1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SampleProfileLoader transformation. This pass 10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 12 // profile information in the given profile. 13 // 14 // This pass generates branch weight annotations on the IR: 15 // 16 // - prof: Represents branch weights. This annotation is added to branches 17 // to indicate the weights of each edge coming out of the branch. 18 // The weight of each edge is the weight of the target block for 19 // that edge. The weight of a block B is computed as the maximum 20 // number of samples found in B. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/IPO/SampleProfile.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/None.h" 29 #include "llvm/ADT/SCCIterator.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/StringMap.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/ADT/Twine.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CallGraph.h" 38 #include "llvm/Analysis/CallGraphSCCPass.h" 39 #include "llvm/Analysis/InlineCost.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 42 #include "llvm/Analysis/PostDominators.h" 43 #include "llvm/Analysis/ProfileSummaryInfo.h" 44 #include "llvm/Analysis/TargetTransformInfo.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CFG.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DiagnosticInfo.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instruction.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/MDBuilder.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/PassManager.h" 62 #include "llvm/IR/ValueSymbolTable.h" 63 #include "llvm/InitializePasses.h" 64 #include "llvm/Pass.h" 65 #include "llvm/ProfileData/InstrProf.h" 66 #include "llvm/ProfileData/SampleProf.h" 67 #include "llvm/ProfileData/SampleProfReader.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ErrorOr.h" 73 #include "llvm/Support/GenericDomTree.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Transforms/IPO.h" 76 #include "llvm/Transforms/Instrumentation.h" 77 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 78 #include "llvm/Transforms/Utils/Cloning.h" 79 #include "llvm/Transforms/Utils/MisExpect.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <cstdint> 83 #include <functional> 84 #include <limits> 85 #include <map> 86 #include <memory> 87 #include <queue> 88 #include <string> 89 #include <system_error> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 using namespace sampleprof; 95 using ProfileCount = Function::ProfileCount; 96 #define DEBUG_TYPE "sample-profile" 97 98 // Command line option to specify the file to read samples from. This is 99 // mainly used for debugging. 100 static cl::opt<std::string> SampleProfileFile( 101 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 102 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 103 104 // The named file contains a set of transformations that may have been applied 105 // to the symbol names between the program from which the sample data was 106 // collected and the current program's symbols. 107 static cl::opt<std::string> SampleProfileRemappingFile( 108 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), 109 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); 110 111 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 112 "sample-profile-max-propagate-iterations", cl::init(100), 113 cl::desc("Maximum number of iterations to go through when propagating " 114 "sample block/edge weights through the CFG.")); 115 116 static cl::opt<unsigned> SampleProfileRecordCoverage( 117 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 118 cl::desc("Emit a warning if less than N% of records in the input profile " 119 "are matched to the IR.")); 120 121 static cl::opt<unsigned> SampleProfileSampleCoverage( 122 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 123 cl::desc("Emit a warning if less than N% of samples in the input profile " 124 "are matched to the IR.")); 125 126 static cl::opt<bool> NoWarnSampleUnused( 127 "no-warn-sample-unused", cl::init(false), cl::Hidden, 128 cl::desc("Use this option to turn off/on warnings about function with " 129 "samples but without debug information to use those samples. ")); 130 131 static cl::opt<bool> ProfileSampleAccurate( 132 "profile-sample-accurate", cl::Hidden, cl::init(false), 133 cl::desc("If the sample profile is accurate, we will mark all un-sampled " 134 "callsite and function as having 0 samples. Otherwise, treat " 135 "un-sampled callsites and functions conservatively as unknown. ")); 136 137 static cl::opt<bool> ProfileAccurateForSymsInList( 138 "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore, 139 cl::init(true), 140 cl::desc("For symbols in profile symbol list, regard their profiles to " 141 "be accurate. It may be overriden by profile-sample-accurate. ")); 142 143 static cl::opt<bool> ProfileMergeInlinee( 144 "sample-profile-merge-inlinee", cl::Hidden, cl::init(false), 145 cl::desc("Merge past inlinee's profile to outline version if sample " 146 "profile loader decided not to inline a call site.")); 147 148 static cl::opt<bool> ProfileTopDownLoad( 149 "sample-profile-top-down-load", cl::Hidden, cl::init(false), 150 cl::desc("Do profile annotation and inlining for functions in top-down " 151 "order of call graph during sample profile loading.")); 152 153 static cl::opt<bool> ProfileSizeInline( 154 "sample-profile-inline-size", cl::Hidden, cl::init(false), 155 cl::desc("Inline cold call sites in profile loader if it's beneficial " 156 "for code size.")); 157 158 static cl::opt<int> SampleColdCallSiteThreshold( 159 "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45), 160 cl::desc("Threshold for inlining cold callsites")); 161 162 namespace { 163 164 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 165 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 166 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 167 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 168 using BlockEdgeMap = 169 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 170 171 class SampleProfileLoader; 172 173 class SampleCoverageTracker { 174 public: 175 SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){}; 176 177 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 178 uint32_t Discriminator, uint64_t Samples); 179 unsigned computeCoverage(unsigned Used, unsigned Total) const; 180 unsigned countUsedRecords(const FunctionSamples *FS, 181 ProfileSummaryInfo *PSI) const; 182 unsigned countBodyRecords(const FunctionSamples *FS, 183 ProfileSummaryInfo *PSI) const; 184 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 185 uint64_t countBodySamples(const FunctionSamples *FS, 186 ProfileSummaryInfo *PSI) const; 187 188 void clear() { 189 SampleCoverage.clear(); 190 TotalUsedSamples = 0; 191 } 192 193 private: 194 using BodySampleCoverageMap = std::map<LineLocation, unsigned>; 195 using FunctionSamplesCoverageMap = 196 DenseMap<const FunctionSamples *, BodySampleCoverageMap>; 197 198 /// Coverage map for sampling records. 199 /// 200 /// This map keeps a record of sampling records that have been matched to 201 /// an IR instruction. This is used to detect some form of staleness in 202 /// profiles (see flag -sample-profile-check-coverage). 203 /// 204 /// Each entry in the map corresponds to a FunctionSamples instance. This is 205 /// another map that counts how many times the sample record at the 206 /// given location has been used. 207 FunctionSamplesCoverageMap SampleCoverage; 208 209 /// Number of samples used from the profile. 210 /// 211 /// When a sampling record is used for the first time, the samples from 212 /// that record are added to this accumulator. Coverage is later computed 213 /// based on the total number of samples available in this function and 214 /// its callsites. 215 /// 216 /// Note that this accumulator tracks samples used from a single function 217 /// and all the inlined callsites. Strictly, we should have a map of counters 218 /// keyed by FunctionSamples pointers, but these stats are cleared after 219 /// every function, so we just need to keep a single counter. 220 uint64_t TotalUsedSamples = 0; 221 222 SampleProfileLoader &SPLoader; 223 }; 224 225 class GUIDToFuncNameMapper { 226 public: 227 GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader, 228 DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap) 229 : CurrentReader(Reader), CurrentModule(M), 230 CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) { 231 if (CurrentReader.getFormat() != SPF_Compact_Binary) 232 return; 233 234 for (const auto &F : CurrentModule) { 235 StringRef OrigName = F.getName(); 236 CurrentGUIDToFuncNameMap.insert( 237 {Function::getGUID(OrigName), OrigName}); 238 239 // Local to global var promotion used by optimization like thinlto 240 // will rename the var and add suffix like ".llvm.xxx" to the 241 // original local name. In sample profile, the suffixes of function 242 // names are all stripped. Since it is possible that the mapper is 243 // built in post-thin-link phase and var promotion has been done, 244 // we need to add the substring of function name without the suffix 245 // into the GUIDToFuncNameMap. 246 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 247 if (CanonName != OrigName) 248 CurrentGUIDToFuncNameMap.insert( 249 {Function::getGUID(CanonName), CanonName}); 250 } 251 252 // Update GUIDToFuncNameMap for each function including inlinees. 253 SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap); 254 } 255 256 ~GUIDToFuncNameMapper() { 257 if (CurrentReader.getFormat() != SPF_Compact_Binary) 258 return; 259 260 CurrentGUIDToFuncNameMap.clear(); 261 262 // Reset GUIDToFuncNameMap for of each function as they're no 263 // longer valid at this point. 264 SetGUIDToFuncNameMapForAll(nullptr); 265 } 266 267 private: 268 void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) { 269 std::queue<FunctionSamples *> FSToUpdate; 270 for (auto &IFS : CurrentReader.getProfiles()) { 271 FSToUpdate.push(&IFS.second); 272 } 273 274 while (!FSToUpdate.empty()) { 275 FunctionSamples *FS = FSToUpdate.front(); 276 FSToUpdate.pop(); 277 FS->GUIDToFuncNameMap = Map; 278 for (const auto &ICS : FS->getCallsiteSamples()) { 279 const FunctionSamplesMap &FSMap = ICS.second; 280 for (auto &IFS : FSMap) { 281 FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second); 282 FSToUpdate.push(&FS); 283 } 284 } 285 } 286 } 287 288 SampleProfileReader &CurrentReader; 289 Module &CurrentModule; 290 DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap; 291 }; 292 293 /// Sample profile pass. 294 /// 295 /// This pass reads profile data from the file specified by 296 /// -sample-profile-file and annotates every affected function with the 297 /// profile information found in that file. 298 class SampleProfileLoader { 299 public: 300 SampleProfileLoader( 301 StringRef Name, StringRef RemapName, bool IsThinLTOPreLink, 302 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 303 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo) 304 : GetAC(std::move(GetAssumptionCache)), 305 GetTTI(std::move(GetTargetTransformInfo)), CoverageTracker(*this), 306 Filename(Name), RemappingFilename(RemapName), 307 IsThinLTOPreLink(IsThinLTOPreLink) {} 308 309 bool doInitialization(Module &M); 310 bool runOnModule(Module &M, ModuleAnalysisManager *AM, 311 ProfileSummaryInfo *_PSI, CallGraph *CG); 312 313 void dump() { Reader->dump(); } 314 315 protected: 316 friend class SampleCoverageTracker; 317 318 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 319 unsigned getFunctionLoc(Function &F); 320 bool emitAnnotations(Function &F); 321 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 322 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 323 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 324 std::vector<const FunctionSamples *> 325 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 326 mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap; 327 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 328 bool inlineCallInstruction(Instruction *I); 329 bool inlineHotFunctions(Function &F, 330 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 331 // Inline cold/small functions in addition to hot ones 332 bool shouldInlineColdCallee(Instruction &CallInst); 333 void printEdgeWeight(raw_ostream &OS, Edge E); 334 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 335 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 336 bool computeBlockWeights(Function &F); 337 void findEquivalenceClasses(Function &F); 338 template <bool IsPostDom> 339 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 340 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 341 342 void propagateWeights(Function &F); 343 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 344 void buildEdges(Function &F); 345 std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG); 346 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 347 void computeDominanceAndLoopInfo(Function &F); 348 void clearFunctionData(); 349 bool callsiteIsHot(const FunctionSamples *CallsiteFS, 350 ProfileSummaryInfo *PSI); 351 352 /// Map basic blocks to their computed weights. 353 /// 354 /// The weight of a basic block is defined to be the maximum 355 /// of all the instruction weights in that block. 356 BlockWeightMap BlockWeights; 357 358 /// Map edges to their computed weights. 359 /// 360 /// Edge weights are computed by propagating basic block weights in 361 /// SampleProfile::propagateWeights. 362 EdgeWeightMap EdgeWeights; 363 364 /// Set of visited blocks during propagation. 365 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 366 367 /// Set of visited edges during propagation. 368 SmallSet<Edge, 32> VisitedEdges; 369 370 /// Equivalence classes for block weights. 371 /// 372 /// Two blocks BB1 and BB2 are in the same equivalence class if they 373 /// dominate and post-dominate each other, and they are in the same loop 374 /// nest. When this happens, the two blocks are guaranteed to execute 375 /// the same number of times. 376 EquivalenceClassMap EquivalenceClass; 377 378 /// Map from function name to Function *. Used to find the function from 379 /// the function name. If the function name contains suffix, additional 380 /// entry is added to map from the stripped name to the function if there 381 /// is one-to-one mapping. 382 StringMap<Function *> SymbolMap; 383 384 /// Dominance, post-dominance and loop information. 385 std::unique_ptr<DominatorTree> DT; 386 std::unique_ptr<PostDominatorTree> PDT; 387 std::unique_ptr<LoopInfo> LI; 388 389 std::function<AssumptionCache &(Function &)> GetAC; 390 std::function<TargetTransformInfo &(Function &)> GetTTI; 391 392 /// Predecessors for each basic block in the CFG. 393 BlockEdgeMap Predecessors; 394 395 /// Successors for each basic block in the CFG. 396 BlockEdgeMap Successors; 397 398 SampleCoverageTracker CoverageTracker; 399 400 /// Profile reader object. 401 std::unique_ptr<SampleProfileReader> Reader; 402 403 /// Samples collected for the body of this function. 404 FunctionSamples *Samples = nullptr; 405 406 /// Name of the profile file to load. 407 std::string Filename; 408 409 /// Name of the profile remapping file to load. 410 std::string RemappingFilename; 411 412 /// Flag indicating whether the profile input loaded successfully. 413 bool ProfileIsValid = false; 414 415 /// Flag indicating if the pass is invoked in ThinLTO compile phase. 416 /// 417 /// In this phase, in annotation, we should not promote indirect calls. 418 /// Instead, we will mark GUIDs that needs to be annotated to the function. 419 bool IsThinLTOPreLink; 420 421 /// Profile Summary Info computed from sample profile. 422 ProfileSummaryInfo *PSI = nullptr; 423 424 /// Profle Symbol list tells whether a function name appears in the binary 425 /// used to generate the current profile. 426 std::unique_ptr<ProfileSymbolList> PSL; 427 428 /// Total number of samples collected in this profile. 429 /// 430 /// This is the sum of all the samples collected in all the functions executed 431 /// at runtime. 432 uint64_t TotalCollectedSamples = 0; 433 434 /// Optimization Remark Emitter used to emit diagnostic remarks. 435 OptimizationRemarkEmitter *ORE = nullptr; 436 437 // Information recorded when we declined to inline a call site 438 // because we have determined it is too cold is accumulated for 439 // each callee function. Initially this is just the entry count. 440 struct NotInlinedProfileInfo { 441 uint64_t entryCount; 442 }; 443 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo; 444 445 // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for 446 // all the function symbols defined or declared in current module. 447 DenseMap<uint64_t, StringRef> GUIDToFuncNameMap; 448 449 // All the Names used in FunctionSamples including outline function 450 // names, inline instance names and call target names. 451 StringSet<> NamesInProfile; 452 453 // For symbol in profile symbol list, whether to regard their profiles 454 // to be accurate. It is mainly decided by existance of profile symbol 455 // list and -profile-accurate-for-symsinlist flag, but it can be 456 // overriden by -profile-sample-accurate or profile-sample-accurate 457 // attribute. 458 bool ProfAccForSymsInList; 459 }; 460 461 class SampleProfileLoaderLegacyPass : public ModulePass { 462 public: 463 // Class identification, replacement for typeinfo 464 static char ID; 465 466 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, 467 bool IsThinLTOPreLink = false) 468 : ModulePass(ID), 469 SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink, 470 [&](Function &F) -> AssumptionCache & { 471 return ACT->getAssumptionCache(F); 472 }, 473 [&](Function &F) -> TargetTransformInfo & { 474 return TTIWP->getTTI(F); 475 }) { 476 initializeSampleProfileLoaderLegacyPassPass( 477 *PassRegistry::getPassRegistry()); 478 } 479 480 void dump() { SampleLoader.dump(); } 481 482 bool doInitialization(Module &M) override { 483 return SampleLoader.doInitialization(M); 484 } 485 486 StringRef getPassName() const override { return "Sample profile pass"; } 487 bool runOnModule(Module &M) override; 488 489 void getAnalysisUsage(AnalysisUsage &AU) const override { 490 AU.addRequired<AssumptionCacheTracker>(); 491 AU.addRequired<TargetTransformInfoWrapperPass>(); 492 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 493 } 494 495 private: 496 SampleProfileLoader SampleLoader; 497 AssumptionCacheTracker *ACT = nullptr; 498 TargetTransformInfoWrapperPass *TTIWP = nullptr; 499 }; 500 501 } // end anonymous namespace 502 503 /// Return true if the given callsite is hot wrt to hot cutoff threshold. 504 /// 505 /// Functions that were inlined in the original binary will be represented 506 /// in the inline stack in the sample profile. If the profile shows that 507 /// the original inline decision was "good" (i.e., the callsite is executed 508 /// frequently), then we will recreate the inline decision and apply the 509 /// profile from the inlined callsite. 510 /// 511 /// To decide whether an inlined callsite is hot, we compare the callsite 512 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is 513 /// regarded as hot if the count is above the cutoff value. 514 /// 515 /// When ProfileAccurateForSymsInList is enabled and profile symbol list 516 /// is present, functions in the profile symbol list but without profile will 517 /// be regarded as cold and much less inlining will happen in CGSCC inlining 518 /// pass, so we tend to lower the hot criteria here to allow more early 519 /// inlining to happen for warm callsites and it is helpful for performance. 520 bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS, 521 ProfileSummaryInfo *PSI) { 522 if (!CallsiteFS) 523 return false; // The callsite was not inlined in the original binary. 524 525 assert(PSI && "PSI is expected to be non null"); 526 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 527 if (ProfAccForSymsInList) 528 return !PSI->isColdCount(CallsiteTotalSamples); 529 else 530 return PSI->isHotCount(CallsiteTotalSamples); 531 } 532 533 /// Mark as used the sample record for the given function samples at 534 /// (LineOffset, Discriminator). 535 /// 536 /// \returns true if this is the first time we mark the given record. 537 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 538 uint32_t LineOffset, 539 uint32_t Discriminator, 540 uint64_t Samples) { 541 LineLocation Loc(LineOffset, Discriminator); 542 unsigned &Count = SampleCoverage[FS][Loc]; 543 bool FirstTime = (++Count == 1); 544 if (FirstTime) 545 TotalUsedSamples += Samples; 546 return FirstTime; 547 } 548 549 /// Return the number of sample records that were applied from this profile. 550 /// 551 /// This count does not include records from cold inlined callsites. 552 unsigned 553 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS, 554 ProfileSummaryInfo *PSI) const { 555 auto I = SampleCoverage.find(FS); 556 557 // The size of the coverage map for FS represents the number of records 558 // that were marked used at least once. 559 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 560 561 // If there are inlined callsites in this function, count the samples found 562 // in the respective bodies. However, do not bother counting callees with 0 563 // total samples, these are callees that were never invoked at runtime. 564 for (const auto &I : FS->getCallsiteSamples()) 565 for (const auto &J : I.second) { 566 const FunctionSamples *CalleeSamples = &J.second; 567 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 568 Count += countUsedRecords(CalleeSamples, PSI); 569 } 570 571 return Count; 572 } 573 574 /// Return the number of sample records in the body of this profile. 575 /// 576 /// This count does not include records from cold inlined callsites. 577 unsigned 578 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS, 579 ProfileSummaryInfo *PSI) const { 580 unsigned Count = FS->getBodySamples().size(); 581 582 // Only count records in hot callsites. 583 for (const auto &I : FS->getCallsiteSamples()) 584 for (const auto &J : I.second) { 585 const FunctionSamples *CalleeSamples = &J.second; 586 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 587 Count += countBodyRecords(CalleeSamples, PSI); 588 } 589 590 return Count; 591 } 592 593 /// Return the number of samples collected in the body of this profile. 594 /// 595 /// This count does not include samples from cold inlined callsites. 596 uint64_t 597 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS, 598 ProfileSummaryInfo *PSI) const { 599 uint64_t Total = 0; 600 for (const auto &I : FS->getBodySamples()) 601 Total += I.second.getSamples(); 602 603 // Only count samples in hot callsites. 604 for (const auto &I : FS->getCallsiteSamples()) 605 for (const auto &J : I.second) { 606 const FunctionSamples *CalleeSamples = &J.second; 607 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 608 Total += countBodySamples(CalleeSamples, PSI); 609 } 610 611 return Total; 612 } 613 614 /// Return the fraction of sample records used in this profile. 615 /// 616 /// The returned value is an unsigned integer in the range 0-100 indicating 617 /// the percentage of sample records that were used while applying this 618 /// profile to the associated function. 619 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 620 unsigned Total) const { 621 assert(Used <= Total && 622 "number of used records cannot exceed the total number of records"); 623 return Total > 0 ? Used * 100 / Total : 100; 624 } 625 626 /// Clear all the per-function data used to load samples and propagate weights. 627 void SampleProfileLoader::clearFunctionData() { 628 BlockWeights.clear(); 629 EdgeWeights.clear(); 630 VisitedBlocks.clear(); 631 VisitedEdges.clear(); 632 EquivalenceClass.clear(); 633 DT = nullptr; 634 PDT = nullptr; 635 LI = nullptr; 636 Predecessors.clear(); 637 Successors.clear(); 638 CoverageTracker.clear(); 639 } 640 641 #ifndef NDEBUG 642 /// Print the weight of edge \p E on stream \p OS. 643 /// 644 /// \param OS Stream to emit the output to. 645 /// \param E Edge to print. 646 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 647 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 648 << "]: " << EdgeWeights[E] << "\n"; 649 } 650 651 /// Print the equivalence class of block \p BB on stream \p OS. 652 /// 653 /// \param OS Stream to emit the output to. 654 /// \param BB Block to print. 655 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 656 const BasicBlock *BB) { 657 const BasicBlock *Equiv = EquivalenceClass[BB]; 658 OS << "equivalence[" << BB->getName() 659 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 660 } 661 662 /// Print the weight of block \p BB on stream \p OS. 663 /// 664 /// \param OS Stream to emit the output to. 665 /// \param BB Block to print. 666 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 667 const BasicBlock *BB) const { 668 const auto &I = BlockWeights.find(BB); 669 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 670 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 671 } 672 #endif 673 674 /// Get the weight for an instruction. 675 /// 676 /// The "weight" of an instruction \p Inst is the number of samples 677 /// collected on that instruction at runtime. To retrieve it, we 678 /// need to compute the line number of \p Inst relative to the start of its 679 /// function. We use HeaderLineno to compute the offset. We then 680 /// look up the samples collected for \p Inst using BodySamples. 681 /// 682 /// \param Inst Instruction to query. 683 /// 684 /// \returns the weight of \p Inst. 685 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 686 const DebugLoc &DLoc = Inst.getDebugLoc(); 687 if (!DLoc) 688 return std::error_code(); 689 690 const FunctionSamples *FS = findFunctionSamples(Inst); 691 if (!FS) 692 return std::error_code(); 693 694 // Ignore all intrinsics, phinodes and branch instructions. 695 // Branch and phinodes instruction usually contains debug info from sources outside of 696 // the residing basic block, thus we ignore them during annotation. 697 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst)) 698 return std::error_code(); 699 700 // If a direct call/invoke instruction is inlined in profile 701 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 702 // it means that the inlined callsite has no sample, thus the call 703 // instruction should have 0 count. 704 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && 705 !ImmutableCallSite(&Inst).isIndirectCall() && 706 findCalleeFunctionSamples(Inst)) 707 return 0; 708 709 const DILocation *DIL = DLoc; 710 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 711 uint32_t Discriminator = DIL->getBaseDiscriminator(); 712 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 713 if (R) { 714 bool FirstMark = 715 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 716 if (FirstMark) { 717 ORE->emit([&]() { 718 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 719 Remark << "Applied " << ore::NV("NumSamples", *R); 720 Remark << " samples from profile (offset: "; 721 Remark << ore::NV("LineOffset", LineOffset); 722 if (Discriminator) { 723 Remark << "."; 724 Remark << ore::NV("Discriminator", Discriminator); 725 } 726 Remark << ")"; 727 return Remark; 728 }); 729 } 730 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." 731 << DIL->getBaseDiscriminator() << ":" << Inst 732 << " (line offset: " << LineOffset << "." 733 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 734 << ")\n"); 735 } 736 return R; 737 } 738 739 /// Compute the weight of a basic block. 740 /// 741 /// The weight of basic block \p BB is the maximum weight of all the 742 /// instructions in BB. 743 /// 744 /// \param BB The basic block to query. 745 /// 746 /// \returns the weight for \p BB. 747 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 748 uint64_t Max = 0; 749 bool HasWeight = false; 750 for (auto &I : BB->getInstList()) { 751 const ErrorOr<uint64_t> &R = getInstWeight(I); 752 if (R) { 753 Max = std::max(Max, R.get()); 754 HasWeight = true; 755 } 756 } 757 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 758 } 759 760 /// Compute and store the weights of every basic block. 761 /// 762 /// This populates the BlockWeights map by computing 763 /// the weights of every basic block in the CFG. 764 /// 765 /// \param F The function to query. 766 bool SampleProfileLoader::computeBlockWeights(Function &F) { 767 bool Changed = false; 768 LLVM_DEBUG(dbgs() << "Block weights\n"); 769 for (const auto &BB : F) { 770 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 771 if (Weight) { 772 BlockWeights[&BB] = Weight.get(); 773 VisitedBlocks.insert(&BB); 774 Changed = true; 775 } 776 LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); 777 } 778 779 return Changed; 780 } 781 782 /// Get the FunctionSamples for a call instruction. 783 /// 784 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 785 /// instance in which that call instruction is calling to. It contains 786 /// all samples that resides in the inlined instance. We first find the 787 /// inlined instance in which the call instruction is from, then we 788 /// traverse its children to find the callsite with the matching 789 /// location. 790 /// 791 /// \param Inst Call/Invoke instruction to query. 792 /// 793 /// \returns The FunctionSamples pointer to the inlined instance. 794 const FunctionSamples * 795 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 796 const DILocation *DIL = Inst.getDebugLoc(); 797 if (!DIL) { 798 return nullptr; 799 } 800 801 StringRef CalleeName; 802 if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) 803 if (Function *Callee = CI->getCalledFunction()) 804 CalleeName = Callee->getName(); 805 806 const FunctionSamples *FS = findFunctionSamples(Inst); 807 if (FS == nullptr) 808 return nullptr; 809 810 return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL), 811 DIL->getBaseDiscriminator()), 812 CalleeName); 813 } 814 815 /// Returns a vector of FunctionSamples that are the indirect call targets 816 /// of \p Inst. The vector is sorted by the total number of samples. Stores 817 /// the total call count of the indirect call in \p Sum. 818 std::vector<const FunctionSamples *> 819 SampleProfileLoader::findIndirectCallFunctionSamples( 820 const Instruction &Inst, uint64_t &Sum) const { 821 const DILocation *DIL = Inst.getDebugLoc(); 822 std::vector<const FunctionSamples *> R; 823 824 if (!DIL) { 825 return R; 826 } 827 828 const FunctionSamples *FS = findFunctionSamples(Inst); 829 if (FS == nullptr) 830 return R; 831 832 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 833 uint32_t Discriminator = DIL->getBaseDiscriminator(); 834 835 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 836 Sum = 0; 837 if (T) 838 for (const auto &T_C : T.get()) 839 Sum += T_C.second; 840 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation( 841 FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) { 842 if (M->empty()) 843 return R; 844 for (const auto &NameFS : *M) { 845 Sum += NameFS.second.getEntrySamples(); 846 R.push_back(&NameFS.second); 847 } 848 llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) { 849 if (L->getEntrySamples() != R->getEntrySamples()) 850 return L->getEntrySamples() > R->getEntrySamples(); 851 return FunctionSamples::getGUID(L->getName()) < 852 FunctionSamples::getGUID(R->getName()); 853 }); 854 } 855 return R; 856 } 857 858 /// Get the FunctionSamples for an instruction. 859 /// 860 /// The FunctionSamples of an instruction \p Inst is the inlined instance 861 /// in which that instruction is coming from. We traverse the inline stack 862 /// of that instruction, and match it with the tree nodes in the profile. 863 /// 864 /// \param Inst Instruction to query. 865 /// 866 /// \returns the FunctionSamples pointer to the inlined instance. 867 const FunctionSamples * 868 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 869 const DILocation *DIL = Inst.getDebugLoc(); 870 if (!DIL) 871 return Samples; 872 873 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr); 874 if (it.second) 875 it.first->second = Samples->findFunctionSamples(DIL); 876 return it.first->second; 877 } 878 879 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) { 880 assert(isa<CallInst>(I) || isa<InvokeInst>(I)); 881 CallSite CS(I); 882 Function *CalledFunction = CS.getCalledFunction(); 883 assert(CalledFunction); 884 DebugLoc DLoc = I->getDebugLoc(); 885 BasicBlock *BB = I->getParent(); 886 InlineParams Params = getInlineParams(); 887 Params.ComputeFullInlineCost = true; 888 // Checks if there is anything in the reachable portion of the callee at 889 // this callsite that makes this inlining potentially illegal. Need to 890 // set ComputeFullInlineCost, otherwise getInlineCost may return early 891 // when cost exceeds threshold without checking all IRs in the callee. 892 // The acutal cost does not matter because we only checks isNever() to 893 // see if it is legal to inline the callsite. 894 InlineCost Cost = 895 getInlineCost(cast<CallBase>(*I), Params, GetTTI(*CalledFunction), GetAC, 896 None, nullptr, nullptr); 897 if (Cost.isNever()) { 898 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB) 899 << "incompatible inlining"); 900 return false; 901 } 902 InlineFunctionInfo IFI(nullptr, &GetAC); 903 if (InlineFunction(CS, IFI)) { 904 // The call to InlineFunction erases I, so we can't pass it here. 905 ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB) 906 << "inlined hot callee '" << ore::NV("Callee", CalledFunction) 907 << "' into '" << ore::NV("Caller", BB->getParent()) << "'"); 908 return true; 909 } 910 return false; 911 } 912 913 bool SampleProfileLoader::shouldInlineColdCallee(Instruction &CallInst) { 914 if (!ProfileSizeInline) 915 return false; 916 917 Function *Callee = CallSite(&CallInst).getCalledFunction(); 918 if (Callee == nullptr) 919 return false; 920 921 InlineCost Cost = 922 getInlineCost(cast<CallBase>(CallInst), getInlineParams(), 923 GetTTI(*Callee), GetAC, None, nullptr, nullptr); 924 925 return Cost.getCost() <= SampleColdCallSiteThreshold; 926 } 927 928 /// Iteratively inline hot callsites of a function. 929 /// 930 /// Iteratively traverse all callsites of the function \p F, and find if 931 /// the corresponding inlined instance exists and is hot in profile. If 932 /// it is hot enough, inline the callsites and adds new callsites of the 933 /// callee into the caller. If the call is an indirect call, first promote 934 /// it to direct call. Each indirect call is limited with a single target. 935 /// 936 /// \param F function to perform iterative inlining. 937 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 938 /// inlined in the profiled binary. 939 /// 940 /// \returns True if there is any inline happened. 941 bool SampleProfileLoader::inlineHotFunctions( 942 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 943 DenseSet<Instruction *> PromotedInsns; 944 945 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure 946 // Profile symbol list is ignored when profile-sample-accurate is on. 947 assert((!ProfAccForSymsInList || 948 (!ProfileSampleAccurate && 949 !F.hasFnAttribute("profile-sample-accurate"))) && 950 "ProfAccForSymsInList should be false when profile-sample-accurate " 951 "is enabled"); 952 953 DenseMap<Instruction *, const FunctionSamples *> localNotInlinedCallSites; 954 bool Changed = false; 955 while (true) { 956 bool LocalChanged = false; 957 SmallVector<Instruction *, 10> CIS; 958 for (auto &BB : F) { 959 bool Hot = false; 960 SmallVector<Instruction *, 10> AllCandidates; 961 SmallVector<Instruction *, 10> ColdCandidates; 962 for (auto &I : BB.getInstList()) { 963 const FunctionSamples *FS = nullptr; 964 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 965 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { 966 AllCandidates.push_back(&I); 967 if (FS->getEntrySamples() > 0) 968 localNotInlinedCallSites.try_emplace(&I, FS); 969 if (callsiteIsHot(FS, PSI)) 970 Hot = true; 971 else if (shouldInlineColdCallee(I)) 972 ColdCandidates.push_back(&I); 973 } 974 } 975 if (Hot) { 976 CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end()); 977 } 978 else { 979 CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end()); 980 } 981 } 982 for (auto I : CIS) { 983 Function *CalledFunction = CallSite(I).getCalledFunction(); 984 // Do not inline recursive calls. 985 if (CalledFunction == &F) 986 continue; 987 if (CallSite(I).isIndirectCall()) { 988 if (PromotedInsns.count(I)) 989 continue; 990 uint64_t Sum; 991 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 992 if (IsThinLTOPreLink) { 993 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), 994 PSI->getOrCompHotCountThreshold()); 995 continue; 996 } 997 auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent()); 998 // If it is a recursive call, we do not inline it as it could bloat 999 // the code exponentially. There is way to better handle this, e.g. 1000 // clone the caller first, and inline the cloned caller if it is 1001 // recursive. As llvm does not inline recursive calls, we will 1002 // simply ignore it instead of handling it explicitly. 1003 if (CalleeFunctionName == F.getName()) 1004 continue; 1005 1006 if (!callsiteIsHot(FS, PSI)) 1007 continue; 1008 1009 const char *Reason = "Callee function not available"; 1010 auto R = SymbolMap.find(CalleeFunctionName); 1011 if (R != SymbolMap.end() && R->getValue() && 1012 !R->getValue()->isDeclaration() && 1013 R->getValue()->getSubprogram() && 1014 isLegalToPromote(CallSite(I), R->getValue(), &Reason)) { 1015 uint64_t C = FS->getEntrySamples(); 1016 Instruction *DI = 1017 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE); 1018 Sum -= C; 1019 PromotedInsns.insert(I); 1020 // If profile mismatches, we should not attempt to inline DI. 1021 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && 1022 inlineCallInstruction(DI)) { 1023 localNotInlinedCallSites.erase(I); 1024 LocalChanged = true; 1025 } 1026 } else { 1027 LLVM_DEBUG(dbgs() 1028 << "\nFailed to promote indirect call to " 1029 << CalleeFunctionName << " because " << Reason << "\n"); 1030 } 1031 } 1032 } else if (CalledFunction && CalledFunction->getSubprogram() && 1033 !CalledFunction->isDeclaration()) { 1034 if (inlineCallInstruction(I)) { 1035 localNotInlinedCallSites.erase(I); 1036 LocalChanged = true; 1037 } 1038 } else if (IsThinLTOPreLink) { 1039 findCalleeFunctionSamples(*I)->findInlinedFunctions( 1040 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold()); 1041 } 1042 } 1043 if (LocalChanged) { 1044 Changed = true; 1045 } else { 1046 break; 1047 } 1048 } 1049 1050 // Accumulate not inlined callsite information into notInlinedSamples 1051 for (const auto &Pair : localNotInlinedCallSites) { 1052 Instruction *I = Pair.getFirst(); 1053 Function *Callee = CallSite(I).getCalledFunction(); 1054 if (!Callee || Callee->isDeclaration()) 1055 continue; 1056 const FunctionSamples *FS = Pair.getSecond(); 1057 if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) { 1058 continue; 1059 } 1060 1061 if (ProfileMergeInlinee) { 1062 // Use entry samples as head samples during the merge, as inlinees 1063 // don't have head samples. 1064 assert(FS->getHeadSamples() == 0 && "Expect 0 head sample for inlinee"); 1065 const_cast<FunctionSamples *>(FS)->addHeadSamples(FS->getEntrySamples()); 1066 1067 // Note that we have to do the merge right after processing function. 1068 // This allows OutlineFS's profile to be used for annotation during 1069 // top-down processing of functions' annotation. 1070 FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee); 1071 OutlineFS->merge(*FS); 1072 } else { 1073 auto pair = 1074 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0}); 1075 pair.first->second.entryCount += FS->getEntrySamples(); 1076 } 1077 } 1078 return Changed; 1079 } 1080 1081 /// Find equivalence classes for the given block. 1082 /// 1083 /// This finds all the blocks that are guaranteed to execute the same 1084 /// number of times as \p BB1. To do this, it traverses all the 1085 /// descendants of \p BB1 in the dominator or post-dominator tree. 1086 /// 1087 /// A block BB2 will be in the same equivalence class as \p BB1 if 1088 /// the following holds: 1089 /// 1090 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 1091 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 1092 /// dominate BB1 in the post-dominator tree. 1093 /// 1094 /// 2- Both BB2 and \p BB1 must be in the same loop. 1095 /// 1096 /// For every block BB2 that meets those two requirements, we set BB2's 1097 /// equivalence class to \p BB1. 1098 /// 1099 /// \param BB1 Block to check. 1100 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 1101 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 1102 /// with blocks from \p BB1's dominator tree, then 1103 /// this is the post-dominator tree, and vice versa. 1104 template <bool IsPostDom> 1105 void SampleProfileLoader::findEquivalencesFor( 1106 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 1107 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 1108 const BasicBlock *EC = EquivalenceClass[BB1]; 1109 uint64_t Weight = BlockWeights[EC]; 1110 for (const auto *BB2 : Descendants) { 1111 bool IsDomParent = DomTree->dominates(BB2, BB1); 1112 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 1113 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 1114 EquivalenceClass[BB2] = EC; 1115 // If BB2 is visited, then the entire EC should be marked as visited. 1116 if (VisitedBlocks.count(BB2)) { 1117 VisitedBlocks.insert(EC); 1118 } 1119 1120 // If BB2 is heavier than BB1, make BB2 have the same weight 1121 // as BB1. 1122 // 1123 // Note that we don't worry about the opposite situation here 1124 // (when BB2 is lighter than BB1). We will deal with this 1125 // during the propagation phase. Right now, we just want to 1126 // make sure that BB1 has the largest weight of all the 1127 // members of its equivalence set. 1128 Weight = std::max(Weight, BlockWeights[BB2]); 1129 } 1130 } 1131 if (EC == &EC->getParent()->getEntryBlock()) { 1132 BlockWeights[EC] = Samples->getHeadSamples() + 1; 1133 } else { 1134 BlockWeights[EC] = Weight; 1135 } 1136 } 1137 1138 /// Find equivalence classes. 1139 /// 1140 /// Since samples may be missing from blocks, we can fill in the gaps by setting 1141 /// the weights of all the blocks in the same equivalence class to the same 1142 /// weight. To compute the concept of equivalence, we use dominance and loop 1143 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 1144 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1145 /// 1146 /// \param F The function to query. 1147 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 1148 SmallVector<BasicBlock *, 8> DominatedBBs; 1149 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); 1150 // Find equivalence sets based on dominance and post-dominance information. 1151 for (auto &BB : F) { 1152 BasicBlock *BB1 = &BB; 1153 1154 // Compute BB1's equivalence class once. 1155 if (EquivalenceClass.count(BB1)) { 1156 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1157 continue; 1158 } 1159 1160 // By default, blocks are in their own equivalence class. 1161 EquivalenceClass[BB1] = BB1; 1162 1163 // Traverse all the blocks dominated by BB1. We are looking for 1164 // every basic block BB2 such that: 1165 // 1166 // 1- BB1 dominates BB2. 1167 // 2- BB2 post-dominates BB1. 1168 // 3- BB1 and BB2 are in the same loop nest. 1169 // 1170 // If all those conditions hold, it means that BB2 is executed 1171 // as many times as BB1, so they are placed in the same equivalence 1172 // class by making BB2's equivalence class be BB1. 1173 DominatedBBs.clear(); 1174 DT->getDescendants(BB1, DominatedBBs); 1175 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 1176 1177 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1178 } 1179 1180 // Assign weights to equivalence classes. 1181 // 1182 // All the basic blocks in the same equivalence class will execute 1183 // the same number of times. Since we know that the head block in 1184 // each equivalence class has the largest weight, assign that weight 1185 // to all the blocks in that equivalence class. 1186 LLVM_DEBUG( 1187 dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 1188 for (auto &BI : F) { 1189 const BasicBlock *BB = &BI; 1190 const BasicBlock *EquivBB = EquivalenceClass[BB]; 1191 if (BB != EquivBB) 1192 BlockWeights[BB] = BlockWeights[EquivBB]; 1193 LLVM_DEBUG(printBlockWeight(dbgs(), BB)); 1194 } 1195 } 1196 1197 /// Visit the given edge to decide if it has a valid weight. 1198 /// 1199 /// If \p E has not been visited before, we copy to \p UnknownEdge 1200 /// and increment the count of unknown edges. 1201 /// 1202 /// \param E Edge to visit. 1203 /// \param NumUnknownEdges Current number of unknown edges. 1204 /// \param UnknownEdge Set if E has not been visited before. 1205 /// 1206 /// \returns E's weight, if known. Otherwise, return 0. 1207 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 1208 Edge *UnknownEdge) { 1209 if (!VisitedEdges.count(E)) { 1210 (*NumUnknownEdges)++; 1211 *UnknownEdge = E; 1212 return 0; 1213 } 1214 1215 return EdgeWeights[E]; 1216 } 1217 1218 /// Propagate weights through incoming/outgoing edges. 1219 /// 1220 /// If the weight of a basic block is known, and there is only one edge 1221 /// with an unknown weight, we can calculate the weight of that edge. 1222 /// 1223 /// Similarly, if all the edges have a known count, we can calculate the 1224 /// count of the basic block, if needed. 1225 /// 1226 /// \param F Function to process. 1227 /// \param UpdateBlockCount Whether we should update basic block counts that 1228 /// has already been annotated. 1229 /// 1230 /// \returns True if new weights were assigned to edges or blocks. 1231 bool SampleProfileLoader::propagateThroughEdges(Function &F, 1232 bool UpdateBlockCount) { 1233 bool Changed = false; 1234 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); 1235 for (const auto &BI : F) { 1236 const BasicBlock *BB = &BI; 1237 const BasicBlock *EC = EquivalenceClass[BB]; 1238 1239 // Visit all the predecessor and successor edges to determine 1240 // which ones have a weight assigned already. Note that it doesn't 1241 // matter that we only keep track of a single unknown edge. The 1242 // only case we are interested in handling is when only a single 1243 // edge is unknown (see setEdgeOrBlockWeight). 1244 for (unsigned i = 0; i < 2; i++) { 1245 uint64_t TotalWeight = 0; 1246 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 1247 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 1248 1249 if (i == 0) { 1250 // First, visit all predecessor edges. 1251 NumTotalEdges = Predecessors[BB].size(); 1252 for (auto *Pred : Predecessors[BB]) { 1253 Edge E = std::make_pair(Pred, BB); 1254 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1255 if (E.first == E.second) 1256 SelfReferentialEdge = E; 1257 } 1258 if (NumTotalEdges == 1) { 1259 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 1260 } 1261 } else { 1262 // On the second round, visit all successor edges. 1263 NumTotalEdges = Successors[BB].size(); 1264 for (auto *Succ : Successors[BB]) { 1265 Edge E = std::make_pair(BB, Succ); 1266 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1267 } 1268 if (NumTotalEdges == 1) { 1269 SingleEdge = std::make_pair(BB, Successors[BB][0]); 1270 } 1271 } 1272 1273 // After visiting all the edges, there are three cases that we 1274 // can handle immediately: 1275 // 1276 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 1277 // In this case, we simply check that the sum of all the edges 1278 // is the same as BB's weight. If not, we change BB's weight 1279 // to match. Additionally, if BB had not been visited before, 1280 // we mark it visited. 1281 // 1282 // - Only one edge is unknown and BB has already been visited. 1283 // In this case, we can compute the weight of the edge by 1284 // subtracting the total block weight from all the known 1285 // edge weights. If the edges weight more than BB, then the 1286 // edge of the last remaining edge is set to zero. 1287 // 1288 // - There exists a self-referential edge and the weight of BB is 1289 // known. In this case, this edge can be based on BB's weight. 1290 // We add up all the other known edges and set the weight on 1291 // the self-referential edge as we did in the previous case. 1292 // 1293 // In any other case, we must continue iterating. Eventually, 1294 // all edges will get a weight, or iteration will stop when 1295 // it reaches SampleProfileMaxPropagateIterations. 1296 if (NumUnknownEdges <= 1) { 1297 uint64_t &BBWeight = BlockWeights[EC]; 1298 if (NumUnknownEdges == 0) { 1299 if (!VisitedBlocks.count(EC)) { 1300 // If we already know the weight of all edges, the weight of the 1301 // basic block can be computed. It should be no larger than the sum 1302 // of all edge weights. 1303 if (TotalWeight > BBWeight) { 1304 BBWeight = TotalWeight; 1305 Changed = true; 1306 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() 1307 << " known. Set weight for block: "; 1308 printBlockWeight(dbgs(), BB);); 1309 } 1310 } else if (NumTotalEdges == 1 && 1311 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1312 // If there is only one edge for the visited basic block, use the 1313 // block weight to adjust edge weight if edge weight is smaller. 1314 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1315 Changed = true; 1316 } 1317 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1318 // If there is a single unknown edge and the block has been 1319 // visited, then we can compute E's weight. 1320 if (BBWeight >= TotalWeight) 1321 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1322 else 1323 EdgeWeights[UnknownEdge] = 0; 1324 const BasicBlock *OtherEC; 1325 if (i == 0) 1326 OtherEC = EquivalenceClass[UnknownEdge.first]; 1327 else 1328 OtherEC = EquivalenceClass[UnknownEdge.second]; 1329 // Edge weights should never exceed the BB weights it connects. 1330 if (VisitedBlocks.count(OtherEC) && 1331 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1332 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1333 VisitedEdges.insert(UnknownEdge); 1334 Changed = true; 1335 LLVM_DEBUG(dbgs() << "Set weight for edge: "; 1336 printEdgeWeight(dbgs(), UnknownEdge)); 1337 } 1338 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1339 // If a block Weights 0, all its in/out edges should weight 0. 1340 if (i == 0) { 1341 for (auto *Pred : Predecessors[BB]) { 1342 Edge E = std::make_pair(Pred, BB); 1343 EdgeWeights[E] = 0; 1344 VisitedEdges.insert(E); 1345 } 1346 } else { 1347 for (auto *Succ : Successors[BB]) { 1348 Edge E = std::make_pair(BB, Succ); 1349 EdgeWeights[E] = 0; 1350 VisitedEdges.insert(E); 1351 } 1352 } 1353 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1354 uint64_t &BBWeight = BlockWeights[BB]; 1355 // We have a self-referential edge and the weight of BB is known. 1356 if (BBWeight >= TotalWeight) 1357 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1358 else 1359 EdgeWeights[SelfReferentialEdge] = 0; 1360 VisitedEdges.insert(SelfReferentialEdge); 1361 Changed = true; 1362 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; 1363 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1364 } 1365 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1366 BlockWeights[EC] = TotalWeight; 1367 VisitedBlocks.insert(EC); 1368 Changed = true; 1369 } 1370 } 1371 } 1372 1373 return Changed; 1374 } 1375 1376 /// Build in/out edge lists for each basic block in the CFG. 1377 /// 1378 /// We are interested in unique edges. If a block B1 has multiple 1379 /// edges to another block B2, we only add a single B1->B2 edge. 1380 void SampleProfileLoader::buildEdges(Function &F) { 1381 for (auto &BI : F) { 1382 BasicBlock *B1 = &BI; 1383 1384 // Add predecessors for B1. 1385 SmallPtrSet<BasicBlock *, 16> Visited; 1386 if (!Predecessors[B1].empty()) 1387 llvm_unreachable("Found a stale predecessors list in a basic block."); 1388 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1389 BasicBlock *B2 = *PI; 1390 if (Visited.insert(B2).second) 1391 Predecessors[B1].push_back(B2); 1392 } 1393 1394 // Add successors for B1. 1395 Visited.clear(); 1396 if (!Successors[B1].empty()) 1397 llvm_unreachable("Found a stale successors list in a basic block."); 1398 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1399 BasicBlock *B2 = *SI; 1400 if (Visited.insert(B2).second) 1401 Successors[B1].push_back(B2); 1402 } 1403 } 1404 } 1405 1406 /// Returns the sorted CallTargetMap \p M by count in descending order. 1407 static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets( 1408 const SampleRecord::CallTargetMap & M) { 1409 SmallVector<InstrProfValueData, 2> R; 1410 for (const auto &I : SampleRecord::SortCallTargets(M)) { 1411 R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second}); 1412 } 1413 return R; 1414 } 1415 1416 /// Propagate weights into edges 1417 /// 1418 /// The following rules are applied to every block BB in the CFG: 1419 /// 1420 /// - If BB has a single predecessor/successor, then the weight 1421 /// of that edge is the weight of the block. 1422 /// 1423 /// - If all incoming or outgoing edges are known except one, and the 1424 /// weight of the block is already known, the weight of the unknown 1425 /// edge will be the weight of the block minus the sum of all the known 1426 /// edges. If the sum of all the known edges is larger than BB's weight, 1427 /// we set the unknown edge weight to zero. 1428 /// 1429 /// - If there is a self-referential edge, and the weight of the block is 1430 /// known, the weight for that edge is set to the weight of the block 1431 /// minus the weight of the other incoming edges to that block (if 1432 /// known). 1433 void SampleProfileLoader::propagateWeights(Function &F) { 1434 bool Changed = true; 1435 unsigned I = 0; 1436 1437 // If BB weight is larger than its corresponding loop's header BB weight, 1438 // use the BB weight to replace the loop header BB weight. 1439 for (auto &BI : F) { 1440 BasicBlock *BB = &BI; 1441 Loop *L = LI->getLoopFor(BB); 1442 if (!L) { 1443 continue; 1444 } 1445 BasicBlock *Header = L->getHeader(); 1446 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1447 BlockWeights[Header] = BlockWeights[BB]; 1448 } 1449 } 1450 1451 // Before propagation starts, build, for each block, a list of 1452 // unique predecessors and successors. This is necessary to handle 1453 // identical edges in multiway branches. Since we visit all blocks and all 1454 // edges of the CFG, it is cleaner to build these lists once at the start 1455 // of the pass. 1456 buildEdges(F); 1457 1458 // Propagate until we converge or we go past the iteration limit. 1459 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1460 Changed = propagateThroughEdges(F, false); 1461 } 1462 1463 // The first propagation propagates BB counts from annotated BBs to unknown 1464 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1465 // to propagate edge weights. 1466 VisitedEdges.clear(); 1467 Changed = true; 1468 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1469 Changed = propagateThroughEdges(F, false); 1470 } 1471 1472 // The 3rd propagation pass allows adjust annotated BB weights that are 1473 // obviously wrong. 1474 Changed = true; 1475 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1476 Changed = propagateThroughEdges(F, true); 1477 } 1478 1479 // Generate MD_prof metadata for every branch instruction using the 1480 // edge weights computed during propagation. 1481 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1482 LLVMContext &Ctx = F.getContext(); 1483 MDBuilder MDB(Ctx); 1484 for (auto &BI : F) { 1485 BasicBlock *BB = &BI; 1486 1487 if (BlockWeights[BB]) { 1488 for (auto &I : BB->getInstList()) { 1489 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1490 continue; 1491 CallSite CS(&I); 1492 if (!CS.getCalledFunction()) { 1493 const DebugLoc &DLoc = I.getDebugLoc(); 1494 if (!DLoc) 1495 continue; 1496 const DILocation *DIL = DLoc; 1497 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 1498 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1499 1500 const FunctionSamples *FS = findFunctionSamples(I); 1501 if (!FS) 1502 continue; 1503 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1504 if (!T || T.get().empty()) 1505 continue; 1506 SmallVector<InstrProfValueData, 2> SortedCallTargets = 1507 GetSortedValueDataFromCallTargets(T.get()); 1508 uint64_t Sum; 1509 findIndirectCallFunctionSamples(I, Sum); 1510 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1511 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1512 SortedCallTargets.size()); 1513 } else if (!isa<IntrinsicInst>(&I)) { 1514 I.setMetadata(LLVMContext::MD_prof, 1515 MDB.createBranchWeights( 1516 {static_cast<uint32_t>(BlockWeights[BB])})); 1517 } 1518 } 1519 } 1520 Instruction *TI = BB->getTerminator(); 1521 if (TI->getNumSuccessors() == 1) 1522 continue; 1523 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1524 continue; 1525 1526 DebugLoc BranchLoc = TI->getDebugLoc(); 1527 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " 1528 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1529 : Twine("<UNKNOWN LOCATION>")) 1530 << ".\n"); 1531 SmallVector<uint32_t, 4> Weights; 1532 uint32_t MaxWeight = 0; 1533 Instruction *MaxDestInst; 1534 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1535 BasicBlock *Succ = TI->getSuccessor(I); 1536 Edge E = std::make_pair(BB, Succ); 1537 uint64_t Weight = EdgeWeights[E]; 1538 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1539 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1540 // if needed. Sample counts in profiles are 64-bit unsigned values, 1541 // but internally branch weights are expressed as 32-bit values. 1542 if (Weight > std::numeric_limits<uint32_t>::max()) { 1543 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1544 Weight = std::numeric_limits<uint32_t>::max(); 1545 } 1546 // Weight is added by one to avoid propagation errors introduced by 1547 // 0 weights. 1548 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1549 if (Weight != 0) { 1550 if (Weight > MaxWeight) { 1551 MaxWeight = Weight; 1552 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1553 } 1554 } 1555 } 1556 1557 misexpect::verifyMisExpect(TI, Weights, TI->getContext()); 1558 1559 uint64_t TempWeight; 1560 // Only set weights if there is at least one non-zero weight. 1561 // In any other case, let the analyzer set weights. 1562 // Do not set weights if the weights are present. In ThinLTO, the profile 1563 // annotation is done twice. If the first annotation already set the 1564 // weights, the second pass does not need to set it. 1565 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1566 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1567 TI->setMetadata(LLVMContext::MD_prof, 1568 MDB.createBranchWeights(Weights)); 1569 ORE->emit([&]() { 1570 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1571 << "most popular destination for conditional branches at " 1572 << ore::NV("CondBranchesLoc", BranchLoc); 1573 }); 1574 } else { 1575 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1576 } 1577 } 1578 } 1579 1580 /// Get the line number for the function header. 1581 /// 1582 /// This looks up function \p F in the current compilation unit and 1583 /// retrieves the line number where the function is defined. This is 1584 /// line 0 for all the samples read from the profile file. Every line 1585 /// number is relative to this line. 1586 /// 1587 /// \param F Function object to query. 1588 /// 1589 /// \returns the line number where \p F is defined. If it returns 0, 1590 /// it means that there is no debug information available for \p F. 1591 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1592 if (DISubprogram *S = F.getSubprogram()) 1593 return S->getLine(); 1594 1595 if (NoWarnSampleUnused) 1596 return 0; 1597 1598 // If the start of \p F is missing, emit a diagnostic to inform the user 1599 // about the missed opportunity. 1600 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1601 "No debug information found in function " + F.getName() + 1602 ": Function profile not used", 1603 DS_Warning)); 1604 return 0; 1605 } 1606 1607 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1608 DT.reset(new DominatorTree); 1609 DT->recalculate(F); 1610 1611 PDT.reset(new PostDominatorTree(F)); 1612 1613 LI.reset(new LoopInfo); 1614 LI->analyze(*DT); 1615 } 1616 1617 /// Generate branch weight metadata for all branches in \p F. 1618 /// 1619 /// Branch weights are computed out of instruction samples using a 1620 /// propagation heuristic. Propagation proceeds in 3 phases: 1621 /// 1622 /// 1- Assignment of block weights. All the basic blocks in the function 1623 /// are initial assigned the same weight as their most frequently 1624 /// executed instruction. 1625 /// 1626 /// 2- Creation of equivalence classes. Since samples may be missing from 1627 /// blocks, we can fill in the gaps by setting the weights of all the 1628 /// blocks in the same equivalence class to the same weight. To compute 1629 /// the concept of equivalence, we use dominance and loop information. 1630 /// Two blocks B1 and B2 are in the same equivalence class if B1 1631 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1632 /// 1633 /// 3- Propagation of block weights into edges. This uses a simple 1634 /// propagation heuristic. The following rules are applied to every 1635 /// block BB in the CFG: 1636 /// 1637 /// - If BB has a single predecessor/successor, then the weight 1638 /// of that edge is the weight of the block. 1639 /// 1640 /// - If all the edges are known except one, and the weight of the 1641 /// block is already known, the weight of the unknown edge will 1642 /// be the weight of the block minus the sum of all the known 1643 /// edges. If the sum of all the known edges is larger than BB's weight, 1644 /// we set the unknown edge weight to zero. 1645 /// 1646 /// - If there is a self-referential edge, and the weight of the block is 1647 /// known, the weight for that edge is set to the weight of the block 1648 /// minus the weight of the other incoming edges to that block (if 1649 /// known). 1650 /// 1651 /// Since this propagation is not guaranteed to finalize for every CFG, we 1652 /// only allow it to proceed for a limited number of iterations (controlled 1653 /// by -sample-profile-max-propagate-iterations). 1654 /// 1655 /// FIXME: Try to replace this propagation heuristic with a scheme 1656 /// that is guaranteed to finalize. A work-list approach similar to 1657 /// the standard value propagation algorithm used by SSA-CCP might 1658 /// work here. 1659 /// 1660 /// Once all the branch weights are computed, we emit the MD_prof 1661 /// metadata on BB using the computed values for each of its branches. 1662 /// 1663 /// \param F The function to query. 1664 /// 1665 /// \returns true if \p F was modified. Returns false, otherwise. 1666 bool SampleProfileLoader::emitAnnotations(Function &F) { 1667 bool Changed = false; 1668 1669 if (getFunctionLoc(F) == 0) 1670 return false; 1671 1672 LLVM_DEBUG(dbgs() << "Line number for the first instruction in " 1673 << F.getName() << ": " << getFunctionLoc(F) << "\n"); 1674 1675 DenseSet<GlobalValue::GUID> InlinedGUIDs; 1676 Changed |= inlineHotFunctions(F, InlinedGUIDs); 1677 1678 // Compute basic block weights. 1679 Changed |= computeBlockWeights(F); 1680 1681 if (Changed) { 1682 // Add an entry count to the function using the samples gathered at the 1683 // function entry. 1684 // Sets the GUIDs that are inlined in the profiled binary. This is used 1685 // for ThinLink to make correct liveness analysis, and also make the IR 1686 // match the profiled binary before annotation. 1687 F.setEntryCount( 1688 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), 1689 &InlinedGUIDs); 1690 1691 // Compute dominance and loop info needed for propagation. 1692 computeDominanceAndLoopInfo(F); 1693 1694 // Find equivalence classes. 1695 findEquivalenceClasses(F); 1696 1697 // Propagate weights to all edges. 1698 propagateWeights(F); 1699 } 1700 1701 // If coverage checking was requested, compute it now. 1702 if (SampleProfileRecordCoverage) { 1703 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); 1704 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); 1705 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1706 if (Coverage < SampleProfileRecordCoverage) { 1707 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1708 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1709 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1710 Twine(Coverage) + "%) were applied", 1711 DS_Warning)); 1712 } 1713 } 1714 1715 if (SampleProfileSampleCoverage) { 1716 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1717 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); 1718 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1719 if (Coverage < SampleProfileSampleCoverage) { 1720 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1721 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1722 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1723 Twine(Coverage) + "%) were applied", 1724 DS_Warning)); 1725 } 1726 } 1727 return Changed; 1728 } 1729 1730 char SampleProfileLoaderLegacyPass::ID = 0; 1731 1732 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1733 "Sample Profile loader", false, false) 1734 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1735 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1736 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1737 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1738 "Sample Profile loader", false, false) 1739 1740 std::vector<Function *> 1741 SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) { 1742 std::vector<Function *> FunctionOrderList; 1743 FunctionOrderList.reserve(M.size()); 1744 1745 if (!ProfileTopDownLoad || CG == nullptr) { 1746 for (Function &F : M) 1747 if (!F.isDeclaration()) 1748 FunctionOrderList.push_back(&F); 1749 return FunctionOrderList; 1750 } 1751 1752 assert(&CG->getModule() == &M); 1753 scc_iterator<CallGraph *> CGI = scc_begin(CG); 1754 while (!CGI.isAtEnd()) { 1755 for (CallGraphNode *node : *CGI) { 1756 auto F = node->getFunction(); 1757 if (F && !F->isDeclaration()) 1758 FunctionOrderList.push_back(F); 1759 } 1760 ++CGI; 1761 } 1762 1763 std::reverse(FunctionOrderList.begin(), FunctionOrderList.end()); 1764 return FunctionOrderList; 1765 } 1766 1767 bool SampleProfileLoader::doInitialization(Module &M) { 1768 auto &Ctx = M.getContext(); 1769 1770 std::unique_ptr<SampleProfileReaderItaniumRemapper> RemapReader; 1771 auto ReaderOrErr = 1772 SampleProfileReader::create(Filename, Ctx, RemappingFilename); 1773 if (std::error_code EC = ReaderOrErr.getError()) { 1774 std::string Msg = "Could not open profile: " + EC.message(); 1775 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1776 return false; 1777 } 1778 Reader = std::move(ReaderOrErr.get()); 1779 Reader->collectFuncsFrom(M); 1780 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1781 PSL = Reader->getProfileSymbolList(); 1782 1783 // While profile-sample-accurate is on, ignore symbol list. 1784 ProfAccForSymsInList = 1785 ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate; 1786 if (ProfAccForSymsInList) { 1787 NamesInProfile.clear(); 1788 if (auto NameTable = Reader->getNameTable()) 1789 NamesInProfile.insert(NameTable->begin(), NameTable->end()); 1790 } 1791 1792 return true; 1793 } 1794 1795 ModulePass *llvm::createSampleProfileLoaderPass() { 1796 return new SampleProfileLoaderLegacyPass(); 1797 } 1798 1799 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1800 return new SampleProfileLoaderLegacyPass(Name); 1801 } 1802 1803 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, 1804 ProfileSummaryInfo *_PSI, CallGraph *CG) { 1805 GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap); 1806 if (!ProfileIsValid) 1807 return false; 1808 1809 PSI = _PSI; 1810 if (M.getProfileSummary(/* IsCS */ false) == nullptr) 1811 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()), 1812 ProfileSummary::PSK_Sample); 1813 1814 // Compute the total number of samples collected in this profile. 1815 for (const auto &I : Reader->getProfiles()) 1816 TotalCollectedSamples += I.second.getTotalSamples(); 1817 1818 // Populate the symbol map. 1819 for (const auto &N_F : M.getValueSymbolTable()) { 1820 StringRef OrigName = N_F.getKey(); 1821 Function *F = dyn_cast<Function>(N_F.getValue()); 1822 if (F == nullptr) 1823 continue; 1824 SymbolMap[OrigName] = F; 1825 auto pos = OrigName.find('.'); 1826 if (pos != StringRef::npos) { 1827 StringRef NewName = OrigName.substr(0, pos); 1828 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1829 // Failiing to insert means there is already an entry in SymbolMap, 1830 // thus there are multiple functions that are mapped to the same 1831 // stripped name. In this case of name conflicting, set the value 1832 // to nullptr to avoid confusion. 1833 if (!r.second) 1834 r.first->second = nullptr; 1835 } 1836 } 1837 1838 bool retval = false; 1839 for (auto F : buildFunctionOrder(M, CG)) { 1840 assert(!F->isDeclaration()); 1841 clearFunctionData(); 1842 retval |= runOnFunction(*F, AM); 1843 } 1844 1845 // Account for cold calls not inlined.... 1846 for (const std::pair<Function *, NotInlinedProfileInfo> &pair : 1847 notInlinedCallInfo) 1848 updateProfileCallee(pair.first, pair.second.entryCount); 1849 1850 return retval; 1851 } 1852 1853 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1854 ACT = &getAnalysis<AssumptionCacheTracker>(); 1855 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 1856 ProfileSummaryInfo *PSI = 1857 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1858 return SampleLoader.runOnModule(M, nullptr, PSI, nullptr); 1859 } 1860 1861 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 1862 1863 DILocation2SampleMap.clear(); 1864 // By default the entry count is initialized to -1, which will be treated 1865 // conservatively by getEntryCount as the same as unknown (None). This is 1866 // to avoid newly added code to be treated as cold. If we have samples 1867 // this will be overwritten in emitAnnotations. 1868 uint64_t initialEntryCount = -1; 1869 1870 ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL; 1871 if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) { 1872 // initialize all the function entry counts to 0. It means all the 1873 // functions without profile will be regarded as cold. 1874 initialEntryCount = 0; 1875 // profile-sample-accurate is a user assertion which has a higher precedence 1876 // than symbol list. When profile-sample-accurate is on, ignore symbol list. 1877 ProfAccForSymsInList = false; 1878 } 1879 1880 // PSL -- profile symbol list include all the symbols in sampled binary. 1881 // If ProfileAccurateForSymsInList is enabled, PSL is used to treat 1882 // old functions without samples being cold, without having to worry 1883 // about new and hot functions being mistakenly treated as cold. 1884 if (ProfAccForSymsInList) { 1885 // Initialize the entry count to 0 for functions in the list. 1886 if (PSL->contains(F.getName())) 1887 initialEntryCount = 0; 1888 1889 // Function in the symbol list but without sample will be regarded as 1890 // cold. To minimize the potential negative performance impact it could 1891 // have, we want to be a little conservative here saying if a function 1892 // shows up in the profile, no matter as outline function, inline instance 1893 // or call targets, treat the function as not being cold. This will handle 1894 // the cases such as most callsites of a function are inlined in sampled 1895 // binary but not inlined in current build (because of source code drift, 1896 // imprecise debug information, or the callsites are all cold individually 1897 // but not cold accumulatively...), so the outline function showing up as 1898 // cold in sampled binary will actually not be cold after current build. 1899 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 1900 if (NamesInProfile.count(CanonName)) 1901 initialEntryCount = -1; 1902 } 1903 1904 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real)); 1905 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 1906 if (AM) { 1907 auto &FAM = 1908 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 1909 .getManager(); 1910 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1911 } else { 1912 OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F); 1913 ORE = OwnedORE.get(); 1914 } 1915 Samples = Reader->getSamplesFor(F); 1916 if (Samples && !Samples->empty()) 1917 return emitAnnotations(F); 1918 return false; 1919 } 1920 1921 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1922 ModuleAnalysisManager &AM) { 1923 FunctionAnalysisManager &FAM = 1924 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1925 1926 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 1927 return FAM.getResult<AssumptionAnalysis>(F); 1928 }; 1929 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 1930 return FAM.getResult<TargetIRAnalysis>(F); 1931 }; 1932 1933 SampleProfileLoader SampleLoader( 1934 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 1935 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile 1936 : ProfileRemappingFileName, 1937 IsThinLTOPreLink, GetAssumptionCache, GetTTI); 1938 1939 SampleLoader.doInitialization(M); 1940 1941 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 1942 CallGraph &CG = AM.getResult<CallGraphAnalysis>(M); 1943 if (!SampleLoader.runOnModule(M, &AM, PSI, &CG)) 1944 return PreservedAnalyses::all(); 1945 1946 return PreservedAnalyses::none(); 1947 } 1948