1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/PostDominators.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/InstIterator.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/Pass.h" 44 #include "llvm/ProfileData/SampleProfReader.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorOr.h" 48 #include "llvm/Support/Format.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Transforms/IPO.h" 51 #include "llvm/Transforms/InstCombine/InstCombine.h" 52 #include "llvm/Transforms/Utils/Cloning.h" 53 #include <cctype> 54 55 using namespace llvm; 56 using namespace sampleprof; 57 58 #define DEBUG_TYPE "sample-profile" 59 60 // Command line option to specify the file to read samples from. This is 61 // mainly used for debugging. 62 static cl::opt<std::string> SampleProfileFile( 63 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 64 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 65 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 66 "sample-profile-max-propagate-iterations", cl::init(100), 67 cl::desc("Maximum number of iterations to go through when propagating " 68 "sample block/edge weights through the CFG.")); 69 static cl::opt<unsigned> SampleProfileRecordCoverage( 70 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 71 cl::desc("Emit a warning if less than N% of records in the input profile " 72 "are matched to the IR.")); 73 static cl::opt<unsigned> SampleProfileSampleCoverage( 74 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 75 cl::desc("Emit a warning if less than N% of samples in the input profile " 76 "are matched to the IR.")); 77 static cl::opt<double> SampleProfileHotThreshold( 78 "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"), 79 cl::desc("Inlined functions that account for more than N% of all samples " 80 "collected in the parent function, will be inlined again.")); 81 static cl::opt<double> SampleProfileGlobalHotThreshold( 82 "sample-profile-global-hot-threshold", cl::init(30), cl::value_desc("N"), 83 cl::desc("Top-level functions that account for more than N% of all samples " 84 "collected in the profile, will be marked as hot for the inliner " 85 "to consider.")); 86 static cl::opt<double> SampleProfileGlobalColdThreshold( 87 "sample-profile-global-cold-threshold", cl::init(0.5), cl::value_desc("N"), 88 cl::desc("Top-level functions that account for less than N% of all samples " 89 "collected in the profile, will be marked as cold for the inliner " 90 "to consider.")); 91 92 namespace { 93 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap; 94 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap; 95 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge; 96 typedef DenseMap<Edge, uint64_t> EdgeWeightMap; 97 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>> 98 BlockEdgeMap; 99 100 /// \brief Sample profile pass. 101 /// 102 /// This pass reads profile data from the file specified by 103 /// -sample-profile-file and annotates every affected function with the 104 /// profile information found in that file. 105 class SampleProfileLoader : public ModulePass { 106 public: 107 // Class identification, replacement for typeinfo 108 static char ID; 109 110 SampleProfileLoader(StringRef Name = SampleProfileFile) 111 : ModulePass(ID), DT(nullptr), PDT(nullptr), LI(nullptr), Reader(), 112 Samples(nullptr), Filename(Name), ProfileIsValid(false), 113 TotalCollectedSamples(0) { 114 initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry()); 115 } 116 117 bool doInitialization(Module &M) override; 118 119 void dump() { Reader->dump(); } 120 121 const char *getPassName() const override { return "Sample profile pass"; } 122 123 bool runOnModule(Module &M) override; 124 125 void getAnalysisUsage(AnalysisUsage &AU) const override { 126 AU.addRequired<InstructionCombiningPass>(); 127 } 128 129 protected: 130 bool runOnFunction(Function &F); 131 unsigned getFunctionLoc(Function &F); 132 bool emitAnnotations(Function &F); 133 ErrorOr<uint64_t> getInstWeight(const Instruction &I) const; 134 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB) const; 135 const FunctionSamples *findCalleeFunctionSamples(const CallInst &I) const; 136 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 137 bool inlineHotFunctions(Function &F); 138 bool emitInlineHints(Function &F); 139 void printEdgeWeight(raw_ostream &OS, Edge E); 140 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 141 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 142 bool computeBlockWeights(Function &F); 143 void findEquivalenceClasses(Function &F); 144 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 145 DominatorTreeBase<BasicBlock> *DomTree); 146 void propagateWeights(Function &F); 147 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 148 void buildEdges(Function &F); 149 bool propagateThroughEdges(Function &F); 150 void computeDominanceAndLoopInfo(Function &F); 151 unsigned getOffset(unsigned L, unsigned H) const; 152 void clearFunctionData(); 153 154 /// \brief Map basic blocks to their computed weights. 155 /// 156 /// The weight of a basic block is defined to be the maximum 157 /// of all the instruction weights in that block. 158 BlockWeightMap BlockWeights; 159 160 /// \brief Map edges to their computed weights. 161 /// 162 /// Edge weights are computed by propagating basic block weights in 163 /// SampleProfile::propagateWeights. 164 EdgeWeightMap EdgeWeights; 165 166 /// \brief Set of visited blocks during propagation. 167 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 168 169 /// \brief Set of visited edges during propagation. 170 SmallSet<Edge, 32> VisitedEdges; 171 172 /// \brief Equivalence classes for block weights. 173 /// 174 /// Two blocks BB1 and BB2 are in the same equivalence class if they 175 /// dominate and post-dominate each other, and they are in the same loop 176 /// nest. When this happens, the two blocks are guaranteed to execute 177 /// the same number of times. 178 EquivalenceClassMap EquivalenceClass; 179 180 /// \brief Dominance, post-dominance and loop information. 181 std::unique_ptr<DominatorTree> DT; 182 std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT; 183 std::unique_ptr<LoopInfo> LI; 184 185 /// \brief Predecessors for each basic block in the CFG. 186 BlockEdgeMap Predecessors; 187 188 /// \brief Successors for each basic block in the CFG. 189 BlockEdgeMap Successors; 190 191 /// \brief Profile reader object. 192 std::unique_ptr<SampleProfileReader> Reader; 193 194 /// \brief Samples collected for the body of this function. 195 FunctionSamples *Samples; 196 197 /// \brief Name of the profile file to load. 198 StringRef Filename; 199 200 /// \brief Flag indicating whether the profile input loaded successfully. 201 bool ProfileIsValid; 202 203 /// \brief Total number of samples collected in this profile. 204 /// 205 /// This is the sum of all the samples collected in all the functions executed 206 /// at runtime. 207 uint64_t TotalCollectedSamples; 208 }; 209 210 class SampleCoverageTracker { 211 public: 212 SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {} 213 214 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 215 uint32_t Discriminator, uint64_t Samples); 216 unsigned computeCoverage(unsigned Used, unsigned Total) const; 217 unsigned countUsedRecords(const FunctionSamples *FS) const; 218 unsigned countBodyRecords(const FunctionSamples *FS) const; 219 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 220 uint64_t countBodySamples(const FunctionSamples *FS) const; 221 void clear() { 222 SampleCoverage.clear(); 223 TotalUsedSamples = 0; 224 } 225 226 private: 227 typedef std::map<LineLocation, unsigned> BodySampleCoverageMap; 228 typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap> 229 FunctionSamplesCoverageMap; 230 231 /// Coverage map for sampling records. 232 /// 233 /// This map keeps a record of sampling records that have been matched to 234 /// an IR instruction. This is used to detect some form of staleness in 235 /// profiles (see flag -sample-profile-check-coverage). 236 /// 237 /// Each entry in the map corresponds to a FunctionSamples instance. This is 238 /// another map that counts how many times the sample record at the 239 /// given location has been used. 240 FunctionSamplesCoverageMap SampleCoverage; 241 242 /// Number of samples used from the profile. 243 /// 244 /// When a sampling record is used for the first time, the samples from 245 /// that record are added to this accumulator. Coverage is later computed 246 /// based on the total number of samples available in this function and 247 /// its callsites. 248 /// 249 /// Note that this accumulator tracks samples used from a single function 250 /// and all the inlined callsites. Strictly, we should have a map of counters 251 /// keyed by FunctionSamples pointers, but these stats are cleared after 252 /// every function, so we just need to keep a single counter. 253 uint64_t TotalUsedSamples; 254 }; 255 256 SampleCoverageTracker CoverageTracker; 257 258 /// Return true if the given callsite is hot wrt to its caller. 259 /// 260 /// Functions that were inlined in the original binary will be represented 261 /// in the inline stack in the sample profile. If the profile shows that 262 /// the original inline decision was "good" (i.e., the callsite is executed 263 /// frequently), then we will recreate the inline decision and apply the 264 /// profile from the inlined callsite. 265 /// 266 /// To decide whether an inlined callsite is hot, we compute the fraction 267 /// of samples used by the callsite with respect to the total number of samples 268 /// collected in the caller. 269 /// 270 /// If that fraction is larger than the default given by 271 /// SampleProfileHotThreshold, the callsite will be inlined again. 272 bool callsiteIsHot(const FunctionSamples *CallerFS, 273 const FunctionSamples *CallsiteFS) { 274 if (!CallsiteFS) 275 return false; // The callsite was not inlined in the original binary. 276 277 uint64_t ParentTotalSamples = CallerFS->getTotalSamples(); 278 if (ParentTotalSamples == 0) 279 return false; // Avoid division by zero. 280 281 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 282 if (CallsiteTotalSamples == 0) 283 return false; // Callsite is trivially cold. 284 285 double PercentSamples = 286 (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0; 287 return PercentSamples >= SampleProfileHotThreshold; 288 } 289 } 290 291 /// Mark as used the sample record for the given function samples at 292 /// (LineOffset, Discriminator). 293 /// 294 /// \returns true if this is the first time we mark the given record. 295 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 296 uint32_t LineOffset, 297 uint32_t Discriminator, 298 uint64_t Samples) { 299 LineLocation Loc(LineOffset, Discriminator); 300 unsigned &Count = SampleCoverage[FS][Loc]; 301 bool FirstTime = (++Count == 1); 302 if (FirstTime) 303 TotalUsedSamples += Samples; 304 return FirstTime; 305 } 306 307 /// Return the number of sample records that were applied from this profile. 308 /// 309 /// This count does not include records from cold inlined callsites. 310 unsigned 311 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const { 312 auto I = SampleCoverage.find(FS); 313 314 // The size of the coverage map for FS represents the number of records 315 // that were marked used at least once. 316 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 317 318 // If there are inlined callsites in this function, count the samples found 319 // in the respective bodies. However, do not bother counting callees with 0 320 // total samples, these are callees that were never invoked at runtime. 321 for (const auto &I : FS->getCallsiteSamples()) { 322 const FunctionSamples *CalleeSamples = &I.second; 323 if (callsiteIsHot(FS, CalleeSamples)) 324 Count += countUsedRecords(CalleeSamples); 325 } 326 327 return Count; 328 } 329 330 /// Return the number of sample records in the body of this profile. 331 /// 332 /// This count does not include records from cold inlined callsites. 333 unsigned 334 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const { 335 unsigned Count = FS->getBodySamples().size(); 336 337 // Only count records in hot callsites. 338 for (const auto &I : FS->getCallsiteSamples()) { 339 const FunctionSamples *CalleeSamples = &I.second; 340 if (callsiteIsHot(FS, CalleeSamples)) 341 Count += countBodyRecords(CalleeSamples); 342 } 343 344 return Count; 345 } 346 347 /// Return the number of samples collected in the body of this profile. 348 /// 349 /// This count does not include samples from cold inlined callsites. 350 uint64_t 351 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const { 352 uint64_t Total = 0; 353 for (const auto &I : FS->getBodySamples()) 354 Total += I.second.getSamples(); 355 356 // Only count samples in hot callsites. 357 for (const auto &I : FS->getCallsiteSamples()) { 358 const FunctionSamples *CalleeSamples = &I.second; 359 if (callsiteIsHot(FS, CalleeSamples)) 360 Total += countBodySamples(CalleeSamples); 361 } 362 363 return Total; 364 } 365 366 /// Return the fraction of sample records used in this profile. 367 /// 368 /// The returned value is an unsigned integer in the range 0-100 indicating 369 /// the percentage of sample records that were used while applying this 370 /// profile to the associated function. 371 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 372 unsigned Total) const { 373 assert(Used <= Total && 374 "number of used records cannot exceed the total number of records"); 375 return Total > 0 ? Used * 100 / Total : 100; 376 } 377 378 /// Clear all the per-function data used to load samples and propagate weights. 379 void SampleProfileLoader::clearFunctionData() { 380 BlockWeights.clear(); 381 EdgeWeights.clear(); 382 VisitedBlocks.clear(); 383 VisitedEdges.clear(); 384 EquivalenceClass.clear(); 385 DT = nullptr; 386 PDT = nullptr; 387 LI = nullptr; 388 Predecessors.clear(); 389 Successors.clear(); 390 CoverageTracker.clear(); 391 } 392 393 /// \brief Returns the offset of lineno \p L to head_lineno \p H 394 /// 395 /// \param L Lineno 396 /// \param H Header lineno of the function 397 /// 398 /// \returns offset to the header lineno. 16 bits are used to represent offset. 399 /// We assume that a single function will not exceed 65535 LOC. 400 unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const { 401 return (L - H) & 0xffff; 402 } 403 404 /// \brief Print the weight of edge \p E on stream \p OS. 405 /// 406 /// \param OS Stream to emit the output to. 407 /// \param E Edge to print. 408 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 409 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 410 << "]: " << EdgeWeights[E] << "\n"; 411 } 412 413 /// \brief Print the equivalence class of block \p BB on stream \p OS. 414 /// 415 /// \param OS Stream to emit the output to. 416 /// \param BB Block to print. 417 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 418 const BasicBlock *BB) { 419 const BasicBlock *Equiv = EquivalenceClass[BB]; 420 OS << "equivalence[" << BB->getName() 421 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 422 } 423 424 /// \brief Print the weight of block \p BB on stream \p OS. 425 /// 426 /// \param OS Stream to emit the output to. 427 /// \param BB Block to print. 428 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 429 const BasicBlock *BB) const { 430 const auto &I = BlockWeights.find(BB); 431 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 432 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 433 } 434 435 /// \brief Get the weight for an instruction. 436 /// 437 /// The "weight" of an instruction \p Inst is the number of samples 438 /// collected on that instruction at runtime. To retrieve it, we 439 /// need to compute the line number of \p Inst relative to the start of its 440 /// function. We use HeaderLineno to compute the offset. We then 441 /// look up the samples collected for \p Inst using BodySamples. 442 /// 443 /// \param Inst Instruction to query. 444 /// 445 /// \returns the weight of \p Inst. 446 ErrorOr<uint64_t> 447 SampleProfileLoader::getInstWeight(const Instruction &Inst) const { 448 DebugLoc DLoc = Inst.getDebugLoc(); 449 if (!DLoc) 450 return std::error_code(); 451 452 const FunctionSamples *FS = findFunctionSamples(Inst); 453 if (!FS) 454 return std::error_code(); 455 456 // Ignore all dbg_value intrinsics. 457 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst); 458 if (II && II->getIntrinsicID() == Intrinsic::dbg_value) 459 return std::error_code(); 460 461 const DILocation *DIL = DLoc; 462 unsigned Lineno = DLoc.getLine(); 463 unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine(); 464 465 uint32_t LineOffset = getOffset(Lineno, HeaderLineno); 466 uint32_t Discriminator = DIL->getDiscriminator(); 467 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 468 if (R) { 469 bool FirstMark = 470 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 471 if (FirstMark) { 472 const Function *F = Inst.getParent()->getParent(); 473 LLVMContext &Ctx = F->getContext(); 474 emitOptimizationRemark( 475 Ctx, DEBUG_TYPE, *F, DLoc, 476 Twine("Applied ") + Twine(*R) + " samples from profile (offset: " + 477 Twine(LineOffset) + 478 ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")"); 479 } 480 DEBUG(dbgs() << " " << Lineno << "." << DIL->getDiscriminator() << ":" 481 << Inst << " (line offset: " << Lineno - HeaderLineno << "." 482 << DIL->getDiscriminator() << " - weight: " << R.get() 483 << ")\n"); 484 } else { 485 // If a call instruction is inlined in profile, but not inlined here, 486 // it means that the inlined callsite has no sample, thus the call 487 // instruction should have 0 count. 488 const CallInst *CI = dyn_cast<CallInst>(&Inst); 489 if (CI && findCalleeFunctionSamples(*CI)) 490 R = 0; 491 } 492 return R; 493 } 494 495 /// \brief Compute the weight of a basic block. 496 /// 497 /// The weight of basic block \p BB is the maximum weight of all the 498 /// instructions in BB. 499 /// 500 /// \param BB The basic block to query. 501 /// 502 /// \returns the weight for \p BB. 503 ErrorOr<uint64_t> 504 SampleProfileLoader::getBlockWeight(const BasicBlock *BB) const { 505 bool Found = false; 506 uint64_t Weight = 0; 507 for (auto &I : BB->getInstList()) { 508 const ErrorOr<uint64_t> &R = getInstWeight(I); 509 if (R && R.get() >= Weight) { 510 Weight = R.get(); 511 Found = true; 512 } 513 } 514 if (Found) 515 return Weight; 516 else 517 return std::error_code(); 518 } 519 520 /// \brief Compute and store the weights of every basic block. 521 /// 522 /// This populates the BlockWeights map by computing 523 /// the weights of every basic block in the CFG. 524 /// 525 /// \param F The function to query. 526 bool SampleProfileLoader::computeBlockWeights(Function &F) { 527 bool Changed = false; 528 DEBUG(dbgs() << "Block weights\n"); 529 for (const auto &BB : F) { 530 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 531 if (Weight) { 532 BlockWeights[&BB] = Weight.get(); 533 VisitedBlocks.insert(&BB); 534 Changed = true; 535 } 536 DEBUG(printBlockWeight(dbgs(), &BB)); 537 } 538 539 return Changed; 540 } 541 542 /// \brief Get the FunctionSamples for a call instruction. 543 /// 544 /// The FunctionSamples of a call instruction \p Inst is the inlined 545 /// instance in which that call instruction is calling to. It contains 546 /// all samples that resides in the inlined instance. We first find the 547 /// inlined instance in which the call instruction is from, then we 548 /// traverse its children to find the callsite with the matching 549 /// location and callee function name. 550 /// 551 /// \param Inst Call instruction to query. 552 /// 553 /// \returns The FunctionSamples pointer to the inlined instance. 554 const FunctionSamples * 555 SampleProfileLoader::findCalleeFunctionSamples(const CallInst &Inst) const { 556 const DILocation *DIL = Inst.getDebugLoc(); 557 if (!DIL) { 558 return nullptr; 559 } 560 DISubprogram *SP = DIL->getScope()->getSubprogram(); 561 if (!SP) 562 return nullptr; 563 564 const FunctionSamples *FS = findFunctionSamples(Inst); 565 if (FS == nullptr) 566 return nullptr; 567 568 return FS->findFunctionSamplesAt(LineLocation( 569 getOffset(DIL->getLine(), SP->getLine()), DIL->getDiscriminator())); 570 } 571 572 /// \brief Get the FunctionSamples for an instruction. 573 /// 574 /// The FunctionSamples of an instruction \p Inst is the inlined instance 575 /// in which that instruction is coming from. We traverse the inline stack 576 /// of that instruction, and match it with the tree nodes in the profile. 577 /// 578 /// \param Inst Instruction to query. 579 /// 580 /// \returns the FunctionSamples pointer to the inlined instance. 581 const FunctionSamples * 582 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 583 SmallVector<LineLocation, 10> S; 584 const DILocation *DIL = Inst.getDebugLoc(); 585 if (!DIL) { 586 return Samples; 587 } 588 StringRef CalleeName; 589 for (const DILocation *DIL = Inst.getDebugLoc(); DIL; 590 DIL = DIL->getInlinedAt()) { 591 DISubprogram *SP = DIL->getScope()->getSubprogram(); 592 if (!SP) 593 return nullptr; 594 if (!CalleeName.empty()) { 595 S.push_back(LineLocation(getOffset(DIL->getLine(), SP->getLine()), 596 DIL->getDiscriminator())); 597 } 598 CalleeName = SP->getLinkageName(); 599 } 600 if (S.size() == 0) 601 return Samples; 602 const FunctionSamples *FS = Samples; 603 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 604 FS = FS->findFunctionSamplesAt(S[i]); 605 } 606 return FS; 607 } 608 609 /// \brief Emit an inline hint if \p F is globally hot or cold. 610 /// 611 /// If \p F consumes a significant fraction of samples (indicated by 612 /// SampleProfileGlobalHotThreshold), apply the InlineHint attribute for the 613 /// inliner to consider the function hot. 614 /// 615 /// If \p F consumes a small fraction of samples (indicated by 616 /// SampleProfileGlobalColdThreshold), apply the Cold attribute for the inliner 617 /// to consider the function cold. 618 /// 619 /// FIXME - This setting of inline hints is sub-optimal. Instead of marking a 620 /// function globally hot or cold, we should be annotating individual callsites. 621 /// This is not currently possible, but work on the inliner will eventually 622 /// provide this ability. See http://reviews.llvm.org/D15003 for details and 623 /// discussion. 624 /// 625 /// \returns True if either attribute was applied to \p F. 626 bool SampleProfileLoader::emitInlineHints(Function &F) { 627 if (TotalCollectedSamples == 0) 628 return false; 629 630 uint64_t FunctionSamples = Samples->getTotalSamples(); 631 double SamplesPercent = 632 (double)FunctionSamples / (double)TotalCollectedSamples * 100.0; 633 634 // If the function collected more samples than the hot threshold, mark 635 // it globally hot. 636 if (SamplesPercent >= SampleProfileGlobalHotThreshold) { 637 F.addFnAttr(llvm::Attribute::InlineHint); 638 std::string Msg; 639 raw_string_ostream S(Msg); 640 S << "Applied inline hint to globally hot function '" << F.getName() 641 << "' with " << format("%.2f", SamplesPercent) 642 << "% of samples (threshold: " 643 << format("%.2f", SampleProfileGlobalHotThreshold.getValue()) << "%)"; 644 S.flush(); 645 emitOptimizationRemark(F.getContext(), DEBUG_TYPE, F, DebugLoc(), Msg); 646 return true; 647 } 648 649 // If the function collected fewer samples than the cold threshold, mark 650 // it globally cold. 651 if (SamplesPercent <= SampleProfileGlobalColdThreshold) { 652 F.addFnAttr(llvm::Attribute::Cold); 653 std::string Msg; 654 raw_string_ostream S(Msg); 655 S << "Applied cold hint to globally cold function '" << F.getName() 656 << "' with " << format("%.2f", SamplesPercent) 657 << "% of samples (threshold: " 658 << format("%.2f", SampleProfileGlobalColdThreshold.getValue()) << "%)"; 659 S.flush(); 660 emitOptimizationRemark(F.getContext(), DEBUG_TYPE, F, DebugLoc(), Msg); 661 return true; 662 } 663 664 return false; 665 } 666 667 /// \brief Iteratively inline hot callsites of a function. 668 /// 669 /// Iteratively traverse all callsites of the function \p F, and find if 670 /// the corresponding inlined instance exists and is hot in profile. If 671 /// it is hot enough, inline the callsites and adds new callsites of the 672 /// callee into the caller. 673 /// 674 /// TODO: investigate the possibility of not invoking InlineFunction directly. 675 /// 676 /// \param F function to perform iterative inlining. 677 /// 678 /// \returns True if there is any inline happened. 679 bool SampleProfileLoader::inlineHotFunctions(Function &F) { 680 bool Changed = false; 681 LLVMContext &Ctx = F.getContext(); 682 while (true) { 683 bool LocalChanged = false; 684 SmallVector<CallInst *, 10> CIS; 685 for (auto &BB : F) { 686 for (auto &I : BB.getInstList()) { 687 CallInst *CI = dyn_cast<CallInst>(&I); 688 if (CI && callsiteIsHot(Samples, findCalleeFunctionSamples(*CI))) 689 CIS.push_back(CI); 690 } 691 } 692 for (auto CI : CIS) { 693 InlineFunctionInfo IFI; 694 Function *CalledFunction = CI->getCalledFunction(); 695 DebugLoc DLoc = CI->getDebugLoc(); 696 uint64_t NumSamples = findCalleeFunctionSamples(*CI)->getTotalSamples(); 697 if (InlineFunction(CI, IFI)) { 698 LocalChanged = true; 699 emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc, 700 Twine("inlined hot callee '") + 701 CalledFunction->getName() + "' with " + 702 Twine(NumSamples) + " samples into '" + 703 F.getName() + "'"); 704 } 705 } 706 if (LocalChanged) { 707 Changed = true; 708 } else { 709 break; 710 } 711 } 712 return Changed; 713 } 714 715 /// \brief Find equivalence classes for the given block. 716 /// 717 /// This finds all the blocks that are guaranteed to execute the same 718 /// number of times as \p BB1. To do this, it traverses all the 719 /// descendants of \p BB1 in the dominator or post-dominator tree. 720 /// 721 /// A block BB2 will be in the same equivalence class as \p BB1 if 722 /// the following holds: 723 /// 724 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 725 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 726 /// dominate BB1 in the post-dominator tree. 727 /// 728 /// 2- Both BB2 and \p BB1 must be in the same loop. 729 /// 730 /// For every block BB2 that meets those two requirements, we set BB2's 731 /// equivalence class to \p BB1. 732 /// 733 /// \param BB1 Block to check. 734 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 735 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 736 /// with blocks from \p BB1's dominator tree, then 737 /// this is the post-dominator tree, and vice versa. 738 void SampleProfileLoader::findEquivalencesFor( 739 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 740 DominatorTreeBase<BasicBlock> *DomTree) { 741 const BasicBlock *EC = EquivalenceClass[BB1]; 742 uint64_t Weight = BlockWeights[EC]; 743 for (const auto *BB2 : Descendants) { 744 bool IsDomParent = DomTree->dominates(BB2, BB1); 745 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 746 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 747 EquivalenceClass[BB2] = EC; 748 749 // If BB2 is heavier than BB1, make BB2 have the same weight 750 // as BB1. 751 // 752 // Note that we don't worry about the opposite situation here 753 // (when BB2 is lighter than BB1). We will deal with this 754 // during the propagation phase. Right now, we just want to 755 // make sure that BB1 has the largest weight of all the 756 // members of its equivalence set. 757 Weight = std::max(Weight, BlockWeights[BB2]); 758 } 759 } 760 BlockWeights[EC] = Weight; 761 } 762 763 /// \brief Find equivalence classes. 764 /// 765 /// Since samples may be missing from blocks, we can fill in the gaps by setting 766 /// the weights of all the blocks in the same equivalence class to the same 767 /// weight. To compute the concept of equivalence, we use dominance and loop 768 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 769 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 770 /// 771 /// \param F The function to query. 772 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 773 SmallVector<BasicBlock *, 8> DominatedBBs; 774 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 775 // Find equivalence sets based on dominance and post-dominance information. 776 for (auto &BB : F) { 777 BasicBlock *BB1 = &BB; 778 779 // Compute BB1's equivalence class once. 780 if (EquivalenceClass.count(BB1)) { 781 DEBUG(printBlockEquivalence(dbgs(), BB1)); 782 continue; 783 } 784 785 // By default, blocks are in their own equivalence class. 786 EquivalenceClass[BB1] = BB1; 787 788 // Traverse all the blocks dominated by BB1. We are looking for 789 // every basic block BB2 such that: 790 // 791 // 1- BB1 dominates BB2. 792 // 2- BB2 post-dominates BB1. 793 // 3- BB1 and BB2 are in the same loop nest. 794 // 795 // If all those conditions hold, it means that BB2 is executed 796 // as many times as BB1, so they are placed in the same equivalence 797 // class by making BB2's equivalence class be BB1. 798 DominatedBBs.clear(); 799 DT->getDescendants(BB1, DominatedBBs); 800 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 801 802 DEBUG(printBlockEquivalence(dbgs(), BB1)); 803 } 804 805 // Assign weights to equivalence classes. 806 // 807 // All the basic blocks in the same equivalence class will execute 808 // the same number of times. Since we know that the head block in 809 // each equivalence class has the largest weight, assign that weight 810 // to all the blocks in that equivalence class. 811 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 812 for (auto &BI : F) { 813 const BasicBlock *BB = &BI; 814 const BasicBlock *EquivBB = EquivalenceClass[BB]; 815 if (BB != EquivBB) 816 BlockWeights[BB] = BlockWeights[EquivBB]; 817 DEBUG(printBlockWeight(dbgs(), BB)); 818 } 819 } 820 821 /// \brief Visit the given edge to decide if it has a valid weight. 822 /// 823 /// If \p E has not been visited before, we copy to \p UnknownEdge 824 /// and increment the count of unknown edges. 825 /// 826 /// \param E Edge to visit. 827 /// \param NumUnknownEdges Current number of unknown edges. 828 /// \param UnknownEdge Set if E has not been visited before. 829 /// 830 /// \returns E's weight, if known. Otherwise, return 0. 831 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 832 Edge *UnknownEdge) { 833 if (!VisitedEdges.count(E)) { 834 (*NumUnknownEdges)++; 835 *UnknownEdge = E; 836 return 0; 837 } 838 839 return EdgeWeights[E]; 840 } 841 842 /// \brief Propagate weights through incoming/outgoing edges. 843 /// 844 /// If the weight of a basic block is known, and there is only one edge 845 /// with an unknown weight, we can calculate the weight of that edge. 846 /// 847 /// Similarly, if all the edges have a known count, we can calculate the 848 /// count of the basic block, if needed. 849 /// 850 /// \param F Function to process. 851 /// 852 /// \returns True if new weights were assigned to edges or blocks. 853 bool SampleProfileLoader::propagateThroughEdges(Function &F) { 854 bool Changed = false; 855 DEBUG(dbgs() << "\nPropagation through edges\n"); 856 for (const auto &BI : F) { 857 const BasicBlock *BB = &BI; 858 const BasicBlock *EC = EquivalenceClass[BB]; 859 860 // Visit all the predecessor and successor edges to determine 861 // which ones have a weight assigned already. Note that it doesn't 862 // matter that we only keep track of a single unknown edge. The 863 // only case we are interested in handling is when only a single 864 // edge is unknown (see setEdgeOrBlockWeight). 865 for (unsigned i = 0; i < 2; i++) { 866 uint64_t TotalWeight = 0; 867 unsigned NumUnknownEdges = 0; 868 Edge UnknownEdge, SelfReferentialEdge; 869 870 if (i == 0) { 871 // First, visit all predecessor edges. 872 for (auto *Pred : Predecessors[BB]) { 873 Edge E = std::make_pair(Pred, BB); 874 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 875 if (E.first == E.second) 876 SelfReferentialEdge = E; 877 } 878 } else { 879 // On the second round, visit all successor edges. 880 for (auto *Succ : Successors[BB]) { 881 Edge E = std::make_pair(BB, Succ); 882 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 883 } 884 } 885 886 // After visiting all the edges, there are three cases that we 887 // can handle immediately: 888 // 889 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 890 // In this case, we simply check that the sum of all the edges 891 // is the same as BB's weight. If not, we change BB's weight 892 // to match. Additionally, if BB had not been visited before, 893 // we mark it visited. 894 // 895 // - Only one edge is unknown and BB has already been visited. 896 // In this case, we can compute the weight of the edge by 897 // subtracting the total block weight from all the known 898 // edge weights. If the edges weight more than BB, then the 899 // edge of the last remaining edge is set to zero. 900 // 901 // - There exists a self-referential edge and the weight of BB is 902 // known. In this case, this edge can be based on BB's weight. 903 // We add up all the other known edges and set the weight on 904 // the self-referential edge as we did in the previous case. 905 // 906 // In any other case, we must continue iterating. Eventually, 907 // all edges will get a weight, or iteration will stop when 908 // it reaches SampleProfileMaxPropagateIterations. 909 if (NumUnknownEdges <= 1) { 910 uint64_t &BBWeight = BlockWeights[EC]; 911 if (NumUnknownEdges == 0) { 912 // If we already know the weight of all edges, the weight of the 913 // basic block can be computed. It should be no larger than the sum 914 // of all edge weights. 915 if (TotalWeight > BBWeight) { 916 BBWeight = TotalWeight; 917 Changed = true; 918 DEBUG(dbgs() << "All edge weights for " << BB->getName() 919 << " known. Set weight for block: "; 920 printBlockWeight(dbgs(), BB);); 921 } 922 if (VisitedBlocks.insert(EC).second) 923 Changed = true; 924 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 925 // If there is a single unknown edge and the block has been 926 // visited, then we can compute E's weight. 927 if (BBWeight >= TotalWeight) 928 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 929 else 930 EdgeWeights[UnknownEdge] = 0; 931 VisitedEdges.insert(UnknownEdge); 932 Changed = true; 933 DEBUG(dbgs() << "Set weight for edge: "; 934 printEdgeWeight(dbgs(), UnknownEdge)); 935 } 936 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 937 uint64_t &BBWeight = BlockWeights[BB]; 938 // We have a self-referential edge and the weight of BB is known. 939 if (BBWeight >= TotalWeight) 940 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 941 else 942 EdgeWeights[SelfReferentialEdge] = 0; 943 VisitedEdges.insert(SelfReferentialEdge); 944 Changed = true; 945 DEBUG(dbgs() << "Set self-referential edge weight to: "; 946 printEdgeWeight(dbgs(), SelfReferentialEdge)); 947 } 948 } 949 } 950 951 return Changed; 952 } 953 954 /// \brief Build in/out edge lists for each basic block in the CFG. 955 /// 956 /// We are interested in unique edges. If a block B1 has multiple 957 /// edges to another block B2, we only add a single B1->B2 edge. 958 void SampleProfileLoader::buildEdges(Function &F) { 959 for (auto &BI : F) { 960 BasicBlock *B1 = &BI; 961 962 // Add predecessors for B1. 963 SmallPtrSet<BasicBlock *, 16> Visited; 964 if (!Predecessors[B1].empty()) 965 llvm_unreachable("Found a stale predecessors list in a basic block."); 966 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 967 BasicBlock *B2 = *PI; 968 if (Visited.insert(B2).second) 969 Predecessors[B1].push_back(B2); 970 } 971 972 // Add successors for B1. 973 Visited.clear(); 974 if (!Successors[B1].empty()) 975 llvm_unreachable("Found a stale successors list in a basic block."); 976 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 977 BasicBlock *B2 = *SI; 978 if (Visited.insert(B2).second) 979 Successors[B1].push_back(B2); 980 } 981 } 982 } 983 984 /// \brief Propagate weights into edges 985 /// 986 /// The following rules are applied to every block BB in the CFG: 987 /// 988 /// - If BB has a single predecessor/successor, then the weight 989 /// of that edge is the weight of the block. 990 /// 991 /// - If all incoming or outgoing edges are known except one, and the 992 /// weight of the block is already known, the weight of the unknown 993 /// edge will be the weight of the block minus the sum of all the known 994 /// edges. If the sum of all the known edges is larger than BB's weight, 995 /// we set the unknown edge weight to zero. 996 /// 997 /// - If there is a self-referential edge, and the weight of the block is 998 /// known, the weight for that edge is set to the weight of the block 999 /// minus the weight of the other incoming edges to that block (if 1000 /// known). 1001 void SampleProfileLoader::propagateWeights(Function &F) { 1002 bool Changed = true; 1003 unsigned I = 0; 1004 1005 // Add an entry count to the function using the samples gathered 1006 // at the function entry. 1007 F.setEntryCount(Samples->getHeadSamples()); 1008 1009 // Before propagation starts, build, for each block, a list of 1010 // unique predecessors and successors. This is necessary to handle 1011 // identical edges in multiway branches. Since we visit all blocks and all 1012 // edges of the CFG, it is cleaner to build these lists once at the start 1013 // of the pass. 1014 buildEdges(F); 1015 1016 // Propagate until we converge or we go past the iteration limit. 1017 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1018 Changed = propagateThroughEdges(F); 1019 } 1020 1021 // Generate MD_prof metadata for every branch instruction using the 1022 // edge weights computed during propagation. 1023 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1024 LLVMContext &Ctx = F.getContext(); 1025 MDBuilder MDB(Ctx); 1026 for (auto &BI : F) { 1027 BasicBlock *BB = &BI; 1028 TerminatorInst *TI = BB->getTerminator(); 1029 if (TI->getNumSuccessors() == 1) 1030 continue; 1031 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1032 continue; 1033 1034 DEBUG(dbgs() << "\nGetting weights for branch at line " 1035 << TI->getDebugLoc().getLine() << ".\n"); 1036 SmallVector<uint32_t, 4> Weights; 1037 uint32_t MaxWeight = 0; 1038 DebugLoc MaxDestLoc; 1039 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1040 BasicBlock *Succ = TI->getSuccessor(I); 1041 Edge E = std::make_pair(BB, Succ); 1042 uint64_t Weight = EdgeWeights[E]; 1043 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1044 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1045 // if needed. Sample counts in profiles are 64-bit unsigned values, 1046 // but internally branch weights are expressed as 32-bit values. 1047 if (Weight > std::numeric_limits<uint32_t>::max()) { 1048 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1049 Weight = std::numeric_limits<uint32_t>::max(); 1050 } 1051 Weights.push_back(static_cast<uint32_t>(Weight)); 1052 if (Weight != 0) { 1053 if (Weight > MaxWeight) { 1054 MaxWeight = Weight; 1055 MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc(); 1056 } 1057 } 1058 } 1059 1060 // Only set weights if there is at least one non-zero weight. 1061 // In any other case, let the analyzer set weights. 1062 if (MaxWeight > 0) { 1063 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1064 TI->setMetadata(llvm::LLVMContext::MD_prof, 1065 MDB.createBranchWeights(Weights)); 1066 DebugLoc BranchLoc = TI->getDebugLoc(); 1067 emitOptimizationRemark( 1068 Ctx, DEBUG_TYPE, F, MaxDestLoc, 1069 Twine("most popular destination for conditional branches at ") + 1070 ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" + 1071 Twine(BranchLoc.getLine()) + ":" + 1072 Twine(BranchLoc.getCol())) 1073 : Twine("<UNKNOWN LOCATION>"))); 1074 } else { 1075 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1076 } 1077 } 1078 } 1079 1080 /// \brief Get the line number for the function header. 1081 /// 1082 /// This looks up function \p F in the current compilation unit and 1083 /// retrieves the line number where the function is defined. This is 1084 /// line 0 for all the samples read from the profile file. Every line 1085 /// number is relative to this line. 1086 /// 1087 /// \param F Function object to query. 1088 /// 1089 /// \returns the line number where \p F is defined. If it returns 0, 1090 /// it means that there is no debug information available for \p F. 1091 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1092 if (DISubprogram *S = F.getSubprogram()) 1093 return S->getLine(); 1094 1095 // If the start of \p F is missing, emit a diagnostic to inform the user 1096 // about the missed opportunity. 1097 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1098 "No debug information found in function " + F.getName() + 1099 ": Function profile not used", 1100 DS_Warning)); 1101 return 0; 1102 } 1103 1104 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1105 DT.reset(new DominatorTree); 1106 DT->recalculate(F); 1107 1108 PDT.reset(new DominatorTreeBase<BasicBlock>(true)); 1109 PDT->recalculate(F); 1110 1111 LI.reset(new LoopInfo); 1112 LI->analyze(*DT); 1113 } 1114 1115 /// \brief Generate branch weight metadata for all branches in \p F. 1116 /// 1117 /// Branch weights are computed out of instruction samples using a 1118 /// propagation heuristic. Propagation proceeds in 3 phases: 1119 /// 1120 /// 1- Assignment of block weights. All the basic blocks in the function 1121 /// are initial assigned the same weight as their most frequently 1122 /// executed instruction. 1123 /// 1124 /// 2- Creation of equivalence classes. Since samples may be missing from 1125 /// blocks, we can fill in the gaps by setting the weights of all the 1126 /// blocks in the same equivalence class to the same weight. To compute 1127 /// the concept of equivalence, we use dominance and loop information. 1128 /// Two blocks B1 and B2 are in the same equivalence class if B1 1129 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1130 /// 1131 /// 3- Propagation of block weights into edges. This uses a simple 1132 /// propagation heuristic. The following rules are applied to every 1133 /// block BB in the CFG: 1134 /// 1135 /// - If BB has a single predecessor/successor, then the weight 1136 /// of that edge is the weight of the block. 1137 /// 1138 /// - If all the edges are known except one, and the weight of the 1139 /// block is already known, the weight of the unknown edge will 1140 /// be the weight of the block minus the sum of all the known 1141 /// edges. If the sum of all the known edges is larger than BB's weight, 1142 /// we set the unknown edge weight to zero. 1143 /// 1144 /// - If there is a self-referential edge, and the weight of the block is 1145 /// known, the weight for that edge is set to the weight of the block 1146 /// minus the weight of the other incoming edges to that block (if 1147 /// known). 1148 /// 1149 /// Since this propagation is not guaranteed to finalize for every CFG, we 1150 /// only allow it to proceed for a limited number of iterations (controlled 1151 /// by -sample-profile-max-propagate-iterations). 1152 /// 1153 /// FIXME: Try to replace this propagation heuristic with a scheme 1154 /// that is guaranteed to finalize. A work-list approach similar to 1155 /// the standard value propagation algorithm used by SSA-CCP might 1156 /// work here. 1157 /// 1158 /// Once all the branch weights are computed, we emit the MD_prof 1159 /// metadata on BB using the computed values for each of its branches. 1160 /// 1161 /// \param F The function to query. 1162 /// 1163 /// \returns true if \p F was modified. Returns false, otherwise. 1164 bool SampleProfileLoader::emitAnnotations(Function &F) { 1165 bool Changed = false; 1166 1167 if (getFunctionLoc(F) == 0) 1168 return false; 1169 1170 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 1171 << ": " << getFunctionLoc(F) << "\n"); 1172 1173 Changed |= emitInlineHints(F); 1174 1175 Changed |= inlineHotFunctions(F); 1176 1177 // Compute basic block weights. 1178 Changed |= computeBlockWeights(F); 1179 1180 if (Changed) { 1181 // Compute dominance and loop info needed for propagation. 1182 computeDominanceAndLoopInfo(F); 1183 1184 // Find equivalence classes. 1185 findEquivalenceClasses(F); 1186 1187 // Propagate weights to all edges. 1188 propagateWeights(F); 1189 } 1190 1191 // If coverage checking was requested, compute it now. 1192 if (SampleProfileRecordCoverage) { 1193 unsigned Used = CoverageTracker.countUsedRecords(Samples); 1194 unsigned Total = CoverageTracker.countBodyRecords(Samples); 1195 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1196 if (Coverage < SampleProfileRecordCoverage) { 1197 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1198 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1199 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1200 Twine(Coverage) + "%) were applied", 1201 DS_Warning)); 1202 } 1203 } 1204 1205 if (SampleProfileSampleCoverage) { 1206 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1207 uint64_t Total = CoverageTracker.countBodySamples(Samples); 1208 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1209 if (Coverage < SampleProfileSampleCoverage) { 1210 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1211 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1212 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1213 Twine(Coverage) + "%) were applied", 1214 DS_Warning)); 1215 } 1216 } 1217 return Changed; 1218 } 1219 1220 char SampleProfileLoader::ID = 0; 1221 INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile", 1222 "Sample Profile loader", false, false) 1223 INITIALIZE_PASS_DEPENDENCY(AddDiscriminators) 1224 INITIALIZE_PASS_DEPENDENCY(InstructionCombiningPass) 1225 INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile", 1226 "Sample Profile loader", false, false) 1227 1228 bool SampleProfileLoader::doInitialization(Module &M) { 1229 auto &Ctx = M.getContext(); 1230 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1231 if (std::error_code EC = ReaderOrErr.getError()) { 1232 std::string Msg = "Could not open profile: " + EC.message(); 1233 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1234 return false; 1235 } 1236 Reader = std::move(ReaderOrErr.get()); 1237 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1238 return true; 1239 } 1240 1241 ModulePass *llvm::createSampleProfileLoaderPass() { 1242 return new SampleProfileLoader(SampleProfileFile); 1243 } 1244 1245 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1246 return new SampleProfileLoader(Name); 1247 } 1248 1249 bool SampleProfileLoader::runOnModule(Module &M) { 1250 if (!ProfileIsValid) 1251 return false; 1252 1253 // Compute the total number of samples collected in this profile. 1254 for (const auto &I : Reader->getProfiles()) 1255 TotalCollectedSamples += I.second.getTotalSamples(); 1256 1257 bool retval = false; 1258 for (auto &F : M) 1259 if (!F.isDeclaration()) { 1260 clearFunctionData(); 1261 retval |= runOnFunction(F); 1262 } 1263 return retval; 1264 } 1265 1266 bool SampleProfileLoader::runOnFunction(Function &F) { 1267 F.setEntryCount(0); 1268 getAnalysis<InstructionCombiningPass>(F); 1269 Samples = Reader->getSamplesFor(F); 1270 if (!Samples->empty()) 1271 return emitAnnotations(F); 1272 return false; 1273 } 1274