1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 //      to indicate the weights of each edge coming out of the branch.
19 //      The weight of each edge is the weight of the target block for
20 //      that edge. The weight of a block B is computed as the maximum
21 //      number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/SampleProfile.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/PostDominators.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DebugInfo.h"
35 #include "llvm/IR/DiagnosticInfo.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/InstIterator.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Pass.h"
47 #include "llvm/ProfileData/InstrProf.h"
48 #include "llvm/ProfileData/SampleProfReader.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorOr.h"
52 #include "llvm/Support/Format.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/IPO.h"
55 #include "llvm/Transforms/Utils/Cloning.h"
56 #include <cctype>
57 
58 using namespace llvm;
59 using namespace sampleprof;
60 
61 #define DEBUG_TYPE "sample-profile"
62 
63 // Command line option to specify the file to read samples from. This is
64 // mainly used for debugging.
65 static cl::opt<std::string> SampleProfileFile(
66     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
67     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
68 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
69     "sample-profile-max-propagate-iterations", cl::init(100),
70     cl::desc("Maximum number of iterations to go through when propagating "
71              "sample block/edge weights through the CFG."));
72 static cl::opt<unsigned> SampleProfileRecordCoverage(
73     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
74     cl::desc("Emit a warning if less than N% of records in the input profile "
75              "are matched to the IR."));
76 static cl::opt<unsigned> SampleProfileSampleCoverage(
77     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
78     cl::desc("Emit a warning if less than N% of samples in the input profile "
79              "are matched to the IR."));
80 static cl::opt<double> SampleProfileHotThreshold(
81     "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"),
82     cl::desc("Inlined functions that account for more than N% of all samples "
83              "collected in the parent function, will be inlined again."));
84 
85 namespace {
86 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap;
87 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap;
88 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge;
89 typedef DenseMap<Edge, uint64_t> EdgeWeightMap;
90 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>
91     BlockEdgeMap;
92 
93 class SampleCoverageTracker {
94 public:
95   SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {}
96 
97   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
98                        uint32_t Discriminator, uint64_t Samples);
99   unsigned computeCoverage(unsigned Used, unsigned Total) const;
100   unsigned countUsedRecords(const FunctionSamples *FS) const;
101   unsigned countBodyRecords(const FunctionSamples *FS) const;
102   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
103   uint64_t countBodySamples(const FunctionSamples *FS) const;
104   void clear() {
105     SampleCoverage.clear();
106     TotalUsedSamples = 0;
107   }
108 
109 private:
110   typedef std::map<LineLocation, unsigned> BodySampleCoverageMap;
111   typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap>
112       FunctionSamplesCoverageMap;
113 
114   /// Coverage map for sampling records.
115   ///
116   /// This map keeps a record of sampling records that have been matched to
117   /// an IR instruction. This is used to detect some form of staleness in
118   /// profiles (see flag -sample-profile-check-coverage).
119   ///
120   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
121   /// another map that counts how many times the sample record at the
122   /// given location has been used.
123   FunctionSamplesCoverageMap SampleCoverage;
124 
125   /// Number of samples used from the profile.
126   ///
127   /// When a sampling record is used for the first time, the samples from
128   /// that record are added to this accumulator.  Coverage is later computed
129   /// based on the total number of samples available in this function and
130   /// its callsites.
131   ///
132   /// Note that this accumulator tracks samples used from a single function
133   /// and all the inlined callsites. Strictly, we should have a map of counters
134   /// keyed by FunctionSamples pointers, but these stats are cleared after
135   /// every function, so we just need to keep a single counter.
136   uint64_t TotalUsedSamples;
137 };
138 
139 /// \brief Sample profile pass.
140 ///
141 /// This pass reads profile data from the file specified by
142 /// -sample-profile-file and annotates every affected function with the
143 /// profile information found in that file.
144 class SampleProfileLoader {
145 public:
146   SampleProfileLoader(StringRef Name = SampleProfileFile)
147       : DT(nullptr), PDT(nullptr), LI(nullptr), ACT(nullptr), Reader(),
148         Samples(nullptr), Filename(Name), ProfileIsValid(false),
149         TotalCollectedSamples(0) {}
150 
151   bool doInitialization(Module &M);
152   bool runOnModule(Module &M);
153   void setACT(AssumptionCacheTracker *A) { ACT = A; }
154 
155   void dump() { Reader->dump(); }
156 
157 protected:
158   bool runOnFunction(Function &F);
159   unsigned getFunctionLoc(Function &F);
160   bool emitAnnotations(Function &F);
161   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
162   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
163   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
164   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
165   bool inlineHotFunctions(Function &F);
166   void printEdgeWeight(raw_ostream &OS, Edge E);
167   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
168   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
169   bool computeBlockWeights(Function &F);
170   void findEquivalenceClasses(Function &F);
171   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
172                            DominatorTreeBase<BasicBlock> *DomTree);
173   void propagateWeights(Function &F);
174   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
175   void buildEdges(Function &F);
176   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
177   void computeDominanceAndLoopInfo(Function &F);
178   unsigned getOffset(unsigned L, unsigned H) const;
179   void clearFunctionData();
180 
181   /// \brief Map basic blocks to their computed weights.
182   ///
183   /// The weight of a basic block is defined to be the maximum
184   /// of all the instruction weights in that block.
185   BlockWeightMap BlockWeights;
186 
187   /// \brief Map edges to their computed weights.
188   ///
189   /// Edge weights are computed by propagating basic block weights in
190   /// SampleProfile::propagateWeights.
191   EdgeWeightMap EdgeWeights;
192 
193   /// \brief Set of visited blocks during propagation.
194   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
195 
196   /// \brief Set of visited edges during propagation.
197   SmallSet<Edge, 32> VisitedEdges;
198 
199   /// \brief Equivalence classes for block weights.
200   ///
201   /// Two blocks BB1 and BB2 are in the same equivalence class if they
202   /// dominate and post-dominate each other, and they are in the same loop
203   /// nest. When this happens, the two blocks are guaranteed to execute
204   /// the same number of times.
205   EquivalenceClassMap EquivalenceClass;
206 
207   /// \brief Dominance, post-dominance and loop information.
208   std::unique_ptr<DominatorTree> DT;
209   std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT;
210   std::unique_ptr<LoopInfo> LI;
211 
212   AssumptionCacheTracker *ACT;
213 
214   /// \brief Predecessors for each basic block in the CFG.
215   BlockEdgeMap Predecessors;
216 
217   /// \brief Successors for each basic block in the CFG.
218   BlockEdgeMap Successors;
219 
220   SampleCoverageTracker CoverageTracker;
221 
222   /// \brief Profile reader object.
223   std::unique_ptr<SampleProfileReader> Reader;
224 
225   /// \brief Samples collected for the body of this function.
226   FunctionSamples *Samples;
227 
228   /// \brief Name of the profile file to load.
229   std::string Filename;
230 
231   /// \brief Flag indicating whether the profile input loaded successfully.
232   bool ProfileIsValid;
233 
234   /// \brief Total number of samples collected in this profile.
235   ///
236   /// This is the sum of all the samples collected in all the functions executed
237   /// at runtime.
238   uint64_t TotalCollectedSamples;
239 };
240 
241 class SampleProfileLoaderLegacyPass : public ModulePass {
242 public:
243   // Class identification, replacement for typeinfo
244   static char ID;
245 
246   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile)
247       : ModulePass(ID), SampleLoader(Name) {
248     initializeSampleProfileLoaderLegacyPassPass(
249         *PassRegistry::getPassRegistry());
250   }
251 
252   void dump() { SampleLoader.dump(); }
253 
254   bool doInitialization(Module &M) override {
255     return SampleLoader.doInitialization(M);
256   }
257   StringRef getPassName() const override { return "Sample profile pass"; }
258   bool runOnModule(Module &M) override;
259 
260   void getAnalysisUsage(AnalysisUsage &AU) const override {
261     AU.addRequired<AssumptionCacheTracker>();
262   }
263 
264 private:
265   SampleProfileLoader SampleLoader;
266 };
267 
268 /// Return true if the given callsite is hot wrt to its caller.
269 ///
270 /// Functions that were inlined in the original binary will be represented
271 /// in the inline stack in the sample profile. If the profile shows that
272 /// the original inline decision was "good" (i.e., the callsite is executed
273 /// frequently), then we will recreate the inline decision and apply the
274 /// profile from the inlined callsite.
275 ///
276 /// To decide whether an inlined callsite is hot, we compute the fraction
277 /// of samples used by the callsite with respect to the total number of samples
278 /// collected in the caller.
279 ///
280 /// If that fraction is larger than the default given by
281 /// SampleProfileHotThreshold, the callsite will be inlined again.
282 bool callsiteIsHot(const FunctionSamples *CallerFS,
283                    const FunctionSamples *CallsiteFS) {
284   if (!CallsiteFS)
285     return false; // The callsite was not inlined in the original binary.
286 
287   uint64_t ParentTotalSamples = CallerFS->getTotalSamples();
288   if (ParentTotalSamples == 0)
289     return false; // Avoid division by zero.
290 
291   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
292   if (CallsiteTotalSamples == 0)
293     return false; // Callsite is trivially cold.
294 
295   double PercentSamples =
296       (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0;
297   return PercentSamples >= SampleProfileHotThreshold;
298 }
299 }
300 
301 /// Mark as used the sample record for the given function samples at
302 /// (LineOffset, Discriminator).
303 ///
304 /// \returns true if this is the first time we mark the given record.
305 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
306                                             uint32_t LineOffset,
307                                             uint32_t Discriminator,
308                                             uint64_t Samples) {
309   LineLocation Loc(LineOffset, Discriminator);
310   unsigned &Count = SampleCoverage[FS][Loc];
311   bool FirstTime = (++Count == 1);
312   if (FirstTime)
313     TotalUsedSamples += Samples;
314   return FirstTime;
315 }
316 
317 /// Return the number of sample records that were applied from this profile.
318 ///
319 /// This count does not include records from cold inlined callsites.
320 unsigned
321 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const {
322   auto I = SampleCoverage.find(FS);
323 
324   // The size of the coverage map for FS represents the number of records
325   // that were marked used at least once.
326   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
327 
328   // If there are inlined callsites in this function, count the samples found
329   // in the respective bodies. However, do not bother counting callees with 0
330   // total samples, these are callees that were never invoked at runtime.
331   for (const auto &I : FS->getCallsiteSamples()) {
332     const FunctionSamples *CalleeSamples = &I.second;
333     if (callsiteIsHot(FS, CalleeSamples))
334       Count += countUsedRecords(CalleeSamples);
335   }
336 
337   return Count;
338 }
339 
340 /// Return the number of sample records in the body of this profile.
341 ///
342 /// This count does not include records from cold inlined callsites.
343 unsigned
344 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const {
345   unsigned Count = FS->getBodySamples().size();
346 
347   // Only count records in hot callsites.
348   for (const auto &I : FS->getCallsiteSamples()) {
349     const FunctionSamples *CalleeSamples = &I.second;
350     if (callsiteIsHot(FS, CalleeSamples))
351       Count += countBodyRecords(CalleeSamples);
352   }
353 
354   return Count;
355 }
356 
357 /// Return the number of samples collected in the body of this profile.
358 ///
359 /// This count does not include samples from cold inlined callsites.
360 uint64_t
361 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const {
362   uint64_t Total = 0;
363   for (const auto &I : FS->getBodySamples())
364     Total += I.second.getSamples();
365 
366   // Only count samples in hot callsites.
367   for (const auto &I : FS->getCallsiteSamples()) {
368     const FunctionSamples *CalleeSamples = &I.second;
369     if (callsiteIsHot(FS, CalleeSamples))
370       Total += countBodySamples(CalleeSamples);
371   }
372 
373   return Total;
374 }
375 
376 /// Return the fraction of sample records used in this profile.
377 ///
378 /// The returned value is an unsigned integer in the range 0-100 indicating
379 /// the percentage of sample records that were used while applying this
380 /// profile to the associated function.
381 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
382                                                 unsigned Total) const {
383   assert(Used <= Total &&
384          "number of used records cannot exceed the total number of records");
385   return Total > 0 ? Used * 100 / Total : 100;
386 }
387 
388 /// Clear all the per-function data used to load samples and propagate weights.
389 void SampleProfileLoader::clearFunctionData() {
390   BlockWeights.clear();
391   EdgeWeights.clear();
392   VisitedBlocks.clear();
393   VisitedEdges.clear();
394   EquivalenceClass.clear();
395   DT = nullptr;
396   PDT = nullptr;
397   LI = nullptr;
398   Predecessors.clear();
399   Successors.clear();
400   CoverageTracker.clear();
401 }
402 
403 /// \brief Returns the offset of lineno \p L to head_lineno \p H
404 ///
405 /// \param L  Lineno
406 /// \param H  Header lineno of the function
407 ///
408 /// \returns offset to the header lineno. 16 bits are used to represent offset.
409 /// We assume that a single function will not exceed 65535 LOC.
410 unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const {
411   return (L - H) & 0xffff;
412 }
413 
414 /// \brief Print the weight of edge \p E on stream \p OS.
415 ///
416 /// \param OS  Stream to emit the output to.
417 /// \param E  Edge to print.
418 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
419   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
420      << "]: " << EdgeWeights[E] << "\n";
421 }
422 
423 /// \brief Print the equivalence class of block \p BB on stream \p OS.
424 ///
425 /// \param OS  Stream to emit the output to.
426 /// \param BB  Block to print.
427 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
428                                                 const BasicBlock *BB) {
429   const BasicBlock *Equiv = EquivalenceClass[BB];
430   OS << "equivalence[" << BB->getName()
431      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
432 }
433 
434 /// \brief Print the weight of block \p BB on stream \p OS.
435 ///
436 /// \param OS  Stream to emit the output to.
437 /// \param BB  Block to print.
438 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
439                                            const BasicBlock *BB) const {
440   const auto &I = BlockWeights.find(BB);
441   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
442   OS << "weight[" << BB->getName() << "]: " << W << "\n";
443 }
444 
445 /// \brief Get the weight for an instruction.
446 ///
447 /// The "weight" of an instruction \p Inst is the number of samples
448 /// collected on that instruction at runtime. To retrieve it, we
449 /// need to compute the line number of \p Inst relative to the start of its
450 /// function. We use HeaderLineno to compute the offset. We then
451 /// look up the samples collected for \p Inst using BodySamples.
452 ///
453 /// \param Inst Instruction to query.
454 ///
455 /// \returns the weight of \p Inst.
456 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
457   const DebugLoc &DLoc = Inst.getDebugLoc();
458   if (!DLoc)
459     return std::error_code();
460 
461   const FunctionSamples *FS = findFunctionSamples(Inst);
462   if (!FS)
463     return std::error_code();
464 
465   // Ignore all intrinsics and branch instructions.
466   // Branch instruction usually contains debug info from sources outside of
467   // the residing basic block, thus we ignore them during annotation.
468   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst))
469     return std::error_code();
470 
471   // If a call/invoke instruction is inlined in profile, but not inlined here,
472   // it means that the inlined callsite has no sample, thus the call
473   // instruction should have 0 count.
474   bool IsCall = isa<CallInst>(Inst) || isa<InvokeInst>(Inst);
475   if (IsCall && findCalleeFunctionSamples(Inst))
476     return 0;
477 
478   const DILocation *DIL = DLoc;
479   unsigned Lineno = DLoc.getLine();
480   unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine();
481 
482   uint32_t LineOffset = getOffset(Lineno, HeaderLineno);
483   uint32_t Discriminator = DIL->getDiscriminator();
484   ErrorOr<uint64_t> R = IsCall
485                             ? FS->findCallSamplesAt(LineOffset, Discriminator)
486                             : FS->findSamplesAt(LineOffset, Discriminator);
487   if (R) {
488     bool FirstMark =
489         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
490     if (FirstMark) {
491       const Function *F = Inst.getParent()->getParent();
492       LLVMContext &Ctx = F->getContext();
493       emitOptimizationRemark(
494           Ctx, DEBUG_TYPE, *F, DLoc,
495           Twine("Applied ") + Twine(*R) +
496               " samples from profile (offset: " + Twine(LineOffset) +
497               ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")");
498     }
499     DEBUG(dbgs() << "    " << Lineno << "." << DIL->getDiscriminator() << ":"
500                  << Inst << " (line offset: " << Lineno - HeaderLineno << "."
501                  << DIL->getDiscriminator() << " - weight: " << R.get()
502                  << ")\n");
503   }
504   return R;
505 }
506 
507 /// \brief Compute the weight of a basic block.
508 ///
509 /// The weight of basic block \p BB is the maximum weight of all the
510 /// instructions in BB.
511 ///
512 /// \param BB The basic block to query.
513 ///
514 /// \returns the weight for \p BB.
515 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
516   uint64_t Max = 0;
517   bool HasWeight = false;
518   for (auto &I : BB->getInstList()) {
519     const ErrorOr<uint64_t> &R = getInstWeight(I);
520     if (R) {
521       Max = std::max(Max, R.get());
522       HasWeight = true;
523     }
524   }
525   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
526 }
527 
528 /// \brief Compute and store the weights of every basic block.
529 ///
530 /// This populates the BlockWeights map by computing
531 /// the weights of every basic block in the CFG.
532 ///
533 /// \param F The function to query.
534 bool SampleProfileLoader::computeBlockWeights(Function &F) {
535   bool Changed = false;
536   DEBUG(dbgs() << "Block weights\n");
537   for (const auto &BB : F) {
538     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
539     if (Weight) {
540       BlockWeights[&BB] = Weight.get();
541       VisitedBlocks.insert(&BB);
542       Changed = true;
543     }
544     DEBUG(printBlockWeight(dbgs(), &BB));
545   }
546 
547   return Changed;
548 }
549 
550 /// \brief Get the FunctionSamples for a call instruction.
551 ///
552 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
553 /// instance in which that call instruction is calling to. It contains
554 /// all samples that resides in the inlined instance. We first find the
555 /// inlined instance in which the call instruction is from, then we
556 /// traverse its children to find the callsite with the matching
557 /// location.
558 ///
559 /// \param Inst Call/Invoke instruction to query.
560 ///
561 /// \returns The FunctionSamples pointer to the inlined instance.
562 const FunctionSamples *
563 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
564   const DILocation *DIL = Inst.getDebugLoc();
565   if (!DIL) {
566     return nullptr;
567   }
568   DISubprogram *SP = DIL->getScope()->getSubprogram();
569   if (!SP)
570     return nullptr;
571 
572   const FunctionSamples *FS = findFunctionSamples(Inst);
573   if (FS == nullptr)
574     return nullptr;
575 
576   return FS->findFunctionSamplesAt(LineLocation(
577       getOffset(DIL->getLine(), SP->getLine()), DIL->getDiscriminator()));
578 }
579 
580 /// \brief Get the FunctionSamples for an instruction.
581 ///
582 /// The FunctionSamples of an instruction \p Inst is the inlined instance
583 /// in which that instruction is coming from. We traverse the inline stack
584 /// of that instruction, and match it with the tree nodes in the profile.
585 ///
586 /// \param Inst Instruction to query.
587 ///
588 /// \returns the FunctionSamples pointer to the inlined instance.
589 const FunctionSamples *
590 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
591   SmallVector<LineLocation, 10> S;
592   const DILocation *DIL = Inst.getDebugLoc();
593   if (!DIL) {
594     return Samples;
595   }
596   for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) {
597     DISubprogram *SP = DIL->getScope()->getSubprogram();
598     if (!SP)
599       return nullptr;
600     S.push_back(LineLocation(getOffset(DIL->getLine(), SP->getLine()),
601                              DIL->getDiscriminator()));
602   }
603   if (S.size() == 0)
604     return Samples;
605   const FunctionSamples *FS = Samples;
606   for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
607     FS = FS->findFunctionSamplesAt(S[i]);
608   }
609   return FS;
610 }
611 
612 /// \brief Iteratively inline hot callsites of a function.
613 ///
614 /// Iteratively traverse all callsites of the function \p F, and find if
615 /// the corresponding inlined instance exists and is hot in profile. If
616 /// it is hot enough, inline the callsites and adds new callsites of the
617 /// callee into the caller.
618 ///
619 /// TODO: investigate the possibility of not invoking InlineFunction directly.
620 ///
621 /// \param F function to perform iterative inlining.
622 ///
623 /// \returns True if there is any inline happened.
624 bool SampleProfileLoader::inlineHotFunctions(Function &F) {
625   bool Changed = false;
626   LLVMContext &Ctx = F.getContext();
627   std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&](
628       Function &F) -> AssumptionCache & { return ACT->getAssumptionCache(F); };
629   while (true) {
630     bool LocalChanged = false;
631     SmallVector<Instruction *, 10> CIS;
632     for (auto &BB : F) {
633       bool Hot = false;
634       SmallVector<Instruction *, 10> Candidates;
635       for (auto &I : BB.getInstList()) {
636         const FunctionSamples *FS = nullptr;
637         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
638             (FS = findCalleeFunctionSamples(I))) {
639           Candidates.push_back(&I);
640           if (callsiteIsHot(Samples, FS))
641             Hot = true;
642         }
643       }
644       if (Hot) {
645         CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
646       }
647     }
648     for (auto I : CIS) {
649       InlineFunctionInfo IFI(nullptr, ACT ? &GetAssumptionCache : nullptr);
650       CallSite CS(I);
651       Function *CalledFunction = CS.getCalledFunction();
652       if (!CalledFunction || !CalledFunction->getSubprogram())
653         continue;
654       DebugLoc DLoc = I->getDebugLoc();
655       uint64_t NumSamples = findCalleeFunctionSamples(*I)->getTotalSamples();
656       if (InlineFunction(CS, IFI)) {
657         LocalChanged = true;
658         emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc,
659                                Twine("inlined hot callee '") +
660                                    CalledFunction->getName() + "' with " +
661                                    Twine(NumSamples) + " samples into '" +
662                                    F.getName() + "'");
663       }
664     }
665     if (LocalChanged) {
666       Changed = true;
667     } else {
668       break;
669     }
670   }
671   return Changed;
672 }
673 
674 /// \brief Find equivalence classes for the given block.
675 ///
676 /// This finds all the blocks that are guaranteed to execute the same
677 /// number of times as \p BB1. To do this, it traverses all the
678 /// descendants of \p BB1 in the dominator or post-dominator tree.
679 ///
680 /// A block BB2 will be in the same equivalence class as \p BB1 if
681 /// the following holds:
682 ///
683 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
684 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
685 ///    dominate BB1 in the post-dominator tree.
686 ///
687 /// 2- Both BB2 and \p BB1 must be in the same loop.
688 ///
689 /// For every block BB2 that meets those two requirements, we set BB2's
690 /// equivalence class to \p BB1.
691 ///
692 /// \param BB1  Block to check.
693 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
694 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
695 ///                 with blocks from \p BB1's dominator tree, then
696 ///                 this is the post-dominator tree, and vice versa.
697 void SampleProfileLoader::findEquivalencesFor(
698     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
699     DominatorTreeBase<BasicBlock> *DomTree) {
700   const BasicBlock *EC = EquivalenceClass[BB1];
701   uint64_t Weight = BlockWeights[EC];
702   for (const auto *BB2 : Descendants) {
703     bool IsDomParent = DomTree->dominates(BB2, BB1);
704     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
705     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
706       EquivalenceClass[BB2] = EC;
707       // If BB2 is visited, then the entire EC should be marked as visited.
708       if (VisitedBlocks.count(BB2)) {
709         VisitedBlocks.insert(EC);
710       }
711 
712       // If BB2 is heavier than BB1, make BB2 have the same weight
713       // as BB1.
714       //
715       // Note that we don't worry about the opposite situation here
716       // (when BB2 is lighter than BB1). We will deal with this
717       // during the propagation phase. Right now, we just want to
718       // make sure that BB1 has the largest weight of all the
719       // members of its equivalence set.
720       Weight = std::max(Weight, BlockWeights[BB2]);
721     }
722   }
723   if (EC == &EC->getParent()->getEntryBlock()) {
724     BlockWeights[EC] = Samples->getHeadSamples() + 1;
725   } else {
726     BlockWeights[EC] = Weight;
727   }
728 }
729 
730 /// \brief Find equivalence classes.
731 ///
732 /// Since samples may be missing from blocks, we can fill in the gaps by setting
733 /// the weights of all the blocks in the same equivalence class to the same
734 /// weight. To compute the concept of equivalence, we use dominance and loop
735 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
736 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
737 ///
738 /// \param F The function to query.
739 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
740   SmallVector<BasicBlock *, 8> DominatedBBs;
741   DEBUG(dbgs() << "\nBlock equivalence classes\n");
742   // Find equivalence sets based on dominance and post-dominance information.
743   for (auto &BB : F) {
744     BasicBlock *BB1 = &BB;
745 
746     // Compute BB1's equivalence class once.
747     if (EquivalenceClass.count(BB1)) {
748       DEBUG(printBlockEquivalence(dbgs(), BB1));
749       continue;
750     }
751 
752     // By default, blocks are in their own equivalence class.
753     EquivalenceClass[BB1] = BB1;
754 
755     // Traverse all the blocks dominated by BB1. We are looking for
756     // every basic block BB2 such that:
757     //
758     // 1- BB1 dominates BB2.
759     // 2- BB2 post-dominates BB1.
760     // 3- BB1 and BB2 are in the same loop nest.
761     //
762     // If all those conditions hold, it means that BB2 is executed
763     // as many times as BB1, so they are placed in the same equivalence
764     // class by making BB2's equivalence class be BB1.
765     DominatedBBs.clear();
766     DT->getDescendants(BB1, DominatedBBs);
767     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
768 
769     DEBUG(printBlockEquivalence(dbgs(), BB1));
770   }
771 
772   // Assign weights to equivalence classes.
773   //
774   // All the basic blocks in the same equivalence class will execute
775   // the same number of times. Since we know that the head block in
776   // each equivalence class has the largest weight, assign that weight
777   // to all the blocks in that equivalence class.
778   DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
779   for (auto &BI : F) {
780     const BasicBlock *BB = &BI;
781     const BasicBlock *EquivBB = EquivalenceClass[BB];
782     if (BB != EquivBB)
783       BlockWeights[BB] = BlockWeights[EquivBB];
784     DEBUG(printBlockWeight(dbgs(), BB));
785   }
786 }
787 
788 /// \brief Visit the given edge to decide if it has a valid weight.
789 ///
790 /// If \p E has not been visited before, we copy to \p UnknownEdge
791 /// and increment the count of unknown edges.
792 ///
793 /// \param E  Edge to visit.
794 /// \param NumUnknownEdges  Current number of unknown edges.
795 /// \param UnknownEdge  Set if E has not been visited before.
796 ///
797 /// \returns E's weight, if known. Otherwise, return 0.
798 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
799                                         Edge *UnknownEdge) {
800   if (!VisitedEdges.count(E)) {
801     (*NumUnknownEdges)++;
802     *UnknownEdge = E;
803     return 0;
804   }
805 
806   return EdgeWeights[E];
807 }
808 
809 /// \brief Propagate weights through incoming/outgoing edges.
810 ///
811 /// If the weight of a basic block is known, and there is only one edge
812 /// with an unknown weight, we can calculate the weight of that edge.
813 ///
814 /// Similarly, if all the edges have a known count, we can calculate the
815 /// count of the basic block, if needed.
816 ///
817 /// \param F  Function to process.
818 /// \param UpdateBlockCount  Whether we should update basic block counts that
819 ///                          has already been annotated.
820 ///
821 /// \returns  True if new weights were assigned to edges or blocks.
822 bool SampleProfileLoader::propagateThroughEdges(Function &F,
823                                                 bool UpdateBlockCount) {
824   bool Changed = false;
825   DEBUG(dbgs() << "\nPropagation through edges\n");
826   for (const auto &BI : F) {
827     const BasicBlock *BB = &BI;
828     const BasicBlock *EC = EquivalenceClass[BB];
829 
830     // Visit all the predecessor and successor edges to determine
831     // which ones have a weight assigned already. Note that it doesn't
832     // matter that we only keep track of a single unknown edge. The
833     // only case we are interested in handling is when only a single
834     // edge is unknown (see setEdgeOrBlockWeight).
835     for (unsigned i = 0; i < 2; i++) {
836       uint64_t TotalWeight = 0;
837       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
838       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
839 
840       if (i == 0) {
841         // First, visit all predecessor edges.
842         NumTotalEdges = Predecessors[BB].size();
843         for (auto *Pred : Predecessors[BB]) {
844           Edge E = std::make_pair(Pred, BB);
845           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
846           if (E.first == E.second)
847             SelfReferentialEdge = E;
848         }
849         if (NumTotalEdges == 1) {
850           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
851         }
852       } else {
853         // On the second round, visit all successor edges.
854         NumTotalEdges = Successors[BB].size();
855         for (auto *Succ : Successors[BB]) {
856           Edge E = std::make_pair(BB, Succ);
857           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
858         }
859         if (NumTotalEdges == 1) {
860           SingleEdge = std::make_pair(BB, Successors[BB][0]);
861         }
862       }
863 
864       // After visiting all the edges, there are three cases that we
865       // can handle immediately:
866       //
867       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
868       //   In this case, we simply check that the sum of all the edges
869       //   is the same as BB's weight. If not, we change BB's weight
870       //   to match. Additionally, if BB had not been visited before,
871       //   we mark it visited.
872       //
873       // - Only one edge is unknown and BB has already been visited.
874       //   In this case, we can compute the weight of the edge by
875       //   subtracting the total block weight from all the known
876       //   edge weights. If the edges weight more than BB, then the
877       //   edge of the last remaining edge is set to zero.
878       //
879       // - There exists a self-referential edge and the weight of BB is
880       //   known. In this case, this edge can be based on BB's weight.
881       //   We add up all the other known edges and set the weight on
882       //   the self-referential edge as we did in the previous case.
883       //
884       // In any other case, we must continue iterating. Eventually,
885       // all edges will get a weight, or iteration will stop when
886       // it reaches SampleProfileMaxPropagateIterations.
887       if (NumUnknownEdges <= 1) {
888         uint64_t &BBWeight = BlockWeights[EC];
889         if (NumUnknownEdges == 0) {
890           if (!VisitedBlocks.count(EC)) {
891             // If we already know the weight of all edges, the weight of the
892             // basic block can be computed. It should be no larger than the sum
893             // of all edge weights.
894             if (TotalWeight > BBWeight) {
895               BBWeight = TotalWeight;
896               Changed = true;
897               DEBUG(dbgs() << "All edge weights for " << BB->getName()
898                            << " known. Set weight for block: ";
899                     printBlockWeight(dbgs(), BB););
900             }
901           } else if (NumTotalEdges == 1 &&
902                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
903             // If there is only one edge for the visited basic block, use the
904             // block weight to adjust edge weight if edge weight is smaller.
905             EdgeWeights[SingleEdge] = BlockWeights[EC];
906             Changed = true;
907           }
908         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
909           // If there is a single unknown edge and the block has been
910           // visited, then we can compute E's weight.
911           if (BBWeight >= TotalWeight)
912             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
913           else
914             EdgeWeights[UnknownEdge] = 0;
915           const BasicBlock *OtherEC;
916           if (i == 0)
917             OtherEC = EquivalenceClass[UnknownEdge.first];
918           else
919             OtherEC = EquivalenceClass[UnknownEdge.second];
920           // Edge weights should never exceed the BB weights it connects.
921           if (VisitedBlocks.count(OtherEC) &&
922               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
923             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
924           VisitedEdges.insert(UnknownEdge);
925           Changed = true;
926           DEBUG(dbgs() << "Set weight for edge: ";
927                 printEdgeWeight(dbgs(), UnknownEdge));
928         }
929       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
930         // If a block Weights 0, all its in/out edges should weight 0.
931         if (i == 0) {
932           for (auto *Pred : Predecessors[BB]) {
933             Edge E = std::make_pair(Pred, BB);
934             EdgeWeights[E] = 0;
935             VisitedEdges.insert(E);
936           }
937         } else {
938           for (auto *Succ : Successors[BB]) {
939             Edge E = std::make_pair(BB, Succ);
940             EdgeWeights[E] = 0;
941             VisitedEdges.insert(E);
942           }
943         }
944       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
945         uint64_t &BBWeight = BlockWeights[BB];
946         // We have a self-referential edge and the weight of BB is known.
947         if (BBWeight >= TotalWeight)
948           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
949         else
950           EdgeWeights[SelfReferentialEdge] = 0;
951         VisitedEdges.insert(SelfReferentialEdge);
952         Changed = true;
953         DEBUG(dbgs() << "Set self-referential edge weight to: ";
954               printEdgeWeight(dbgs(), SelfReferentialEdge));
955       }
956       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
957         BlockWeights[EC] = TotalWeight;
958         VisitedBlocks.insert(EC);
959         Changed = true;
960       }
961     }
962   }
963 
964   return Changed;
965 }
966 
967 /// \brief Build in/out edge lists for each basic block in the CFG.
968 ///
969 /// We are interested in unique edges. If a block B1 has multiple
970 /// edges to another block B2, we only add a single B1->B2 edge.
971 void SampleProfileLoader::buildEdges(Function &F) {
972   for (auto &BI : F) {
973     BasicBlock *B1 = &BI;
974 
975     // Add predecessors for B1.
976     SmallPtrSet<BasicBlock *, 16> Visited;
977     if (!Predecessors[B1].empty())
978       llvm_unreachable("Found a stale predecessors list in a basic block.");
979     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
980       BasicBlock *B2 = *PI;
981       if (Visited.insert(B2).second)
982         Predecessors[B1].push_back(B2);
983     }
984 
985     // Add successors for B1.
986     Visited.clear();
987     if (!Successors[B1].empty())
988       llvm_unreachable("Found a stale successors list in a basic block.");
989     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
990       BasicBlock *B2 = *SI;
991       if (Visited.insert(B2).second)
992         Successors[B1].push_back(B2);
993     }
994   }
995 }
996 
997 /// Sorts the CallTargetMap \p M by count in descending order and stores the
998 /// sorted result in \p Sorted. Returns the total counts.
999 static uint64_t SortCallTargets(SmallVector<InstrProfValueData, 2> &Sorted,
1000                                 const SampleRecord::CallTargetMap &M) {
1001   Sorted.clear();
1002   uint64_t Sum = 0;
1003   for (auto I = M.begin(); I != M.end(); ++I) {
1004     Sum += I->getValue();
1005     Sorted.push_back({Function::getGUID(I->getKey()), I->getValue()});
1006   }
1007   std::sort(Sorted.begin(), Sorted.end(),
1008             [](const InstrProfValueData &L, const InstrProfValueData &R) {
1009               if (L.Count == R.Count)
1010                 return L.Value > R.Value;
1011               else
1012                 return L.Count > R.Count;
1013             });
1014   return Sum;
1015 }
1016 
1017 /// \brief Propagate weights into edges
1018 ///
1019 /// The following rules are applied to every block BB in the CFG:
1020 ///
1021 /// - If BB has a single predecessor/successor, then the weight
1022 ///   of that edge is the weight of the block.
1023 ///
1024 /// - If all incoming or outgoing edges are known except one, and the
1025 ///   weight of the block is already known, the weight of the unknown
1026 ///   edge will be the weight of the block minus the sum of all the known
1027 ///   edges. If the sum of all the known edges is larger than BB's weight,
1028 ///   we set the unknown edge weight to zero.
1029 ///
1030 /// - If there is a self-referential edge, and the weight of the block is
1031 ///   known, the weight for that edge is set to the weight of the block
1032 ///   minus the weight of the other incoming edges to that block (if
1033 ///   known).
1034 void SampleProfileLoader::propagateWeights(Function &F) {
1035   bool Changed = true;
1036   unsigned I = 0;
1037 
1038   // Add an entry count to the function using the samples gathered
1039   // at the function entry.
1040   F.setEntryCount(Samples->getHeadSamples() + 1);
1041 
1042   // If BB weight is larger than its corresponding loop's header BB weight,
1043   // use the BB weight to replace the loop header BB weight.
1044   for (auto &BI : F) {
1045     BasicBlock *BB = &BI;
1046     Loop *L = LI->getLoopFor(BB);
1047     if (!L) {
1048       continue;
1049     }
1050     BasicBlock *Header = L->getHeader();
1051     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1052       BlockWeights[Header] = BlockWeights[BB];
1053     }
1054   }
1055 
1056   // Before propagation starts, build, for each block, a list of
1057   // unique predecessors and successors. This is necessary to handle
1058   // identical edges in multiway branches. Since we visit all blocks and all
1059   // edges of the CFG, it is cleaner to build these lists once at the start
1060   // of the pass.
1061   buildEdges(F);
1062 
1063   // Propagate until we converge or we go past the iteration limit.
1064   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1065     Changed = propagateThroughEdges(F, false);
1066   }
1067 
1068   // The first propagation propagates BB counts from annotated BBs to unknown
1069   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1070   // to propagate edge weights.
1071   VisitedEdges.clear();
1072   Changed = true;
1073   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1074     Changed = propagateThroughEdges(F, false);
1075   }
1076 
1077   // The 3rd propagation pass allows adjust annotated BB weights that are
1078   // obviously wrong.
1079   Changed = true;
1080   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1081     Changed = propagateThroughEdges(F, true);
1082   }
1083 
1084   // Generate MD_prof metadata for every branch instruction using the
1085   // edge weights computed during propagation.
1086   DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1087   LLVMContext &Ctx = F.getContext();
1088   MDBuilder MDB(Ctx);
1089   for (auto &BI : F) {
1090     BasicBlock *BB = &BI;
1091 
1092     if (BlockWeights[BB]) {
1093       for (auto &I : BB->getInstList()) {
1094         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1095           continue;
1096         CallSite CS(&I);
1097         if (!CS.getCalledFunction()) {
1098           const DebugLoc &DLoc = I.getDebugLoc();
1099           if (!DLoc)
1100             continue;
1101           const DILocation *DIL = DLoc;
1102           uint32_t LineOffset = getOffset(
1103               DLoc.getLine(), DIL->getScope()->getSubprogram()->getLine());
1104           uint32_t Discriminator = DIL->getDiscriminator();
1105 
1106           const FunctionSamples *FS = findFunctionSamples(I);
1107           if (!FS)
1108             continue;
1109           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1110           if (!T || T.get().size() == 0)
1111             continue;
1112           SmallVector<InstrProfValueData, 2> SortedCallTargets;
1113           uint64_t Sum = SortCallTargets(SortedCallTargets, T.get());
1114           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1115                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1116                             SortedCallTargets.size());
1117         } else if (!dyn_cast<IntrinsicInst>(&I)) {
1118           SmallVector<uint32_t, 1> Weights;
1119           Weights.push_back(BlockWeights[BB]);
1120           I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
1121         }
1122       }
1123     }
1124     TerminatorInst *TI = BB->getTerminator();
1125     if (TI->getNumSuccessors() == 1)
1126       continue;
1127     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1128       continue;
1129 
1130     DEBUG(dbgs() << "\nGetting weights for branch at line "
1131                  << TI->getDebugLoc().getLine() << ".\n");
1132     SmallVector<uint32_t, 4> Weights;
1133     uint32_t MaxWeight = 0;
1134     DebugLoc MaxDestLoc;
1135     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1136       BasicBlock *Succ = TI->getSuccessor(I);
1137       Edge E = std::make_pair(BB, Succ);
1138       uint64_t Weight = EdgeWeights[E];
1139       DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1140       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1141       // if needed. Sample counts in profiles are 64-bit unsigned values,
1142       // but internally branch weights are expressed as 32-bit values.
1143       if (Weight > std::numeric_limits<uint32_t>::max()) {
1144         DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1145         Weight = std::numeric_limits<uint32_t>::max();
1146       }
1147       // Weight is added by one to avoid propagation errors introduced by
1148       // 0 weights.
1149       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1150       if (Weight != 0) {
1151         if (Weight > MaxWeight) {
1152           MaxWeight = Weight;
1153           MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc();
1154         }
1155       }
1156     }
1157 
1158     // Only set weights if there is at least one non-zero weight.
1159     // In any other case, let the analyzer set weights.
1160     if (MaxWeight > 0) {
1161       DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1162       TI->setMetadata(llvm::LLVMContext::MD_prof,
1163                       MDB.createBranchWeights(Weights));
1164       DebugLoc BranchLoc = TI->getDebugLoc();
1165       emitOptimizationRemark(
1166           Ctx, DEBUG_TYPE, F, MaxDestLoc,
1167           Twine("most popular destination for conditional branches at ") +
1168               ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" +
1169                                    Twine(BranchLoc.getLine()) + ":" +
1170                                    Twine(BranchLoc.getCol()))
1171                            : Twine("<UNKNOWN LOCATION>")));
1172     } else {
1173       DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1174     }
1175   }
1176 }
1177 
1178 /// \brief Get the line number for the function header.
1179 ///
1180 /// This looks up function \p F in the current compilation unit and
1181 /// retrieves the line number where the function is defined. This is
1182 /// line 0 for all the samples read from the profile file. Every line
1183 /// number is relative to this line.
1184 ///
1185 /// \param F  Function object to query.
1186 ///
1187 /// \returns the line number where \p F is defined. If it returns 0,
1188 ///          it means that there is no debug information available for \p F.
1189 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1190   if (DISubprogram *S = F.getSubprogram())
1191     return S->getLine();
1192 
1193   // If the start of \p F is missing, emit a diagnostic to inform the user
1194   // about the missed opportunity.
1195   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1196       "No debug information found in function " + F.getName() +
1197           ": Function profile not used",
1198       DS_Warning));
1199   return 0;
1200 }
1201 
1202 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1203   DT.reset(new DominatorTree);
1204   DT->recalculate(F);
1205 
1206   PDT.reset(new DominatorTreeBase<BasicBlock>(true));
1207   PDT->recalculate(F);
1208 
1209   LI.reset(new LoopInfo);
1210   LI->analyze(*DT);
1211 }
1212 
1213 /// \brief Generate branch weight metadata for all branches in \p F.
1214 ///
1215 /// Branch weights are computed out of instruction samples using a
1216 /// propagation heuristic. Propagation proceeds in 3 phases:
1217 ///
1218 /// 1- Assignment of block weights. All the basic blocks in the function
1219 ///    are initial assigned the same weight as their most frequently
1220 ///    executed instruction.
1221 ///
1222 /// 2- Creation of equivalence classes. Since samples may be missing from
1223 ///    blocks, we can fill in the gaps by setting the weights of all the
1224 ///    blocks in the same equivalence class to the same weight. To compute
1225 ///    the concept of equivalence, we use dominance and loop information.
1226 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1227 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1228 ///
1229 /// 3- Propagation of block weights into edges. This uses a simple
1230 ///    propagation heuristic. The following rules are applied to every
1231 ///    block BB in the CFG:
1232 ///
1233 ///    - If BB has a single predecessor/successor, then the weight
1234 ///      of that edge is the weight of the block.
1235 ///
1236 ///    - If all the edges are known except one, and the weight of the
1237 ///      block is already known, the weight of the unknown edge will
1238 ///      be the weight of the block minus the sum of all the known
1239 ///      edges. If the sum of all the known edges is larger than BB's weight,
1240 ///      we set the unknown edge weight to zero.
1241 ///
1242 ///    - If there is a self-referential edge, and the weight of the block is
1243 ///      known, the weight for that edge is set to the weight of the block
1244 ///      minus the weight of the other incoming edges to that block (if
1245 ///      known).
1246 ///
1247 /// Since this propagation is not guaranteed to finalize for every CFG, we
1248 /// only allow it to proceed for a limited number of iterations (controlled
1249 /// by -sample-profile-max-propagate-iterations).
1250 ///
1251 /// FIXME: Try to replace this propagation heuristic with a scheme
1252 /// that is guaranteed to finalize. A work-list approach similar to
1253 /// the standard value propagation algorithm used by SSA-CCP might
1254 /// work here.
1255 ///
1256 /// Once all the branch weights are computed, we emit the MD_prof
1257 /// metadata on BB using the computed values for each of its branches.
1258 ///
1259 /// \param F The function to query.
1260 ///
1261 /// \returns true if \p F was modified. Returns false, otherwise.
1262 bool SampleProfileLoader::emitAnnotations(Function &F) {
1263   bool Changed = false;
1264 
1265   if (getFunctionLoc(F) == 0)
1266     return false;
1267 
1268   DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
1269                << ": " << getFunctionLoc(F) << "\n");
1270 
1271   Changed |= inlineHotFunctions(F);
1272 
1273   // Compute basic block weights.
1274   Changed |= computeBlockWeights(F);
1275 
1276   if (Changed) {
1277     // Compute dominance and loop info needed for propagation.
1278     computeDominanceAndLoopInfo(F);
1279 
1280     // Find equivalence classes.
1281     findEquivalenceClasses(F);
1282 
1283     // Propagate weights to all edges.
1284     propagateWeights(F);
1285   }
1286 
1287   // If coverage checking was requested, compute it now.
1288   if (SampleProfileRecordCoverage) {
1289     unsigned Used = CoverageTracker.countUsedRecords(Samples);
1290     unsigned Total = CoverageTracker.countBodyRecords(Samples);
1291     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1292     if (Coverage < SampleProfileRecordCoverage) {
1293       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1294           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1295           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1296               Twine(Coverage) + "%) were applied",
1297           DS_Warning));
1298     }
1299   }
1300 
1301   if (SampleProfileSampleCoverage) {
1302     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1303     uint64_t Total = CoverageTracker.countBodySamples(Samples);
1304     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1305     if (Coverage < SampleProfileSampleCoverage) {
1306       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1307           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1308           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1309               Twine(Coverage) + "%) were applied",
1310           DS_Warning));
1311     }
1312   }
1313   return Changed;
1314 }
1315 
1316 char SampleProfileLoaderLegacyPass::ID = 0;
1317 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1318                       "Sample Profile loader", false, false)
1319 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1320 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1321                     "Sample Profile loader", false, false)
1322 
1323 bool SampleProfileLoader::doInitialization(Module &M) {
1324   auto &Ctx = M.getContext();
1325   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1326   if (std::error_code EC = ReaderOrErr.getError()) {
1327     std::string Msg = "Could not open profile: " + EC.message();
1328     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1329     return false;
1330   }
1331   Reader = std::move(ReaderOrErr.get());
1332   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1333   return true;
1334 }
1335 
1336 ModulePass *llvm::createSampleProfileLoaderPass() {
1337   return new SampleProfileLoaderLegacyPass(SampleProfileFile);
1338 }
1339 
1340 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1341   return new SampleProfileLoaderLegacyPass(Name);
1342 }
1343 
1344 bool SampleProfileLoader::runOnModule(Module &M) {
1345   if (!ProfileIsValid)
1346     return false;
1347 
1348   // Compute the total number of samples collected in this profile.
1349   for (const auto &I : Reader->getProfiles())
1350     TotalCollectedSamples += I.second.getTotalSamples();
1351 
1352   bool retval = false;
1353   for (auto &F : M)
1354     if (!F.isDeclaration()) {
1355       clearFunctionData();
1356       retval |= runOnFunction(F);
1357     }
1358   if (M.getProfileSummary() == nullptr)
1359     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
1360   return retval;
1361 }
1362 
1363 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1364   // FIXME: pass in AssumptionCache correctly for the new pass manager.
1365   SampleLoader.setACT(&getAnalysis<AssumptionCacheTracker>());
1366   return SampleLoader.runOnModule(M);
1367 }
1368 
1369 bool SampleProfileLoader::runOnFunction(Function &F) {
1370   F.setEntryCount(0);
1371   Samples = Reader->getSamplesFor(F);
1372   if (!Samples->empty())
1373     return emitAnnotations(F);
1374   return false;
1375 }
1376 
1377 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1378                                                ModuleAnalysisManager &AM) {
1379 
1380   SampleProfileLoader SampleLoader(SampleProfileFile);
1381 
1382   SampleLoader.doInitialization(M);
1383 
1384   if (!SampleLoader.runOnModule(M))
1385     return PreservedAnalyses::all();
1386 
1387   return PreservedAnalyses::none();
1388 }
1389