1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 11 #include "llvm/Analysis/BasicAliasAnalysis.h" 12 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 13 #include "llvm/Analysis/ProfileSummaryInfo.h" 14 #include "llvm/Analysis/TypeMetadataUtils.h" 15 #include "llvm/Bitcode/BitcodeWriter.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DebugInfo.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/PassManager.h" 21 #include "llvm/Pass.h" 22 #include "llvm/Support/ScopedPrinter.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include "llvm/Transforms/IPO.h" 25 #include "llvm/Transforms/IPO/FunctionAttrs.h" 26 #include "llvm/Transforms/Utils/Cloning.h" 27 #include "llvm/Transforms/Utils/ModuleUtils.h" 28 using namespace llvm; 29 30 namespace { 31 32 // Promote each local-linkage entity defined by ExportM and used by ImportM by 33 // changing visibility and appending the given ModuleId. 34 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId, 35 SetVector<GlobalValue *> &PromoteExtra) { 36 DenseMap<const Comdat *, Comdat *> RenamedComdats; 37 for (auto &ExportGV : ExportM.global_values()) { 38 if (!ExportGV.hasLocalLinkage()) 39 continue; 40 41 auto Name = ExportGV.getName(); 42 GlobalValue *ImportGV = nullptr; 43 if (!PromoteExtra.count(&ExportGV)) { 44 ImportGV = ImportM.getNamedValue(Name); 45 if (!ImportGV) 46 continue; 47 ImportGV->removeDeadConstantUsers(); 48 if (ImportGV->use_empty()) { 49 ImportGV->eraseFromParent(); 50 continue; 51 } 52 } 53 54 std::string NewName = (Name + ModuleId).str(); 55 56 if (const auto *C = ExportGV.getComdat()) 57 if (C->getName() == Name) 58 RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName)); 59 60 ExportGV.setName(NewName); 61 ExportGV.setLinkage(GlobalValue::ExternalLinkage); 62 ExportGV.setVisibility(GlobalValue::HiddenVisibility); 63 64 if (ImportGV) { 65 ImportGV->setName(NewName); 66 ImportGV->setVisibility(GlobalValue::HiddenVisibility); 67 } 68 } 69 70 if (!RenamedComdats.empty()) 71 for (auto &GO : ExportM.global_objects()) 72 if (auto *C = GO.getComdat()) { 73 auto Replacement = RenamedComdats.find(C); 74 if (Replacement != RenamedComdats.end()) 75 GO.setComdat(Replacement->second); 76 } 77 } 78 79 // Promote all internal (i.e. distinct) type ids used by the module by replacing 80 // them with external type ids formed using the module id. 81 // 82 // Note that this needs to be done before we clone the module because each clone 83 // will receive its own set of distinct metadata nodes. 84 void promoteTypeIds(Module &M, StringRef ModuleId) { 85 DenseMap<Metadata *, Metadata *> LocalToGlobal; 86 auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) { 87 Metadata *MD = 88 cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata(); 89 90 if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) { 91 Metadata *&GlobalMD = LocalToGlobal[MD]; 92 if (!GlobalMD) { 93 std::string NewName = 94 (to_string(LocalToGlobal.size()) + ModuleId).str(); 95 GlobalMD = MDString::get(M.getContext(), NewName); 96 } 97 98 CI->setArgOperand(ArgNo, 99 MetadataAsValue::get(M.getContext(), GlobalMD)); 100 } 101 }; 102 103 if (Function *TypeTestFunc = 104 M.getFunction(Intrinsic::getName(Intrinsic::type_test))) { 105 for (const Use &U : TypeTestFunc->uses()) { 106 auto CI = cast<CallInst>(U.getUser()); 107 ExternalizeTypeId(CI, 1); 108 } 109 } 110 111 if (Function *TypeCheckedLoadFunc = 112 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) { 113 for (const Use &U : TypeCheckedLoadFunc->uses()) { 114 auto CI = cast<CallInst>(U.getUser()); 115 ExternalizeTypeId(CI, 2); 116 } 117 } 118 119 for (GlobalObject &GO : M.global_objects()) { 120 SmallVector<MDNode *, 1> MDs; 121 GO.getMetadata(LLVMContext::MD_type, MDs); 122 123 GO.eraseMetadata(LLVMContext::MD_type); 124 for (auto MD : MDs) { 125 auto I = LocalToGlobal.find(MD->getOperand(1)); 126 if (I == LocalToGlobal.end()) { 127 GO.addMetadata(LLVMContext::MD_type, *MD); 128 continue; 129 } 130 GO.addMetadata( 131 LLVMContext::MD_type, 132 *MDNode::get(M.getContext(), 133 ArrayRef<Metadata *>{MD->getOperand(0), I->second})); 134 } 135 } 136 } 137 138 // Drop unused globals, and drop type information from function declarations. 139 // FIXME: If we made functions typeless then there would be no need to do this. 140 void simplifyExternals(Module &M) { 141 FunctionType *EmptyFT = 142 FunctionType::get(Type::getVoidTy(M.getContext()), false); 143 144 for (auto I = M.begin(), E = M.end(); I != E;) { 145 Function &F = *I++; 146 if (F.isDeclaration() && F.use_empty()) { 147 F.eraseFromParent(); 148 continue; 149 } 150 151 if (!F.isDeclaration() || F.getFunctionType() == EmptyFT || 152 // Changing the type of an intrinsic may invalidate the IR. 153 F.getName().startswith("llvm.")) 154 continue; 155 156 Function *NewF = 157 Function::Create(EmptyFT, GlobalValue::ExternalLinkage, "", &M); 158 NewF->setVisibility(F.getVisibility()); 159 NewF->takeName(&F); 160 F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType())); 161 F.eraseFromParent(); 162 } 163 164 for (auto I = M.global_begin(), E = M.global_end(); I != E;) { 165 GlobalVariable &GV = *I++; 166 if (GV.isDeclaration() && GV.use_empty()) { 167 GV.eraseFromParent(); 168 continue; 169 } 170 } 171 } 172 173 void filterModule( 174 Module *M, function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) { 175 for (Module::alias_iterator I = M->alias_begin(), E = M->alias_end(); 176 I != E;) { 177 GlobalAlias *GA = &*I++; 178 if (ShouldKeepDefinition(GA)) 179 continue; 180 181 GlobalObject *GO; 182 if (GA->getValueType()->isFunctionTy()) 183 GO = Function::Create(cast<FunctionType>(GA->getValueType()), 184 GlobalValue::ExternalLinkage, "", M); 185 else 186 GO = new GlobalVariable( 187 *M, GA->getValueType(), false, GlobalValue::ExternalLinkage, 188 nullptr, "", nullptr, 189 GA->getThreadLocalMode(), GA->getType()->getAddressSpace()); 190 GO->takeName(GA); 191 GA->replaceAllUsesWith(GO); 192 GA->eraseFromParent(); 193 } 194 195 for (Function &F : *M) { 196 if (ShouldKeepDefinition(&F)) 197 continue; 198 199 F.deleteBody(); 200 F.setComdat(nullptr); 201 F.clearMetadata(); 202 } 203 204 for (GlobalVariable &GV : M->globals()) { 205 if (ShouldKeepDefinition(&GV)) 206 continue; 207 208 GV.setInitializer(nullptr); 209 GV.setLinkage(GlobalValue::ExternalLinkage); 210 GV.setComdat(nullptr); 211 GV.clearMetadata(); 212 } 213 } 214 215 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) { 216 if (auto *F = dyn_cast<Function>(C)) 217 return Fn(F); 218 if (isa<GlobalValue>(C)) 219 return; 220 for (Value *Op : C->operands()) 221 forEachVirtualFunction(cast<Constant>(Op), Fn); 222 } 223 224 // If it's possible to split M into regular and thin LTO parts, do so and write 225 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a 226 // regular LTO bitcode file to OS. 227 void splitAndWriteThinLTOBitcode( 228 raw_ostream &OS, raw_ostream *ThinLinkOS, 229 function_ref<AAResults &(Function &)> AARGetter, Module &M) { 230 std::string ModuleId = getUniqueModuleId(&M); 231 if (ModuleId.empty()) { 232 // We couldn't generate a module ID for this module, just write it out as a 233 // regular LTO module. 234 WriteBitcodeToFile(&M, OS); 235 if (ThinLinkOS) 236 // We don't have a ThinLTO part, but still write the module to the 237 // ThinLinkOS if requested so that the expected output file is produced. 238 WriteBitcodeToFile(&M, *ThinLinkOS); 239 return; 240 } 241 242 promoteTypeIds(M, ModuleId); 243 244 // Returns whether a global has attached type metadata. Such globals may 245 // participate in CFI or whole-program devirtualization, so they need to 246 // appear in the merged module instead of the thin LTO module. 247 auto HasTypeMetadata = [&](const GlobalObject *GO) { 248 SmallVector<MDNode *, 1> MDs; 249 GO->getMetadata(LLVMContext::MD_type, MDs); 250 return !MDs.empty(); 251 }; 252 253 // Collect the set of virtual functions that are eligible for virtual constant 254 // propagation. Each eligible function must not access memory, must return 255 // an integer of width <=64 bits, must take at least one argument, must not 256 // use its first argument (assumed to be "this") and all arguments other than 257 // the first one must be of <=64 bit integer type. 258 // 259 // Note that we test whether this copy of the function is readnone, rather 260 // than testing function attributes, which must hold for any copy of the 261 // function, even a less optimized version substituted at link time. This is 262 // sound because the virtual constant propagation optimizations effectively 263 // inline all implementations of the virtual function into each call site, 264 // rather than using function attributes to perform local optimization. 265 std::set<const Function *> EligibleVirtualFns; 266 // If any member of a comdat lives in MergedM, put all members of that 267 // comdat in MergedM to keep the comdat together. 268 DenseSet<const Comdat *> MergedMComdats; 269 for (GlobalVariable &GV : M.globals()) 270 if (HasTypeMetadata(&GV)) { 271 if (const auto *C = GV.getComdat()) 272 MergedMComdats.insert(C); 273 forEachVirtualFunction(GV.getInitializer(), [&](Function *F) { 274 auto *RT = dyn_cast<IntegerType>(F->getReturnType()); 275 if (!RT || RT->getBitWidth() > 64 || F->arg_empty() || 276 !F->arg_begin()->use_empty()) 277 return; 278 for (auto &Arg : make_range(std::next(F->arg_begin()), F->arg_end())) { 279 auto *ArgT = dyn_cast<IntegerType>(Arg.getType()); 280 if (!ArgT || ArgT->getBitWidth() > 64) 281 return; 282 } 283 if (!F->isDeclaration() && 284 computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone) 285 EligibleVirtualFns.insert(F); 286 }); 287 } 288 289 ValueToValueMapTy VMap; 290 std::unique_ptr<Module> MergedM( 291 CloneModule(&M, VMap, [&](const GlobalValue *GV) -> bool { 292 if (const auto *C = GV->getComdat()) 293 if (MergedMComdats.count(C)) 294 return true; 295 if (auto *F = dyn_cast<Function>(GV)) 296 return EligibleVirtualFns.count(F); 297 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 298 return HasTypeMetadata(GVar); 299 return false; 300 })); 301 StripDebugInfo(*MergedM); 302 303 for (Function &F : *MergedM) 304 if (!F.isDeclaration()) { 305 // Reset the linkage of all functions eligible for virtual constant 306 // propagation. The canonical definitions live in the thin LTO module so 307 // that they can be imported. 308 F.setLinkage(GlobalValue::AvailableExternallyLinkage); 309 F.setComdat(nullptr); 310 } 311 312 SetVector<GlobalValue *> CfiFunctions; 313 for (auto &F : M) 314 if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F)) 315 CfiFunctions.insert(&F); 316 317 // Remove all globals with type metadata, globals with comdats that live in 318 // MergedM, and aliases pointing to such globals from the thin LTO module. 319 filterModule(&M, [&](const GlobalValue *GV) { 320 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 321 if (HasTypeMetadata(GVar)) 322 return false; 323 if (const auto *C = GV->getComdat()) 324 if (MergedMComdats.count(C)) 325 return false; 326 return true; 327 }); 328 329 promoteInternals(*MergedM, M, ModuleId, CfiFunctions); 330 promoteInternals(M, *MergedM, ModuleId, CfiFunctions); 331 332 SmallVector<MDNode *, 8> CfiFunctionMDs; 333 for (auto V : CfiFunctions) { 334 Function &F = *cast<Function>(V); 335 SmallVector<MDNode *, 2> Types; 336 F.getMetadata(LLVMContext::MD_type, Types); 337 338 auto &Ctx = MergedM->getContext(); 339 SmallVector<Metadata *, 4> Elts; 340 Elts.push_back(MDString::get(Ctx, F.getName())); 341 CfiFunctionLinkage Linkage; 342 if (!F.isDeclarationForLinker()) 343 Linkage = CFL_Definition; 344 else if (F.isWeakForLinker()) 345 Linkage = CFL_WeakDeclaration; 346 else 347 Linkage = CFL_Declaration; 348 Elts.push_back(ConstantAsMetadata::get( 349 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage))); 350 for (auto Type : Types) 351 Elts.push_back(Type); 352 CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts)); 353 } 354 355 if(!CfiFunctionMDs.empty()) { 356 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions"); 357 for (auto MD : CfiFunctionMDs) 358 NMD->addOperand(MD); 359 } 360 361 simplifyExternals(*MergedM); 362 363 // FIXME: Try to re-use BSI and PFI from the original module here. 364 ProfileSummaryInfo PSI(M); 365 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 366 367 // Mark the merged module as requiring full LTO. We still want an index for 368 // it though, so that it can participate in summary-based dead stripping. 369 MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 370 ModuleSummaryIndex MergedMIndex = 371 buildModuleSummaryIndex(*MergedM, nullptr, &PSI); 372 373 SmallVector<char, 0> Buffer; 374 375 BitcodeWriter W(Buffer); 376 // Save the module hash produced for the full bitcode, which will 377 // be used in the backends, and use that in the minimized bitcode 378 // produced for the full link. 379 ModuleHash ModHash = {{0}}; 380 W.writeModule(&M, /*ShouldPreserveUseListOrder=*/false, &Index, 381 /*GenerateHash=*/true, &ModHash); 382 W.writeModule(MergedM.get(), /*ShouldPreserveUseListOrder=*/false, 383 &MergedMIndex); 384 W.writeSymtab(); 385 W.writeStrtab(); 386 OS << Buffer; 387 388 // If a minimized bitcode module was requested for the thin link, only 389 // the information that is needed by thin link will be written in the 390 // given OS (the merged module will be written as usual). 391 if (ThinLinkOS) { 392 Buffer.clear(); 393 BitcodeWriter W2(Buffer); 394 StripDebugInfo(M); 395 W2.writeThinLinkBitcode(&M, Index, ModHash); 396 W2.writeModule(MergedM.get(), /*ShouldPreserveUseListOrder=*/false, 397 &MergedMIndex); 398 W2.writeSymtab(); 399 W2.writeStrtab(); 400 *ThinLinkOS << Buffer; 401 } 402 } 403 404 // Returns whether this module needs to be split because it uses type metadata. 405 bool requiresSplit(Module &M) { 406 SmallVector<MDNode *, 1> MDs; 407 for (auto &GO : M.global_objects()) { 408 GO.getMetadata(LLVMContext::MD_type, MDs); 409 if (!MDs.empty()) 410 return true; 411 } 412 413 return false; 414 } 415 416 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS, 417 function_ref<AAResults &(Function &)> AARGetter, 418 Module &M, const ModuleSummaryIndex *Index) { 419 // See if this module has any type metadata. If so, we need to split it. 420 if (requiresSplit(M)) 421 return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M); 422 423 // Otherwise we can just write it out as a regular module. 424 425 // Save the module hash produced for the full bitcode, which will 426 // be used in the backends, and use that in the minimized bitcode 427 // produced for the full link. 428 ModuleHash ModHash = {{0}}; 429 WriteBitcodeToFile(&M, OS, /*ShouldPreserveUseListOrder=*/false, Index, 430 /*GenerateHash=*/true, &ModHash); 431 // If a minimized bitcode module was requested for the thin link, only 432 // the information that is needed by thin link will be written in the 433 // given OS. 434 if (ThinLinkOS && Index) 435 WriteThinLinkBitcodeToFile(&M, *ThinLinkOS, *Index, ModHash); 436 } 437 438 class WriteThinLTOBitcode : public ModulePass { 439 raw_ostream &OS; // raw_ostream to print on 440 // The output stream on which to emit a minimized module for use 441 // just in the thin link, if requested. 442 raw_ostream *ThinLinkOS; 443 444 public: 445 static char ID; // Pass identification, replacement for typeid 446 WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) { 447 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 448 } 449 450 explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS) 451 : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) { 452 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 453 } 454 455 StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; } 456 457 bool runOnModule(Module &M) override { 458 const ModuleSummaryIndex *Index = 459 &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex()); 460 writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index); 461 return true; 462 } 463 void getAnalysisUsage(AnalysisUsage &AU) const override { 464 AU.setPreservesAll(); 465 AU.addRequired<AssumptionCacheTracker>(); 466 AU.addRequired<ModuleSummaryIndexWrapperPass>(); 467 AU.addRequired<TargetLibraryInfoWrapperPass>(); 468 } 469 }; 470 } // anonymous namespace 471 472 char WriteThinLTOBitcode::ID = 0; 473 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode", 474 "Write ThinLTO Bitcode", false, true) 475 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 476 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass) 477 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 478 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode", 479 "Write ThinLTO Bitcode", false, true) 480 481 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str, 482 raw_ostream *ThinLinkOS) { 483 return new WriteThinLTOBitcode(Str, ThinLinkOS); 484 } 485 486 PreservedAnalyses 487 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) { 488 FunctionAnalysisManager &FAM = 489 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 490 writeThinLTOBitcode(OS, ThinLinkOS, 491 [&FAM](Function &F) -> AAResults & { 492 return FAM.getResult<AAManager>(F); 493 }, 494 M, &AM.getResult<ModuleSummaryIndexAnalysis>(M)); 495 return PreservedAnalyses::all(); 496 } 497