1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SampleProfileLoader transformation. This pass
10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
12 // profile information in the given profile.
13 //
14 // This pass generates branch weight annotations on the IR:
15 //
16 // - prof: Represents branch weights. This annotation is added to branches
17 //      to indicate the weights of each edge coming out of the branch.
18 //      The weight of each edge is the weight of the target block for
19 //      that edge. The weight of a block B is computed as the maximum
20 //      number of samples found in B.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/Transforms/IPO/SampleProfile.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/None.h"
29 #include "llvm/ADT/SCCIterator.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/StringMap.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/Twine.h"
37 #include "llvm/Analysis/AssumptionCache.h"
38 #include "llvm/Analysis/CallGraph.h"
39 #include "llvm/Analysis/CallGraphSCCPass.h"
40 #include "llvm/Analysis/InlineCost.h"
41 #include "llvm/Analysis/LoopInfo.h"
42 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
43 #include "llvm/Analysis/PostDominators.h"
44 #include "llvm/Analysis/ProfileSummaryInfo.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/Analysis/TargetTransformInfo.h"
47 #include "llvm/IR/BasicBlock.h"
48 #include "llvm/IR/CFG.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DiagnosticInfo.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/InstrTypes.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/MDBuilder.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/IR/PassManager.h"
63 #include "llvm/IR/ValueSymbolTable.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/Pass.h"
66 #include "llvm/ProfileData/InstrProf.h"
67 #include "llvm/ProfileData/SampleProf.h"
68 #include "llvm/ProfileData/SampleProfReader.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/ErrorOr.h"
74 #include "llvm/Support/GenericDomTree.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Transforms/IPO.h"
77 #include "llvm/Transforms/Instrumentation.h"
78 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
79 #include "llvm/Transforms/Utils/Cloning.h"
80 #include "llvm/Transforms/Utils/MisExpect.h"
81 #include <algorithm>
82 #include <cassert>
83 #include <cstdint>
84 #include <functional>
85 #include <limits>
86 #include <map>
87 #include <memory>
88 #include <queue>
89 #include <string>
90 #include <system_error>
91 #include <utility>
92 #include <vector>
93 
94 using namespace llvm;
95 using namespace sampleprof;
96 using ProfileCount = Function::ProfileCount;
97 #define DEBUG_TYPE "sample-profile"
98 #define CSINLINE_DEBUG DEBUG_TYPE "-inline"
99 
100 STATISTIC(NumCSInlined,
101           "Number of functions inlined with context sensitive profile");
102 STATISTIC(NumCSNotInlined,
103           "Number of functions not inlined with context sensitive profile");
104 
105 // Command line option to specify the file to read samples from. This is
106 // mainly used for debugging.
107 static cl::opt<std::string> SampleProfileFile(
108     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
109     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
110 
111 // The named file contains a set of transformations that may have been applied
112 // to the symbol names between the program from which the sample data was
113 // collected and the current program's symbols.
114 static cl::opt<std::string> SampleProfileRemappingFile(
115     "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
116     cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
117 
118 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
119     "sample-profile-max-propagate-iterations", cl::init(100),
120     cl::desc("Maximum number of iterations to go through when propagating "
121              "sample block/edge weights through the CFG."));
122 
123 static cl::opt<unsigned> SampleProfileRecordCoverage(
124     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
125     cl::desc("Emit a warning if less than N% of records in the input profile "
126              "are matched to the IR."));
127 
128 static cl::opt<unsigned> SampleProfileSampleCoverage(
129     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
130     cl::desc("Emit a warning if less than N% of samples in the input profile "
131              "are matched to the IR."));
132 
133 static cl::opt<bool> NoWarnSampleUnused(
134     "no-warn-sample-unused", cl::init(false), cl::Hidden,
135     cl::desc("Use this option to turn off/on warnings about function with "
136              "samples but without debug information to use those samples. "));
137 
138 static cl::opt<bool> ProfileSampleAccurate(
139     "profile-sample-accurate", cl::Hidden, cl::init(false),
140     cl::desc("If the sample profile is accurate, we will mark all un-sampled "
141              "callsite and function as having 0 samples. Otherwise, treat "
142              "un-sampled callsites and functions conservatively as unknown. "));
143 
144 static cl::opt<bool> ProfileAccurateForSymsInList(
145     "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore,
146     cl::init(true),
147     cl::desc("For symbols in profile symbol list, regard their profiles to "
148              "be accurate. It may be overriden by profile-sample-accurate. "));
149 
150 static cl::opt<bool> ProfileMergeInlinee(
151     "sample-profile-merge-inlinee", cl::Hidden, cl::init(false),
152     cl::desc("Merge past inlinee's profile to outline version if sample "
153              "profile loader decided not to inline a call site."));
154 
155 static cl::opt<bool> ProfileTopDownLoad(
156     "sample-profile-top-down-load", cl::Hidden, cl::init(false),
157     cl::desc("Do profile annotation and inlining for functions in top-down "
158              "order of call graph during sample profile loading."));
159 
160 static cl::opt<bool> ProfileSizeInline(
161     "sample-profile-inline-size", cl::Hidden, cl::init(false),
162     cl::desc("Inline cold call sites in profile loader if it's beneficial "
163              "for code size."));
164 
165 static cl::opt<int> SampleColdCallSiteThreshold(
166     "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45),
167     cl::desc("Threshold for inlining cold callsites"));
168 
169 namespace {
170 
171 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
172 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
173 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
174 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
175 using BlockEdgeMap =
176     DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
177 
178 class SampleProfileLoader;
179 
180 class SampleCoverageTracker {
181 public:
182   SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){};
183 
184   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
185                        uint32_t Discriminator, uint64_t Samples);
186   unsigned computeCoverage(unsigned Used, unsigned Total) const;
187   unsigned countUsedRecords(const FunctionSamples *FS,
188                             ProfileSummaryInfo *PSI) const;
189   unsigned countBodyRecords(const FunctionSamples *FS,
190                             ProfileSummaryInfo *PSI) const;
191   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
192   uint64_t countBodySamples(const FunctionSamples *FS,
193                             ProfileSummaryInfo *PSI) const;
194 
195   void clear() {
196     SampleCoverage.clear();
197     TotalUsedSamples = 0;
198   }
199 
200 private:
201   using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
202   using FunctionSamplesCoverageMap =
203       DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
204 
205   /// Coverage map for sampling records.
206   ///
207   /// This map keeps a record of sampling records that have been matched to
208   /// an IR instruction. This is used to detect some form of staleness in
209   /// profiles (see flag -sample-profile-check-coverage).
210   ///
211   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
212   /// another map that counts how many times the sample record at the
213   /// given location has been used.
214   FunctionSamplesCoverageMap SampleCoverage;
215 
216   /// Number of samples used from the profile.
217   ///
218   /// When a sampling record is used for the first time, the samples from
219   /// that record are added to this accumulator.  Coverage is later computed
220   /// based on the total number of samples available in this function and
221   /// its callsites.
222   ///
223   /// Note that this accumulator tracks samples used from a single function
224   /// and all the inlined callsites. Strictly, we should have a map of counters
225   /// keyed by FunctionSamples pointers, but these stats are cleared after
226   /// every function, so we just need to keep a single counter.
227   uint64_t TotalUsedSamples = 0;
228 
229   SampleProfileLoader &SPLoader;
230 };
231 
232 class GUIDToFuncNameMapper {
233 public:
234   GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader,
235                         DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap)
236       : CurrentReader(Reader), CurrentModule(M),
237       CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) {
238     if (!CurrentReader.useMD5())
239       return;
240 
241     for (const auto &F : CurrentModule) {
242       StringRef OrigName = F.getName();
243       CurrentGUIDToFuncNameMap.insert(
244           {Function::getGUID(OrigName), OrigName});
245 
246       // Local to global var promotion used by optimization like thinlto
247       // will rename the var and add suffix like ".llvm.xxx" to the
248       // original local name. In sample profile, the suffixes of function
249       // names are all stripped. Since it is possible that the mapper is
250       // built in post-thin-link phase and var promotion has been done,
251       // we need to add the substring of function name without the suffix
252       // into the GUIDToFuncNameMap.
253       StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
254       if (CanonName != OrigName)
255         CurrentGUIDToFuncNameMap.insert(
256             {Function::getGUID(CanonName), CanonName});
257     }
258 
259     // Update GUIDToFuncNameMap for each function including inlinees.
260     SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap);
261   }
262 
263   ~GUIDToFuncNameMapper() {
264     if (!CurrentReader.useMD5())
265       return;
266 
267     CurrentGUIDToFuncNameMap.clear();
268 
269     // Reset GUIDToFuncNameMap for of each function as they're no
270     // longer valid at this point.
271     SetGUIDToFuncNameMapForAll(nullptr);
272   }
273 
274 private:
275   void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) {
276     std::queue<FunctionSamples *> FSToUpdate;
277     for (auto &IFS : CurrentReader.getProfiles()) {
278       FSToUpdate.push(&IFS.second);
279     }
280 
281     while (!FSToUpdate.empty()) {
282       FunctionSamples *FS = FSToUpdate.front();
283       FSToUpdate.pop();
284       FS->GUIDToFuncNameMap = Map;
285       for (const auto &ICS : FS->getCallsiteSamples()) {
286         const FunctionSamplesMap &FSMap = ICS.second;
287         for (auto &IFS : FSMap) {
288           FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second);
289           FSToUpdate.push(&FS);
290         }
291       }
292     }
293   }
294 
295   SampleProfileReader &CurrentReader;
296   Module &CurrentModule;
297   DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap;
298 };
299 
300 /// Sample profile pass.
301 ///
302 /// This pass reads profile data from the file specified by
303 /// -sample-profile-file and annotates every affected function with the
304 /// profile information found in that file.
305 class SampleProfileLoader {
306 public:
307   SampleProfileLoader(
308       StringRef Name, StringRef RemapName, bool IsThinLTOPreLink,
309       std::function<AssumptionCache &(Function &)> GetAssumptionCache,
310       std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo,
311       std::function<const TargetLibraryInfo &(Function &)> GetTLI)
312       : GetAC(std::move(GetAssumptionCache)),
313         GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)),
314         CoverageTracker(*this), Filename(std::string(Name)),
315         RemappingFilename(std::string(RemapName)),
316         IsThinLTOPreLink(IsThinLTOPreLink) {}
317 
318   bool doInitialization(Module &M);
319   bool runOnModule(Module &M, ModuleAnalysisManager *AM,
320                    ProfileSummaryInfo *_PSI, CallGraph *CG);
321 
322   void dump() { Reader->dump(); }
323 
324 protected:
325   friend class SampleCoverageTracker;
326 
327   bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
328   unsigned getFunctionLoc(Function &F);
329   bool emitAnnotations(Function &F);
330   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
331   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
332   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
333   std::vector<const FunctionSamples *>
334   findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
335   mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
336   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
337   bool inlineCallInstruction(Instruction *I);
338   bool inlineHotFunctions(Function &F,
339                           DenseSet<GlobalValue::GUID> &InlinedGUIDs);
340   // Inline cold/small functions in addition to hot ones
341   bool shouldInlineColdCallee(Instruction &CallInst);
342   void emitOptimizationRemarksForInlineCandidates(
343     const SmallVector<Instruction *, 10> &Candidates, const Function &F, bool Hot);
344   void printEdgeWeight(raw_ostream &OS, Edge E);
345   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
346   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
347   bool computeBlockWeights(Function &F);
348   void findEquivalenceClasses(Function &F);
349   template <bool IsPostDom>
350   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
351                            DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
352 
353   void propagateWeights(Function &F);
354   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
355   void buildEdges(Function &F);
356   std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG);
357   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
358   void computeDominanceAndLoopInfo(Function &F);
359   void clearFunctionData();
360   bool callsiteIsHot(const FunctionSamples *CallsiteFS,
361                      ProfileSummaryInfo *PSI);
362 
363   /// Map basic blocks to their computed weights.
364   ///
365   /// The weight of a basic block is defined to be the maximum
366   /// of all the instruction weights in that block.
367   BlockWeightMap BlockWeights;
368 
369   /// Map edges to their computed weights.
370   ///
371   /// Edge weights are computed by propagating basic block weights in
372   /// SampleProfile::propagateWeights.
373   EdgeWeightMap EdgeWeights;
374 
375   /// Set of visited blocks during propagation.
376   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
377 
378   /// Set of visited edges during propagation.
379   SmallSet<Edge, 32> VisitedEdges;
380 
381   /// Equivalence classes for block weights.
382   ///
383   /// Two blocks BB1 and BB2 are in the same equivalence class if they
384   /// dominate and post-dominate each other, and they are in the same loop
385   /// nest. When this happens, the two blocks are guaranteed to execute
386   /// the same number of times.
387   EquivalenceClassMap EquivalenceClass;
388 
389   /// Map from function name to Function *. Used to find the function from
390   /// the function name. If the function name contains suffix, additional
391   /// entry is added to map from the stripped name to the function if there
392   /// is one-to-one mapping.
393   StringMap<Function *> SymbolMap;
394 
395   /// Dominance, post-dominance and loop information.
396   std::unique_ptr<DominatorTree> DT;
397   std::unique_ptr<PostDominatorTree> PDT;
398   std::unique_ptr<LoopInfo> LI;
399 
400   std::function<AssumptionCache &(Function &)> GetAC;
401   std::function<TargetTransformInfo &(Function &)> GetTTI;
402   std::function<const TargetLibraryInfo &(Function &)> GetTLI;
403 
404   /// Predecessors for each basic block in the CFG.
405   BlockEdgeMap Predecessors;
406 
407   /// Successors for each basic block in the CFG.
408   BlockEdgeMap Successors;
409 
410   SampleCoverageTracker CoverageTracker;
411 
412   /// Profile reader object.
413   std::unique_ptr<SampleProfileReader> Reader;
414 
415   /// Samples collected for the body of this function.
416   FunctionSamples *Samples = nullptr;
417 
418   /// Name of the profile file to load.
419   std::string Filename;
420 
421   /// Name of the profile remapping file to load.
422   std::string RemappingFilename;
423 
424   /// Flag indicating whether the profile input loaded successfully.
425   bool ProfileIsValid = false;
426 
427   /// Flag indicating if the pass is invoked in ThinLTO compile phase.
428   ///
429   /// In this phase, in annotation, we should not promote indirect calls.
430   /// Instead, we will mark GUIDs that needs to be annotated to the function.
431   bool IsThinLTOPreLink;
432 
433   /// Profile Summary Info computed from sample profile.
434   ProfileSummaryInfo *PSI = nullptr;
435 
436   /// Profle Symbol list tells whether a function name appears in the binary
437   /// used to generate the current profile.
438   std::unique_ptr<ProfileSymbolList> PSL;
439 
440   /// Total number of samples collected in this profile.
441   ///
442   /// This is the sum of all the samples collected in all the functions executed
443   /// at runtime.
444   uint64_t TotalCollectedSamples = 0;
445 
446   /// Optimization Remark Emitter used to emit diagnostic remarks.
447   OptimizationRemarkEmitter *ORE = nullptr;
448 
449   // Information recorded when we declined to inline a call site
450   // because we have determined it is too cold is accumulated for
451   // each callee function. Initially this is just the entry count.
452   struct NotInlinedProfileInfo {
453     uint64_t entryCount;
454   };
455   DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo;
456 
457   // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
458   // all the function symbols defined or declared in current module.
459   DenseMap<uint64_t, StringRef> GUIDToFuncNameMap;
460 
461   // All the Names used in FunctionSamples including outline function
462   // names, inline instance names and call target names.
463   StringSet<> NamesInProfile;
464 
465   // For symbol in profile symbol list, whether to regard their profiles
466   // to be accurate. It is mainly decided by existance of profile symbol
467   // list and -profile-accurate-for-symsinlist flag, but it can be
468   // overriden by -profile-sample-accurate or profile-sample-accurate
469   // attribute.
470   bool ProfAccForSymsInList;
471 };
472 
473 class SampleProfileLoaderLegacyPass : public ModulePass {
474 public:
475   // Class identification, replacement for typeinfo
476   static char ID;
477 
478   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
479                                 bool IsThinLTOPreLink = false)
480       : ModulePass(ID), SampleLoader(
481                             Name, SampleProfileRemappingFile, IsThinLTOPreLink,
482                             [&](Function &F) -> AssumptionCache & {
483                               return ACT->getAssumptionCache(F);
484                             },
485                             [&](Function &F) -> TargetTransformInfo & {
486                               return TTIWP->getTTI(F);
487                             },
488                             [&](Function &F) -> TargetLibraryInfo & {
489                               return TLIWP->getTLI(F);
490                             }) {
491     initializeSampleProfileLoaderLegacyPassPass(
492         *PassRegistry::getPassRegistry());
493   }
494 
495   void dump() { SampleLoader.dump(); }
496 
497   bool doInitialization(Module &M) override {
498     return SampleLoader.doInitialization(M);
499   }
500 
501   StringRef getPassName() const override { return "Sample profile pass"; }
502   bool runOnModule(Module &M) override;
503 
504   void getAnalysisUsage(AnalysisUsage &AU) const override {
505     AU.addRequired<AssumptionCacheTracker>();
506     AU.addRequired<TargetTransformInfoWrapperPass>();
507     AU.addRequired<TargetLibraryInfoWrapperPass>();
508     AU.addRequired<ProfileSummaryInfoWrapperPass>();
509   }
510 
511 private:
512   SampleProfileLoader SampleLoader;
513   AssumptionCacheTracker *ACT = nullptr;
514   TargetTransformInfoWrapperPass *TTIWP = nullptr;
515   TargetLibraryInfoWrapperPass *TLIWP = nullptr;
516 };
517 
518 } // end anonymous namespace
519 
520 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
521 ///
522 /// Functions that were inlined in the original binary will be represented
523 /// in the inline stack in the sample profile. If the profile shows that
524 /// the original inline decision was "good" (i.e., the callsite is executed
525 /// frequently), then we will recreate the inline decision and apply the
526 /// profile from the inlined callsite.
527 ///
528 /// To decide whether an inlined callsite is hot, we compare the callsite
529 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
530 /// regarded as hot if the count is above the cutoff value.
531 ///
532 /// When ProfileAccurateForSymsInList is enabled and profile symbol list
533 /// is present, functions in the profile symbol list but without profile will
534 /// be regarded as cold and much less inlining will happen in CGSCC inlining
535 /// pass, so we tend to lower the hot criteria here to allow more early
536 /// inlining to happen for warm callsites and it is helpful for performance.
537 bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS,
538                                         ProfileSummaryInfo *PSI) {
539   if (!CallsiteFS)
540     return false; // The callsite was not inlined in the original binary.
541 
542   assert(PSI && "PSI is expected to be non null");
543   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
544   if (ProfAccForSymsInList)
545     return !PSI->isColdCount(CallsiteTotalSamples);
546   else
547     return PSI->isHotCount(CallsiteTotalSamples);
548 }
549 
550 /// Mark as used the sample record for the given function samples at
551 /// (LineOffset, Discriminator).
552 ///
553 /// \returns true if this is the first time we mark the given record.
554 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
555                                             uint32_t LineOffset,
556                                             uint32_t Discriminator,
557                                             uint64_t Samples) {
558   LineLocation Loc(LineOffset, Discriminator);
559   unsigned &Count = SampleCoverage[FS][Loc];
560   bool FirstTime = (++Count == 1);
561   if (FirstTime)
562     TotalUsedSamples += Samples;
563   return FirstTime;
564 }
565 
566 /// Return the number of sample records that were applied from this profile.
567 ///
568 /// This count does not include records from cold inlined callsites.
569 unsigned
570 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
571                                         ProfileSummaryInfo *PSI) const {
572   auto I = SampleCoverage.find(FS);
573 
574   // The size of the coverage map for FS represents the number of records
575   // that were marked used at least once.
576   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
577 
578   // If there are inlined callsites in this function, count the samples found
579   // in the respective bodies. However, do not bother counting callees with 0
580   // total samples, these are callees that were never invoked at runtime.
581   for (const auto &I : FS->getCallsiteSamples())
582     for (const auto &J : I.second) {
583       const FunctionSamples *CalleeSamples = &J.second;
584       if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
585         Count += countUsedRecords(CalleeSamples, PSI);
586     }
587 
588   return Count;
589 }
590 
591 /// Return the number of sample records in the body of this profile.
592 ///
593 /// This count does not include records from cold inlined callsites.
594 unsigned
595 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
596                                         ProfileSummaryInfo *PSI) const {
597   unsigned Count = FS->getBodySamples().size();
598 
599   // Only count records in hot callsites.
600   for (const auto &I : FS->getCallsiteSamples())
601     for (const auto &J : I.second) {
602       const FunctionSamples *CalleeSamples = &J.second;
603       if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
604         Count += countBodyRecords(CalleeSamples, PSI);
605     }
606 
607   return Count;
608 }
609 
610 /// Return the number of samples collected in the body of this profile.
611 ///
612 /// This count does not include samples from cold inlined callsites.
613 uint64_t
614 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
615                                         ProfileSummaryInfo *PSI) const {
616   uint64_t Total = 0;
617   for (const auto &I : FS->getBodySamples())
618     Total += I.second.getSamples();
619 
620   // Only count samples in hot callsites.
621   for (const auto &I : FS->getCallsiteSamples())
622     for (const auto &J : I.second) {
623       const FunctionSamples *CalleeSamples = &J.second;
624       if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
625         Total += countBodySamples(CalleeSamples, PSI);
626     }
627 
628   return Total;
629 }
630 
631 /// Return the fraction of sample records used in this profile.
632 ///
633 /// The returned value is an unsigned integer in the range 0-100 indicating
634 /// the percentage of sample records that were used while applying this
635 /// profile to the associated function.
636 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
637                                                 unsigned Total) const {
638   assert(Used <= Total &&
639          "number of used records cannot exceed the total number of records");
640   return Total > 0 ? Used * 100 / Total : 100;
641 }
642 
643 /// Clear all the per-function data used to load samples and propagate weights.
644 void SampleProfileLoader::clearFunctionData() {
645   BlockWeights.clear();
646   EdgeWeights.clear();
647   VisitedBlocks.clear();
648   VisitedEdges.clear();
649   EquivalenceClass.clear();
650   DT = nullptr;
651   PDT = nullptr;
652   LI = nullptr;
653   Predecessors.clear();
654   Successors.clear();
655   CoverageTracker.clear();
656 }
657 
658 #ifndef NDEBUG
659 /// Print the weight of edge \p E on stream \p OS.
660 ///
661 /// \param OS  Stream to emit the output to.
662 /// \param E  Edge to print.
663 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
664   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
665      << "]: " << EdgeWeights[E] << "\n";
666 }
667 
668 /// Print the equivalence class of block \p BB on stream \p OS.
669 ///
670 /// \param OS  Stream to emit the output to.
671 /// \param BB  Block to print.
672 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
673                                                 const BasicBlock *BB) {
674   const BasicBlock *Equiv = EquivalenceClass[BB];
675   OS << "equivalence[" << BB->getName()
676      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
677 }
678 
679 /// Print the weight of block \p BB on stream \p OS.
680 ///
681 /// \param OS  Stream to emit the output to.
682 /// \param BB  Block to print.
683 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
684                                            const BasicBlock *BB) const {
685   const auto &I = BlockWeights.find(BB);
686   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
687   OS << "weight[" << BB->getName() << "]: " << W << "\n";
688 }
689 #endif
690 
691 /// Get the weight for an instruction.
692 ///
693 /// The "weight" of an instruction \p Inst is the number of samples
694 /// collected on that instruction at runtime. To retrieve it, we
695 /// need to compute the line number of \p Inst relative to the start of its
696 /// function. We use HeaderLineno to compute the offset. We then
697 /// look up the samples collected for \p Inst using BodySamples.
698 ///
699 /// \param Inst Instruction to query.
700 ///
701 /// \returns the weight of \p Inst.
702 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
703   const DebugLoc &DLoc = Inst.getDebugLoc();
704   if (!DLoc)
705     return std::error_code();
706 
707   const FunctionSamples *FS = findFunctionSamples(Inst);
708   if (!FS)
709     return std::error_code();
710 
711   // Ignore all intrinsics, phinodes and branch instructions.
712   // Branch and phinodes instruction usually contains debug info from sources outside of
713   // the residing basic block, thus we ignore them during annotation.
714   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
715     return std::error_code();
716 
717   // If a direct call/invoke instruction is inlined in profile
718   // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
719   // it means that the inlined callsite has no sample, thus the call
720   // instruction should have 0 count.
721   if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
722       !ImmutableCallSite(&Inst).isIndirectCall() &&
723       findCalleeFunctionSamples(Inst))
724     return 0;
725 
726   const DILocation *DIL = DLoc;
727   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
728   uint32_t Discriminator = DIL->getBaseDiscriminator();
729   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
730   if (R) {
731     bool FirstMark =
732         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
733     if (FirstMark) {
734       ORE->emit([&]() {
735         OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
736         Remark << "Applied " << ore::NV("NumSamples", *R);
737         Remark << " samples from profile (offset: ";
738         Remark << ore::NV("LineOffset", LineOffset);
739         if (Discriminator) {
740           Remark << ".";
741           Remark << ore::NV("Discriminator", Discriminator);
742         }
743         Remark << ")";
744         return Remark;
745       });
746     }
747     LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "."
748                       << DIL->getBaseDiscriminator() << ":" << Inst
749                       << " (line offset: " << LineOffset << "."
750                       << DIL->getBaseDiscriminator() << " - weight: " << R.get()
751                       << ")\n");
752   }
753   return R;
754 }
755 
756 /// Compute the weight of a basic block.
757 ///
758 /// The weight of basic block \p BB is the maximum weight of all the
759 /// instructions in BB.
760 ///
761 /// \param BB The basic block to query.
762 ///
763 /// \returns the weight for \p BB.
764 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
765   uint64_t Max = 0;
766   bool HasWeight = false;
767   for (auto &I : BB->getInstList()) {
768     const ErrorOr<uint64_t> &R = getInstWeight(I);
769     if (R) {
770       Max = std::max(Max, R.get());
771       HasWeight = true;
772     }
773   }
774   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
775 }
776 
777 /// Compute and store the weights of every basic block.
778 ///
779 /// This populates the BlockWeights map by computing
780 /// the weights of every basic block in the CFG.
781 ///
782 /// \param F The function to query.
783 bool SampleProfileLoader::computeBlockWeights(Function &F) {
784   bool Changed = false;
785   LLVM_DEBUG(dbgs() << "Block weights\n");
786   for (const auto &BB : F) {
787     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
788     if (Weight) {
789       BlockWeights[&BB] = Weight.get();
790       VisitedBlocks.insert(&BB);
791       Changed = true;
792     }
793     LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
794   }
795 
796   return Changed;
797 }
798 
799 /// Get the FunctionSamples for a call instruction.
800 ///
801 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
802 /// instance in which that call instruction is calling to. It contains
803 /// all samples that resides in the inlined instance. We first find the
804 /// inlined instance in which the call instruction is from, then we
805 /// traverse its children to find the callsite with the matching
806 /// location.
807 ///
808 /// \param Inst Call/Invoke instruction to query.
809 ///
810 /// \returns The FunctionSamples pointer to the inlined instance.
811 const FunctionSamples *
812 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
813   const DILocation *DIL = Inst.getDebugLoc();
814   if (!DIL) {
815     return nullptr;
816   }
817 
818   StringRef CalleeName;
819   if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
820     if (Function *Callee = CI->getCalledFunction())
821       CalleeName = Callee->getName();
822 
823   const FunctionSamples *FS = findFunctionSamples(Inst);
824   if (FS == nullptr)
825     return nullptr;
826 
827   return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
828                                                 DIL->getBaseDiscriminator()),
829                                    CalleeName);
830 }
831 
832 /// Returns a vector of FunctionSamples that are the indirect call targets
833 /// of \p Inst. The vector is sorted by the total number of samples. Stores
834 /// the total call count of the indirect call in \p Sum.
835 std::vector<const FunctionSamples *>
836 SampleProfileLoader::findIndirectCallFunctionSamples(
837     const Instruction &Inst, uint64_t &Sum) const {
838   const DILocation *DIL = Inst.getDebugLoc();
839   std::vector<const FunctionSamples *> R;
840 
841   if (!DIL) {
842     return R;
843   }
844 
845   const FunctionSamples *FS = findFunctionSamples(Inst);
846   if (FS == nullptr)
847     return R;
848 
849   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
850   uint32_t Discriminator = DIL->getBaseDiscriminator();
851 
852   auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
853   Sum = 0;
854   if (T)
855     for (const auto &T_C : T.get())
856       Sum += T_C.second;
857   if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
858           FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
859     if (M->empty())
860       return R;
861     for (const auto &NameFS : *M) {
862       Sum += NameFS.second.getEntrySamples();
863       R.push_back(&NameFS.second);
864     }
865     llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) {
866       if (L->getEntrySamples() != R->getEntrySamples())
867         return L->getEntrySamples() > R->getEntrySamples();
868       return FunctionSamples::getGUID(L->getName()) <
869              FunctionSamples::getGUID(R->getName());
870     });
871   }
872   return R;
873 }
874 
875 /// Get the FunctionSamples for an instruction.
876 ///
877 /// The FunctionSamples of an instruction \p Inst is the inlined instance
878 /// in which that instruction is coming from. We traverse the inline stack
879 /// of that instruction, and match it with the tree nodes in the profile.
880 ///
881 /// \param Inst Instruction to query.
882 ///
883 /// \returns the FunctionSamples pointer to the inlined instance.
884 const FunctionSamples *
885 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
886   const DILocation *DIL = Inst.getDebugLoc();
887   if (!DIL)
888     return Samples;
889 
890   auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
891   if (it.second)
892     it.first->second = Samples->findFunctionSamples(DIL);
893   return it.first->second;
894 }
895 
896 // FIXME(CallSite): Parameter should be CallBase&, as it's assumed to be that,
897 // and non-null.
898 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
899   assert(isa<CallInst>(I) || isa<InvokeInst>(I));
900   CallBase &CS = *cast<CallBase>(I);
901   Function *CalledFunction = CS.getCalledFunction();
902   assert(CalledFunction);
903   DebugLoc DLoc = I->getDebugLoc();
904   BasicBlock *BB = I->getParent();
905   InlineParams Params = getInlineParams();
906   Params.ComputeFullInlineCost = true;
907   // Checks if there is anything in the reachable portion of the callee at
908   // this callsite that makes this inlining potentially illegal. Need to
909   // set ComputeFullInlineCost, otherwise getInlineCost may return early
910   // when cost exceeds threshold without checking all IRs in the callee.
911   // The acutal cost does not matter because we only checks isNever() to
912   // see if it is legal to inline the callsite.
913   InlineCost Cost =
914       getInlineCost(cast<CallBase>(*I), Params, GetTTI(*CalledFunction), GetAC,
915                     None, GetTLI, nullptr, nullptr);
916   if (Cost.isNever()) {
917     ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB)
918               << "incompatible inlining");
919     return false;
920   }
921   InlineFunctionInfo IFI(nullptr, &GetAC);
922   if (InlineFunction(CS, IFI).isSuccess()) {
923     // The call to InlineFunction erases I, so we can't pass it here.
924     ORE->emit(OptimizationRemark(CSINLINE_DEBUG, "InlineSuccess", DLoc, BB)
925               << "inlined callee '" << ore::NV("Callee", CalledFunction)
926               << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
927     return true;
928   }
929   return false;
930 }
931 
932 bool SampleProfileLoader::shouldInlineColdCallee(Instruction &CallInst) {
933   if (!ProfileSizeInline)
934     return false;
935 
936   Function *Callee = CallSite(&CallInst).getCalledFunction();
937   if (Callee == nullptr)
938     return false;
939 
940   InlineCost Cost =
941       getInlineCost(cast<CallBase>(CallInst), getInlineParams(),
942                     GetTTI(*Callee), GetAC, None, GetTLI, nullptr, nullptr);
943 
944   return Cost.getCost() <= SampleColdCallSiteThreshold;
945 }
946 
947 void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates(
948     const SmallVector<Instruction *, 10> &Candidates, const Function &F,
949     bool Hot) {
950   for (auto I : Candidates) {
951     Function *CalledFunction = CallSite(I).getCalledFunction();
952     if (CalledFunction) {
953       ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt",
954                                            I->getDebugLoc(), I->getParent())
955                 << "previous inlining reattempted for "
956                 << (Hot ? "hotness: '" : "size: '")
957                 << ore::NV("Callee", CalledFunction) << "' into '"
958                 << ore::NV("Caller", &F) << "'");
959     }
960   }
961 }
962 
963 /// Iteratively inline hot callsites of a function.
964 ///
965 /// Iteratively traverse all callsites of the function \p F, and find if
966 /// the corresponding inlined instance exists and is hot in profile. If
967 /// it is hot enough, inline the callsites and adds new callsites of the
968 /// callee into the caller. If the call is an indirect call, first promote
969 /// it to direct call. Each indirect call is limited with a single target.
970 ///
971 /// \param F function to perform iterative inlining.
972 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
973 ///     inlined in the profiled binary.
974 ///
975 /// \returns True if there is any inline happened.
976 bool SampleProfileLoader::inlineHotFunctions(
977     Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
978   DenseSet<Instruction *> PromotedInsns;
979 
980   // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
981   // Profile symbol list is ignored when profile-sample-accurate is on.
982   assert((!ProfAccForSymsInList ||
983           (!ProfileSampleAccurate &&
984            !F.hasFnAttribute("profile-sample-accurate"))) &&
985          "ProfAccForSymsInList should be false when profile-sample-accurate "
986          "is enabled");
987 
988   // FIXME(CallSite): refactor the vectors here, as they operate with CallBase
989   // values
990   DenseMap<Instruction *, const FunctionSamples *> localNotInlinedCallSites;
991   bool Changed = false;
992   while (true) {
993     bool LocalChanged = false;
994     SmallVector<Instruction *, 10> CIS;
995     for (auto &BB : F) {
996       bool Hot = false;
997       SmallVector<Instruction *, 10> AllCandidates;
998       SmallVector<Instruction *, 10> ColdCandidates;
999       for (auto &I : BB.getInstList()) {
1000         const FunctionSamples *FS = nullptr;
1001         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
1002             !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
1003           AllCandidates.push_back(&I);
1004           if (FS->getEntrySamples() > 0)
1005             localNotInlinedCallSites.try_emplace(&I, FS);
1006           if (callsiteIsHot(FS, PSI))
1007             Hot = true;
1008           else if (shouldInlineColdCallee(I))
1009             ColdCandidates.push_back(&I);
1010         }
1011       }
1012       if (Hot) {
1013         CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end());
1014         emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true);
1015       }
1016       else {
1017         CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end());
1018         emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false);
1019       }
1020     }
1021     for (auto I : CIS) {
1022       Function *CalledFunction = CallSite(I).getCalledFunction();
1023       // Do not inline recursive calls.
1024       if (CalledFunction == &F)
1025         continue;
1026       if (CallSite(I).isIndirectCall()) {
1027         if (PromotedInsns.count(I))
1028           continue;
1029         uint64_t Sum;
1030         for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
1031           if (IsThinLTOPreLink) {
1032             FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
1033                                      PSI->getOrCompHotCountThreshold());
1034             continue;
1035           }
1036           auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent());
1037           // If it is a recursive call, we do not inline it as it could bloat
1038           // the code exponentially. There is way to better handle this, e.g.
1039           // clone the caller first, and inline the cloned caller if it is
1040           // recursive. As llvm does not inline recursive calls, we will
1041           // simply ignore it instead of handling it explicitly.
1042           if (CalleeFunctionName == F.getName())
1043             continue;
1044 
1045           if (!callsiteIsHot(FS, PSI))
1046             continue;
1047 
1048           const char *Reason = "Callee function not available";
1049           auto R = SymbolMap.find(CalleeFunctionName);
1050           if (R != SymbolMap.end() && R->getValue() &&
1051               !R->getValue()->isDeclaration() &&
1052               R->getValue()->getSubprogram() &&
1053               isLegalToPromote(*cast<CallBase>(I), R->getValue(), &Reason)) {
1054             uint64_t C = FS->getEntrySamples();
1055             Instruction *DI =
1056                 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
1057             Sum -= C;
1058             PromotedInsns.insert(I);
1059             // If profile mismatches, we should not attempt to inline DI.
1060             if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
1061                 inlineCallInstruction(DI)) {
1062               localNotInlinedCallSites.erase(I);
1063               LocalChanged = true;
1064               ++NumCSInlined;
1065             }
1066           } else {
1067             LLVM_DEBUG(dbgs()
1068                        << "\nFailed to promote indirect call to "
1069                        << CalleeFunctionName << " because " << Reason << "\n");
1070           }
1071         }
1072       } else if (CalledFunction && CalledFunction->getSubprogram() &&
1073                  !CalledFunction->isDeclaration()) {
1074         if (inlineCallInstruction(I)) {
1075           localNotInlinedCallSites.erase(I);
1076           LocalChanged = true;
1077           ++NumCSInlined;
1078         }
1079       } else if (IsThinLTOPreLink) {
1080         findCalleeFunctionSamples(*I)->findInlinedFunctions(
1081             InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
1082       }
1083     }
1084     if (LocalChanged) {
1085       Changed = true;
1086     } else {
1087       break;
1088     }
1089   }
1090 
1091   // Accumulate not inlined callsite information into notInlinedSamples
1092   for (const auto &Pair : localNotInlinedCallSites) {
1093     Instruction *I = Pair.getFirst();
1094     Function *Callee = CallSite(I).getCalledFunction();
1095     if (!Callee || Callee->isDeclaration())
1096       continue;
1097 
1098     ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline",
1099                                          I->getDebugLoc(), I->getParent())
1100               << "previous inlining not repeated: '"
1101               << ore::NV("Callee", Callee) << "' into '"
1102               << ore::NV("Caller", &F) << "'");
1103 
1104     ++NumCSNotInlined;
1105     const FunctionSamples *FS = Pair.getSecond();
1106     if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) {
1107       continue;
1108     }
1109 
1110     if (ProfileMergeInlinee) {
1111       // Use entry samples as head samples during the merge, as inlinees
1112       // don't have head samples.
1113       assert(FS->getHeadSamples() == 0 && "Expect 0 head sample for inlinee");
1114       const_cast<FunctionSamples *>(FS)->addHeadSamples(FS->getEntrySamples());
1115 
1116       // Note that we have to do the merge right after processing function.
1117       // This allows OutlineFS's profile to be used for annotation during
1118       // top-down processing of functions' annotation.
1119       FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee);
1120       OutlineFS->merge(*FS);
1121     } else {
1122       auto pair =
1123           notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
1124       pair.first->second.entryCount += FS->getEntrySamples();
1125     }
1126   }
1127   return Changed;
1128 }
1129 
1130 /// Find equivalence classes for the given block.
1131 ///
1132 /// This finds all the blocks that are guaranteed to execute the same
1133 /// number of times as \p BB1. To do this, it traverses all the
1134 /// descendants of \p BB1 in the dominator or post-dominator tree.
1135 ///
1136 /// A block BB2 will be in the same equivalence class as \p BB1 if
1137 /// the following holds:
1138 ///
1139 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
1140 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
1141 ///    dominate BB1 in the post-dominator tree.
1142 ///
1143 /// 2- Both BB2 and \p BB1 must be in the same loop.
1144 ///
1145 /// For every block BB2 that meets those two requirements, we set BB2's
1146 /// equivalence class to \p BB1.
1147 ///
1148 /// \param BB1  Block to check.
1149 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
1150 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
1151 ///                 with blocks from \p BB1's dominator tree, then
1152 ///                 this is the post-dominator tree, and vice versa.
1153 template <bool IsPostDom>
1154 void SampleProfileLoader::findEquivalencesFor(
1155     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
1156     DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
1157   const BasicBlock *EC = EquivalenceClass[BB1];
1158   uint64_t Weight = BlockWeights[EC];
1159   for (const auto *BB2 : Descendants) {
1160     bool IsDomParent = DomTree->dominates(BB2, BB1);
1161     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
1162     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
1163       EquivalenceClass[BB2] = EC;
1164       // If BB2 is visited, then the entire EC should be marked as visited.
1165       if (VisitedBlocks.count(BB2)) {
1166         VisitedBlocks.insert(EC);
1167       }
1168 
1169       // If BB2 is heavier than BB1, make BB2 have the same weight
1170       // as BB1.
1171       //
1172       // Note that we don't worry about the opposite situation here
1173       // (when BB2 is lighter than BB1). We will deal with this
1174       // during the propagation phase. Right now, we just want to
1175       // make sure that BB1 has the largest weight of all the
1176       // members of its equivalence set.
1177       Weight = std::max(Weight, BlockWeights[BB2]);
1178     }
1179   }
1180   if (EC == &EC->getParent()->getEntryBlock()) {
1181     BlockWeights[EC] = Samples->getHeadSamples() + 1;
1182   } else {
1183     BlockWeights[EC] = Weight;
1184   }
1185 }
1186 
1187 /// Find equivalence classes.
1188 ///
1189 /// Since samples may be missing from blocks, we can fill in the gaps by setting
1190 /// the weights of all the blocks in the same equivalence class to the same
1191 /// weight. To compute the concept of equivalence, we use dominance and loop
1192 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
1193 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1194 ///
1195 /// \param F The function to query.
1196 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
1197   SmallVector<BasicBlock *, 8> DominatedBBs;
1198   LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
1199   // Find equivalence sets based on dominance and post-dominance information.
1200   for (auto &BB : F) {
1201     BasicBlock *BB1 = &BB;
1202 
1203     // Compute BB1's equivalence class once.
1204     if (EquivalenceClass.count(BB1)) {
1205       LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1206       continue;
1207     }
1208 
1209     // By default, blocks are in their own equivalence class.
1210     EquivalenceClass[BB1] = BB1;
1211 
1212     // Traverse all the blocks dominated by BB1. We are looking for
1213     // every basic block BB2 such that:
1214     //
1215     // 1- BB1 dominates BB2.
1216     // 2- BB2 post-dominates BB1.
1217     // 3- BB1 and BB2 are in the same loop nest.
1218     //
1219     // If all those conditions hold, it means that BB2 is executed
1220     // as many times as BB1, so they are placed in the same equivalence
1221     // class by making BB2's equivalence class be BB1.
1222     DominatedBBs.clear();
1223     DT->getDescendants(BB1, DominatedBBs);
1224     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
1225 
1226     LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1227   }
1228 
1229   // Assign weights to equivalence classes.
1230   //
1231   // All the basic blocks in the same equivalence class will execute
1232   // the same number of times. Since we know that the head block in
1233   // each equivalence class has the largest weight, assign that weight
1234   // to all the blocks in that equivalence class.
1235   LLVM_DEBUG(
1236       dbgs() << "\nAssign the same weight to all blocks in the same class\n");
1237   for (auto &BI : F) {
1238     const BasicBlock *BB = &BI;
1239     const BasicBlock *EquivBB = EquivalenceClass[BB];
1240     if (BB != EquivBB)
1241       BlockWeights[BB] = BlockWeights[EquivBB];
1242     LLVM_DEBUG(printBlockWeight(dbgs(), BB));
1243   }
1244 }
1245 
1246 /// Visit the given edge to decide if it has a valid weight.
1247 ///
1248 /// If \p E has not been visited before, we copy to \p UnknownEdge
1249 /// and increment the count of unknown edges.
1250 ///
1251 /// \param E  Edge to visit.
1252 /// \param NumUnknownEdges  Current number of unknown edges.
1253 /// \param UnknownEdge  Set if E has not been visited before.
1254 ///
1255 /// \returns E's weight, if known. Otherwise, return 0.
1256 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
1257                                         Edge *UnknownEdge) {
1258   if (!VisitedEdges.count(E)) {
1259     (*NumUnknownEdges)++;
1260     *UnknownEdge = E;
1261     return 0;
1262   }
1263 
1264   return EdgeWeights[E];
1265 }
1266 
1267 /// Propagate weights through incoming/outgoing edges.
1268 ///
1269 /// If the weight of a basic block is known, and there is only one edge
1270 /// with an unknown weight, we can calculate the weight of that edge.
1271 ///
1272 /// Similarly, if all the edges have a known count, we can calculate the
1273 /// count of the basic block, if needed.
1274 ///
1275 /// \param F  Function to process.
1276 /// \param UpdateBlockCount  Whether we should update basic block counts that
1277 ///                          has already been annotated.
1278 ///
1279 /// \returns  True if new weights were assigned to edges or blocks.
1280 bool SampleProfileLoader::propagateThroughEdges(Function &F,
1281                                                 bool UpdateBlockCount) {
1282   bool Changed = false;
1283   LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1284   for (const auto &BI : F) {
1285     const BasicBlock *BB = &BI;
1286     const BasicBlock *EC = EquivalenceClass[BB];
1287 
1288     // Visit all the predecessor and successor edges to determine
1289     // which ones have a weight assigned already. Note that it doesn't
1290     // matter that we only keep track of a single unknown edge. The
1291     // only case we are interested in handling is when only a single
1292     // edge is unknown (see setEdgeOrBlockWeight).
1293     for (unsigned i = 0; i < 2; i++) {
1294       uint64_t TotalWeight = 0;
1295       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1296       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1297 
1298       if (i == 0) {
1299         // First, visit all predecessor edges.
1300         NumTotalEdges = Predecessors[BB].size();
1301         for (auto *Pred : Predecessors[BB]) {
1302           Edge E = std::make_pair(Pred, BB);
1303           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1304           if (E.first == E.second)
1305             SelfReferentialEdge = E;
1306         }
1307         if (NumTotalEdges == 1) {
1308           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1309         }
1310       } else {
1311         // On the second round, visit all successor edges.
1312         NumTotalEdges = Successors[BB].size();
1313         for (auto *Succ : Successors[BB]) {
1314           Edge E = std::make_pair(BB, Succ);
1315           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1316         }
1317         if (NumTotalEdges == 1) {
1318           SingleEdge = std::make_pair(BB, Successors[BB][0]);
1319         }
1320       }
1321 
1322       // After visiting all the edges, there are three cases that we
1323       // can handle immediately:
1324       //
1325       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1326       //   In this case, we simply check that the sum of all the edges
1327       //   is the same as BB's weight. If not, we change BB's weight
1328       //   to match. Additionally, if BB had not been visited before,
1329       //   we mark it visited.
1330       //
1331       // - Only one edge is unknown and BB has already been visited.
1332       //   In this case, we can compute the weight of the edge by
1333       //   subtracting the total block weight from all the known
1334       //   edge weights. If the edges weight more than BB, then the
1335       //   edge of the last remaining edge is set to zero.
1336       //
1337       // - There exists a self-referential edge and the weight of BB is
1338       //   known. In this case, this edge can be based on BB's weight.
1339       //   We add up all the other known edges and set the weight on
1340       //   the self-referential edge as we did in the previous case.
1341       //
1342       // In any other case, we must continue iterating. Eventually,
1343       // all edges will get a weight, or iteration will stop when
1344       // it reaches SampleProfileMaxPropagateIterations.
1345       if (NumUnknownEdges <= 1) {
1346         uint64_t &BBWeight = BlockWeights[EC];
1347         if (NumUnknownEdges == 0) {
1348           if (!VisitedBlocks.count(EC)) {
1349             // If we already know the weight of all edges, the weight of the
1350             // basic block can be computed. It should be no larger than the sum
1351             // of all edge weights.
1352             if (TotalWeight > BBWeight) {
1353               BBWeight = TotalWeight;
1354               Changed = true;
1355               LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
1356                                 << " known. Set weight for block: ";
1357                          printBlockWeight(dbgs(), BB););
1358             }
1359           } else if (NumTotalEdges == 1 &&
1360                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1361             // If there is only one edge for the visited basic block, use the
1362             // block weight to adjust edge weight if edge weight is smaller.
1363             EdgeWeights[SingleEdge] = BlockWeights[EC];
1364             Changed = true;
1365           }
1366         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1367           // If there is a single unknown edge and the block has been
1368           // visited, then we can compute E's weight.
1369           if (BBWeight >= TotalWeight)
1370             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1371           else
1372             EdgeWeights[UnknownEdge] = 0;
1373           const BasicBlock *OtherEC;
1374           if (i == 0)
1375             OtherEC = EquivalenceClass[UnknownEdge.first];
1376           else
1377             OtherEC = EquivalenceClass[UnknownEdge.second];
1378           // Edge weights should never exceed the BB weights it connects.
1379           if (VisitedBlocks.count(OtherEC) &&
1380               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1381             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1382           VisitedEdges.insert(UnknownEdge);
1383           Changed = true;
1384           LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1385                      printEdgeWeight(dbgs(), UnknownEdge));
1386         }
1387       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1388         // If a block Weights 0, all its in/out edges should weight 0.
1389         if (i == 0) {
1390           for (auto *Pred : Predecessors[BB]) {
1391             Edge E = std::make_pair(Pred, BB);
1392             EdgeWeights[E] = 0;
1393             VisitedEdges.insert(E);
1394           }
1395         } else {
1396           for (auto *Succ : Successors[BB]) {
1397             Edge E = std::make_pair(BB, Succ);
1398             EdgeWeights[E] = 0;
1399             VisitedEdges.insert(E);
1400           }
1401         }
1402       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1403         uint64_t &BBWeight = BlockWeights[BB];
1404         // We have a self-referential edge and the weight of BB is known.
1405         if (BBWeight >= TotalWeight)
1406           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1407         else
1408           EdgeWeights[SelfReferentialEdge] = 0;
1409         VisitedEdges.insert(SelfReferentialEdge);
1410         Changed = true;
1411         LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1412                    printEdgeWeight(dbgs(), SelfReferentialEdge));
1413       }
1414       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1415         BlockWeights[EC] = TotalWeight;
1416         VisitedBlocks.insert(EC);
1417         Changed = true;
1418       }
1419     }
1420   }
1421 
1422   return Changed;
1423 }
1424 
1425 /// Build in/out edge lists for each basic block in the CFG.
1426 ///
1427 /// We are interested in unique edges. If a block B1 has multiple
1428 /// edges to another block B2, we only add a single B1->B2 edge.
1429 void SampleProfileLoader::buildEdges(Function &F) {
1430   for (auto &BI : F) {
1431     BasicBlock *B1 = &BI;
1432 
1433     // Add predecessors for B1.
1434     SmallPtrSet<BasicBlock *, 16> Visited;
1435     if (!Predecessors[B1].empty())
1436       llvm_unreachable("Found a stale predecessors list in a basic block.");
1437     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1438       BasicBlock *B2 = *PI;
1439       if (Visited.insert(B2).second)
1440         Predecessors[B1].push_back(B2);
1441     }
1442 
1443     // Add successors for B1.
1444     Visited.clear();
1445     if (!Successors[B1].empty())
1446       llvm_unreachable("Found a stale successors list in a basic block.");
1447     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1448       BasicBlock *B2 = *SI;
1449       if (Visited.insert(B2).second)
1450         Successors[B1].push_back(B2);
1451     }
1452   }
1453 }
1454 
1455 /// Returns the sorted CallTargetMap \p M by count in descending order.
1456 static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets(
1457     const SampleRecord::CallTargetMap & M) {
1458   SmallVector<InstrProfValueData, 2> R;
1459   for (const auto &I : SampleRecord::SortCallTargets(M)) {
1460     R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second});
1461   }
1462   return R;
1463 }
1464 
1465 /// Propagate weights into edges
1466 ///
1467 /// The following rules are applied to every block BB in the CFG:
1468 ///
1469 /// - If BB has a single predecessor/successor, then the weight
1470 ///   of that edge is the weight of the block.
1471 ///
1472 /// - If all incoming or outgoing edges are known except one, and the
1473 ///   weight of the block is already known, the weight of the unknown
1474 ///   edge will be the weight of the block minus the sum of all the known
1475 ///   edges. If the sum of all the known edges is larger than BB's weight,
1476 ///   we set the unknown edge weight to zero.
1477 ///
1478 /// - If there is a self-referential edge, and the weight of the block is
1479 ///   known, the weight for that edge is set to the weight of the block
1480 ///   minus the weight of the other incoming edges to that block (if
1481 ///   known).
1482 void SampleProfileLoader::propagateWeights(Function &F) {
1483   bool Changed = true;
1484   unsigned I = 0;
1485 
1486   // If BB weight is larger than its corresponding loop's header BB weight,
1487   // use the BB weight to replace the loop header BB weight.
1488   for (auto &BI : F) {
1489     BasicBlock *BB = &BI;
1490     Loop *L = LI->getLoopFor(BB);
1491     if (!L) {
1492       continue;
1493     }
1494     BasicBlock *Header = L->getHeader();
1495     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1496       BlockWeights[Header] = BlockWeights[BB];
1497     }
1498   }
1499 
1500   // Before propagation starts, build, for each block, a list of
1501   // unique predecessors and successors. This is necessary to handle
1502   // identical edges in multiway branches. Since we visit all blocks and all
1503   // edges of the CFG, it is cleaner to build these lists once at the start
1504   // of the pass.
1505   buildEdges(F);
1506 
1507   // Propagate until we converge or we go past the iteration limit.
1508   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1509     Changed = propagateThroughEdges(F, false);
1510   }
1511 
1512   // The first propagation propagates BB counts from annotated BBs to unknown
1513   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1514   // to propagate edge weights.
1515   VisitedEdges.clear();
1516   Changed = true;
1517   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1518     Changed = propagateThroughEdges(F, false);
1519   }
1520 
1521   // The 3rd propagation pass allows adjust annotated BB weights that are
1522   // obviously wrong.
1523   Changed = true;
1524   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1525     Changed = propagateThroughEdges(F, true);
1526   }
1527 
1528   // Generate MD_prof metadata for every branch instruction using the
1529   // edge weights computed during propagation.
1530   LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1531   LLVMContext &Ctx = F.getContext();
1532   MDBuilder MDB(Ctx);
1533   for (auto &BI : F) {
1534     BasicBlock *BB = &BI;
1535 
1536     if (BlockWeights[BB]) {
1537       for (auto &I : BB->getInstList()) {
1538         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1539           continue;
1540         CallSite CS(&I);
1541         if (!CS.getCalledFunction()) {
1542           const DebugLoc &DLoc = I.getDebugLoc();
1543           if (!DLoc)
1544             continue;
1545           const DILocation *DIL = DLoc;
1546           uint32_t LineOffset = FunctionSamples::getOffset(DIL);
1547           uint32_t Discriminator = DIL->getBaseDiscriminator();
1548 
1549           const FunctionSamples *FS = findFunctionSamples(I);
1550           if (!FS)
1551             continue;
1552           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1553           if (!T || T.get().empty())
1554             continue;
1555           SmallVector<InstrProfValueData, 2> SortedCallTargets =
1556               GetSortedValueDataFromCallTargets(T.get());
1557           uint64_t Sum;
1558           findIndirectCallFunctionSamples(I, Sum);
1559           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1560                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1561                             SortedCallTargets.size());
1562         } else if (!isa<IntrinsicInst>(&I)) {
1563           I.setMetadata(LLVMContext::MD_prof,
1564                         MDB.createBranchWeights(
1565                             {static_cast<uint32_t>(BlockWeights[BB])}));
1566         }
1567       }
1568     }
1569     Instruction *TI = BB->getTerminator();
1570     if (TI->getNumSuccessors() == 1)
1571       continue;
1572     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1573       continue;
1574 
1575     DebugLoc BranchLoc = TI->getDebugLoc();
1576     LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1577                       << ((BranchLoc) ? Twine(BranchLoc.getLine())
1578                                       : Twine("<UNKNOWN LOCATION>"))
1579                       << ".\n");
1580     SmallVector<uint32_t, 4> Weights;
1581     uint32_t MaxWeight = 0;
1582     Instruction *MaxDestInst;
1583     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1584       BasicBlock *Succ = TI->getSuccessor(I);
1585       Edge E = std::make_pair(BB, Succ);
1586       uint64_t Weight = EdgeWeights[E];
1587       LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1588       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1589       // if needed. Sample counts in profiles are 64-bit unsigned values,
1590       // but internally branch weights are expressed as 32-bit values.
1591       if (Weight > std::numeric_limits<uint32_t>::max()) {
1592         LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1593         Weight = std::numeric_limits<uint32_t>::max();
1594       }
1595       // Weight is added by one to avoid propagation errors introduced by
1596       // 0 weights.
1597       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1598       if (Weight != 0) {
1599         if (Weight > MaxWeight) {
1600           MaxWeight = Weight;
1601           MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1602         }
1603       }
1604     }
1605 
1606     misexpect::verifyMisExpect(TI, Weights, TI->getContext());
1607 
1608     uint64_t TempWeight;
1609     // Only set weights if there is at least one non-zero weight.
1610     // In any other case, let the analyzer set weights.
1611     // Do not set weights if the weights are present. In ThinLTO, the profile
1612     // annotation is done twice. If the first annotation already set the
1613     // weights, the second pass does not need to set it.
1614     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1615       LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1616       TI->setMetadata(LLVMContext::MD_prof,
1617                       MDB.createBranchWeights(Weights));
1618       ORE->emit([&]() {
1619         return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1620                << "most popular destination for conditional branches at "
1621                << ore::NV("CondBranchesLoc", BranchLoc);
1622       });
1623     } else {
1624       LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1625     }
1626   }
1627 }
1628 
1629 /// Get the line number for the function header.
1630 ///
1631 /// This looks up function \p F in the current compilation unit and
1632 /// retrieves the line number where the function is defined. This is
1633 /// line 0 for all the samples read from the profile file. Every line
1634 /// number is relative to this line.
1635 ///
1636 /// \param F  Function object to query.
1637 ///
1638 /// \returns the line number where \p F is defined. If it returns 0,
1639 ///          it means that there is no debug information available for \p F.
1640 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1641   if (DISubprogram *S = F.getSubprogram())
1642     return S->getLine();
1643 
1644   if (NoWarnSampleUnused)
1645     return 0;
1646 
1647   // If the start of \p F is missing, emit a diagnostic to inform the user
1648   // about the missed opportunity.
1649   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1650       "No debug information found in function " + F.getName() +
1651           ": Function profile not used",
1652       DS_Warning));
1653   return 0;
1654 }
1655 
1656 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1657   DT.reset(new DominatorTree);
1658   DT->recalculate(F);
1659 
1660   PDT.reset(new PostDominatorTree(F));
1661 
1662   LI.reset(new LoopInfo);
1663   LI->analyze(*DT);
1664 }
1665 
1666 /// Generate branch weight metadata for all branches in \p F.
1667 ///
1668 /// Branch weights are computed out of instruction samples using a
1669 /// propagation heuristic. Propagation proceeds in 3 phases:
1670 ///
1671 /// 1- Assignment of block weights. All the basic blocks in the function
1672 ///    are initial assigned the same weight as their most frequently
1673 ///    executed instruction.
1674 ///
1675 /// 2- Creation of equivalence classes. Since samples may be missing from
1676 ///    blocks, we can fill in the gaps by setting the weights of all the
1677 ///    blocks in the same equivalence class to the same weight. To compute
1678 ///    the concept of equivalence, we use dominance and loop information.
1679 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1680 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1681 ///
1682 /// 3- Propagation of block weights into edges. This uses a simple
1683 ///    propagation heuristic. The following rules are applied to every
1684 ///    block BB in the CFG:
1685 ///
1686 ///    - If BB has a single predecessor/successor, then the weight
1687 ///      of that edge is the weight of the block.
1688 ///
1689 ///    - If all the edges are known except one, and the weight of the
1690 ///      block is already known, the weight of the unknown edge will
1691 ///      be the weight of the block minus the sum of all the known
1692 ///      edges. If the sum of all the known edges is larger than BB's weight,
1693 ///      we set the unknown edge weight to zero.
1694 ///
1695 ///    - If there is a self-referential edge, and the weight of the block is
1696 ///      known, the weight for that edge is set to the weight of the block
1697 ///      minus the weight of the other incoming edges to that block (if
1698 ///      known).
1699 ///
1700 /// Since this propagation is not guaranteed to finalize for every CFG, we
1701 /// only allow it to proceed for a limited number of iterations (controlled
1702 /// by -sample-profile-max-propagate-iterations).
1703 ///
1704 /// FIXME: Try to replace this propagation heuristic with a scheme
1705 /// that is guaranteed to finalize. A work-list approach similar to
1706 /// the standard value propagation algorithm used by SSA-CCP might
1707 /// work here.
1708 ///
1709 /// Once all the branch weights are computed, we emit the MD_prof
1710 /// metadata on BB using the computed values for each of its branches.
1711 ///
1712 /// \param F The function to query.
1713 ///
1714 /// \returns true if \p F was modified. Returns false, otherwise.
1715 bool SampleProfileLoader::emitAnnotations(Function &F) {
1716   bool Changed = false;
1717 
1718   if (getFunctionLoc(F) == 0)
1719     return false;
1720 
1721   LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1722                     << F.getName() << ": " << getFunctionLoc(F) << "\n");
1723 
1724   DenseSet<GlobalValue::GUID> InlinedGUIDs;
1725   Changed |= inlineHotFunctions(F, InlinedGUIDs);
1726 
1727   // Compute basic block weights.
1728   Changed |= computeBlockWeights(F);
1729 
1730   if (Changed) {
1731     // Add an entry count to the function using the samples gathered at the
1732     // function entry.
1733     // Sets the GUIDs that are inlined in the profiled binary. This is used
1734     // for ThinLink to make correct liveness analysis, and also make the IR
1735     // match the profiled binary before annotation.
1736     F.setEntryCount(
1737         ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1738         &InlinedGUIDs);
1739 
1740     // Compute dominance and loop info needed for propagation.
1741     computeDominanceAndLoopInfo(F);
1742 
1743     // Find equivalence classes.
1744     findEquivalenceClasses(F);
1745 
1746     // Propagate weights to all edges.
1747     propagateWeights(F);
1748   }
1749 
1750   // If coverage checking was requested, compute it now.
1751   if (SampleProfileRecordCoverage) {
1752     unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1753     unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1754     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1755     if (Coverage < SampleProfileRecordCoverage) {
1756       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1757           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1758           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1759               Twine(Coverage) + "%) were applied",
1760           DS_Warning));
1761     }
1762   }
1763 
1764   if (SampleProfileSampleCoverage) {
1765     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1766     uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1767     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1768     if (Coverage < SampleProfileSampleCoverage) {
1769       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1770           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1771           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1772               Twine(Coverage) + "%) were applied",
1773           DS_Warning));
1774     }
1775   }
1776   return Changed;
1777 }
1778 
1779 char SampleProfileLoaderLegacyPass::ID = 0;
1780 
1781 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1782                       "Sample Profile loader", false, false)
1783 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1784 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1785 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1786 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1787 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1788                     "Sample Profile loader", false, false)
1789 
1790 std::vector<Function *>
1791 SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) {
1792   std::vector<Function *> FunctionOrderList;
1793   FunctionOrderList.reserve(M.size());
1794 
1795   if (!ProfileTopDownLoad || CG == nullptr) {
1796     for (Function &F : M)
1797       if (!F.isDeclaration())
1798         FunctionOrderList.push_back(&F);
1799     return FunctionOrderList;
1800   }
1801 
1802   assert(&CG->getModule() == &M);
1803   scc_iterator<CallGraph *> CGI = scc_begin(CG);
1804   while (!CGI.isAtEnd()) {
1805     for (CallGraphNode *node : *CGI) {
1806       auto F = node->getFunction();
1807       if (F && !F->isDeclaration())
1808         FunctionOrderList.push_back(F);
1809     }
1810     ++CGI;
1811   }
1812 
1813   std::reverse(FunctionOrderList.begin(), FunctionOrderList.end());
1814   return FunctionOrderList;
1815 }
1816 
1817 bool SampleProfileLoader::doInitialization(Module &M) {
1818   auto &Ctx = M.getContext();
1819 
1820   std::unique_ptr<SampleProfileReaderItaniumRemapper> RemapReader;
1821   auto ReaderOrErr =
1822       SampleProfileReader::create(Filename, Ctx, RemappingFilename);
1823   if (std::error_code EC = ReaderOrErr.getError()) {
1824     std::string Msg = "Could not open profile: " + EC.message();
1825     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1826     return false;
1827   }
1828   Reader = std::move(ReaderOrErr.get());
1829   Reader->collectFuncsFrom(M);
1830   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1831   PSL = Reader->getProfileSymbolList();
1832 
1833   // While profile-sample-accurate is on, ignore symbol list.
1834   ProfAccForSymsInList =
1835       ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate;
1836   if (ProfAccForSymsInList) {
1837     NamesInProfile.clear();
1838     if (auto NameTable = Reader->getNameTable())
1839       NamesInProfile.insert(NameTable->begin(), NameTable->end());
1840   }
1841 
1842   return true;
1843 }
1844 
1845 ModulePass *llvm::createSampleProfileLoaderPass() {
1846   return new SampleProfileLoaderLegacyPass();
1847 }
1848 
1849 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1850   return new SampleProfileLoaderLegacyPass(Name);
1851 }
1852 
1853 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
1854                                       ProfileSummaryInfo *_PSI, CallGraph *CG) {
1855   GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap);
1856   if (!ProfileIsValid)
1857     return false;
1858 
1859   PSI = _PSI;
1860   if (M.getProfileSummary(/* IsCS */ false) == nullptr)
1861     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
1862                         ProfileSummary::PSK_Sample);
1863 
1864   // Compute the total number of samples collected in this profile.
1865   for (const auto &I : Reader->getProfiles())
1866     TotalCollectedSamples += I.second.getTotalSamples();
1867 
1868   // Populate the symbol map.
1869   for (const auto &N_F : M.getValueSymbolTable()) {
1870     StringRef OrigName = N_F.getKey();
1871     Function *F = dyn_cast<Function>(N_F.getValue());
1872     if (F == nullptr)
1873       continue;
1874     SymbolMap[OrigName] = F;
1875     auto pos = OrigName.find('.');
1876     if (pos != StringRef::npos) {
1877       StringRef NewName = OrigName.substr(0, pos);
1878       auto r = SymbolMap.insert(std::make_pair(NewName, F));
1879       // Failiing to insert means there is already an entry in SymbolMap,
1880       // thus there are multiple functions that are mapped to the same
1881       // stripped name. In this case of name conflicting, set the value
1882       // to nullptr to avoid confusion.
1883       if (!r.second)
1884         r.first->second = nullptr;
1885     }
1886   }
1887 
1888   bool retval = false;
1889   for (auto F : buildFunctionOrder(M, CG)) {
1890     assert(!F->isDeclaration());
1891     clearFunctionData();
1892     retval |= runOnFunction(*F, AM);
1893   }
1894 
1895   // Account for cold calls not inlined....
1896   for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
1897        notInlinedCallInfo)
1898     updateProfileCallee(pair.first, pair.second.entryCount);
1899 
1900   return retval;
1901 }
1902 
1903 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1904   ACT = &getAnalysis<AssumptionCacheTracker>();
1905   TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1906   TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>();
1907   ProfileSummaryInfo *PSI =
1908       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1909   return SampleLoader.runOnModule(M, nullptr, PSI, nullptr);
1910 }
1911 
1912 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1913 
1914   DILocation2SampleMap.clear();
1915   // By default the entry count is initialized to -1, which will be treated
1916   // conservatively by getEntryCount as the same as unknown (None). This is
1917   // to avoid newly added code to be treated as cold. If we have samples
1918   // this will be overwritten in emitAnnotations.
1919   uint64_t initialEntryCount = -1;
1920 
1921   ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL;
1922   if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) {
1923     // initialize all the function entry counts to 0. It means all the
1924     // functions without profile will be regarded as cold.
1925     initialEntryCount = 0;
1926     // profile-sample-accurate is a user assertion which has a higher precedence
1927     // than symbol list. When profile-sample-accurate is on, ignore symbol list.
1928     ProfAccForSymsInList = false;
1929   }
1930 
1931   // PSL -- profile symbol list include all the symbols in sampled binary.
1932   // If ProfileAccurateForSymsInList is enabled, PSL is used to treat
1933   // old functions without samples being cold, without having to worry
1934   // about new and hot functions being mistakenly treated as cold.
1935   if (ProfAccForSymsInList) {
1936     // Initialize the entry count to 0 for functions in the list.
1937     if (PSL->contains(F.getName()))
1938       initialEntryCount = 0;
1939 
1940     // Function in the symbol list but without sample will be regarded as
1941     // cold. To minimize the potential negative performance impact it could
1942     // have, we want to be a little conservative here saying if a function
1943     // shows up in the profile, no matter as outline function, inline instance
1944     // or call targets, treat the function as not being cold. This will handle
1945     // the cases such as most callsites of a function are inlined in sampled
1946     // binary but not inlined in current build (because of source code drift,
1947     // imprecise debug information, or the callsites are all cold individually
1948     // but not cold accumulatively...), so the outline function showing up as
1949     // cold in sampled binary will actually not be cold after current build.
1950     StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
1951     if (NamesInProfile.count(CanonName))
1952       initialEntryCount = -1;
1953   }
1954 
1955   F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
1956   std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1957   if (AM) {
1958     auto &FAM =
1959         AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1960             .getManager();
1961     ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1962   } else {
1963     OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F);
1964     ORE = OwnedORE.get();
1965   }
1966   Samples = Reader->getSamplesFor(F);
1967   if (Samples && !Samples->empty())
1968     return emitAnnotations(F);
1969   return false;
1970 }
1971 
1972 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1973                                                ModuleAnalysisManager &AM) {
1974   FunctionAnalysisManager &FAM =
1975       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1976 
1977   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1978     return FAM.getResult<AssumptionAnalysis>(F);
1979   };
1980   auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1981     return FAM.getResult<TargetIRAnalysis>(F);
1982   };
1983   auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
1984     return FAM.getResult<TargetLibraryAnalysis>(F);
1985   };
1986 
1987   SampleProfileLoader SampleLoader(
1988       ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1989       ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
1990                                        : ProfileRemappingFileName,
1991       IsThinLTOPreLink, GetAssumptionCache, GetTTI, GetTLI);
1992 
1993   if (!SampleLoader.doInitialization(M))
1994     return PreservedAnalyses::all();
1995 
1996   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1997   CallGraph &CG = AM.getResult<CallGraphAnalysis>(M);
1998   if (!SampleLoader.runOnModule(M, &AM, PSI, &CG))
1999     return PreservedAnalyses::all();
2000 
2001   return PreservedAnalyses::none();
2002 }
2003