1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 10 #include "llvm/Analysis/BasicAliasAnalysis.h" 11 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 12 #include "llvm/Analysis/ProfileSummaryInfo.h" 13 #include "llvm/Analysis/TypeMetadataUtils.h" 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "llvm/IR/Constants.h" 16 #include "llvm/IR/DebugInfo.h" 17 #include "llvm/IR/Instructions.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/PassManager.h" 21 #include "llvm/InitializePasses.h" 22 #include "llvm/Object/ModuleSymbolTable.h" 23 #include "llvm/Pass.h" 24 #include "llvm/Support/ScopedPrinter.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Transforms/IPO.h" 27 #include "llvm/Transforms/IPO/FunctionAttrs.h" 28 #include "llvm/Transforms/IPO/FunctionImport.h" 29 #include "llvm/Transforms/IPO/LowerTypeTests.h" 30 #include "llvm/Transforms/Utils/Cloning.h" 31 #include "llvm/Transforms/Utils/ModuleUtils.h" 32 using namespace llvm; 33 34 namespace { 35 36 // Promote each local-linkage entity defined by ExportM and used by ImportM by 37 // changing visibility and appending the given ModuleId. 38 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId, 39 SetVector<GlobalValue *> &PromoteExtra) { 40 DenseMap<const Comdat *, Comdat *> RenamedComdats; 41 for (auto &ExportGV : ExportM.global_values()) { 42 if (!ExportGV.hasLocalLinkage()) 43 continue; 44 45 auto Name = ExportGV.getName(); 46 GlobalValue *ImportGV = nullptr; 47 if (!PromoteExtra.count(&ExportGV)) { 48 ImportGV = ImportM.getNamedValue(Name); 49 if (!ImportGV) 50 continue; 51 ImportGV->removeDeadConstantUsers(); 52 if (ImportGV->use_empty()) { 53 ImportGV->eraseFromParent(); 54 continue; 55 } 56 } 57 58 std::string NewName = (Name + ModuleId).str(); 59 60 if (const auto *C = ExportGV.getComdat()) 61 if (C->getName() == Name) 62 RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName)); 63 64 ExportGV.setName(NewName); 65 ExportGV.setLinkage(GlobalValue::ExternalLinkage); 66 ExportGV.setVisibility(GlobalValue::HiddenVisibility); 67 68 if (ImportGV) { 69 ImportGV->setName(NewName); 70 ImportGV->setVisibility(GlobalValue::HiddenVisibility); 71 } 72 } 73 74 if (!RenamedComdats.empty()) 75 for (auto &GO : ExportM.global_objects()) 76 if (auto *C = GO.getComdat()) { 77 auto Replacement = RenamedComdats.find(C); 78 if (Replacement != RenamedComdats.end()) 79 GO.setComdat(Replacement->second); 80 } 81 } 82 83 // Promote all internal (i.e. distinct) type ids used by the module by replacing 84 // them with external type ids formed using the module id. 85 // 86 // Note that this needs to be done before we clone the module because each clone 87 // will receive its own set of distinct metadata nodes. 88 void promoteTypeIds(Module &M, StringRef ModuleId) { 89 DenseMap<Metadata *, Metadata *> LocalToGlobal; 90 auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) { 91 Metadata *MD = 92 cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata(); 93 94 if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) { 95 Metadata *&GlobalMD = LocalToGlobal[MD]; 96 if (!GlobalMD) { 97 std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str(); 98 GlobalMD = MDString::get(M.getContext(), NewName); 99 } 100 101 CI->setArgOperand(ArgNo, 102 MetadataAsValue::get(M.getContext(), GlobalMD)); 103 } 104 }; 105 106 if (Function *TypeTestFunc = 107 M.getFunction(Intrinsic::getName(Intrinsic::type_test))) { 108 for (const Use &U : TypeTestFunc->uses()) { 109 auto CI = cast<CallInst>(U.getUser()); 110 ExternalizeTypeId(CI, 1); 111 } 112 } 113 114 if (Function *TypeCheckedLoadFunc = 115 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) { 116 for (const Use &U : TypeCheckedLoadFunc->uses()) { 117 auto CI = cast<CallInst>(U.getUser()); 118 ExternalizeTypeId(CI, 2); 119 } 120 } 121 122 for (GlobalObject &GO : M.global_objects()) { 123 SmallVector<MDNode *, 1> MDs; 124 GO.getMetadata(LLVMContext::MD_type, MDs); 125 126 GO.eraseMetadata(LLVMContext::MD_type); 127 for (auto MD : MDs) { 128 auto I = LocalToGlobal.find(MD->getOperand(1)); 129 if (I == LocalToGlobal.end()) { 130 GO.addMetadata(LLVMContext::MD_type, *MD); 131 continue; 132 } 133 GO.addMetadata( 134 LLVMContext::MD_type, 135 *MDNode::get(M.getContext(), {MD->getOperand(0), I->second})); 136 } 137 } 138 } 139 140 // Drop unused globals, and drop type information from function declarations. 141 // FIXME: If we made functions typeless then there would be no need to do this. 142 void simplifyExternals(Module &M) { 143 FunctionType *EmptyFT = 144 FunctionType::get(Type::getVoidTy(M.getContext()), false); 145 146 for (auto I = M.begin(), E = M.end(); I != E;) { 147 Function &F = *I++; 148 if (F.isDeclaration() && F.use_empty()) { 149 F.eraseFromParent(); 150 continue; 151 } 152 153 if (!F.isDeclaration() || F.getFunctionType() == EmptyFT || 154 // Changing the type of an intrinsic may invalidate the IR. 155 F.getName().startswith("llvm.")) 156 continue; 157 158 Function *NewF = 159 Function::Create(EmptyFT, GlobalValue::ExternalLinkage, 160 F.getAddressSpace(), "", &M); 161 NewF->copyAttributesFrom(&F); 162 // Only copy function attribtues. 163 NewF->setAttributes( 164 AttributeList::get(M.getContext(), AttributeList::FunctionIndex, 165 F.getAttributes().getFnAttributes())); 166 NewF->takeName(&F); 167 F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType())); 168 F.eraseFromParent(); 169 } 170 171 for (auto I = M.global_begin(), E = M.global_end(); I != E;) { 172 GlobalVariable &GV = *I++; 173 if (GV.isDeclaration() && GV.use_empty()) { 174 GV.eraseFromParent(); 175 continue; 176 } 177 } 178 } 179 180 static void 181 filterModule(Module *M, 182 function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) { 183 std::vector<GlobalValue *> V; 184 for (GlobalValue &GV : M->global_values()) 185 if (!ShouldKeepDefinition(&GV)) 186 V.push_back(&GV); 187 188 for (GlobalValue *GV : V) 189 if (!convertToDeclaration(*GV)) 190 GV->eraseFromParent(); 191 } 192 193 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) { 194 if (auto *F = dyn_cast<Function>(C)) 195 return Fn(F); 196 if (isa<GlobalValue>(C)) 197 return; 198 for (Value *Op : C->operands()) 199 forEachVirtualFunction(cast<Constant>(Op), Fn); 200 } 201 202 // Clone any @llvm[.compiler].used over to the new module and append 203 // values whose defs were cloned into that module. 204 static void cloneUsedGlobalVariables(const Module &SrcM, Module &DestM, 205 bool CompilerUsed) { 206 SmallVector<GlobalValue *, 4> Used, NewUsed; 207 // First collect those in the llvm[.compiler].used set. 208 collectUsedGlobalVariables(SrcM, Used, CompilerUsed); 209 // Next build a set of the equivalent values defined in DestM. 210 for (auto *V : Used) { 211 auto *GV = DestM.getNamedValue(V->getName()); 212 if (GV && !GV->isDeclaration()) 213 NewUsed.push_back(GV); 214 } 215 // Finally, add them to a llvm[.compiler].used variable in DestM. 216 if (CompilerUsed) 217 appendToCompilerUsed(DestM, NewUsed); 218 else 219 appendToUsed(DestM, NewUsed); 220 } 221 222 // If it's possible to split M into regular and thin LTO parts, do so and write 223 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a 224 // regular LTO bitcode file to OS. 225 void splitAndWriteThinLTOBitcode( 226 raw_ostream &OS, raw_ostream *ThinLinkOS, 227 function_ref<AAResults &(Function &)> AARGetter, Module &M) { 228 std::string ModuleId = getUniqueModuleId(&M); 229 if (ModuleId.empty()) { 230 // We couldn't generate a module ID for this module, write it out as a 231 // regular LTO module with an index for summary-based dead stripping. 232 ProfileSummaryInfo PSI(M); 233 M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 234 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 235 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index); 236 237 if (ThinLinkOS) 238 // We don't have a ThinLTO part, but still write the module to the 239 // ThinLinkOS if requested so that the expected output file is produced. 240 WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false, 241 &Index); 242 243 return; 244 } 245 246 promoteTypeIds(M, ModuleId); 247 248 // Returns whether a global or its associated global has attached type 249 // metadata. The former may participate in CFI or whole-program 250 // devirtualization, so they need to appear in the merged module instead of 251 // the thin LTO module. Similarly, globals that are associated with globals 252 // with type metadata need to appear in the merged module because they will 253 // reference the global's section directly. 254 auto HasTypeMetadata = [](const GlobalObject *GO) { 255 if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated)) 256 if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0))) 257 if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue())) 258 if (AssocGO->hasMetadata(LLVMContext::MD_type)) 259 return true; 260 return GO->hasMetadata(LLVMContext::MD_type); 261 }; 262 263 // Collect the set of virtual functions that are eligible for virtual constant 264 // propagation. Each eligible function must not access memory, must return 265 // an integer of width <=64 bits, must take at least one argument, must not 266 // use its first argument (assumed to be "this") and all arguments other than 267 // the first one must be of <=64 bit integer type. 268 // 269 // Note that we test whether this copy of the function is readnone, rather 270 // than testing function attributes, which must hold for any copy of the 271 // function, even a less optimized version substituted at link time. This is 272 // sound because the virtual constant propagation optimizations effectively 273 // inline all implementations of the virtual function into each call site, 274 // rather than using function attributes to perform local optimization. 275 DenseSet<const Function *> EligibleVirtualFns; 276 // If any member of a comdat lives in MergedM, put all members of that 277 // comdat in MergedM to keep the comdat together. 278 DenseSet<const Comdat *> MergedMComdats; 279 for (GlobalVariable &GV : M.globals()) 280 if (HasTypeMetadata(&GV)) { 281 if (const auto *C = GV.getComdat()) 282 MergedMComdats.insert(C); 283 forEachVirtualFunction(GV.getInitializer(), [&](Function *F) { 284 auto *RT = dyn_cast<IntegerType>(F->getReturnType()); 285 if (!RT || RT->getBitWidth() > 64 || F->arg_empty() || 286 !F->arg_begin()->use_empty()) 287 return; 288 for (auto &Arg : drop_begin(F->args())) { 289 auto *ArgT = dyn_cast<IntegerType>(Arg.getType()); 290 if (!ArgT || ArgT->getBitWidth() > 64) 291 return; 292 } 293 if (!F->isDeclaration() && 294 computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone) 295 EligibleVirtualFns.insert(F); 296 }); 297 } 298 299 ValueToValueMapTy VMap; 300 std::unique_ptr<Module> MergedM( 301 CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool { 302 if (const auto *C = GV->getComdat()) 303 if (MergedMComdats.count(C)) 304 return true; 305 if (auto *F = dyn_cast<Function>(GV)) 306 return EligibleVirtualFns.count(F); 307 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 308 return HasTypeMetadata(GVar); 309 return false; 310 })); 311 StripDebugInfo(*MergedM); 312 MergedM->setModuleInlineAsm(""); 313 314 // Clone any llvm.*used globals to ensure the included values are 315 // not deleted. 316 cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ false); 317 cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ true); 318 319 for (Function &F : *MergedM) 320 if (!F.isDeclaration()) { 321 // Reset the linkage of all functions eligible for virtual constant 322 // propagation. The canonical definitions live in the thin LTO module so 323 // that they can be imported. 324 F.setLinkage(GlobalValue::AvailableExternallyLinkage); 325 F.setComdat(nullptr); 326 } 327 328 SetVector<GlobalValue *> CfiFunctions; 329 for (auto &F : M) 330 if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F)) 331 CfiFunctions.insert(&F); 332 333 // Remove all globals with type metadata, globals with comdats that live in 334 // MergedM, and aliases pointing to such globals from the thin LTO module. 335 filterModule(&M, [&](const GlobalValue *GV) { 336 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 337 if (HasTypeMetadata(GVar)) 338 return false; 339 if (const auto *C = GV->getComdat()) 340 if (MergedMComdats.count(C)) 341 return false; 342 return true; 343 }); 344 345 promoteInternals(*MergedM, M, ModuleId, CfiFunctions); 346 promoteInternals(M, *MergedM, ModuleId, CfiFunctions); 347 348 auto &Ctx = MergedM->getContext(); 349 SmallVector<MDNode *, 8> CfiFunctionMDs; 350 for (auto V : CfiFunctions) { 351 Function &F = *cast<Function>(V); 352 SmallVector<MDNode *, 2> Types; 353 F.getMetadata(LLVMContext::MD_type, Types); 354 355 SmallVector<Metadata *, 4> Elts; 356 Elts.push_back(MDString::get(Ctx, F.getName())); 357 CfiFunctionLinkage Linkage; 358 if (lowertypetests::isJumpTableCanonical(&F)) 359 Linkage = CFL_Definition; 360 else if (F.hasExternalWeakLinkage()) 361 Linkage = CFL_WeakDeclaration; 362 else 363 Linkage = CFL_Declaration; 364 Elts.push_back(ConstantAsMetadata::get( 365 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage))); 366 append_range(Elts, Types); 367 CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts)); 368 } 369 370 if(!CfiFunctionMDs.empty()) { 371 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions"); 372 for (auto MD : CfiFunctionMDs) 373 NMD->addOperand(MD); 374 } 375 376 SmallVector<MDNode *, 8> FunctionAliases; 377 for (auto &A : M.aliases()) { 378 if (!isa<Function>(A.getAliasee())) 379 continue; 380 381 auto *F = cast<Function>(A.getAliasee()); 382 383 Metadata *Elts[] = { 384 MDString::get(Ctx, A.getName()), 385 MDString::get(Ctx, F->getName()), 386 ConstantAsMetadata::get( 387 ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())), 388 ConstantAsMetadata::get( 389 ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())), 390 }; 391 392 FunctionAliases.push_back(MDTuple::get(Ctx, Elts)); 393 } 394 395 if (!FunctionAliases.empty()) { 396 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases"); 397 for (auto MD : FunctionAliases) 398 NMD->addOperand(MD); 399 } 400 401 SmallVector<MDNode *, 8> Symvers; 402 ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) { 403 Function *F = M.getFunction(Name); 404 if (!F || F->use_empty()) 405 return; 406 407 Symvers.push_back(MDTuple::get( 408 Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)})); 409 }); 410 411 if (!Symvers.empty()) { 412 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers"); 413 for (auto MD : Symvers) 414 NMD->addOperand(MD); 415 } 416 417 simplifyExternals(*MergedM); 418 419 // FIXME: Try to re-use BSI and PFI from the original module here. 420 ProfileSummaryInfo PSI(M); 421 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 422 423 // Mark the merged module as requiring full LTO. We still want an index for 424 // it though, so that it can participate in summary-based dead stripping. 425 MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 426 ModuleSummaryIndex MergedMIndex = 427 buildModuleSummaryIndex(*MergedM, nullptr, &PSI); 428 429 SmallVector<char, 0> Buffer; 430 431 BitcodeWriter W(Buffer); 432 // Save the module hash produced for the full bitcode, which will 433 // be used in the backends, and use that in the minimized bitcode 434 // produced for the full link. 435 ModuleHash ModHash = {{0}}; 436 W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index, 437 /*GenerateHash=*/true, &ModHash); 438 W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex); 439 W.writeSymtab(); 440 W.writeStrtab(); 441 OS << Buffer; 442 443 // If a minimized bitcode module was requested for the thin link, only 444 // the information that is needed by thin link will be written in the 445 // given OS (the merged module will be written as usual). 446 if (ThinLinkOS) { 447 Buffer.clear(); 448 BitcodeWriter W2(Buffer); 449 StripDebugInfo(M); 450 W2.writeThinLinkBitcode(M, Index, ModHash); 451 W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, 452 &MergedMIndex); 453 W2.writeSymtab(); 454 W2.writeStrtab(); 455 *ThinLinkOS << Buffer; 456 } 457 } 458 459 // Check if the LTO Unit splitting has been enabled. 460 bool enableSplitLTOUnit(Module &M) { 461 bool EnableSplitLTOUnit = false; 462 if (auto *MD = mdconst::extract_or_null<ConstantInt>( 463 M.getModuleFlag("EnableSplitLTOUnit"))) 464 EnableSplitLTOUnit = MD->getZExtValue(); 465 return EnableSplitLTOUnit; 466 } 467 468 // Returns whether this module needs to be split because it uses type metadata. 469 bool hasTypeMetadata(Module &M) { 470 for (auto &GO : M.global_objects()) { 471 if (GO.hasMetadata(LLVMContext::MD_type)) 472 return true; 473 } 474 return false; 475 } 476 477 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS, 478 function_ref<AAResults &(Function &)> AARGetter, 479 Module &M, const ModuleSummaryIndex *Index) { 480 std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr; 481 // See if this module has any type metadata. If so, we try to split it 482 // or at least promote type ids to enable WPD. 483 if (hasTypeMetadata(M)) { 484 if (enableSplitLTOUnit(M)) 485 return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M); 486 // Promote type ids as needed for index-based WPD. 487 std::string ModuleId = getUniqueModuleId(&M); 488 if (!ModuleId.empty()) { 489 promoteTypeIds(M, ModuleId); 490 // Need to rebuild the index so that it contains type metadata 491 // for the newly promoted type ids. 492 // FIXME: Probably should not bother building the index at all 493 // in the caller of writeThinLTOBitcode (which does so via the 494 // ModuleSummaryIndexAnalysis pass), since we have to rebuild it 495 // anyway whenever there is type metadata (here or in 496 // splitAndWriteThinLTOBitcode). Just always build it once via the 497 // buildModuleSummaryIndex when Module(s) are ready. 498 ProfileSummaryInfo PSI(M); 499 NewIndex = std::make_unique<ModuleSummaryIndex>( 500 buildModuleSummaryIndex(M, nullptr, &PSI)); 501 Index = NewIndex.get(); 502 } 503 } 504 505 // Write it out as an unsplit ThinLTO module. 506 507 // Save the module hash produced for the full bitcode, which will 508 // be used in the backends, and use that in the minimized bitcode 509 // produced for the full link. 510 ModuleHash ModHash = {{0}}; 511 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index, 512 /*GenerateHash=*/true, &ModHash); 513 // If a minimized bitcode module was requested for the thin link, only 514 // the information that is needed by thin link will be written in the 515 // given OS. 516 if (ThinLinkOS && Index) 517 WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash); 518 } 519 520 class WriteThinLTOBitcode : public ModulePass { 521 raw_ostream &OS; // raw_ostream to print on 522 // The output stream on which to emit a minimized module for use 523 // just in the thin link, if requested. 524 raw_ostream *ThinLinkOS; 525 526 public: 527 static char ID; // Pass identification, replacement for typeid 528 WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) { 529 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 530 } 531 532 explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS) 533 : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) { 534 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 535 } 536 537 StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; } 538 539 bool runOnModule(Module &M) override { 540 const ModuleSummaryIndex *Index = 541 &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex()); 542 writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index); 543 return true; 544 } 545 void getAnalysisUsage(AnalysisUsage &AU) const override { 546 AU.setPreservesAll(); 547 AU.addRequired<AssumptionCacheTracker>(); 548 AU.addRequired<ModuleSummaryIndexWrapperPass>(); 549 AU.addRequired<TargetLibraryInfoWrapperPass>(); 550 } 551 }; 552 } // anonymous namespace 553 554 char WriteThinLTOBitcode::ID = 0; 555 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode", 556 "Write ThinLTO Bitcode", false, true) 557 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 558 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass) 559 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 560 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode", 561 "Write ThinLTO Bitcode", false, true) 562 563 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str, 564 raw_ostream *ThinLinkOS) { 565 return new WriteThinLTOBitcode(Str, ThinLinkOS); 566 } 567 568 PreservedAnalyses 569 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) { 570 FunctionAnalysisManager &FAM = 571 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 572 writeThinLTOBitcode(OS, ThinLinkOS, 573 [&FAM](Function &F) -> AAResults & { 574 return FAM.getResult<AAManager>(F); 575 }, 576 M, &AM.getResult<ModuleSummaryIndexAnalysis>(M)); 577 return PreservedAnalyses::all(); 578 } 579