be written as usual). 388 if (ThinLinkOS) { 389 Buffer.clear(); 390 BitcodeWriter W2(Buffer); 391 StripDebugInfo(M); 392 W2.writeThinLinkBitcode(&M, Index, ModHash); 393 W2.writeModule(MergedM.get(), /*ShouldPreserveUseListOrder=*/false, 394 &MergedMIndex); 395 W2.writeSymtab(); 396 W2.writeStrtab(); 397 *ThinLinkOS << Buffer; 398 } 399 } 400 401 // Returns whether this module needs to be split because it uses type metadata. 402 bool requiresSplit(Module &M) { 403 SmallVector<MDNode *, 1> MDs; 404 for (auto &GO : M.global_objects()) { 405 GO.getMetadata(LLVMContext::MD_type, MDs); 406 if (!MDs.empty()) 407 return true; 408 } 409 410 return false; 411 } 412 413 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS, 414 function_ref<AAResults &(Function &)> AARGetter, 415 Module &M, const ModuleSummaryIndex *Index) { 416 // See if this module has any type metadata. If so, we need to split it. 417 if (requiresSplit(M)) 418 return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M); 419 420 // Otherwise we can just write it out as a regular module. 421 422 // Save the module hash produced for the full bitcode, which will 423 // be used in the backends, and use that in the minimized bitcode 424 // produced for the full link. 425 ModuleHash ModHash = {{0}}; 426 WriteBitcodeToFile(&M, OS, /*ShouldPreserveUseListOrder=*/false, Index, 427 /*GenerateHash=*/true, &ModHash); 428 // If a minimized bitcode module was requested for the thin link, only 429 // the information that is needed by thin link will be written in the 430 // given OS. 431 if (ThinLinkOS && Index) 432 WriteThinLinkBitcodeToFile(&M, *ThinLinkOS, *Index, ModHash); 433 } 434 435 class WriteThinLTOBitcode : public ModulePass { 436 raw_ostream &OS; // raw_ostream to print on 437 // The output stream on which to emit a minimized module for use 438 // just in the thin link, if requested. 439 raw_ostream *ThinLinkOS; 440 441 public: 442 static char ID; // Pass identification, replacement for typeid 443 WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) { 444 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 445 } 446 447 explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS) 448 : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) { 449 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 450 } 451 452 StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; } 453 454 bool runOnModule(Module &M) override { 455 const ModuleSummaryIndex *Index = 456 &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex()); 457 writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index); 458 return true; 459 } 460 void getAnalysisUsage(AnalysisUsage &AU) const override { 461 AU.setPreservesAll(); 462 AU.addRequired<AssumptionCacheTracker>(); 463 AU.addRequired<ModuleSummaryIndexWrapperPass>(); 464 AU.addRequired<TargetLibraryInfoWrapperPass>(); 465 } 466 }; 467 } // anonymous namespace 468 469 char WriteThinLTOBitcode::ID = 0; 470 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode", 471 "Write ThinLTO Bitcode", false, true) 472 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 473 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass) 474 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 475 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode", 476 "Write ThinLTO Bitcode", false, true) 477 478 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str, 479 raw_ostream *ThinLinkOS) { 480 return new WriteThinLTOBitcode(Str, ThinLinkOS); 481 } 482 483 PreservedAnalyses 484 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) { 485 FunctionAnalysisManager &FAM = 486 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 487 writeThinLTOBitcode(OS, ThinLinkOS, 488 [&FAM](Function &F) -> AAResults & { 489 return FAM.getResult<AAManager>(F); 490 }, 491 M, &AM.getResult<ModuleSummaryIndexAnalysis>(M)); 492 return PreservedAnalyses::all(); 493 } 494