1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 //      to indicate the weights of each edge coming out of the branch.
19 //      The weight of each edge is the weight of the target block for
20 //      that edge. The weight of a block B is computed as the maximum
21 //      number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Analysis/PostDominators.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/DiagnosticInfo.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/InstIterator.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/LLVMContext.h"
40 #include "llvm/IR/MDBuilder.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/Pass.h"
44 #include "llvm/ProfileData/SampleProfReader.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorOr.h"
48 #include "llvm/Support/Format.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Transforms/IPO.h"
51 #include "llvm/Transforms/InstCombine/InstCombine.h"
52 #include "llvm/Transforms/Utils/Cloning.h"
53 #include <cctype>
54 
55 using namespace llvm;
56 using namespace sampleprof;
57 
58 #define DEBUG_TYPE "sample-profile"
59 
60 // Command line option to specify the file to read samples from. This is
61 // mainly used for debugging.
62 static cl::opt<std::string> SampleProfileFile(
63     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
64     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
65 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
66     "sample-profile-max-propagate-iterations", cl::init(100),
67     cl::desc("Maximum number of iterations to go through when propagating "
68              "sample block/edge weights through the CFG."));
69 static cl::opt<unsigned> SampleProfileRecordCoverage(
70     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
71     cl::desc("Emit a warning if less than N% of records in the input profile "
72              "are matched to the IR."));
73 static cl::opt<unsigned> SampleProfileSampleCoverage(
74     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
75     cl::desc("Emit a warning if less than N% of samples in the input profile "
76              "are matched to the IR."));
77 static cl::opt<double> SampleProfileHotThreshold(
78     "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"),
79     cl::desc("Inlined functions that account for more than N% of all samples "
80              "collected in the parent function, will be inlined again."));
81 static cl::opt<double> SampleProfileGlobalHotThreshold(
82     "sample-profile-global-hot-threshold", cl::init(30), cl::value_desc("N"),
83     cl::desc("Top-level functions that account for more than N% of all samples "
84              "collected in the profile, will be marked as hot for the inliner "
85              "to consider."));
86 static cl::opt<double> SampleProfileGlobalColdThreshold(
87     "sample-profile-global-cold-threshold", cl::init(0.5), cl::value_desc("N"),
88     cl::desc("Top-level functions that account for less than N% of all samples "
89              "collected in the profile, will be marked as cold for the inliner "
90              "to consider."));
91 
92 namespace {
93 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap;
94 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap;
95 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge;
96 typedef DenseMap<Edge, uint64_t> EdgeWeightMap;
97 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>
98     BlockEdgeMap;
99 
100 /// \brief Sample profile pass.
101 ///
102 /// This pass reads profile data from the file specified by
103 /// -sample-profile-file and annotates every affected function with the
104 /// profile information found in that file.
105 class SampleProfileLoader : public ModulePass {
106 public:
107   // Class identification, replacement for typeinfo
108   static char ID;
109 
110   SampleProfileLoader(StringRef Name = SampleProfileFile)
111       : ModulePass(ID), DT(nullptr), PDT(nullptr), LI(nullptr), Reader(),
112         Samples(nullptr), Filename(Name), ProfileIsValid(false),
113         TotalCollectedSamples(0) {
114     initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry());
115   }
116 
117   bool doInitialization(Module &M) override;
118 
119   void dump() { Reader->dump(); }
120 
121   const char *getPassName() const override { return "Sample profile pass"; }
122 
123   bool runOnModule(Module &M) override;
124 
125   void getAnalysisUsage(AnalysisUsage &AU) const override {
126     AU.addRequired<InstructionCombiningPass>();
127   }
128 
129 protected:
130   bool runOnFunction(Function &F);
131   unsigned getFunctionLoc(Function &F);
132   bool emitAnnotations(Function &F);
133   ErrorOr<uint64_t> getInstWeight(const Instruction &I) const;
134   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB) const;
135   const FunctionSamples *findCalleeFunctionSamples(const CallInst &I) const;
136   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
137   bool inlineHotFunctions(Function &F);
138   bool emitInlineHints(Function &F);
139   void printEdgeWeight(raw_ostream &OS, Edge E);
140   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
141   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
142   bool computeBlockWeights(Function &F);
143   void findEquivalenceClasses(Function &F);
144   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
145                            DominatorTreeBase<BasicBlock> *DomTree);
146   void propagateWeights(Function &F);
147   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
148   void buildEdges(Function &F);
149   bool propagateThroughEdges(Function &F);
150   void computeDominanceAndLoopInfo(Function &F);
151   unsigned getOffset(unsigned L, unsigned H) const;
152   void clearFunctionData();
153 
154   /// \brief Map basic blocks to their computed weights.
155   ///
156   /// The weight of a basic block is defined to be the maximum
157   /// of all the instruction weights in that block.
158   BlockWeightMap BlockWeights;
159 
160   /// \brief Map edges to their computed weights.
161   ///
162   /// Edge weights are computed by propagating basic block weights in
163   /// SampleProfile::propagateWeights.
164   EdgeWeightMap EdgeWeights;
165 
166   /// \brief Set of visited blocks during propagation.
167   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
168 
169   /// \brief Set of visited edges during propagation.
170   SmallSet<Edge, 32> VisitedEdges;
171 
172   /// \brief Equivalence classes for block weights.
173   ///
174   /// Two blocks BB1 and BB2 are in the same equivalence class if they
175   /// dominate and post-dominate each other, and they are in the same loop
176   /// nest. When this happens, the two blocks are guaranteed to execute
177   /// the same number of times.
178   EquivalenceClassMap EquivalenceClass;
179 
180   /// \brief Dominance, post-dominance and loop information.
181   std::unique_ptr<DominatorTree> DT;
182   std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT;
183   std::unique_ptr<LoopInfo> LI;
184 
185   /// \brief Predecessors for each basic block in the CFG.
186   BlockEdgeMap Predecessors;
187 
188   /// \brief Successors for each basic block in the CFG.
189   BlockEdgeMap Successors;
190 
191   /// \brief Profile reader object.
192   std::unique_ptr<SampleProfileReader> Reader;
193 
194   /// \brief Samples collected for the body of this function.
195   FunctionSamples *Samples;
196 
197   /// \brief Name of the profile file to load.
198   StringRef Filename;
199 
200   /// \brief Flag indicating whether the profile input loaded successfully.
201   bool ProfileIsValid;
202 
203   /// \brief Total number of samples collected in this profile.
204   ///
205   /// This is the sum of all the samples collected in all the functions executed
206   /// at runtime.
207   uint64_t TotalCollectedSamples;
208 };
209 
210 class SampleCoverageTracker {
211 public:
212   SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {}
213 
214   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
215                        uint32_t Discriminator, uint64_t Samples);
216   unsigned computeCoverage(unsigned Used, unsigned Total) const;
217   unsigned countUsedRecords(const FunctionSamples *FS) const;
218   unsigned countBodyRecords(const FunctionSamples *FS) const;
219   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
220   uint64_t countBodySamples(const FunctionSamples *FS) const;
221   void clear() {
222     SampleCoverage.clear();
223     TotalUsedSamples = 0;
224   }
225 
226 private:
227   typedef std::map<LineLocation, unsigned> BodySampleCoverageMap;
228   typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap>
229       FunctionSamplesCoverageMap;
230 
231   /// Coverage map for sampling records.
232   ///
233   /// This map keeps a record of sampling records that have been matched to
234   /// an IR instruction. This is used to detect some form of staleness in
235   /// profiles (see flag -sample-profile-check-coverage).
236   ///
237   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
238   /// another map that counts how many times the sample record at the
239   /// given location has been used.
240   FunctionSamplesCoverageMap SampleCoverage;
241 
242   /// Number of samples used from the profile.
243   ///
244   /// When a sampling record is used for the first time, the samples from
245   /// that record are added to this accumulator.  Coverage is later computed
246   /// based on the total number of samples available in this function and
247   /// its callsites.
248   ///
249   /// Note that this accumulator tracks samples used from a single function
250   /// and all the inlined callsites. Strictly, we should have a map of counters
251   /// keyed by FunctionSamples pointers, but these stats are cleared after
252   /// every function, so we just need to keep a single counter.
253   uint64_t TotalUsedSamples;
254 };
255 
256 SampleCoverageTracker CoverageTracker;
257 
258 /// Return true if the given callsite is hot wrt to its caller.
259 ///
260 /// Functions that were inlined in the original binary will be represented
261 /// in the inline stack in the sample profile. If the profile shows that
262 /// the original inline decision was "good" (i.e., the callsite is executed
263 /// frequently), then we will recreate the inline decision and apply the
264 /// profile from the inlined callsite.
265 ///
266 /// To decide whether an inlined callsite is hot, we compute the fraction
267 /// of samples used by the callsite with respect to the total number of samples
268 /// collected in the caller.
269 ///
270 /// If that fraction is larger than the default given by
271 /// SampleProfileHotThreshold, the callsite will be inlined again.
272 bool callsiteIsHot(const FunctionSamples *CallerFS,
273                    const FunctionSamples *CallsiteFS) {
274   if (!CallsiteFS)
275     return false; // The callsite was not inlined in the original binary.
276 
277   uint64_t ParentTotalSamples = CallerFS->getTotalSamples();
278   if (ParentTotalSamples == 0)
279     return false; // Avoid division by zero.
280 
281   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
282   if (CallsiteTotalSamples == 0)
283     return false; // Callsite is trivially cold.
284 
285   double PercentSamples =
286       (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0;
287   return PercentSamples >= SampleProfileHotThreshold;
288 }
289 }
290 
291 /// Mark as used the sample record for the given function samples at
292 /// (LineOffset, Discriminator).
293 ///
294 /// \returns true if this is the first time we mark the given record.
295 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
296                                             uint32_t LineOffset,
297                                             uint32_t Discriminator,
298                                             uint64_t Samples) {
299   LineLocation Loc(LineOffset, Discriminator);
300   unsigned &Count = SampleCoverage[FS][Loc];
301   bool FirstTime = (++Count == 1);
302   if (FirstTime)
303     TotalUsedSamples += Samples;
304   return FirstTime;
305 }
306 
307 /// Return the number of sample records that were applied from this profile.
308 ///
309 /// This count does not include records from cold inlined callsites.
310 unsigned
311 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const {
312   auto I = SampleCoverage.find(FS);
313 
314   // The size of the coverage map for FS represents the number of records
315   // that were marked used at least once.
316   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
317 
318   // If there are inlined callsites in this function, count the samples found
319   // in the respective bodies. However, do not bother counting callees with 0
320   // total samples, these are callees that were never invoked at runtime.
321   for (const auto &I : FS->getCallsiteSamples()) {
322     const FunctionSamples *CalleeSamples = &I.second;
323     if (callsiteIsHot(FS, CalleeSamples))
324       Count += countUsedRecords(CalleeSamples);
325   }
326 
327   return Count;
328 }
329 
330 /// Return the number of sample records in the body of this profile.
331 ///
332 /// This count does not include records from cold inlined callsites.
333 unsigned
334 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const {
335   unsigned Count = FS->getBodySamples().size();
336 
337   // Only count records in hot callsites.
338   for (const auto &I : FS->getCallsiteSamples()) {
339     const FunctionSamples *CalleeSamples = &I.second;
340     if (callsiteIsHot(FS, CalleeSamples))
341       Count += countBodyRecords(CalleeSamples);
342   }
343 
344   return Count;
345 }
346 
347 /// Return the number of samples collected in the body of this profile.
348 ///
349 /// This count does not include samples from cold inlined callsites.
350 uint64_t
351 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const {
352   uint64_t Total = 0;
353   for (const auto &I : FS->getBodySamples())
354     Total += I.second.getSamples();
355 
356   // Only count samples in hot callsites.
357   for (const auto &I : FS->getCallsiteSamples()) {
358     const FunctionSamples *CalleeSamples = &I.second;
359     if (callsiteIsHot(FS, CalleeSamples))
360       Total += countBodySamples(CalleeSamples);
361   }
362 
363   return Total;
364 }
365 
366 /// Return the fraction of sample records used in this profile.
367 ///
368 /// The returned value is an unsigned integer in the range 0-100 indicating
369 /// the percentage of sample records that were used while applying this
370 /// profile to the associated function.
371 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
372                                                 unsigned Total) const {
373   assert(Used <= Total &&
374          "number of used records cannot exceed the total number of records");
375   return Total > 0 ? Used * 100 / Total : 100;
376 }
377 
378 /// Clear all the per-function data used to load samples and propagate weights.
379 void SampleProfileLoader::clearFunctionData() {
380   BlockWeights.clear();
381   EdgeWeights.clear();
382   VisitedBlocks.clear();
383   VisitedEdges.clear();
384   EquivalenceClass.clear();
385   DT = nullptr;
386   PDT = nullptr;
387   LI = nullptr;
388   Predecessors.clear();
389   Successors.clear();
390   CoverageTracker.clear();
391 }
392 
393 /// \brief Returns the offset of lineno \p L to head_lineno \p H
394 ///
395 /// \param L  Lineno
396 /// \param H  Header lineno of the function
397 ///
398 /// \returns offset to the header lineno. 16 bits are used to represent offset.
399 /// We assume that a single function will not exceed 65535 LOC.
400 unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const {
401   return (L - H) & 0xffff;
402 }
403 
404 /// \brief Print the weight of edge \p E on stream \p OS.
405 ///
406 /// \param OS  Stream to emit the output to.
407 /// \param E  Edge to print.
408 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
409   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
410      << "]: " << EdgeWeights[E] << "\n";
411 }
412 
413 /// \brief Print the equivalence class of block \p BB on stream \p OS.
414 ///
415 /// \param OS  Stream to emit the output to.
416 /// \param BB  Block to print.
417 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
418                                                 const BasicBlock *BB) {
419   const BasicBlock *Equiv = EquivalenceClass[BB];
420   OS << "equivalence[" << BB->getName()
421      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
422 }
423 
424 /// \brief Print the weight of block \p BB on stream \p OS.
425 ///
426 /// \param OS  Stream to emit the output to.
427 /// \param BB  Block to print.
428 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
429                                            const BasicBlock *BB) const {
430   const auto &I = BlockWeights.find(BB);
431   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
432   OS << "weight[" << BB->getName() << "]: " << W << "\n";
433 }
434 
435 /// \brief Get the weight for an instruction.
436 ///
437 /// The "weight" of an instruction \p Inst is the number of samples
438 /// collected on that instruction at runtime. To retrieve it, we
439 /// need to compute the line number of \p Inst relative to the start of its
440 /// function. We use HeaderLineno to compute the offset. We then
441 /// look up the samples collected for \p Inst using BodySamples.
442 ///
443 /// \param Inst Instruction to query.
444 ///
445 /// \returns the weight of \p Inst.
446 ErrorOr<uint64_t>
447 SampleProfileLoader::getInstWeight(const Instruction &Inst) const {
448   DebugLoc DLoc = Inst.getDebugLoc();
449   if (!DLoc)
450     return std::error_code();
451 
452   const FunctionSamples *FS = findFunctionSamples(Inst);
453   if (!FS)
454     return std::error_code();
455 
456   // Ignore all dbg_value intrinsics.
457   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst);
458   if (II && II->getIntrinsicID() == Intrinsic::dbg_value)
459     return std::error_code();
460 
461   const DILocation *DIL = DLoc;
462   unsigned Lineno = DLoc.getLine();
463   unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine();
464 
465   uint32_t LineOffset = getOffset(Lineno, HeaderLineno);
466   uint32_t Discriminator = DIL->getDiscriminator();
467   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
468   if (R) {
469     bool FirstMark =
470         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
471     if (FirstMark) {
472       const Function *F = Inst.getParent()->getParent();
473       LLVMContext &Ctx = F->getContext();
474       emitOptimizationRemark(
475           Ctx, DEBUG_TYPE, *F, DLoc,
476           Twine("Applied ") + Twine(*R) + " samples from profile (offset: " +
477               Twine(LineOffset) +
478               ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")");
479     }
480     DEBUG(dbgs() << "    " << Lineno << "." << DIL->getDiscriminator() << ":"
481                  << Inst << " (line offset: " << Lineno - HeaderLineno << "."
482                  << DIL->getDiscriminator() << " - weight: " << R.get()
483                  << ")\n");
484   } else {
485     // If a call instruction is inlined in profile, but not inlined here,
486     // it means that the inlined callsite has no sample, thus the call
487     // instruction should have 0 count.
488     const CallInst *CI = dyn_cast<CallInst>(&Inst);
489     if (CI && findCalleeFunctionSamples(*CI))
490       R = 0;
491   }
492   return R;
493 }
494 
495 /// \brief Compute the weight of a basic block.
496 ///
497 /// The weight of basic block \p BB is the maximum weight of all the
498 /// instructions in BB.
499 ///
500 /// \param BB The basic block to query.
501 ///
502 /// \returns the weight for \p BB.
503 ErrorOr<uint64_t>
504 SampleProfileLoader::getBlockWeight(const BasicBlock *BB) const {
505   bool Found = false;
506   uint64_t Weight = 0;
507   for (auto &I : BB->getInstList()) {
508     const ErrorOr<uint64_t> &R = getInstWeight(I);
509     if (R && R.get() >= Weight) {
510       Weight = R.get();
511       Found = true;
512     }
513   }
514   if (Found)
515     return Weight;
516   else
517     return std::error_code();
518 }
519 
520 /// \brief Compute and store the weights of every basic block.
521 ///
522 /// This populates the BlockWeights map by computing
523 /// the weights of every basic block in the CFG.
524 ///
525 /// \param F The function to query.
526 bool SampleProfileLoader::computeBlockWeights(Function &F) {
527   bool Changed = false;
528   DEBUG(dbgs() << "Block weights\n");
529   for (const auto &BB : F) {
530     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
531     if (Weight) {
532       BlockWeights[&BB] = Weight.get();
533       VisitedBlocks.insert(&BB);
534       Changed = true;
535     }
536     DEBUG(printBlockWeight(dbgs(), &BB));
537   }
538 
539   return Changed;
540 }
541 
542 /// \brief Get the FunctionSamples for a call instruction.
543 ///
544 /// The FunctionSamples of a call instruction \p Inst is the inlined
545 /// instance in which that call instruction is calling to. It contains
546 /// all samples that resides in the inlined instance. We first find the
547 /// inlined instance in which the call instruction is from, then we
548 /// traverse its children to find the callsite with the matching
549 /// location and callee function name.
550 ///
551 /// \param Inst Call instruction to query.
552 ///
553 /// \returns The FunctionSamples pointer to the inlined instance.
554 const FunctionSamples *
555 SampleProfileLoader::findCalleeFunctionSamples(const CallInst &Inst) const {
556   const DILocation *DIL = Inst.getDebugLoc();
557   if (!DIL) {
558     return nullptr;
559   }
560   DISubprogram *SP = DIL->getScope()->getSubprogram();
561   if (!SP)
562     return nullptr;
563 
564   const FunctionSamples *FS = findFunctionSamples(Inst);
565   if (FS == nullptr)
566     return nullptr;
567 
568   return FS->findFunctionSamplesAt(LineLocation(
569       getOffset(DIL->getLine(), SP->getLine()), DIL->getDiscriminator()));
570 }
571 
572 /// \brief Get the FunctionSamples for an instruction.
573 ///
574 /// The FunctionSamples of an instruction \p Inst is the inlined instance
575 /// in which that instruction is coming from. We traverse the inline stack
576 /// of that instruction, and match it with the tree nodes in the profile.
577 ///
578 /// \param Inst Instruction to query.
579 ///
580 /// \returns the FunctionSamples pointer to the inlined instance.
581 const FunctionSamples *
582 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
583   SmallVector<LineLocation, 10> S;
584   const DILocation *DIL = Inst.getDebugLoc();
585   if (!DIL) {
586     return Samples;
587   }
588   StringRef CalleeName;
589   for (const DILocation *DIL = Inst.getDebugLoc(); DIL;
590        DIL = DIL->getInlinedAt()) {
591     DISubprogram *SP = DIL->getScope()->getSubprogram();
592     if (!SP)
593       return nullptr;
594     if (!CalleeName.empty()) {
595       S.push_back(LineLocation(getOffset(DIL->getLine(), SP->getLine()),
596                                DIL->getDiscriminator()));
597     }
598     CalleeName = SP->getLinkageName();
599   }
600   if (S.size() == 0)
601     return Samples;
602   const FunctionSamples *FS = Samples;
603   for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
604     FS = FS->findFunctionSamplesAt(S[i]);
605   }
606   return FS;
607 }
608 
609 /// \brief Emit an inline hint if \p F is globally hot or cold.
610 ///
611 /// If \p F consumes a significant fraction of samples (indicated by
612 /// SampleProfileGlobalHotThreshold), apply the InlineHint attribute for the
613 /// inliner to consider the function hot.
614 ///
615 /// If \p F consumes a small fraction of samples (indicated by
616 /// SampleProfileGlobalColdThreshold), apply the Cold attribute for the inliner
617 /// to consider the function cold.
618 ///
619 /// FIXME - This setting of inline hints is sub-optimal. Instead of marking a
620 /// function globally hot or cold, we should be annotating individual callsites.
621 /// This is not currently possible, but work on the inliner will eventually
622 /// provide this ability. See http://reviews.llvm.org/D15003 for details and
623 /// discussion.
624 ///
625 /// \returns True if either attribute was applied to \p F.
626 bool SampleProfileLoader::emitInlineHints(Function &F) {
627   if (TotalCollectedSamples == 0)
628     return false;
629 
630   uint64_t FunctionSamples = Samples->getTotalSamples();
631   double SamplesPercent =
632       (double)FunctionSamples / (double)TotalCollectedSamples * 100.0;
633 
634   // If the function collected more samples than the hot threshold, mark
635   // it globally hot.
636   if (SamplesPercent >= SampleProfileGlobalHotThreshold) {
637     F.addFnAttr(llvm::Attribute::InlineHint);
638     std::string Msg;
639     raw_string_ostream S(Msg);
640     S << "Applied inline hint to globally hot function '" << F.getName()
641       << "' with " << format("%.2f", SamplesPercent)
642       << "% of samples (threshold: "
643       << format("%.2f", SampleProfileGlobalHotThreshold.getValue()) << "%)";
644     S.flush();
645     emitOptimizationRemark(F.getContext(), DEBUG_TYPE, F, DebugLoc(), Msg);
646     return true;
647   }
648 
649   // If the function collected fewer samples than the cold threshold, mark
650   // it globally cold.
651   if (SamplesPercent <= SampleProfileGlobalColdThreshold) {
652     F.addFnAttr(llvm::Attribute::Cold);
653     std::string Msg;
654     raw_string_ostream S(Msg);
655     S << "Applied cold hint to globally cold function '" << F.getName()
656       << "' with " << format("%.2f", SamplesPercent)
657       << "% of samples (threshold: "
658       << format("%.2f", SampleProfileGlobalColdThreshold.getValue()) << "%)";
659     S.flush();
660     emitOptimizationRemark(F.getContext(), DEBUG_TYPE, F, DebugLoc(), Msg);
661     return true;
662   }
663 
664   return false;
665 }
666 
667 /// \brief Iteratively inline hot callsites of a function.
668 ///
669 /// Iteratively traverse all callsites of the function \p F, and find if
670 /// the corresponding inlined instance exists and is hot in profile. If
671 /// it is hot enough, inline the callsites and adds new callsites of the
672 /// callee into the caller.
673 ///
674 /// TODO: investigate the possibility of not invoking InlineFunction directly.
675 ///
676 /// \param F function to perform iterative inlining.
677 ///
678 /// \returns True if there is any inline happened.
679 bool SampleProfileLoader::inlineHotFunctions(Function &F) {
680   bool Changed = false;
681   LLVMContext &Ctx = F.getContext();
682   while (true) {
683     bool LocalChanged = false;
684     SmallVector<CallInst *, 10> CIS;
685     for (auto &BB : F) {
686       for (auto &I : BB.getInstList()) {
687         CallInst *CI = dyn_cast<CallInst>(&I);
688         if (CI && callsiteIsHot(Samples, findCalleeFunctionSamples(*CI)))
689           CIS.push_back(CI);
690       }
691     }
692     for (auto CI : CIS) {
693       InlineFunctionInfo IFI;
694       Function *CalledFunction = CI->getCalledFunction();
695       DebugLoc DLoc = CI->getDebugLoc();
696       uint64_t NumSamples = findCalleeFunctionSamples(*CI)->getTotalSamples();
697       if (InlineFunction(CI, IFI)) {
698         LocalChanged = true;
699         emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc,
700                                Twine("inlined hot callee '") +
701                                    CalledFunction->getName() + "' with " +
702                                    Twine(NumSamples) + " samples into '" +
703                                    F.getName() + "'");
704       }
705     }
706     if (LocalChanged) {
707       Changed = true;
708     } else {
709       break;
710     }
711   }
712   return Changed;
713 }
714 
715 /// \brief Find equivalence classes for the given block.
716 ///
717 /// This finds all the blocks that are guaranteed to execute the same
718 /// number of times as \p BB1. To do this, it traverses all the
719 /// descendants of \p BB1 in the dominator or post-dominator tree.
720 ///
721 /// A block BB2 will be in the same equivalence class as \p BB1 if
722 /// the following holds:
723 ///
724 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
725 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
726 ///    dominate BB1 in the post-dominator tree.
727 ///
728 /// 2- Both BB2 and \p BB1 must be in the same loop.
729 ///
730 /// For every block BB2 that meets those two requirements, we set BB2's
731 /// equivalence class to \p BB1.
732 ///
733 /// \param BB1  Block to check.
734 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
735 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
736 ///                 with blocks from \p BB1's dominator tree, then
737 ///                 this is the post-dominator tree, and vice versa.
738 void SampleProfileLoader::findEquivalencesFor(
739     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
740     DominatorTreeBase<BasicBlock> *DomTree) {
741   const BasicBlock *EC = EquivalenceClass[BB1];
742   uint64_t Weight = BlockWeights[EC];
743   for (const auto *BB2 : Descendants) {
744     bool IsDomParent = DomTree->dominates(BB2, BB1);
745     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
746     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
747       EquivalenceClass[BB2] = EC;
748 
749       // If BB2 is heavier than BB1, make BB2 have the same weight
750       // as BB1.
751       //
752       // Note that we don't worry about the opposite situation here
753       // (when BB2 is lighter than BB1). We will deal with this
754       // during the propagation phase. Right now, we just want to
755       // make sure that BB1 has the largest weight of all the
756       // members of its equivalence set.
757       Weight = std::max(Weight, BlockWeights[BB2]);
758     }
759   }
760   BlockWeights[EC] = Weight;
761 }
762 
763 /// \brief Find equivalence classes.
764 ///
765 /// Since samples may be missing from blocks, we can fill in the gaps by setting
766 /// the weights of all the blocks in the same equivalence class to the same
767 /// weight. To compute the concept of equivalence, we use dominance and loop
768 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
769 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
770 ///
771 /// \param F The function to query.
772 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
773   SmallVector<BasicBlock *, 8> DominatedBBs;
774   DEBUG(dbgs() << "\nBlock equivalence classes\n");
775   // Find equivalence sets based on dominance and post-dominance information.
776   for (auto &BB : F) {
777     BasicBlock *BB1 = &BB;
778 
779     // Compute BB1's equivalence class once.
780     if (EquivalenceClass.count(BB1)) {
781       DEBUG(printBlockEquivalence(dbgs(), BB1));
782       continue;
783     }
784 
785     // By default, blocks are in their own equivalence class.
786     EquivalenceClass[BB1] = BB1;
787 
788     // Traverse all the blocks dominated by BB1. We are looking for
789     // every basic block BB2 such that:
790     //
791     // 1- BB1 dominates BB2.
792     // 2- BB2 post-dominates BB1.
793     // 3- BB1 and BB2 are in the same loop nest.
794     //
795     // If all those conditions hold, it means that BB2 is executed
796     // as many times as BB1, so they are placed in the same equivalence
797     // class by making BB2's equivalence class be BB1.
798     DominatedBBs.clear();
799     DT->getDescendants(BB1, DominatedBBs);
800     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
801 
802     DEBUG(printBlockEquivalence(dbgs(), BB1));
803   }
804 
805   // Assign weights to equivalence classes.
806   //
807   // All the basic blocks in the same equivalence class will execute
808   // the same number of times. Since we know that the head block in
809   // each equivalence class has the largest weight, assign that weight
810   // to all the blocks in that equivalence class.
811   DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
812   for (auto &BI : F) {
813     const BasicBlock *BB = &BI;
814     const BasicBlock *EquivBB = EquivalenceClass[BB];
815     if (BB != EquivBB)
816       BlockWeights[BB] = BlockWeights[EquivBB];
817     DEBUG(printBlockWeight(dbgs(), BB));
818   }
819 }
820 
821 /// \brief Visit the given edge to decide if it has a valid weight.
822 ///
823 /// If \p E has not been visited before, we copy to \p UnknownEdge
824 /// and increment the count of unknown edges.
825 ///
826 /// \param E  Edge to visit.
827 /// \param NumUnknownEdges  Current number of unknown edges.
828 /// \param UnknownEdge  Set if E has not been visited before.
829 ///
830 /// \returns E's weight, if known. Otherwise, return 0.
831 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
832                                         Edge *UnknownEdge) {
833   if (!VisitedEdges.count(E)) {
834     (*NumUnknownEdges)++;
835     *UnknownEdge = E;
836     return 0;
837   }
838 
839   return EdgeWeights[E];
840 }
841 
842 /// \brief Propagate weights through incoming/outgoing edges.
843 ///
844 /// If the weight of a basic block is known, and there is only one edge
845 /// with an unknown weight, we can calculate the weight of that edge.
846 ///
847 /// Similarly, if all the edges have a known count, we can calculate the
848 /// count of the basic block, if needed.
849 ///
850 /// \param F  Function to process.
851 ///
852 /// \returns  True if new weights were assigned to edges or blocks.
853 bool SampleProfileLoader::propagateThroughEdges(Function &F) {
854   bool Changed = false;
855   DEBUG(dbgs() << "\nPropagation through edges\n");
856   for (const auto &BI : F) {
857     const BasicBlock *BB = &BI;
858     const BasicBlock *EC = EquivalenceClass[BB];
859 
860     // Visit all the predecessor and successor edges to determine
861     // which ones have a weight assigned already. Note that it doesn't
862     // matter that we only keep track of a single unknown edge. The
863     // only case we are interested in handling is when only a single
864     // edge is unknown (see setEdgeOrBlockWeight).
865     for (unsigned i = 0; i < 2; i++) {
866       uint64_t TotalWeight = 0;
867       unsigned NumUnknownEdges = 0;
868       Edge UnknownEdge, SelfReferentialEdge;
869 
870       if (i == 0) {
871         // First, visit all predecessor edges.
872         for (auto *Pred : Predecessors[BB]) {
873           Edge E = std::make_pair(Pred, BB);
874           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
875           if (E.first == E.second)
876             SelfReferentialEdge = E;
877         }
878       } else {
879         // On the second round, visit all successor edges.
880         for (auto *Succ : Successors[BB]) {
881           Edge E = std::make_pair(BB, Succ);
882           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
883         }
884       }
885 
886       // After visiting all the edges, there are three cases that we
887       // can handle immediately:
888       //
889       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
890       //   In this case, we simply check that the sum of all the edges
891       //   is the same as BB's weight. If not, we change BB's weight
892       //   to match. Additionally, if BB had not been visited before,
893       //   we mark it visited.
894       //
895       // - Only one edge is unknown and BB has already been visited.
896       //   In this case, we can compute the weight of the edge by
897       //   subtracting the total block weight from all the known
898       //   edge weights. If the edges weight more than BB, then the
899       //   edge of the last remaining edge is set to zero.
900       //
901       // - There exists a self-referential edge and the weight of BB is
902       //   known. In this case, this edge can be based on BB's weight.
903       //   We add up all the other known edges and set the weight on
904       //   the self-referential edge as we did in the previous case.
905       //
906       // In any other case, we must continue iterating. Eventually,
907       // all edges will get a weight, or iteration will stop when
908       // it reaches SampleProfileMaxPropagateIterations.
909       if (NumUnknownEdges <= 1) {
910         uint64_t &BBWeight = BlockWeights[EC];
911         if (NumUnknownEdges == 0) {
912           // If we already know the weight of all edges, the weight of the
913           // basic block can be computed. It should be no larger than the sum
914           // of all edge weights.
915           if (TotalWeight > BBWeight) {
916             BBWeight = TotalWeight;
917             Changed = true;
918             DEBUG(dbgs() << "All edge weights for " << BB->getName()
919                          << " known. Set weight for block: ";
920                   printBlockWeight(dbgs(), BB););
921           }
922           if (VisitedBlocks.insert(EC).second)
923             Changed = true;
924         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
925           // If there is a single unknown edge and the block has been
926           // visited, then we can compute E's weight.
927           if (BBWeight >= TotalWeight)
928             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
929           else
930             EdgeWeights[UnknownEdge] = 0;
931           VisitedEdges.insert(UnknownEdge);
932           Changed = true;
933           DEBUG(dbgs() << "Set weight for edge: ";
934                 printEdgeWeight(dbgs(), UnknownEdge));
935         }
936       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
937         uint64_t &BBWeight = BlockWeights[BB];
938         // We have a self-referential edge and the weight of BB is known.
939         if (BBWeight >= TotalWeight)
940           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
941         else
942           EdgeWeights[SelfReferentialEdge] = 0;
943         VisitedEdges.insert(SelfReferentialEdge);
944         Changed = true;
945         DEBUG(dbgs() << "Set self-referential edge weight to: ";
946               printEdgeWeight(dbgs(), SelfReferentialEdge));
947       }
948     }
949   }
950 
951   return Changed;
952 }
953 
954 /// \brief Build in/out edge lists for each basic block in the CFG.
955 ///
956 /// We are interested in unique edges. If a block B1 has multiple
957 /// edges to another block B2, we only add a single B1->B2 edge.
958 void SampleProfileLoader::buildEdges(Function &F) {
959   for (auto &BI : F) {
960     BasicBlock *B1 = &BI;
961 
962     // Add predecessors for B1.
963     SmallPtrSet<BasicBlock *, 16> Visited;
964     if (!Predecessors[B1].empty())
965       llvm_unreachable("Found a stale predecessors list in a basic block.");
966     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
967       BasicBlock *B2 = *PI;
968       if (Visited.insert(B2).second)
969         Predecessors[B1].push_back(B2);
970     }
971 
972     // Add successors for B1.
973     Visited.clear();
974     if (!Successors[B1].empty())
975       llvm_unreachable("Found a stale successors list in a basic block.");
976     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
977       BasicBlock *B2 = *SI;
978       if (Visited.insert(B2).second)
979         Successors[B1].push_back(B2);
980     }
981   }
982 }
983 
984 /// \brief Propagate weights into edges
985 ///
986 /// The following rules are applied to every block BB in the CFG:
987 ///
988 /// - If BB has a single predecessor/successor, then the weight
989 ///   of that edge is the weight of the block.
990 ///
991 /// - If all incoming or outgoing edges are known except one, and the
992 ///   weight of the block is already known, the weight of the unknown
993 ///   edge will be the weight of the block minus the sum of all the known
994 ///   edges. If the sum of all the known edges is larger than BB's weight,
995 ///   we set the unknown edge weight to zero.
996 ///
997 /// - If there is a self-referential edge, and the weight of the block is
998 ///   known, the weight for that edge is set to the weight of the block
999 ///   minus the weight of the other incoming edges to that block (if
1000 ///   known).
1001 void SampleProfileLoader::propagateWeights(Function &F) {
1002   bool Changed = true;
1003   unsigned I = 0;
1004 
1005   // Add an entry count to the function using the samples gathered
1006   // at the function entry.
1007   F.setEntryCount(Samples->getHeadSamples());
1008 
1009   // Before propagation starts, build, for each block, a list of
1010   // unique predecessors and successors. This is necessary to handle
1011   // identical edges in multiway branches. Since we visit all blocks and all
1012   // edges of the CFG, it is cleaner to build these lists once at the start
1013   // of the pass.
1014   buildEdges(F);
1015 
1016   // Propagate until we converge or we go past the iteration limit.
1017   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1018     Changed = propagateThroughEdges(F);
1019   }
1020 
1021   // Generate MD_prof metadata for every branch instruction using the
1022   // edge weights computed during propagation.
1023   DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1024   LLVMContext &Ctx = F.getContext();
1025   MDBuilder MDB(Ctx);
1026   for (auto &BI : F) {
1027     BasicBlock *BB = &BI;
1028     TerminatorInst *TI = BB->getTerminator();
1029     if (TI->getNumSuccessors() == 1)
1030       continue;
1031     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1032       continue;
1033 
1034     DEBUG(dbgs() << "\nGetting weights for branch at line "
1035                  << TI->getDebugLoc().getLine() << ".\n");
1036     SmallVector<uint32_t, 4> Weights;
1037     uint32_t MaxWeight = 0;
1038     DebugLoc MaxDestLoc;
1039     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1040       BasicBlock *Succ = TI->getSuccessor(I);
1041       Edge E = std::make_pair(BB, Succ);
1042       uint64_t Weight = EdgeWeights[E];
1043       DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1044       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1045       // if needed. Sample counts in profiles are 64-bit unsigned values,
1046       // but internally branch weights are expressed as 32-bit values.
1047       if (Weight > std::numeric_limits<uint32_t>::max()) {
1048         DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1049         Weight = std::numeric_limits<uint32_t>::max();
1050       }
1051       Weights.push_back(static_cast<uint32_t>(Weight));
1052       if (Weight != 0) {
1053         if (Weight > MaxWeight) {
1054           MaxWeight = Weight;
1055           MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc();
1056         }
1057       }
1058     }
1059 
1060     // Only set weights if there is at least one non-zero weight.
1061     // In any other case, let the analyzer set weights.
1062     if (MaxWeight > 0) {
1063       DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1064       TI->setMetadata(llvm::LLVMContext::MD_prof,
1065                       MDB.createBranchWeights(Weights));
1066       DebugLoc BranchLoc = TI->getDebugLoc();
1067       emitOptimizationRemark(
1068           Ctx, DEBUG_TYPE, F, MaxDestLoc,
1069           Twine("most popular destination for conditional branches at ") +
1070               ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" +
1071                                    Twine(BranchLoc.getLine()) + ":" +
1072                                    Twine(BranchLoc.getCol()))
1073                            : Twine("<UNKNOWN LOCATION>")));
1074     } else {
1075       DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1076     }
1077   }
1078 }
1079 
1080 /// \brief Get the line number for the function header.
1081 ///
1082 /// This looks up function \p F in the current compilation unit and
1083 /// retrieves the line number where the function is defined. This is
1084 /// line 0 for all the samples read from the profile file. Every line
1085 /// number is relative to this line.
1086 ///
1087 /// \param F  Function object to query.
1088 ///
1089 /// \returns the line number where \p F is defined. If it returns 0,
1090 ///          it means that there is no debug information available for \p F.
1091 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1092   if (DISubprogram *S = F.getSubprogram())
1093     return S->getLine();
1094 
1095   // If the start of \p F is missing, emit a diagnostic to inform the user
1096   // about the missed opportunity.
1097   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1098       "No debug information found in function " + F.getName() +
1099           ": Function profile not used",
1100       DS_Warning));
1101   return 0;
1102 }
1103 
1104 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1105   DT.reset(new DominatorTree);
1106   DT->recalculate(F);
1107 
1108   PDT.reset(new DominatorTreeBase<BasicBlock>(true));
1109   PDT->recalculate(F);
1110 
1111   LI.reset(new LoopInfo);
1112   LI->analyze(*DT);
1113 }
1114 
1115 /// \brief Generate branch weight metadata for all branches in \p F.
1116 ///
1117 /// Branch weights are computed out of instruction samples using a
1118 /// propagation heuristic. Propagation proceeds in 3 phases:
1119 ///
1120 /// 1- Assignment of block weights. All the basic blocks in the function
1121 ///    are initial assigned the same weight as their most frequently
1122 ///    executed instruction.
1123 ///
1124 /// 2- Creation of equivalence classes. Since samples may be missing from
1125 ///    blocks, we can fill in the gaps by setting the weights of all the
1126 ///    blocks in the same equivalence class to the same weight. To compute
1127 ///    the concept of equivalence, we use dominance and loop information.
1128 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1129 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1130 ///
1131 /// 3- Propagation of block weights into edges. This uses a simple
1132 ///    propagation heuristic. The following rules are applied to every
1133 ///    block BB in the CFG:
1134 ///
1135 ///    - If BB has a single predecessor/successor, then the weight
1136 ///      of that edge is the weight of the block.
1137 ///
1138 ///    - If all the edges are known except one, and the weight of the
1139 ///      block is already known, the weight of the unknown edge will
1140 ///      be the weight of the block minus the sum of all the known
1141 ///      edges. If the sum of all the known edges is larger than BB's weight,
1142 ///      we set the unknown edge weight to zero.
1143 ///
1144 ///    - If there is a self-referential edge, and the weight of the block is
1145 ///      known, the weight for that edge is set to the weight of the block
1146 ///      minus the weight of the other incoming edges to that block (if
1147 ///      known).
1148 ///
1149 /// Since this propagation is not guaranteed to finalize for every CFG, we
1150 /// only allow it to proceed for a limited number of iterations (controlled
1151 /// by -sample-profile-max-propagate-iterations).
1152 ///
1153 /// FIXME: Try to replace this propagation heuristic with a scheme
1154 /// that is guaranteed to finalize. A work-list approach similar to
1155 /// the standard value propagation algorithm used by SSA-CCP might
1156 /// work here.
1157 ///
1158 /// Once all the branch weights are computed, we emit the MD_prof
1159 /// metadata on BB using the computed values for each of its branches.
1160 ///
1161 /// \param F The function to query.
1162 ///
1163 /// \returns true if \p F was modified. Returns false, otherwise.
1164 bool SampleProfileLoader::emitAnnotations(Function &F) {
1165   bool Changed = false;
1166 
1167   if (getFunctionLoc(F) == 0)
1168     return false;
1169 
1170   DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
1171                << ": " << getFunctionLoc(F) << "\n");
1172 
1173   Changed |= emitInlineHints(F);
1174 
1175   Changed |= inlineHotFunctions(F);
1176 
1177   // Compute basic block weights.
1178   Changed |= computeBlockWeights(F);
1179 
1180   if (Changed) {
1181     // Compute dominance and loop info needed for propagation.
1182     computeDominanceAndLoopInfo(F);
1183 
1184     // Find equivalence classes.
1185     findEquivalenceClasses(F);
1186 
1187     // Propagate weights to all edges.
1188     propagateWeights(F);
1189   }
1190 
1191   // If coverage checking was requested, compute it now.
1192   if (SampleProfileRecordCoverage) {
1193     unsigned Used = CoverageTracker.countUsedRecords(Samples);
1194     unsigned Total = CoverageTracker.countBodyRecords(Samples);
1195     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1196     if (Coverage < SampleProfileRecordCoverage) {
1197       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1198           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1199           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1200               Twine(Coverage) + "%) were applied",
1201           DS_Warning));
1202     }
1203   }
1204 
1205   if (SampleProfileSampleCoverage) {
1206     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1207     uint64_t Total = CoverageTracker.countBodySamples(Samples);
1208     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1209     if (Coverage < SampleProfileSampleCoverage) {
1210       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1211           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1212           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1213               Twine(Coverage) + "%) were applied",
1214           DS_Warning));
1215     }
1216   }
1217   return Changed;
1218 }
1219 
1220 char SampleProfileLoader::ID = 0;
1221 INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile",
1222                       "Sample Profile loader", false, false)
1223 INITIALIZE_PASS_DEPENDENCY(AddDiscriminators)
1224 INITIALIZE_PASS_DEPENDENCY(InstructionCombiningPass)
1225 INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile",
1226                     "Sample Profile loader", false, false)
1227 
1228 bool SampleProfileLoader::doInitialization(Module &M) {
1229   auto &Ctx = M.getContext();
1230   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1231   if (std::error_code EC = ReaderOrErr.getError()) {
1232     std::string Msg = "Could not open profile: " + EC.message();
1233     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1234     return false;
1235   }
1236   Reader = std::move(ReaderOrErr.get());
1237   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1238   return true;
1239 }
1240 
1241 ModulePass *llvm::createSampleProfileLoaderPass() {
1242   return new SampleProfileLoader(SampleProfileFile);
1243 }
1244 
1245 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1246   return new SampleProfileLoader(Name);
1247 }
1248 
1249 bool SampleProfileLoader::runOnModule(Module &M) {
1250   if (!ProfileIsValid)
1251     return false;
1252 
1253   // Compute the total number of samples collected in this profile.
1254   for (const auto &I : Reader->getProfiles())
1255     TotalCollectedSamples += I.second.getTotalSamples();
1256 
1257   bool retval = false;
1258   for (auto &F : M)
1259     if (!F.isDeclaration()) {
1260       clearFunctionData();
1261       retval |= runOnFunction(F);
1262     }
1263   return retval;
1264 }
1265 
1266 bool SampleProfileLoader::runOnFunction(Function &F) {
1267   F.setEntryCount(0);
1268   getAnalysis<InstructionCombiningPass>(F);
1269   Samples = Reader->getSamplesFor(F);
1270   if (!Samples->empty())
1271     return emitAnnotations(F);
1272   return false;
1273 }
1274