1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 //      to indicate the weights of each edge coming out of the branch.
19 //      The weight of each edge is the weight of the target block for
20 //      that edge. The weight of a block B is computed as the maximum
21 //      number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/IPO/SampleProfile.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringMap.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/AssumptionCache.h"
37 #include "llvm/Analysis/InlineCost.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
40 #include "llvm/Analysis/PostDominators.h"
41 #include "llvm/Analysis/ProfileSummaryInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/CFG.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/DiagnosticInfo.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GlobalValue.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/MDBuilder.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/PassManager.h"
60 #include "llvm/IR/ValueSymbolTable.h"
61 #include "llvm/Pass.h"
62 #include "llvm/ProfileData/InstrProf.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/ProfileData/SampleProfReader.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/GenericDomTree.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Transforms/IPO.h"
73 #include "llvm/Transforms/Instrumentation.h"
74 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
75 #include "llvm/Transforms/Utils/Cloning.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstdint>
79 #include <functional>
80 #include <limits>
81 #include <map>
82 #include <memory>
83 #include <string>
84 #include <system_error>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 using namespace sampleprof;
90 using ProfileCount = Function::ProfileCount;
91 #define DEBUG_TYPE "sample-profile"
92 
93 // Command line option to specify the file to read samples from. This is
94 // mainly used for debugging.
95 static cl::opt<std::string> SampleProfileFile(
96     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
97     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
98 
99 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
100     "sample-profile-max-propagate-iterations", cl::init(100),
101     cl::desc("Maximum number of iterations to go through when propagating "
102              "sample block/edge weights through the CFG."));
103 
104 static cl::opt<unsigned> SampleProfileRecordCoverage(
105     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
106     cl::desc("Emit a warning if less than N% of records in the input profile "
107              "are matched to the IR."));
108 
109 static cl::opt<unsigned> SampleProfileSampleCoverage(
110     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
111     cl::desc("Emit a warning if less than N% of samples in the input profile "
112              "are matched to the IR."));
113 
114 static cl::opt<bool> NoWarnSampleUnused(
115     "no-warn-sample-unused", cl::init(false), cl::Hidden,
116     cl::desc("Use this option to turn off/on warnings about function with "
117              "samples but without debug information to use those samples. "));
118 
119 namespace {
120 
121 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
122 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
123 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
124 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
125 using BlockEdgeMap =
126     DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
127 
128 class SampleCoverageTracker {
129 public:
130   SampleCoverageTracker() = default;
131 
132   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
133                        uint32_t Discriminator, uint64_t Samples);
134   unsigned computeCoverage(unsigned Used, unsigned Total) const;
135   unsigned countUsedRecords(const FunctionSamples *FS,
136                             ProfileSummaryInfo *PSI) const;
137   unsigned countBodyRecords(const FunctionSamples *FS,
138                             ProfileSummaryInfo *PSI) const;
139   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
140   uint64_t countBodySamples(const FunctionSamples *FS,
141                             ProfileSummaryInfo *PSI) const;
142 
143   void clear() {
144     SampleCoverage.clear();
145     TotalUsedSamples = 0;
146   }
147 
148 private:
149   using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
150   using FunctionSamplesCoverageMap =
151       DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
152 
153   /// Coverage map for sampling records.
154   ///
155   /// This map keeps a record of sampling records that have been matched to
156   /// an IR instruction. This is used to detect some form of staleness in
157   /// profiles (see flag -sample-profile-check-coverage).
158   ///
159   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
160   /// another map that counts how many times the sample record at the
161   /// given location has been used.
162   FunctionSamplesCoverageMap SampleCoverage;
163 
164   /// Number of samples used from the profile.
165   ///
166   /// When a sampling record is used for the first time, the samples from
167   /// that record are added to this accumulator.  Coverage is later computed
168   /// based on the total number of samples available in this function and
169   /// its callsites.
170   ///
171   /// Note that this accumulator tracks samples used from a single function
172   /// and all the inlined callsites. Strictly, we should have a map of counters
173   /// keyed by FunctionSamples pointers, but these stats are cleared after
174   /// every function, so we just need to keep a single counter.
175   uint64_t TotalUsedSamples = 0;
176 };
177 
178 /// Sample profile pass.
179 ///
180 /// This pass reads profile data from the file specified by
181 /// -sample-profile-file and annotates every affected function with the
182 /// profile information found in that file.
183 class SampleProfileLoader {
184 public:
185   SampleProfileLoader(
186       StringRef Name, bool IsThinLTOPreLink,
187       std::function<AssumptionCache &(Function &)> GetAssumptionCache,
188       std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
189       : GetAC(std::move(GetAssumptionCache)),
190         GetTTI(std::move(GetTargetTransformInfo)), Filename(Name),
191         IsThinLTOPreLink(IsThinLTOPreLink) {}
192 
193   bool doInitialization(Module &M);
194   bool runOnModule(Module &M, ModuleAnalysisManager *AM,
195                    ProfileSummaryInfo *_PSI);
196 
197   void dump() { Reader->dump(); }
198 
199 protected:
200   bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
201   unsigned getFunctionLoc(Function &F);
202   bool emitAnnotations(Function &F);
203   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
204   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
205   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
206   std::vector<const FunctionSamples *>
207   findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
208   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
209   bool inlineCallInstruction(Instruction *I);
210   bool inlineHotFunctions(Function &F,
211                           DenseSet<GlobalValue::GUID> &InlinedGUIDs);
212   void printEdgeWeight(raw_ostream &OS, Edge E);
213   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
214   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
215   bool computeBlockWeights(Function &F);
216   void findEquivalenceClasses(Function &F);
217   template <bool IsPostDom>
218   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
219                            DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
220 
221   void propagateWeights(Function &F);
222   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
223   void buildEdges(Function &F);
224   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
225   void computeDominanceAndLoopInfo(Function &F);
226   void clearFunctionData();
227 
228   /// Map basic blocks to their computed weights.
229   ///
230   /// The weight of a basic block is defined to be the maximum
231   /// of all the instruction weights in that block.
232   BlockWeightMap BlockWeights;
233 
234   /// Map edges to their computed weights.
235   ///
236   /// Edge weights are computed by propagating basic block weights in
237   /// SampleProfile::propagateWeights.
238   EdgeWeightMap EdgeWeights;
239 
240   /// Set of visited blocks during propagation.
241   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
242 
243   /// Set of visited edges during propagation.
244   SmallSet<Edge, 32> VisitedEdges;
245 
246   /// Equivalence classes for block weights.
247   ///
248   /// Two blocks BB1 and BB2 are in the same equivalence class if they
249   /// dominate and post-dominate each other, and they are in the same loop
250   /// nest. When this happens, the two blocks are guaranteed to execute
251   /// the same number of times.
252   EquivalenceClassMap EquivalenceClass;
253 
254   /// Map from function name to Function *. Used to find the function from
255   /// the function name. If the function name contains suffix, additional
256   /// entry is added to map from the stripped name to the function if there
257   /// is one-to-one mapping.
258   StringMap<Function *> SymbolMap;
259 
260   /// Dominance, post-dominance and loop information.
261   std::unique_ptr<DominatorTree> DT;
262   std::unique_ptr<PostDominatorTree> PDT;
263   std::unique_ptr<LoopInfo> LI;
264 
265   std::function<AssumptionCache &(Function &)> GetAC;
266   std::function<TargetTransformInfo &(Function &)> GetTTI;
267 
268   /// Predecessors for each basic block in the CFG.
269   BlockEdgeMap Predecessors;
270 
271   /// Successors for each basic block in the CFG.
272   BlockEdgeMap Successors;
273 
274   SampleCoverageTracker CoverageTracker;
275 
276   /// Profile reader object.
277   std::unique_ptr<SampleProfileReader> Reader;
278 
279   /// Samples collected for the body of this function.
280   FunctionSamples *Samples = nullptr;
281 
282   /// Name of the profile file to load.
283   std::string Filename;
284 
285   /// Flag indicating whether the profile input loaded successfully.
286   bool ProfileIsValid = false;
287 
288   /// Flag indicating if the pass is invoked in ThinLTO compile phase.
289   ///
290   /// In this phase, in annotation, we should not promote indirect calls.
291   /// Instead, we will mark GUIDs that needs to be annotated to the function.
292   bool IsThinLTOPreLink;
293 
294   /// Profile Summary Info computed from sample profile.
295   ProfileSummaryInfo *PSI = nullptr;
296 
297   /// Total number of samples collected in this profile.
298   ///
299   /// This is the sum of all the samples collected in all the functions executed
300   /// at runtime.
301   uint64_t TotalCollectedSamples = 0;
302 
303   /// Optimization Remark Emitter used to emit diagnostic remarks.
304   OptimizationRemarkEmitter *ORE = nullptr;
305 };
306 
307 class SampleProfileLoaderLegacyPass : public ModulePass {
308 public:
309   // Class identification, replacement for typeinfo
310   static char ID;
311 
312   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
313                                 bool IsThinLTOPreLink = false)
314       : ModulePass(ID), SampleLoader(Name, IsThinLTOPreLink,
315                                      [&](Function &F) -> AssumptionCache & {
316                                        return ACT->getAssumptionCache(F);
317                                      },
318                                      [&](Function &F) -> TargetTransformInfo & {
319                                        return TTIWP->getTTI(F);
320                                      }) {
321     initializeSampleProfileLoaderLegacyPassPass(
322         *PassRegistry::getPassRegistry());
323   }
324 
325   void dump() { SampleLoader.dump(); }
326 
327   bool doInitialization(Module &M) override {
328     return SampleLoader.doInitialization(M);
329   }
330 
331   StringRef getPassName() const override { return "Sample profile pass"; }
332   bool runOnModule(Module &M) override;
333 
334   void getAnalysisUsage(AnalysisUsage &AU) const override {
335     AU.addRequired<AssumptionCacheTracker>();
336     AU.addRequired<TargetTransformInfoWrapperPass>();
337     AU.addRequired<ProfileSummaryInfoWrapperPass>();
338   }
339 
340 private:
341   SampleProfileLoader SampleLoader;
342   AssumptionCacheTracker *ACT = nullptr;
343   TargetTransformInfoWrapperPass *TTIWP = nullptr;
344 };
345 
346 } // end anonymous namespace
347 
348 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
349 ///
350 /// Functions that were inlined in the original binary will be represented
351 /// in the inline stack in the sample profile. If the profile shows that
352 /// the original inline decision was "good" (i.e., the callsite is executed
353 /// frequently), then we will recreate the inline decision and apply the
354 /// profile from the inlined callsite.
355 ///
356 /// To decide whether an inlined callsite is hot, we compare the callsite
357 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
358 /// regarded as hot if the count is above the cutoff value.
359 static bool callsiteIsHot(const FunctionSamples *CallsiteFS,
360                           ProfileSummaryInfo *PSI) {
361   if (!CallsiteFS)
362     return false; // The callsite was not inlined in the original binary.
363 
364   assert(PSI && "PSI is expected to be non null");
365   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
366   return PSI->isHotCount(CallsiteTotalSamples);
367 }
368 
369 /// Mark as used the sample record for the given function samples at
370 /// (LineOffset, Discriminator).
371 ///
372 /// \returns true if this is the first time we mark the given record.
373 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
374                                             uint32_t LineOffset,
375                                             uint32_t Discriminator,
376                                             uint64_t Samples) {
377   LineLocation Loc(LineOffset, Discriminator);
378   unsigned &Count = SampleCoverage[FS][Loc];
379   bool FirstTime = (++Count == 1);
380   if (FirstTime)
381     TotalUsedSamples += Samples;
382   return FirstTime;
383 }
384 
385 /// Return the number of sample records that were applied from this profile.
386 ///
387 /// This count does not include records from cold inlined callsites.
388 unsigned
389 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
390                                         ProfileSummaryInfo *PSI) const {
391   auto I = SampleCoverage.find(FS);
392 
393   // The size of the coverage map for FS represents the number of records
394   // that were marked used at least once.
395   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
396 
397   // If there are inlined callsites in this function, count the samples found
398   // in the respective bodies. However, do not bother counting callees with 0
399   // total samples, these are callees that were never invoked at runtime.
400   for (const auto &I : FS->getCallsiteSamples())
401     for (const auto &J : I.second) {
402       const FunctionSamples *CalleeSamples = &J.second;
403       if (callsiteIsHot(CalleeSamples, PSI))
404         Count += countUsedRecords(CalleeSamples, PSI);
405     }
406 
407   return Count;
408 }
409 
410 /// Return the number of sample records in the body of this profile.
411 ///
412 /// This count does not include records from cold inlined callsites.
413 unsigned
414 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
415                                         ProfileSummaryInfo *PSI) const {
416   unsigned Count = FS->getBodySamples().size();
417 
418   // Only count records in hot callsites.
419   for (const auto &I : FS->getCallsiteSamples())
420     for (const auto &J : I.second) {
421       const FunctionSamples *CalleeSamples = &J.second;
422       if (callsiteIsHot(CalleeSamples, PSI))
423         Count += countBodyRecords(CalleeSamples, PSI);
424     }
425 
426   return Count;
427 }
428 
429 /// Return the number of samples collected in the body of this profile.
430 ///
431 /// This count does not include samples from cold inlined callsites.
432 uint64_t
433 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
434                                         ProfileSummaryInfo *PSI) const {
435   uint64_t Total = 0;
436   for (const auto &I : FS->getBodySamples())
437     Total += I.second.getSamples();
438 
439   // Only count samples in hot callsites.
440   for (const auto &I : FS->getCallsiteSamples())
441     for (const auto &J : I.second) {
442       const FunctionSamples *CalleeSamples = &J.second;
443       if (callsiteIsHot(CalleeSamples, PSI))
444         Total += countBodySamples(CalleeSamples, PSI);
445     }
446 
447   return Total;
448 }
449 
450 /// Return the fraction of sample records used in this profile.
451 ///
452 /// The returned value is an unsigned integer in the range 0-100 indicating
453 /// the percentage of sample records that were used while applying this
454 /// profile to the associated function.
455 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
456                                                 unsigned Total) const {
457   assert(Used <= Total &&
458          "number of used records cannot exceed the total number of records");
459   return Total > 0 ? Used * 100 / Total : 100;
460 }
461 
462 /// Clear all the per-function data used to load samples and propagate weights.
463 void SampleProfileLoader::clearFunctionData() {
464   BlockWeights.clear();
465   EdgeWeights.clear();
466   VisitedBlocks.clear();
467   VisitedEdges.clear();
468   EquivalenceClass.clear();
469   DT = nullptr;
470   PDT = nullptr;
471   LI = nullptr;
472   Predecessors.clear();
473   Successors.clear();
474   CoverageTracker.clear();
475 }
476 
477 #ifndef NDEBUG
478 /// Print the weight of edge \p E on stream \p OS.
479 ///
480 /// \param OS  Stream to emit the output to.
481 /// \param E  Edge to print.
482 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
483   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
484      << "]: " << EdgeWeights[E] << "\n";
485 }
486 
487 /// Print the equivalence class of block \p BB on stream \p OS.
488 ///
489 /// \param OS  Stream to emit the output to.
490 /// \param BB  Block to print.
491 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
492                                                 const BasicBlock *BB) {
493   const BasicBlock *Equiv = EquivalenceClass[BB];
494   OS << "equivalence[" << BB->getName()
495      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
496 }
497 
498 /// Print the weight of block \p BB on stream \p OS.
499 ///
500 /// \param OS  Stream to emit the output to.
501 /// \param BB  Block to print.
502 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
503                                            const BasicBlock *BB) const {
504   const auto &I = BlockWeights.find(BB);
505   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
506   OS << "weight[" << BB->getName() << "]: " << W << "\n";
507 }
508 #endif
509 
510 /// Get the weight for an instruction.
511 ///
512 /// The "weight" of an instruction \p Inst is the number of samples
513 /// collected on that instruction at runtime. To retrieve it, we
514 /// need to compute the line number of \p Inst relative to the start of its
515 /// function. We use HeaderLineno to compute the offset. We then
516 /// look up the samples collected for \p Inst using BodySamples.
517 ///
518 /// \param Inst Instruction to query.
519 ///
520 /// \returns the weight of \p Inst.
521 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
522   const DebugLoc &DLoc = Inst.getDebugLoc();
523   if (!DLoc)
524     return std::error_code();
525 
526   const FunctionSamples *FS = findFunctionSamples(Inst);
527   if (!FS)
528     return std::error_code();
529 
530   // Ignore all intrinsics and branch instructions.
531   // Branch instruction usually contains debug info from sources outside of
532   // the residing basic block, thus we ignore them during annotation.
533   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst))
534     return std::error_code();
535 
536   // If a direct call/invoke instruction is inlined in profile
537   // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
538   // it means that the inlined callsite has no sample, thus the call
539   // instruction should have 0 count.
540   if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
541       !ImmutableCallSite(&Inst).isIndirectCall() &&
542       findCalleeFunctionSamples(Inst))
543     return 0;
544 
545   const DILocation *DIL = DLoc;
546   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
547   uint32_t Discriminator = DIL->getBaseDiscriminator();
548   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
549   if (R) {
550     bool FirstMark =
551         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
552     if (FirstMark) {
553       ORE->emit([&]() {
554         OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
555         Remark << "Applied " << ore::NV("NumSamples", *R);
556         Remark << " samples from profile (offset: ";
557         Remark << ore::NV("LineOffset", LineOffset);
558         if (Discriminator) {
559           Remark << ".";
560           Remark << ore::NV("Discriminator", Discriminator);
561         }
562         Remark << ")";
563         return Remark;
564       });
565     }
566     LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "."
567                       << DIL->getBaseDiscriminator() << ":" << Inst
568                       << " (line offset: " << LineOffset << "."
569                       << DIL->getBaseDiscriminator() << " - weight: " << R.get()
570                       << ")\n");
571   }
572   return R;
573 }
574 
575 /// Compute the weight of a basic block.
576 ///
577 /// The weight of basic block \p BB is the maximum weight of all the
578 /// instructions in BB.
579 ///
580 /// \param BB The basic block to query.
581 ///
582 /// \returns the weight for \p BB.
583 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
584   uint64_t Max = 0;
585   bool HasWeight = false;
586   for (auto &I : BB->getInstList()) {
587     const ErrorOr<uint64_t> &R = getInstWeight(I);
588     if (R) {
589       Max = std::max(Max, R.get());
590       HasWeight = true;
591     }
592   }
593   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
594 }
595 
596 /// Compute and store the weights of every basic block.
597 ///
598 /// This populates the BlockWeights map by computing
599 /// the weights of every basic block in the CFG.
600 ///
601 /// \param F The function to query.
602 bool SampleProfileLoader::computeBlockWeights(Function &F) {
603   bool Changed = false;
604   LLVM_DEBUG(dbgs() << "Block weights\n");
605   for (const auto &BB : F) {
606     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
607     if (Weight) {
608       BlockWeights[&BB] = Weight.get();
609       VisitedBlocks.insert(&BB);
610       Changed = true;
611     }
612     LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
613   }
614 
615   return Changed;
616 }
617 
618 /// Get the FunctionSamples for a call instruction.
619 ///
620 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
621 /// instance in which that call instruction is calling to. It contains
622 /// all samples that resides in the inlined instance. We first find the
623 /// inlined instance in which the call instruction is from, then we
624 /// traverse its children to find the callsite with the matching
625 /// location.
626 ///
627 /// \param Inst Call/Invoke instruction to query.
628 ///
629 /// \returns The FunctionSamples pointer to the inlined instance.
630 const FunctionSamples *
631 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
632   const DILocation *DIL = Inst.getDebugLoc();
633   if (!DIL) {
634     return nullptr;
635   }
636 
637   StringRef CalleeName;
638   if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
639     if (Function *Callee = CI->getCalledFunction())
640       CalleeName = Callee->getName();
641 
642   const FunctionSamples *FS = findFunctionSamples(Inst);
643   if (FS == nullptr)
644     return nullptr;
645 
646   return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
647                                                 DIL->getBaseDiscriminator()),
648                                    CalleeName);
649 }
650 
651 /// Returns a vector of FunctionSamples that are the indirect call targets
652 /// of \p Inst. The vector is sorted by the total number of samples. Stores
653 /// the total call count of the indirect call in \p Sum.
654 std::vector<const FunctionSamples *>
655 SampleProfileLoader::findIndirectCallFunctionSamples(
656     const Instruction &Inst, uint64_t &Sum) const {
657   const DILocation *DIL = Inst.getDebugLoc();
658   std::vector<const FunctionSamples *> R;
659 
660   if (!DIL) {
661     return R;
662   }
663 
664   const FunctionSamples *FS = findFunctionSamples(Inst);
665   if (FS == nullptr)
666     return R;
667 
668   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
669   uint32_t Discriminator = DIL->getBaseDiscriminator();
670 
671   auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
672   Sum = 0;
673   if (T)
674     for (const auto &T_C : T.get())
675       Sum += T_C.second;
676   if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
677           FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
678     if (M->empty())
679       return R;
680     for (const auto &NameFS : *M) {
681       Sum += NameFS.second.getEntrySamples();
682       R.push_back(&NameFS.second);
683     }
684     llvm::sort(R.begin(), R.end(),
685                [](const FunctionSamples *L, const FunctionSamples *R) {
686                  if (L->getEntrySamples() != R->getEntrySamples())
687                    return L->getEntrySamples() > R->getEntrySamples();
688                  return FunctionSamples::getGUID(L->getName()) <
689                         FunctionSamples::getGUID(R->getName());
690                });
691   }
692   return R;
693 }
694 
695 /// Get the FunctionSamples for an instruction.
696 ///
697 /// The FunctionSamples of an instruction \p Inst is the inlined instance
698 /// in which that instruction is coming from. We traverse the inline stack
699 /// of that instruction, and match it with the tree nodes in the profile.
700 ///
701 /// \param Inst Instruction to query.
702 ///
703 /// \returns the FunctionSamples pointer to the inlined instance.
704 const FunctionSamples *
705 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
706   SmallVector<std::pair<LineLocation, StringRef>, 10> S;
707   const DILocation *DIL = Inst.getDebugLoc();
708   if (!DIL)
709     return Samples;
710 
711   return Samples->findFunctionSamples(DIL);
712 }
713 
714 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
715   assert(isa<CallInst>(I) || isa<InvokeInst>(I));
716   CallSite CS(I);
717   Function *CalledFunction = CS.getCalledFunction();
718   assert(CalledFunction);
719   DebugLoc DLoc = I->getDebugLoc();
720   BasicBlock *BB = I->getParent();
721   InlineParams Params = getInlineParams();
722   Params.ComputeFullInlineCost = true;
723   // Checks if there is anything in the reachable portion of the callee at
724   // this callsite that makes this inlining potentially illegal. Need to
725   // set ComputeFullInlineCost, otherwise getInlineCost may return early
726   // when cost exceeds threshold without checking all IRs in the callee.
727   // The acutal cost does not matter because we only checks isNever() to
728   // see if it is legal to inline the callsite.
729   InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC,
730                                   None, nullptr, nullptr);
731   if (Cost.isNever()) {
732     ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB)
733               << "incompatible inlining");
734     return false;
735   }
736   InlineFunctionInfo IFI(nullptr, &GetAC);
737   if (InlineFunction(CS, IFI)) {
738     // The call to InlineFunction erases I, so we can't pass it here.
739     ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB)
740               << "inlined hot callee '" << ore::NV("Callee", CalledFunction)
741               << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
742     return true;
743   }
744   return false;
745 }
746 
747 /// Iteratively inline hot callsites of a function.
748 ///
749 /// Iteratively traverse all callsites of the function \p F, and find if
750 /// the corresponding inlined instance exists and is hot in profile. If
751 /// it is hot enough, inline the callsites and adds new callsites of the
752 /// callee into the caller. If the call is an indirect call, first promote
753 /// it to direct call. Each indirect call is limited with a single target.
754 ///
755 /// \param F function to perform iterative inlining.
756 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
757 ///     inlined in the profiled binary.
758 ///
759 /// \returns True if there is any inline happened.
760 bool SampleProfileLoader::inlineHotFunctions(
761     Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
762   DenseSet<Instruction *> PromotedInsns;
763   bool Changed = false;
764   while (true) {
765     bool LocalChanged = false;
766     SmallVector<Instruction *, 10> CIS;
767     for (auto &BB : F) {
768       bool Hot = false;
769       SmallVector<Instruction *, 10> Candidates;
770       for (auto &I : BB.getInstList()) {
771         const FunctionSamples *FS = nullptr;
772         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
773             !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
774           Candidates.push_back(&I);
775           if (callsiteIsHot(FS, PSI))
776             Hot = true;
777         }
778       }
779       if (Hot) {
780         CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
781       }
782     }
783     for (auto I : CIS) {
784       Function *CalledFunction = CallSite(I).getCalledFunction();
785       // Do not inline recursive calls.
786       if (CalledFunction == &F)
787         continue;
788       if (CallSite(I).isIndirectCall()) {
789         if (PromotedInsns.count(I))
790           continue;
791         uint64_t Sum;
792         for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
793           if (IsThinLTOPreLink) {
794             FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
795                                      PSI->getOrCompHotCountThreshold());
796             continue;
797           }
798           auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent());
799           // If it is a recursive call, we do not inline it as it could bloat
800           // the code exponentially. There is way to better handle this, e.g.
801           // clone the caller first, and inline the cloned caller if it is
802           // recursive. As llvm does not inline recursive calls, we will
803           // simply ignore it instead of handling it explicitly.
804           if (CalleeFunctionName == F.getName())
805             continue;
806 
807           const char *Reason = "Callee function not available";
808           auto R = SymbolMap.find(CalleeFunctionName);
809           if (R != SymbolMap.end() && R->getValue() &&
810               !R->getValue()->isDeclaration() &&
811               R->getValue()->getSubprogram() &&
812               isLegalToPromote(CallSite(I), R->getValue(), &Reason)) {
813             uint64_t C = FS->getEntrySamples();
814             Instruction *DI =
815                 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
816             Sum -= C;
817             PromotedInsns.insert(I);
818             // If profile mismatches, we should not attempt to inline DI.
819             if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
820                 inlineCallInstruction(DI))
821               LocalChanged = true;
822           } else {
823             LLVM_DEBUG(dbgs()
824                        << "\nFailed to promote indirect call to "
825                        << CalleeFunctionName << " because " << Reason << "\n");
826           }
827         }
828       } else if (CalledFunction && CalledFunction->getSubprogram() &&
829                  !CalledFunction->isDeclaration()) {
830         if (inlineCallInstruction(I))
831           LocalChanged = true;
832       } else if (IsThinLTOPreLink) {
833         findCalleeFunctionSamples(*I)->findInlinedFunctions(
834             InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
835       }
836     }
837     if (LocalChanged) {
838       Changed = true;
839     } else {
840       break;
841     }
842   }
843   return Changed;
844 }
845 
846 /// Find equivalence classes for the given block.
847 ///
848 /// This finds all the blocks that are guaranteed to execute the same
849 /// number of times as \p BB1. To do this, it traverses all the
850 /// descendants of \p BB1 in the dominator or post-dominator tree.
851 ///
852 /// A block BB2 will be in the same equivalence class as \p BB1 if
853 /// the following holds:
854 ///
855 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
856 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
857 ///    dominate BB1 in the post-dominator tree.
858 ///
859 /// 2- Both BB2 and \p BB1 must be in the same loop.
860 ///
861 /// For every block BB2 that meets those two requirements, we set BB2's
862 /// equivalence class to \p BB1.
863 ///
864 /// \param BB1  Block to check.
865 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
866 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
867 ///                 with blocks from \p BB1's dominator tree, then
868 ///                 this is the post-dominator tree, and vice versa.
869 template <bool IsPostDom>
870 void SampleProfileLoader::findEquivalencesFor(
871     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
872     DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
873   const BasicBlock *EC = EquivalenceClass[BB1];
874   uint64_t Weight = BlockWeights[EC];
875   for (const auto *BB2 : Descendants) {
876     bool IsDomParent = DomTree->dominates(BB2, BB1);
877     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
878     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
879       EquivalenceClass[BB2] = EC;
880       // If BB2 is visited, then the entire EC should be marked as visited.
881       if (VisitedBlocks.count(BB2)) {
882         VisitedBlocks.insert(EC);
883       }
884 
885       // If BB2 is heavier than BB1, make BB2 have the same weight
886       // as BB1.
887       //
888       // Note that we don't worry about the opposite situation here
889       // (when BB2 is lighter than BB1). We will deal with this
890       // during the propagation phase. Right now, we just want to
891       // make sure that BB1 has the largest weight of all the
892       // members of its equivalence set.
893       Weight = std::max(Weight, BlockWeights[BB2]);
894     }
895   }
896   if (EC == &EC->getParent()->getEntryBlock()) {
897     BlockWeights[EC] = Samples->getHeadSamples() + 1;
898   } else {
899     BlockWeights[EC] = Weight;
900   }
901 }
902 
903 /// Find equivalence classes.
904 ///
905 /// Since samples may be missing from blocks, we can fill in the gaps by setting
906 /// the weights of all the blocks in the same equivalence class to the same
907 /// weight. To compute the concept of equivalence, we use dominance and loop
908 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
909 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
910 ///
911 /// \param F The function to query.
912 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
913   SmallVector<BasicBlock *, 8> DominatedBBs;
914   LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
915   // Find equivalence sets based on dominance and post-dominance information.
916   for (auto &BB : F) {
917     BasicBlock *BB1 = &BB;
918 
919     // Compute BB1's equivalence class once.
920     if (EquivalenceClass.count(BB1)) {
921       LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
922       continue;
923     }
924 
925     // By default, blocks are in their own equivalence class.
926     EquivalenceClass[BB1] = BB1;
927 
928     // Traverse all the blocks dominated by BB1. We are looking for
929     // every basic block BB2 such that:
930     //
931     // 1- BB1 dominates BB2.
932     // 2- BB2 post-dominates BB1.
933     // 3- BB1 and BB2 are in the same loop nest.
934     //
935     // If all those conditions hold, it means that BB2 is executed
936     // as many times as BB1, so they are placed in the same equivalence
937     // class by making BB2's equivalence class be BB1.
938     DominatedBBs.clear();
939     DT->getDescendants(BB1, DominatedBBs);
940     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
941 
942     LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
943   }
944 
945   // Assign weights to equivalence classes.
946   //
947   // All the basic blocks in the same equivalence class will execute
948   // the same number of times. Since we know that the head block in
949   // each equivalence class has the largest weight, assign that weight
950   // to all the blocks in that equivalence class.
951   LLVM_DEBUG(
952       dbgs() << "\nAssign the same weight to all blocks in the same class\n");
953   for (auto &BI : F) {
954     const BasicBlock *BB = &BI;
955     const BasicBlock *EquivBB = EquivalenceClass[BB];
956     if (BB != EquivBB)
957       BlockWeights[BB] = BlockWeights[EquivBB];
958     LLVM_DEBUG(printBlockWeight(dbgs(), BB));
959   }
960 }
961 
962 /// Visit the given edge to decide if it has a valid weight.
963 ///
964 /// If \p E has not been visited before, we copy to \p UnknownEdge
965 /// and increment the count of unknown edges.
966 ///
967 /// \param E  Edge to visit.
968 /// \param NumUnknownEdges  Current number of unknown edges.
969 /// \param UnknownEdge  Set if E has not been visited before.
970 ///
971 /// \returns E's weight, if known. Otherwise, return 0.
972 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
973                                         Edge *UnknownEdge) {
974   if (!VisitedEdges.count(E)) {
975     (*NumUnknownEdges)++;
976     *UnknownEdge = E;
977     return 0;
978   }
979 
980   return EdgeWeights[E];
981 }
982 
983 /// Propagate weights through incoming/outgoing edges.
984 ///
985 /// If the weight of a basic block is known, and there is only one edge
986 /// with an unknown weight, we can calculate the weight of that edge.
987 ///
988 /// Similarly, if all the edges have a known count, we can calculate the
989 /// count of the basic block, if needed.
990 ///
991 /// \param F  Function to process.
992 /// \param UpdateBlockCount  Whether we should update basic block counts that
993 ///                          has already been annotated.
994 ///
995 /// \returns  True if new weights were assigned to edges or blocks.
996 bool SampleProfileLoader::propagateThroughEdges(Function &F,
997                                                 bool UpdateBlockCount) {
998   bool Changed = false;
999   LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1000   for (const auto &BI : F) {
1001     const BasicBlock *BB = &BI;
1002     const BasicBlock *EC = EquivalenceClass[BB];
1003 
1004     // Visit all the predecessor and successor edges to determine
1005     // which ones have a weight assigned already. Note that it doesn't
1006     // matter that we only keep track of a single unknown edge. The
1007     // only case we are interested in handling is when only a single
1008     // edge is unknown (see setEdgeOrBlockWeight).
1009     for (unsigned i = 0; i < 2; i++) {
1010       uint64_t TotalWeight = 0;
1011       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1012       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1013 
1014       if (i == 0) {
1015         // First, visit all predecessor edges.
1016         NumTotalEdges = Predecessors[BB].size();
1017         for (auto *Pred : Predecessors[BB]) {
1018           Edge E = std::make_pair(Pred, BB);
1019           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1020           if (E.first == E.second)
1021             SelfReferentialEdge = E;
1022         }
1023         if (NumTotalEdges == 1) {
1024           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1025         }
1026       } else {
1027         // On the second round, visit all successor edges.
1028         NumTotalEdges = Successors[BB].size();
1029         for (auto *Succ : Successors[BB]) {
1030           Edge E = std::make_pair(BB, Succ);
1031           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1032         }
1033         if (NumTotalEdges == 1) {
1034           SingleEdge = std::make_pair(BB, Successors[BB][0]);
1035         }
1036       }
1037 
1038       // After visiting all the edges, there are three cases that we
1039       // can handle immediately:
1040       //
1041       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1042       //   In this case, we simply check that the sum of all the edges
1043       //   is the same as BB's weight. If not, we change BB's weight
1044       //   to match. Additionally, if BB had not been visited before,
1045       //   we mark it visited.
1046       //
1047       // - Only one edge is unknown and BB has already been visited.
1048       //   In this case, we can compute the weight of the edge by
1049       //   subtracting the total block weight from all the known
1050       //   edge weights. If the edges weight more than BB, then the
1051       //   edge of the last remaining edge is set to zero.
1052       //
1053       // - There exists a self-referential edge and the weight of BB is
1054       //   known. In this case, this edge can be based on BB's weight.
1055       //   We add up all the other known edges and set the weight on
1056       //   the self-referential edge as we did in the previous case.
1057       //
1058       // In any other case, we must continue iterating. Eventually,
1059       // all edges will get a weight, or iteration will stop when
1060       // it reaches SampleProfileMaxPropagateIterations.
1061       if (NumUnknownEdges <= 1) {
1062         uint64_t &BBWeight = BlockWeights[EC];
1063         if (NumUnknownEdges == 0) {
1064           if (!VisitedBlocks.count(EC)) {
1065             // If we already know the weight of all edges, the weight of the
1066             // basic block can be computed. It should be no larger than the sum
1067             // of all edge weights.
1068             if (TotalWeight > BBWeight) {
1069               BBWeight = TotalWeight;
1070               Changed = true;
1071               LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
1072                                 << " known. Set weight for block: ";
1073                          printBlockWeight(dbgs(), BB););
1074             }
1075           } else if (NumTotalEdges == 1 &&
1076                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1077             // If there is only one edge for the visited basic block, use the
1078             // block weight to adjust edge weight if edge weight is smaller.
1079             EdgeWeights[SingleEdge] = BlockWeights[EC];
1080             Changed = true;
1081           }
1082         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1083           // If there is a single unknown edge and the block has been
1084           // visited, then we can compute E's weight.
1085           if (BBWeight >= TotalWeight)
1086             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1087           else
1088             EdgeWeights[UnknownEdge] = 0;
1089           const BasicBlock *OtherEC;
1090           if (i == 0)
1091             OtherEC = EquivalenceClass[UnknownEdge.first];
1092           else
1093             OtherEC = EquivalenceClass[UnknownEdge.second];
1094           // Edge weights should never exceed the BB weights it connects.
1095           if (VisitedBlocks.count(OtherEC) &&
1096               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1097             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1098           VisitedEdges.insert(UnknownEdge);
1099           Changed = true;
1100           LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1101                      printEdgeWeight(dbgs(), UnknownEdge));
1102         }
1103       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1104         // If a block Weights 0, all its in/out edges should weight 0.
1105         if (i == 0) {
1106           for (auto *Pred : Predecessors[BB]) {
1107             Edge E = std::make_pair(Pred, BB);
1108             EdgeWeights[E] = 0;
1109             VisitedEdges.insert(E);
1110           }
1111         } else {
1112           for (auto *Succ : Successors[BB]) {
1113             Edge E = std::make_pair(BB, Succ);
1114             EdgeWeights[E] = 0;
1115             VisitedEdges.insert(E);
1116           }
1117         }
1118       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1119         uint64_t &BBWeight = BlockWeights[BB];
1120         // We have a self-referential edge and the weight of BB is known.
1121         if (BBWeight >= TotalWeight)
1122           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1123         else
1124           EdgeWeights[SelfReferentialEdge] = 0;
1125         VisitedEdges.insert(SelfReferentialEdge);
1126         Changed = true;
1127         LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1128                    printEdgeWeight(dbgs(), SelfReferentialEdge));
1129       }
1130       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1131         BlockWeights[EC] = TotalWeight;
1132         VisitedBlocks.insert(EC);
1133         Changed = true;
1134       }
1135     }
1136   }
1137 
1138   return Changed;
1139 }
1140 
1141 /// Build in/out edge lists for each basic block in the CFG.
1142 ///
1143 /// We are interested in unique edges. If a block B1 has multiple
1144 /// edges to another block B2, we only add a single B1->B2 edge.
1145 void SampleProfileLoader::buildEdges(Function &F) {
1146   for (auto &BI : F) {
1147     BasicBlock *B1 = &BI;
1148 
1149     // Add predecessors for B1.
1150     SmallPtrSet<BasicBlock *, 16> Visited;
1151     if (!Predecessors[B1].empty())
1152       llvm_unreachable("Found a stale predecessors list in a basic block.");
1153     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1154       BasicBlock *B2 = *PI;
1155       if (Visited.insert(B2).second)
1156         Predecessors[B1].push_back(B2);
1157     }
1158 
1159     // Add successors for B1.
1160     Visited.clear();
1161     if (!Successors[B1].empty())
1162       llvm_unreachable("Found a stale successors list in a basic block.");
1163     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1164       BasicBlock *B2 = *SI;
1165       if (Visited.insert(B2).second)
1166         Successors[B1].push_back(B2);
1167     }
1168   }
1169 }
1170 
1171 /// Returns the sorted CallTargetMap \p M by count in descending order.
1172 static SmallVector<InstrProfValueData, 2> SortCallTargets(
1173     const SampleRecord::CallTargetMap &M) {
1174   SmallVector<InstrProfValueData, 2> R;
1175   for (auto I = M.begin(); I != M.end(); ++I)
1176     R.push_back({FunctionSamples::getGUID(I->getKey()), I->getValue()});
1177   llvm::sort(R.begin(), R.end(),
1178              [](const InstrProfValueData &L, const InstrProfValueData &R) {
1179                if (L.Count == R.Count)
1180                  return L.Value > R.Value;
1181                else
1182                  return L.Count > R.Count;
1183              });
1184   return R;
1185 }
1186 
1187 /// Propagate weights into edges
1188 ///
1189 /// The following rules are applied to every block BB in the CFG:
1190 ///
1191 /// - If BB has a single predecessor/successor, then the weight
1192 ///   of that edge is the weight of the block.
1193 ///
1194 /// - If all incoming or outgoing edges are known except one, and the
1195 ///   weight of the block is already known, the weight of the unknown
1196 ///   edge will be the weight of the block minus the sum of all the known
1197 ///   edges. If the sum of all the known edges is larger than BB's weight,
1198 ///   we set the unknown edge weight to zero.
1199 ///
1200 /// - If there is a self-referential edge, and the weight of the block is
1201 ///   known, the weight for that edge is set to the weight of the block
1202 ///   minus the weight of the other incoming edges to that block (if
1203 ///   known).
1204 void SampleProfileLoader::propagateWeights(Function &F) {
1205   bool Changed = true;
1206   unsigned I = 0;
1207 
1208   // If BB weight is larger than its corresponding loop's header BB weight,
1209   // use the BB weight to replace the loop header BB weight.
1210   for (auto &BI : F) {
1211     BasicBlock *BB = &BI;
1212     Loop *L = LI->getLoopFor(BB);
1213     if (!L) {
1214       continue;
1215     }
1216     BasicBlock *Header = L->getHeader();
1217     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1218       BlockWeights[Header] = BlockWeights[BB];
1219     }
1220   }
1221 
1222   // Before propagation starts, build, for each block, a list of
1223   // unique predecessors and successors. This is necessary to handle
1224   // identical edges in multiway branches. Since we visit all blocks and all
1225   // edges of the CFG, it is cleaner to build these lists once at the start
1226   // of the pass.
1227   buildEdges(F);
1228 
1229   // Propagate until we converge or we go past the iteration limit.
1230   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1231     Changed = propagateThroughEdges(F, false);
1232   }
1233 
1234   // The first propagation propagates BB counts from annotated BBs to unknown
1235   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1236   // to propagate edge weights.
1237   VisitedEdges.clear();
1238   Changed = true;
1239   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1240     Changed = propagateThroughEdges(F, false);
1241   }
1242 
1243   // The 3rd propagation pass allows adjust annotated BB weights that are
1244   // obviously wrong.
1245   Changed = true;
1246   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1247     Changed = propagateThroughEdges(F, true);
1248   }
1249 
1250   // Generate MD_prof metadata for every branch instruction using the
1251   // edge weights computed during propagation.
1252   LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1253   LLVMContext &Ctx = F.getContext();
1254   MDBuilder MDB(Ctx);
1255   for (auto &BI : F) {
1256     BasicBlock *BB = &BI;
1257 
1258     if (BlockWeights[BB]) {
1259       for (auto &I : BB->getInstList()) {
1260         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1261           continue;
1262         CallSite CS(&I);
1263         if (!CS.getCalledFunction()) {
1264           const DebugLoc &DLoc = I.getDebugLoc();
1265           if (!DLoc)
1266             continue;
1267           const DILocation *DIL = DLoc;
1268           uint32_t LineOffset = FunctionSamples::getOffset(DIL);
1269           uint32_t Discriminator = DIL->getBaseDiscriminator();
1270 
1271           const FunctionSamples *FS = findFunctionSamples(I);
1272           if (!FS)
1273             continue;
1274           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1275           if (!T || T.get().empty())
1276             continue;
1277           SmallVector<InstrProfValueData, 2> SortedCallTargets =
1278               SortCallTargets(T.get());
1279           uint64_t Sum;
1280           findIndirectCallFunctionSamples(I, Sum);
1281           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1282                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1283                             SortedCallTargets.size());
1284         } else if (!dyn_cast<IntrinsicInst>(&I)) {
1285           SmallVector<uint32_t, 1> Weights;
1286           Weights.push_back(BlockWeights[BB]);
1287           I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
1288         }
1289       }
1290     }
1291     TerminatorInst *TI = BB->getTerminator();
1292     if (TI->getNumSuccessors() == 1)
1293       continue;
1294     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1295       continue;
1296 
1297     DebugLoc BranchLoc = TI->getDebugLoc();
1298     LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1299                       << ((BranchLoc) ? Twine(BranchLoc.getLine())
1300                                       : Twine("<UNKNOWN LOCATION>"))
1301                       << ".\n");
1302     SmallVector<uint32_t, 4> Weights;
1303     uint32_t MaxWeight = 0;
1304     Instruction *MaxDestInst;
1305     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1306       BasicBlock *Succ = TI->getSuccessor(I);
1307       Edge E = std::make_pair(BB, Succ);
1308       uint64_t Weight = EdgeWeights[E];
1309       LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1310       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1311       // if needed. Sample counts in profiles are 64-bit unsigned values,
1312       // but internally branch weights are expressed as 32-bit values.
1313       if (Weight > std::numeric_limits<uint32_t>::max()) {
1314         LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1315         Weight = std::numeric_limits<uint32_t>::max();
1316       }
1317       // Weight is added by one to avoid propagation errors introduced by
1318       // 0 weights.
1319       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1320       if (Weight != 0) {
1321         if (Weight > MaxWeight) {
1322           MaxWeight = Weight;
1323           MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1324         }
1325       }
1326     }
1327 
1328     uint64_t TempWeight;
1329     // Only set weights if there is at least one non-zero weight.
1330     // In any other case, let the analyzer set weights.
1331     // Do not set weights if the weights are present. In ThinLTO, the profile
1332     // annotation is done twice. If the first annotation already set the
1333     // weights, the second pass does not need to set it.
1334     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1335       LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1336       TI->setMetadata(LLVMContext::MD_prof,
1337                       MDB.createBranchWeights(Weights));
1338       ORE->emit([&]() {
1339         return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1340                << "most popular destination for conditional branches at "
1341                << ore::NV("CondBranchesLoc", BranchLoc);
1342       });
1343     } else {
1344       LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1345     }
1346   }
1347 }
1348 
1349 /// Get the line number for the function header.
1350 ///
1351 /// This looks up function \p F in the current compilation unit and
1352 /// retrieves the line number where the function is defined. This is
1353 /// line 0 for all the samples read from the profile file. Every line
1354 /// number is relative to this line.
1355 ///
1356 /// \param F  Function object to query.
1357 ///
1358 /// \returns the line number where \p F is defined. If it returns 0,
1359 ///          it means that there is no debug information available for \p F.
1360 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1361   if (DISubprogram *S = F.getSubprogram())
1362     return S->getLine();
1363 
1364   if (NoWarnSampleUnused)
1365     return 0;
1366 
1367   // If the start of \p F is missing, emit a diagnostic to inform the user
1368   // about the missed opportunity.
1369   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1370       "No debug information found in function " + F.getName() +
1371           ": Function profile not used",
1372       DS_Warning));
1373   return 0;
1374 }
1375 
1376 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1377   DT.reset(new DominatorTree);
1378   DT->recalculate(F);
1379 
1380   PDT.reset(new PostDominatorTree(F));
1381 
1382   LI.reset(new LoopInfo);
1383   LI->analyze(*DT);
1384 }
1385 
1386 /// Generate branch weight metadata for all branches in \p F.
1387 ///
1388 /// Branch weights are computed out of instruction samples using a
1389 /// propagation heuristic. Propagation proceeds in 3 phases:
1390 ///
1391 /// 1- Assignment of block weights. All the basic blocks in the function
1392 ///    are initial assigned the same weight as their most frequently
1393 ///    executed instruction.
1394 ///
1395 /// 2- Creation of equivalence classes. Since samples may be missing from
1396 ///    blocks, we can fill in the gaps by setting the weights of all the
1397 ///    blocks in the same equivalence class to the same weight. To compute
1398 ///    the concept of equivalence, we use dominance and loop information.
1399 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1400 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1401 ///
1402 /// 3- Propagation of block weights into edges. This uses a simple
1403 ///    propagation heuristic. The following rules are applied to every
1404 ///    block BB in the CFG:
1405 ///
1406 ///    - If BB has a single predecessor/successor, then the weight
1407 ///      of that edge is the weight of the block.
1408 ///
1409 ///    - If all the edges are known except one, and the weight of the
1410 ///      block is already known, the weight of the unknown edge will
1411 ///      be the weight of the block minus the sum of all the known
1412 ///      edges. If the sum of all the known edges is larger than BB's weight,
1413 ///      we set the unknown edge weight to zero.
1414 ///
1415 ///    - If there is a self-referential edge, and the weight of the block is
1416 ///      known, the weight for that edge is set to the weight of the block
1417 ///      minus the weight of the other incoming edges to that block (if
1418 ///      known).
1419 ///
1420 /// Since this propagation is not guaranteed to finalize for every CFG, we
1421 /// only allow it to proceed for a limited number of iterations (controlled
1422 /// by -sample-profile-max-propagate-iterations).
1423 ///
1424 /// FIXME: Try to replace this propagation heuristic with a scheme
1425 /// that is guaranteed to finalize. A work-list approach similar to
1426 /// the standard value propagation algorithm used by SSA-CCP might
1427 /// work here.
1428 ///
1429 /// Once all the branch weights are computed, we emit the MD_prof
1430 /// metadata on BB using the computed values for each of its branches.
1431 ///
1432 /// \param F The function to query.
1433 ///
1434 /// \returns true if \p F was modified. Returns false, otherwise.
1435 bool SampleProfileLoader::emitAnnotations(Function &F) {
1436   bool Changed = false;
1437 
1438   if (getFunctionLoc(F) == 0)
1439     return false;
1440 
1441   LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1442                     << F.getName() << ": " << getFunctionLoc(F) << "\n");
1443 
1444   DenseSet<GlobalValue::GUID> InlinedGUIDs;
1445   Changed |= inlineHotFunctions(F, InlinedGUIDs);
1446 
1447   // Compute basic block weights.
1448   Changed |= computeBlockWeights(F);
1449 
1450   if (Changed) {
1451     // Add an entry count to the function using the samples gathered at the
1452     // function entry.
1453     // Sets the GUIDs that are inlined in the profiled binary. This is used
1454     // for ThinLink to make correct liveness analysis, and also make the IR
1455     // match the profiled binary before annotation.
1456     F.setEntryCount(
1457         ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1458         &InlinedGUIDs);
1459 
1460     // Compute dominance and loop info needed for propagation.
1461     computeDominanceAndLoopInfo(F);
1462 
1463     // Find equivalence classes.
1464     findEquivalenceClasses(F);
1465 
1466     // Propagate weights to all edges.
1467     propagateWeights(F);
1468   }
1469 
1470   // If coverage checking was requested, compute it now.
1471   if (SampleProfileRecordCoverage) {
1472     unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1473     unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1474     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1475     if (Coverage < SampleProfileRecordCoverage) {
1476       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1477           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1478           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1479               Twine(Coverage) + "%) were applied",
1480           DS_Warning));
1481     }
1482   }
1483 
1484   if (SampleProfileSampleCoverage) {
1485     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1486     uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1487     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1488     if (Coverage < SampleProfileSampleCoverage) {
1489       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1490           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1491           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1492               Twine(Coverage) + "%) were applied",
1493           DS_Warning));
1494     }
1495   }
1496   return Changed;
1497 }
1498 
1499 char SampleProfileLoaderLegacyPass::ID = 0;
1500 
1501 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1502                       "Sample Profile loader", false, false)
1503 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1504 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1505 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1506 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1507                     "Sample Profile loader", false, false)
1508 
1509 bool SampleProfileLoader::doInitialization(Module &M) {
1510   auto &Ctx = M.getContext();
1511   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1512   if (std::error_code EC = ReaderOrErr.getError()) {
1513     std::string Msg = "Could not open profile: " + EC.message();
1514     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1515     return false;
1516   }
1517   Reader = std::move(ReaderOrErr.get());
1518   Reader->collectFuncsToUse(M);
1519   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1520   return true;
1521 }
1522 
1523 ModulePass *llvm::createSampleProfileLoaderPass() {
1524   return new SampleProfileLoaderLegacyPass(SampleProfileFile);
1525 }
1526 
1527 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1528   return new SampleProfileLoaderLegacyPass(Name);
1529 }
1530 
1531 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
1532                                       ProfileSummaryInfo *_PSI) {
1533   FunctionSamples::GUIDToFuncNameMapper Mapper(M);
1534   if (!ProfileIsValid)
1535     return false;
1536 
1537   PSI = _PSI;
1538   if (M.getProfileSummary() == nullptr)
1539     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
1540 
1541   // Compute the total number of samples collected in this profile.
1542   for (const auto &I : Reader->getProfiles())
1543     TotalCollectedSamples += I.second.getTotalSamples();
1544 
1545   // Populate the symbol map.
1546   for (const auto &N_F : M.getValueSymbolTable()) {
1547     StringRef OrigName = N_F.getKey();
1548     Function *F = dyn_cast<Function>(N_F.getValue());
1549     if (F == nullptr)
1550       continue;
1551     SymbolMap[OrigName] = F;
1552     auto pos = OrigName.find('.');
1553     if (pos != StringRef::npos) {
1554       StringRef NewName = OrigName.substr(0, pos);
1555       auto r = SymbolMap.insert(std::make_pair(NewName, F));
1556       // Failiing to insert means there is already an entry in SymbolMap,
1557       // thus there are multiple functions that are mapped to the same
1558       // stripped name. In this case of name conflicting, set the value
1559       // to nullptr to avoid confusion.
1560       if (!r.second)
1561         r.first->second = nullptr;
1562     }
1563   }
1564 
1565   bool retval = false;
1566   for (auto &F : M)
1567     if (!F.isDeclaration()) {
1568       clearFunctionData();
1569       retval |= runOnFunction(F, AM);
1570     }
1571   return retval;
1572 }
1573 
1574 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1575   ACT = &getAnalysis<AssumptionCacheTracker>();
1576   TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1577   ProfileSummaryInfo *PSI =
1578       getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1579   return SampleLoader.runOnModule(M, nullptr, PSI);
1580 }
1581 
1582 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1583   // Initialize the entry count to -1, which will be treated conservatively
1584   // by getEntryCount as the same as unknown (None). If we have samples this
1585   // will be overwritten in emitAnnotations.
1586   F.setEntryCount(ProfileCount(-1, Function::PCT_Real));
1587   std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1588   if (AM) {
1589     auto &FAM =
1590         AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1591             .getManager();
1592     ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1593   } else {
1594     OwnedORE = make_unique<OptimizationRemarkEmitter>(&F);
1595     ORE = OwnedORE.get();
1596   }
1597   Samples = Reader->getSamplesFor(F);
1598   if (Samples && !Samples->empty())
1599     return emitAnnotations(F);
1600   return false;
1601 }
1602 
1603 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1604                                                ModuleAnalysisManager &AM) {
1605   FunctionAnalysisManager &FAM =
1606       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1607 
1608   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1609     return FAM.getResult<AssumptionAnalysis>(F);
1610   };
1611   auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1612     return FAM.getResult<TargetIRAnalysis>(F);
1613   };
1614 
1615   SampleProfileLoader SampleLoader(
1616       ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1617       IsThinLTOPreLink, GetAssumptionCache, GetTTI);
1618 
1619   SampleLoader.doInitialization(M);
1620 
1621   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1622   if (!SampleLoader.runOnModule(M, &AM, PSI))
1623     return PreservedAnalyses::all();
1624 
1625   return PreservedAnalyses::none();
1626 }
1627