1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 11 #include "llvm/Analysis/BasicAliasAnalysis.h" 12 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 13 #include "llvm/Analysis/ProfileSummaryInfo.h" 14 #include "llvm/Analysis/TypeMetadataUtils.h" 15 #include "llvm/Bitcode/BitcodeWriter.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DebugInfo.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/PassManager.h" 21 #include "llvm/Pass.h" 22 #include "llvm/Support/FileSystem.h" 23 #include "llvm/Support/ScopedPrinter.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include "llvm/Transforms/IPO.h" 26 #include "llvm/Transforms/IPO/FunctionAttrs.h" 27 #include "llvm/Transforms/Utils/Cloning.h" 28 #include "llvm/Transforms/Utils/ModuleUtils.h" 29 using namespace llvm; 30 31 namespace { 32 33 // Promote each local-linkage entity defined by ExportM and used by ImportM by 34 // changing visibility and appending the given ModuleId. 35 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId, 36 SetVector<GlobalValue *> &PromoteExtra) { 37 DenseMap<const Comdat *, Comdat *> RenamedComdats; 38 for (auto &ExportGV : ExportM.global_values()) { 39 if (!ExportGV.hasLocalLinkage()) 40 continue; 41 42 auto Name = ExportGV.getName(); 43 GlobalValue *ImportGV = ImportM.getNamedValue(Name); 44 if ((!ImportGV || ImportGV->use_empty()) && !PromoteExtra.count(&ExportGV)) 45 continue; 46 47 std::string NewName = (Name + ModuleId).str(); 48 49 if (const auto *C = ExportGV.getComdat()) 50 if (C->getName() == Name) 51 RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName)); 52 53 ExportGV.setName(NewName); 54 ExportGV.setLinkage(GlobalValue::ExternalLinkage); 55 ExportGV.setVisibility(GlobalValue::HiddenVisibility); 56 57 if (ImportGV) { 58 ImportGV->setName(NewName); 59 ImportGV->setVisibility(GlobalValue::HiddenVisibility); 60 } 61 } 62 63 if (!RenamedComdats.empty()) 64 for (auto &GO : ExportM.global_objects()) 65 if (auto *C = GO.getComdat()) { 66 auto Replacement = RenamedComdats.find(C); 67 if (Replacement != RenamedComdats.end()) 68 GO.setComdat(Replacement->second); 69 } 70 } 71 72 // Promote all internal (i.e. distinct) type ids used by the module by replacing 73 // them with external type ids formed using the module id. 74 // 75 // Note that this needs to be done before we clone the module because each clone 76 // will receive its own set of distinct metadata nodes. 77 void promoteTypeIds(Module &M, StringRef ModuleId) { 78 DenseMap<Metadata *, Metadata *> LocalToGlobal; 79 auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) { 80 Metadata *MD = 81 cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata(); 82 83 if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) { 84 Metadata *&GlobalMD = LocalToGlobal[MD]; 85 if (!GlobalMD) { 86 std::string NewName = 87 (to_string(LocalToGlobal.size()) + ModuleId).str(); 88 GlobalMD = MDString::get(M.getContext(), NewName); 89 } 90 91 CI->setArgOperand(ArgNo, 92 MetadataAsValue::get(M.getContext(), GlobalMD)); 93 } 94 }; 95 96 if (Function *TypeTestFunc = 97 M.getFunction(Intrinsic::getName(Intrinsic::type_test))) { 98 for (const Use &U : TypeTestFunc->uses()) { 99 auto CI = cast<CallInst>(U.getUser()); 100 ExternalizeTypeId(CI, 1); 101 } 102 } 103 104 if (Function *TypeCheckedLoadFunc = 105 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) { 106 for (const Use &U : TypeCheckedLoadFunc->uses()) { 107 auto CI = cast<CallInst>(U.getUser()); 108 ExternalizeTypeId(CI, 2); 109 } 110 } 111 112 for (GlobalObject &GO : M.global_objects()) { 113 SmallVector<MDNode *, 1> MDs; 114 GO.getMetadata(LLVMContext::MD_type, MDs); 115 116 GO.eraseMetadata(LLVMContext::MD_type); 117 for (auto MD : MDs) { 118 auto I = LocalToGlobal.find(MD->getOperand(1)); 119 if (I == LocalToGlobal.end()) { 120 GO.addMetadata(LLVMContext::MD_type, *MD); 121 continue; 122 } 123 GO.addMetadata( 124 LLVMContext::MD_type, 125 *MDNode::get(M.getContext(), 126 ArrayRef<Metadata *>{MD->getOperand(0), I->second})); 127 } 128 } 129 } 130 131 // Drop unused globals, and drop type information from function declarations. 132 // FIXME: If we made functions typeless then there would be no need to do this. 133 void simplifyExternals(Module &M) { 134 FunctionType *EmptyFT = 135 FunctionType::get(Type::getVoidTy(M.getContext()), false); 136 137 for (auto I = M.begin(), E = M.end(); I != E;) { 138 Function &F = *I++; 139 if (F.isDeclaration() && F.use_empty()) { 140 F.eraseFromParent(); 141 continue; 142 } 143 144 if (!F.isDeclaration() || F.getFunctionType() == EmptyFT || 145 // Changing the type of an intrinsic may invalidate the IR. 146 F.getName().startswith("llvm.")) 147 continue; 148 149 Function *NewF = 150 Function::Create(EmptyFT, GlobalValue::ExternalLinkage, "", &M); 151 NewF->setVisibility(F.getVisibility()); 152 NewF->takeName(&F); 153 F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType())); 154 F.eraseFromParent(); 155 } 156 157 for (auto I = M.global_begin(), E = M.global_end(); I != E;) { 158 GlobalVariable &GV = *I++; 159 if (GV.isDeclaration() && GV.use_empty()) { 160 GV.eraseFromParent(); 161 continue; 162 } 163 } 164 } 165 166 void filterModule( 167 Module *M, function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) { 168 for (Module::alias_iterator I = M->alias_begin(), E = M->alias_end(); 169 I != E;) { 170 GlobalAlias *GA = &*I++; 171 if (ShouldKeepDefinition(GA)) 172 continue; 173 174 GlobalObject *GO; 175 if (GA->getValueType()->isFunctionTy()) 176 GO = Function::Create(cast<FunctionType>(GA->getValueType()), 177 GlobalValue::ExternalLinkage, "", M); 178 else 179 GO = new GlobalVariable( 180 *M, GA->getValueType(), false, GlobalValue::ExternalLinkage, 181 nullptr, "", nullptr, 182 GA->getThreadLocalMode(), GA->getType()->getAddressSpace()); 183 GO->takeName(GA); 184 GA->replaceAllUsesWith(GO); 185 GA->eraseFromParent(); 186 } 187 188 for (Function &F : *M) { 189 if (ShouldKeepDefinition(&F)) 190 continue; 191 192 F.deleteBody(); 193 F.setComdat(nullptr); 194 F.clearMetadata(); 195 } 196 197 for (GlobalVariable &GV : M->globals()) { 198 if (ShouldKeepDefinition(&GV)) 199 continue; 200 201 GV.setInitializer(nullptr); 202 GV.setLinkage(GlobalValue::ExternalLinkage); 203 GV.setComdat(nullptr); 204 GV.clearMetadata(); 205 } 206 } 207 208 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) { 209 if (auto *F = dyn_cast<Function>(C)) 210 return Fn(F); 211 if (isa<GlobalValue>(C)) 212 return; 213 for (Value *Op : C->operands()) 214 forEachVirtualFunction(cast<Constant>(Op), Fn); 215 } 216 217 // If it's possible to split M into regular and thin LTO parts, do so and write 218 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a 219 // regular LTO bitcode file to OS. 220 void splitAndWriteThinLTOBitcode( 221 raw_ostream &OS, raw_ostream *ThinLinkOS, 222 function_ref<AAResults &(Function &)> AARGetter, Module &M) { 223 std::string ModuleId = getUniqueModuleId(&M); 224 if (ModuleId.empty()) { 225 // We couldn't generate a module ID for this module, just write it out as a 226 // regular LTO module. 227 WriteBitcodeToFile(&M, OS); 228 if (ThinLinkOS) 229 // We don't have a ThinLTO part, but still write the module to the 230 // ThinLinkOS if requested so that the expected output file is produced. 231 WriteBitcodeToFile(&M, *ThinLinkOS); 232 return; 233 } 234 235 promoteTypeIds(M, ModuleId); 236 237 // Returns whether a global has attached type metadata. Such globals may 238 // participate in CFI or whole-program devirtualization, so they need to 239 // appear in the merged module instead of the thin LTO module. 240 auto HasTypeMetadata = [&](const GlobalObject *GO) { 241 SmallVector<MDNode *, 1> MDs; 242 GO->getMetadata(LLVMContext::MD_type, MDs); 243 return !MDs.empty(); 244 }; 245 246 // Collect the set of virtual functions that are eligible for virtual constant 247 // propagation. Each eligible function must not access memory, must return 248 // an integer of width <=64 bits, must take at least one argument, must not 249 // use its first argument (assumed to be "this") and all arguments other than 250 // the first one must be of <=64 bit integer type. 251 // 252 // Note that we test whether this copy of the function is readnone, rather 253 // than testing function attributes, which must hold for any copy of the 254 // function, even a less optimized version substituted at link time. This is 255 // sound because the virtual constant propagation optimizations effectively 256 // inline all implementations of the virtual function into each call site, 257 // rather than using function attributes to perform local optimization. 258 std::set<const Function *> EligibleVirtualFns; 259 // If any member of a comdat lives in MergedM, put all members of that 260 // comdat in MergedM to keep the comdat together. 261 DenseSet<const Comdat *> MergedMComdats; 262 for (GlobalVariable &GV : M.globals()) 263 if (HasTypeMetadata(&GV)) { 264 if (const auto *C = GV.getComdat()) 265 MergedMComdats.insert(C); 266 forEachVirtualFunction(GV.getInitializer(), [&](Function *F) { 267 auto *RT = dyn_cast<IntegerType>(F->getReturnType()); 268 if (!RT || RT->getBitWidth() > 64 || F->arg_empty() || 269 !F->arg_begin()->use_empty()) 270 return; 271 for (auto &Arg : make_range(std::next(F->arg_begin()), F->arg_end())) { 272 auto *ArgT = dyn_cast<IntegerType>(Arg.getType()); 273 if (!ArgT || ArgT->getBitWidth() > 64) 274 return; 275 } 276 if (!F->isDeclaration() && 277 computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone) 278 EligibleVirtualFns.insert(F); 279 }); 280 } 281 282 ValueToValueMapTy VMap; 283 std::unique_ptr<Module> MergedM( 284 CloneModule(&M, VMap, [&](const GlobalValue *GV) -> bool { 285 if (const auto *C = GV->getComdat()) 286 if (MergedMComdats.count(C)) 287 return true; 288 if (auto *F = dyn_cast<Function>(GV)) 289 return EligibleVirtualFns.count(F); 290 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 291 return HasTypeMetadata(GVar); 292 return false; 293 })); 294 StripDebugInfo(*MergedM); 295 296 for (Function &F : *MergedM) 297 if (!F.isDeclaration()) { 298 // Reset the linkage of all functions eligible for virtual constant 299 // propagation. The canonical definitions live in the thin LTO module so 300 // that they can be imported. 301 F.setLinkage(GlobalValue::AvailableExternallyLinkage); 302 F.setComdat(nullptr); 303 } 304 305 SetVector<GlobalValue *> CfiFunctions; 306 for (auto &F : M) 307 if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F)) 308 CfiFunctions.insert(&F); 309 310 // Remove all globals with type metadata, globals with comdats that live in 311 // MergedM, and aliases pointing to such globals from the thin LTO module. 312 filterModule(&M, [&](const GlobalValue *GV) { 313 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 314 if (HasTypeMetadata(GVar)) 315 return false; 316 if (const auto *C = GV->getComdat()) 317 if (MergedMComdats.count(C)) 318 return false; 319 return true; 320 }); 321 322 promoteInternals(*MergedM, M, ModuleId, CfiFunctions); 323 promoteInternals(M, *MergedM, ModuleId, CfiFunctions); 324 325 SmallVector<MDNode *, 8> CfiFunctionMDs; 326 for (auto V : CfiFunctions) { 327 Function &F = *cast<Function>(V); 328 SmallVector<MDNode *, 2> Types; 329 F.getMetadata(LLVMContext::MD_type, Types); 330 331 auto &Ctx = MergedM->getContext(); 332 SmallVector<Metadata *, 4> Elts; 333 Elts.push_back(MDString::get(Ctx, F.getName())); 334 CfiFunctionLinkage Linkage; 335 if (!F.isDeclarationForLinker()) 336 Linkage = CFL_Definition; 337 else if (F.isWeakForLinker()) 338 Linkage = CFL_WeakDeclaration; 339 else 340 Linkage = CFL_Declaration; 341 Elts.push_back(ConstantAsMetadata::get( 342 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage))); 343 for (auto Type : Types) 344 Elts.push_back(Type); 345 CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts)); 346 } 347 348 if(!CfiFunctionMDs.empty()) { 349 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions"); 350 for (auto MD : CfiFunctionMDs) 351 NMD->addOperand(MD); 352 } 353 354 simplifyExternals(*MergedM); 355 356 // FIXME: Try to re-use BSI and PFI from the original module here. 357 ProfileSummaryInfo PSI(M); 358 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 359 360 // Mark the merged module as requiring full LTO. We still want an index for 361 // it though, so that it can participate in summary-based dead stripping. 362 MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 363 ModuleSummaryIndex MergedMIndex = 364 buildModuleSummaryIndex(*MergedM, nullptr, &PSI); 365 366 SmallVector<char, 0> Buffer; 367 368 BitcodeWriter W(Buffer); 369 // Save the module hash produced for the full bitcode, which will 370 // be used in the backends, and use that in the minimized bitcode 371 // produced for the full link. 372 ModuleHash ModHash = {{0}}; 373 W.writeModule(&M, /*ShouldPreserveUseListOrder=*/false, &Index, 374 /*GenerateHash=*/true, &ModHash); 375 W.writeModule(MergedM.get(), /*ShouldPreserveUseListOrder=*/false, 376 &MergedMIndex); 377 W.writeSymtab(); 378 W.writeStrtab(); 379 OS << Buffer; 380 381 // If a minimized bitcode module was requested for the thin link, only 382 // the information that is needed by thin link will be written in the 383 // given OS (the merged module will be written as usual). 384 if (ThinLinkOS) { 385 Buffer.clear(); 386 BitcodeWriter W2(Buffer); 387 StripDebugInfo(M); 388 W2.writeThinLinkBitcode(&M, Index, ModHash); 389 W2.writeModule(MergedM.get(), /*ShouldPreserveUseListOrder=*/false, 390 &MergedMIndex); 391 W2.writeSymtab(); 392 W2.writeStrtab(); 393 *ThinLinkOS << Buffer; 394 } 395 } 396 397 // Returns whether this module needs to be split because it uses type metadata. 398 bool requiresSplit(Module &M) { 399 SmallVector<MDNode *, 1> MDs; 400 for (auto &GO : M.global_objects()) { 401 GO.getMetadata(LLVMContext::MD_type, MDs); 402 if (!MDs.empty()) 403 return true; 404 } 405 406 return false; 407 } 408 409 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS, 410 function_ref<AAResults &(Function &)> AARGetter, 411 Module &M, const ModuleSummaryIndex *Index) { 412 // See if this module has any type metadata. If so, we need to split it. 413 if (requiresSplit(M)) 414 return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M); 415 416 // Otherwise we can just write it out as a regular module. 417 418 // Save the module hash produced for the full bitcode, which will 419 // be used in the backends, and use that in the minimized bitcode 420 // produced for the full link. 421 ModuleHash ModHash = {{0}}; 422 WriteBitcodeToFile(&M, OS, /*ShouldPreserveUseListOrder=*/false, Index, 423 /*GenerateHash=*/true, &ModHash); 424 // If a minimized bitcode module was requested for the thin link, only 425 // the information that is needed by thin link will be written in the 426 // given OS. 427 if (ThinLinkOS && Index) 428 WriteThinLinkBitcodeToFile(&M, *ThinLinkOS, *Index, ModHash); 429 } 430 431 class WriteThinLTOBitcode : public ModulePass { 432 raw_ostream &OS; // raw_ostream to print on 433 // The output stream on which to emit a minimized module for use 434 // just in the thin link, if requested. 435 raw_ostream *ThinLinkOS; 436 437 public: 438 static char ID; // Pass identification, replacement for typeid 439 WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) { 440 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 441 } 442 443 explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS) 444 : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) { 445 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 446 } 447 448 StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; } 449 450 bool runOnModule(Module &M) override { 451 const ModuleSummaryIndex *Index = 452 &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex()); 453 writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index); 454 return true; 455 } 456 void getAnalysisUsage(AnalysisUsage &AU) const override { 457 AU.setPreservesAll(); 458 AU.addRequired<AssumptionCacheTracker>(); 459 AU.addRequired<ModuleSummaryIndexWrapperPass>(); 460 AU.addRequired<TargetLibraryInfoWrapperPass>(); 461 } 462 }; 463 } // anonymous namespace 464 465 char WriteThinLTOBitcode::ID = 0; 466 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode", 467 "Write ThinLTO Bitcode", false, true) 468 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 469 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass) 470 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 471 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode", 472 "Write ThinLTO Bitcode", false, true) 473 474 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str, 475 raw_ostream *ThinLinkOS) { 476 return new WriteThinLTOBitcode(Str, ThinLinkOS); 477 } 478 479 PreservedAnalyses 480 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) { 481 FunctionAnalysisManager &FAM = 482 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 483 writeThinLTOBitcode(OS, ThinLinkOS, 484 [&FAM](Function &F) -> AAResults & { 485 return FAM.getResult<AAManager>(F); 486 }, 487 M, &AM.getResult<ModuleSummaryIndexAnalysis>(M)); 488 return PreservedAnalyses::all(); 489 } 490