1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
11 #include "llvm/Analysis/BasicAliasAnalysis.h"
12 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
13 #include "llvm/Analysis/ProfileSummaryInfo.h"
14 #include "llvm/Analysis/TypeMetadataUtils.h"
15 #include "llvm/Bitcode/BitcodeWriter.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/DebugInfo.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/IR/PassManager.h"
21 #include "llvm/Pass.h"
22 #include "llvm/Support/FileSystem.h"
23 #include "llvm/Support/ScopedPrinter.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Transforms/IPO.h"
26 #include "llvm/Transforms/IPO/FunctionAttrs.h"
27 #include "llvm/Transforms/Utils/Cloning.h"
28 #include "llvm/Transforms/Utils/ModuleUtils.h"
29 using namespace llvm;
30 
31 namespace {
32 
33 // Promote each local-linkage entity defined by ExportM and used by ImportM by
34 // changing visibility and appending the given ModuleId.
35 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId,
36                       SetVector<GlobalValue *> &PromoteExtra) {
37   DenseMap<const Comdat *, Comdat *> RenamedComdats;
38   for (auto &ExportGV : ExportM.global_values()) {
39     if (!ExportGV.hasLocalLinkage())
40       continue;
41 
42     auto Name = ExportGV.getName();
43     GlobalValue *ImportGV = ImportM.getNamedValue(Name);
44     if ((!ImportGV || ImportGV->use_empty()) && !PromoteExtra.count(&ExportGV))
45       continue;
46 
47     std::string NewName = (Name + ModuleId).str();
48 
49     if (const auto *C = ExportGV.getComdat())
50       if (C->getName() == Name)
51         RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName));
52 
53     ExportGV.setName(NewName);
54     ExportGV.setLinkage(GlobalValue::ExternalLinkage);
55     ExportGV.setVisibility(GlobalValue::HiddenVisibility);
56 
57     if (ImportGV) {
58       ImportGV->setName(NewName);
59       ImportGV->setVisibility(GlobalValue::HiddenVisibility);
60     }
61   }
62 
63   if (!RenamedComdats.empty())
64     for (auto &GO : ExportM.global_objects())
65       if (auto *C = GO.getComdat()) {
66         auto Replacement = RenamedComdats.find(C);
67         if (Replacement != RenamedComdats.end())
68           GO.setComdat(Replacement->second);
69       }
70 }
71 
72 // Promote all internal (i.e. distinct) type ids used by the module by replacing
73 // them with external type ids formed using the module id.
74 //
75 // Note that this needs to be done before we clone the module because each clone
76 // will receive its own set of distinct metadata nodes.
77 void promoteTypeIds(Module &M, StringRef ModuleId) {
78   DenseMap<Metadata *, Metadata *> LocalToGlobal;
79   auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
80     Metadata *MD =
81         cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();
82 
83     if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
84       Metadata *&GlobalMD = LocalToGlobal[MD];
85       if (!GlobalMD) {
86         std::string NewName =
87             (to_string(LocalToGlobal.size()) + ModuleId).str();
88         GlobalMD = MDString::get(M.getContext(), NewName);
89       }
90 
91       CI->setArgOperand(ArgNo,
92                         MetadataAsValue::get(M.getContext(), GlobalMD));
93     }
94   };
95 
96   if (Function *TypeTestFunc =
97           M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
98     for (const Use &U : TypeTestFunc->uses()) {
99       auto CI = cast<CallInst>(U.getUser());
100       ExternalizeTypeId(CI, 1);
101     }
102   }
103 
104   if (Function *TypeCheckedLoadFunc =
105           M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
106     for (const Use &U : TypeCheckedLoadFunc->uses()) {
107       auto CI = cast<CallInst>(U.getUser());
108       ExternalizeTypeId(CI, 2);
109     }
110   }
111 
112   for (GlobalObject &GO : M.global_objects()) {
113     SmallVector<MDNode *, 1> MDs;
114     GO.getMetadata(LLVMContext::MD_type, MDs);
115 
116     GO.eraseMetadata(LLVMContext::MD_type);
117     for (auto MD : MDs) {
118       auto I = LocalToGlobal.find(MD->getOperand(1));
119       if (I == LocalToGlobal.end()) {
120         GO.addMetadata(LLVMContext::MD_type, *MD);
121         continue;
122       }
123       GO.addMetadata(
124           LLVMContext::MD_type,
125           *MDNode::get(M.getContext(),
126                        ArrayRef<Metadata *>{MD->getOperand(0), I->second}));
127     }
128   }
129 }
130 
131 // Drop unused globals, and drop type information from function declarations.
132 // FIXME: If we made functions typeless then there would be no need to do this.
133 void simplifyExternals(Module &M) {
134   FunctionType *EmptyFT =
135       FunctionType::get(Type::getVoidTy(M.getContext()), false);
136 
137   for (auto I = M.begin(), E = M.end(); I != E;) {
138     Function &F = *I++;
139     if (F.isDeclaration() && F.use_empty()) {
140       F.eraseFromParent();
141       continue;
142     }
143 
144     if (!F.isDeclaration() || F.getFunctionType() == EmptyFT ||
145         // Changing the type of an intrinsic may invalidate the IR.
146         F.getName().startswith("llvm."))
147       continue;
148 
149     Function *NewF =
150         Function::Create(EmptyFT, GlobalValue::ExternalLinkage, "", &M);
151     NewF->setVisibility(F.getVisibility());
152     NewF->takeName(&F);
153     F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType()));
154     F.eraseFromParent();
155   }
156 
157   for (auto I = M.global_begin(), E = M.global_end(); I != E;) {
158     GlobalVariable &GV = *I++;
159     if (GV.isDeclaration() && GV.use_empty()) {
160       GV.eraseFromParent();
161       continue;
162     }
163   }
164 }
165 
166 void filterModule(
167     Module *M, function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
168   for (Module::alias_iterator I = M->alias_begin(), E = M->alias_end();
169        I != E;) {
170     GlobalAlias *GA = &*I++;
171     if (ShouldKeepDefinition(GA))
172       continue;
173 
174     GlobalObject *GO;
175     if (GA->getValueType()->isFunctionTy())
176       GO = Function::Create(cast<FunctionType>(GA->getValueType()),
177                             GlobalValue::ExternalLinkage, "", M);
178     else
179       GO = new GlobalVariable(
180           *M, GA->getValueType(), false, GlobalValue::ExternalLinkage,
181           nullptr, "", nullptr,
182           GA->getThreadLocalMode(), GA->getType()->getAddressSpace());
183     GO->takeName(GA);
184     GA->replaceAllUsesWith(GO);
185     GA->eraseFromParent();
186   }
187 
188   for (Function &F : *M) {
189     if (ShouldKeepDefinition(&F))
190       continue;
191 
192     F.deleteBody();
193     F.setComdat(nullptr);
194     F.clearMetadata();
195   }
196 
197   for (GlobalVariable &GV : M->globals()) {
198     if (ShouldKeepDefinition(&GV))
199       continue;
200 
201     GV.setInitializer(nullptr);
202     GV.setLinkage(GlobalValue::ExternalLinkage);
203     GV.setComdat(nullptr);
204     GV.clearMetadata();
205   }
206 }
207 
208 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) {
209   if (auto *F = dyn_cast<Function>(C))
210     return Fn(F);
211   if (isa<GlobalValue>(C))
212     return;
213   for (Value *Op : C->operands())
214     forEachVirtualFunction(cast<Constant>(Op), Fn);
215 }
216 
217 // If it's possible to split M into regular and thin LTO parts, do so and write
218 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a
219 // regular LTO bitcode file to OS.
220 void splitAndWriteThinLTOBitcode(
221     raw_ostream &OS, raw_ostream *ThinLinkOS,
222     function_ref<AAResults &(Function &)> AARGetter, Module &M) {
223   std::string ModuleId = getUniqueModuleId(&M);
224   if (ModuleId.empty()) {
225     // We couldn't generate a module ID for this module, just write it out as a
226     // regular LTO module.
227     WriteBitcodeToFile(&M, OS);
228     if (ThinLinkOS)
229       // We don't have a ThinLTO part, but still write the module to the
230       // ThinLinkOS if requested so that the expected output file is produced.
231       WriteBitcodeToFile(&M, *ThinLinkOS);
232     return;
233   }
234 
235   promoteTypeIds(M, ModuleId);
236 
237   // Returns whether a global has attached type metadata. Such globals may
238   // participate in CFI or whole-program devirtualization, so they need to
239   // appear in the merged module instead of the thin LTO module.
240   auto HasTypeMetadata = [&](const GlobalObject *GO) {
241     SmallVector<MDNode *, 1> MDs;
242     GO->getMetadata(LLVMContext::MD_type, MDs);
243     return !MDs.empty();
244   };
245 
246   // Collect the set of virtual functions that are eligible for virtual constant
247   // propagation. Each eligible function must not access memory, must return
248   // an integer of width <=64 bits, must take at least one argument, must not
249   // use its first argument (assumed to be "this") and all arguments other than
250   // the first one must be of <=64 bit integer type.
251   //
252   // Note that we test whether this copy of the function is readnone, rather
253   // than testing function attributes, which must hold for any copy of the
254   // function, even a less optimized version substituted at link time. This is
255   // sound because the virtual constant propagation optimizations effectively
256   // inline all implementations of the virtual function into each call site,
257   // rather than using function attributes to perform local optimization.
258   std::set<const Function *> EligibleVirtualFns;
259   // If any member of a comdat lives in MergedM, put all members of that
260   // comdat in MergedM to keep the comdat together.
261   DenseSet<const Comdat *> MergedMComdats;
262   for (GlobalVariable &GV : M.globals())
263     if (HasTypeMetadata(&GV)) {
264       if (const auto *C = GV.getComdat())
265         MergedMComdats.insert(C);
266       forEachVirtualFunction(GV.getInitializer(), [&](Function *F) {
267         auto *RT = dyn_cast<IntegerType>(F->getReturnType());
268         if (!RT || RT->getBitWidth() > 64 || F->arg_empty() ||
269             !F->arg_begin()->use_empty())
270           return;
271         for (auto &Arg : make_range(std::next(F->arg_begin()), F->arg_end())) {
272           auto *ArgT = dyn_cast<IntegerType>(Arg.getType());
273           if (!ArgT || ArgT->getBitWidth() > 64)
274             return;
275         }
276         if (!F->isDeclaration() &&
277             computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone)
278           EligibleVirtualFns.insert(F);
279       });
280     }
281 
282   ValueToValueMapTy VMap;
283   std::unique_ptr<Module> MergedM(
284       CloneModule(&M, VMap, [&](const GlobalValue *GV) -> bool {
285         if (const auto *C = GV->getComdat())
286           if (MergedMComdats.count(C))
287             return true;
288         if (auto *F = dyn_cast<Function>(GV))
289           return EligibleVirtualFns.count(F);
290         if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
291           return HasTypeMetadata(GVar);
292         return false;
293       }));
294   StripDebugInfo(*MergedM);
295 
296   for (Function &F : *MergedM)
297     if (!F.isDeclaration()) {
298       // Reset the linkage of all functions eligible for virtual constant
299       // propagation. The canonical definitions live in the thin LTO module so
300       // that they can be imported.
301       F.setLinkage(GlobalValue::AvailableExternallyLinkage);
302       F.setComdat(nullptr);
303     }
304 
305   SetVector<GlobalValue *> CfiFunctions;
306   for (auto &F : M)
307     if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F))
308       CfiFunctions.insert(&F);
309 
310   // Remove all globals with type metadata, globals with comdats that live in
311   // MergedM, and aliases pointing to such globals from the thin LTO module.
312   filterModule(&M, [&](const GlobalValue *GV) {
313     if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
314       if (HasTypeMetadata(GVar))
315         return false;
316     if (const auto *C = GV->getComdat())
317       if (MergedMComdats.count(C))
318         return false;
319     return true;
320   });
321 
322   promoteInternals(*MergedM, M, ModuleId, CfiFunctions);
323   promoteInternals(M, *MergedM, ModuleId, CfiFunctions);
324 
325   SmallVector<MDNode *, 8> CfiFunctionMDs;
326   for (auto V : CfiFunctions) {
327     Function &F = *cast<Function>(V);
328     SmallVector<MDNode *, 2> Types;
329     F.getMetadata(LLVMContext::MD_type, Types);
330 
331     auto &Ctx = MergedM->getContext();
332     SmallVector<Metadata *, 4> Elts;
333     Elts.push_back(MDString::get(Ctx, F.getName()));
334     CfiFunctionLinkage Linkage;
335     if (!F.isDeclarationForLinker())
336       Linkage = CFL_Definition;
337     else if (F.isWeakForLinker())
338       Linkage = CFL_WeakDeclaration;
339     else
340       Linkage = CFL_Declaration;
341     Elts.push_back(ConstantAsMetadata::get(
342         llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage)));
343     for (auto Type : Types)
344       Elts.push_back(Type);
345     CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts));
346   }
347 
348   if(!CfiFunctionMDs.empty()) {
349     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions");
350     for (auto MD : CfiFunctionMDs)
351       NMD->addOperand(MD);
352   }
353 
354   simplifyExternals(*MergedM);
355 
356   // FIXME: Try to re-use BSI and PFI from the original module here.
357   ProfileSummaryInfo PSI(M);
358   ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
359 
360   // Mark the merged module as requiring full LTO. We still want an index for
361   // it though, so that it can participate in summary-based dead stripping.
362   MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
363   ModuleSummaryIndex MergedMIndex =
364       buildModuleSummaryIndex(*MergedM, nullptr, &PSI);
365 
366   SmallVector<char, 0> Buffer;
367 
368   BitcodeWriter W(Buffer);
369   // Save the module hash produced for the full bitcode, which will
370   // be used in the backends, and use that in the minimized bitcode
371   // produced for the full link.
372   ModuleHash ModHash = {{0}};
373   W.writeModule(&M, /*ShouldPreserveUseListOrder=*/false, &Index,
374                 /*GenerateHash=*/true, &ModHash);
375   W.writeModule(MergedM.get(), /*ShouldPreserveUseListOrder=*/false,
376                 &MergedMIndex);
377   W.writeSymtab();
378   W.writeStrtab();
379   OS << Buffer;
380 
381   // If a minimized bitcode module was requested for the thin link, only
382   // the information that is needed by thin link will be written in the
383   // given OS (the merged module will be written as usual).
384   if (ThinLinkOS) {
385     Buffer.clear();
386     BitcodeWriter W2(Buffer);
387     StripDebugInfo(M);
388     W2.writeThinLinkBitcode(&M, Index, ModHash);
389     W2.writeModule(MergedM.get(), /*ShouldPreserveUseListOrder=*/false,
390                    &MergedMIndex);
391     W2.writeSymtab();
392     W2.writeStrtab();
393     *ThinLinkOS << Buffer;
394   }
395 }
396 
397 // Returns whether this module needs to be split because it uses type metadata.
398 bool requiresSplit(Module &M) {
399   SmallVector<MDNode *, 1> MDs;
400   for (auto &GO : M.global_objects()) {
401     GO.getMetadata(LLVMContext::MD_type, MDs);
402     if (!MDs.empty())
403       return true;
404   }
405 
406   return false;
407 }
408 
409 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
410                          function_ref<AAResults &(Function &)> AARGetter,
411                          Module &M, const ModuleSummaryIndex *Index) {
412   // See if this module has any type metadata. If so, we need to split it.
413   if (requiresSplit(M))
414     return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
415 
416   // Otherwise we can just write it out as a regular module.
417 
418   // Save the module hash produced for the full bitcode, which will
419   // be used in the backends, and use that in the minimized bitcode
420   // produced for the full link.
421   ModuleHash ModHash = {{0}};
422   WriteBitcodeToFile(&M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
423                      /*GenerateHash=*/true, &ModHash);
424   // If a minimized bitcode module was requested for the thin link, only
425   // the information that is needed by thin link will be written in the
426   // given OS.
427   if (ThinLinkOS && Index)
428     WriteThinLinkBitcodeToFile(&M, *ThinLinkOS, *Index, ModHash);
429 }
430 
431 class WriteThinLTOBitcode : public ModulePass {
432   raw_ostream &OS; // raw_ostream to print on
433   // The output stream on which to emit a minimized module for use
434   // just in the thin link, if requested.
435   raw_ostream *ThinLinkOS;
436 
437 public:
438   static char ID; // Pass identification, replacement for typeid
439   WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) {
440     initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
441   }
442 
443   explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS)
444       : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) {
445     initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
446   }
447 
448   StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; }
449 
450   bool runOnModule(Module &M) override {
451     const ModuleSummaryIndex *Index =
452         &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex());
453     writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index);
454     return true;
455   }
456   void getAnalysisUsage(AnalysisUsage &AU) const override {
457     AU.setPreservesAll();
458     AU.addRequired<AssumptionCacheTracker>();
459     AU.addRequired<ModuleSummaryIndexWrapperPass>();
460     AU.addRequired<TargetLibraryInfoWrapperPass>();
461   }
462 };
463 } // anonymous namespace
464 
465 char WriteThinLTOBitcode::ID = 0;
466 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode",
467                       "Write ThinLTO Bitcode", false, true)
468 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
469 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
470 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
471 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode",
472                     "Write ThinLTO Bitcode", false, true)
473 
474 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str,
475                                                 raw_ostream *ThinLinkOS) {
476   return new WriteThinLTOBitcode(Str, ThinLinkOS);
477 }
478 
479 PreservedAnalyses
480 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) {
481   FunctionAnalysisManager &FAM =
482       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
483   writeThinLTOBitcode(OS, ThinLinkOS,
484                       [&FAM](Function &F) -> AAResults & {
485                         return FAM.getResult<AAManager>(F);
486                       },
487                       M, &AM.getResult<ModuleSummaryIndexAnalysis>(M));
488   return PreservedAnalyses::all();
489 }
490