1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/PostDominators.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/InstIterator.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Metadata.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/Pass.h" 43 #include "llvm/ProfileData/SampleProfReader.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorOr.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Transforms/IPO.h" 49 #include "llvm/Transforms/Utils/Cloning.h" 50 #include <cctype> 51 52 using namespace llvm; 53 using namespace sampleprof; 54 55 #define DEBUG_TYPE "sample-profile" 56 57 // Command line option to specify the file to read samples from. This is 58 // mainly used for debugging. 59 static cl::opt<std::string> SampleProfileFile( 60 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 61 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 62 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 63 "sample-profile-max-propagate-iterations", cl::init(100), 64 cl::desc("Maximum number of iterations to go through when propagating " 65 "sample block/edge weights through the CFG.")); 66 static cl::opt<unsigned> SampleProfileCoverage( 67 "sample-profile-check-coverage", cl::init(0), cl::value_desc("N"), 68 cl::desc("Emit a warning if less than N% of samples in the input profile " 69 "are matched to the IR.")); 70 71 namespace { 72 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap; 73 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap; 74 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge; 75 typedef DenseMap<Edge, uint64_t> EdgeWeightMap; 76 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>> 77 BlockEdgeMap; 78 79 /// \brief Sample profile pass. 80 /// 81 /// This pass reads profile data from the file specified by 82 /// -sample-profile-file and annotates every affected function with the 83 /// profile information found in that file. 84 class SampleProfileLoader : public ModulePass { 85 public: 86 // Class identification, replacement for typeinfo 87 static char ID; 88 89 SampleProfileLoader(StringRef Name = SampleProfileFile) 90 : ModulePass(ID), DT(nullptr), PDT(nullptr), LI(nullptr), Reader(), 91 Samples(nullptr), Filename(Name), ProfileIsValid(false) { 92 initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry()); 93 } 94 95 bool doInitialization(Module &M) override; 96 97 void dump() { Reader->dump(); } 98 99 const char *getPassName() const override { return "Sample profile pass"; } 100 101 bool runOnModule(Module &M) override; 102 103 void getAnalysisUsage(AnalysisUsage &AU) const override { 104 AU.setPreservesCFG(); 105 } 106 107 protected: 108 bool runOnFunction(Function &F); 109 unsigned getFunctionLoc(Function &F); 110 bool emitAnnotations(Function &F); 111 ErrorOr<uint64_t> getInstWeight(const Instruction &I) const; 112 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB) const; 113 const FunctionSamples *findCalleeFunctionSamples(const CallInst &I) const; 114 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 115 bool inlineHotFunctions(Function &F); 116 void printEdgeWeight(raw_ostream &OS, Edge E); 117 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 118 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 119 bool computeBlockWeights(Function &F); 120 void findEquivalenceClasses(Function &F); 121 void findEquivalencesFor(BasicBlock *BB1, 122 SmallVector<BasicBlock *, 8> Descendants, 123 DominatorTreeBase<BasicBlock> *DomTree); 124 void propagateWeights(Function &F); 125 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 126 void buildEdges(Function &F); 127 bool propagateThroughEdges(Function &F); 128 void computeDominanceAndLoopInfo(Function &F); 129 unsigned getOffset(unsigned L, unsigned H) const; 130 void clearFunctionData(); 131 132 /// \brief Map basic blocks to their computed weights. 133 /// 134 /// The weight of a basic block is defined to be the maximum 135 /// of all the instruction weights in that block. 136 BlockWeightMap BlockWeights; 137 138 /// \brief Map edges to their computed weights. 139 /// 140 /// Edge weights are computed by propagating basic block weights in 141 /// SampleProfile::propagateWeights. 142 EdgeWeightMap EdgeWeights; 143 144 /// \brief Set of visited blocks during propagation. 145 SmallPtrSet<const BasicBlock *, 128> VisitedBlocks; 146 147 /// \brief Set of visited edges during propagation. 148 SmallSet<Edge, 128> VisitedEdges; 149 150 /// \brief Equivalence classes for block weights. 151 /// 152 /// Two blocks BB1 and BB2 are in the same equivalence class if they 153 /// dominate and post-dominate each other, and they are in the same loop 154 /// nest. When this happens, the two blocks are guaranteed to execute 155 /// the same number of times. 156 EquivalenceClassMap EquivalenceClass; 157 158 /// \brief Dominance, post-dominance and loop information. 159 std::unique_ptr<DominatorTree> DT; 160 std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT; 161 std::unique_ptr<LoopInfo> LI; 162 163 /// \brief Predecessors for each basic block in the CFG. 164 BlockEdgeMap Predecessors; 165 166 /// \brief Successors for each basic block in the CFG. 167 BlockEdgeMap Successors; 168 169 /// \brief Profile reader object. 170 std::unique_ptr<SampleProfileReader> Reader; 171 172 /// \brief Samples collected for the body of this function. 173 FunctionSamples *Samples; 174 175 /// \brief Name of the profile file to load. 176 StringRef Filename; 177 178 /// \brief Flag indicating whether the profile input loaded successfully. 179 bool ProfileIsValid; 180 }; 181 182 class SampleCoverageTracker { 183 public: 184 SampleCoverageTracker() : SampleCoverage() {} 185 186 bool markSamplesUsed(const FunctionSamples *Samples, uint32_t LineOffset, 187 uint32_t Discriminator); 188 unsigned computeCoverage(unsigned Used, unsigned Total) const; 189 unsigned countUsedSamples(const FunctionSamples *Samples) const; 190 unsigned countBodySamples(const FunctionSamples *Samples) const; 191 192 private: 193 typedef DenseMap<LineLocation, unsigned> BodySampleCoverageMap; 194 typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap> 195 FunctionSamplesCoverageMap; 196 197 /// Coverage map for sampling records. 198 /// 199 /// This map keeps a record of sampling records that have been matched to 200 /// an IR instruction. This is used to detect some form of staleness in 201 /// profiles (see flag -sample-profile-check-coverage). 202 /// 203 /// Each entry in the map corresponds to a FunctionSamples instance. This is 204 /// another map that counts how many times the sample record at the 205 /// given location has been used. 206 FunctionSamplesCoverageMap SampleCoverage; 207 }; 208 209 SampleCoverageTracker CoverageTracker; 210 } 211 212 /// Mark as used the sample record for the given function samples at 213 /// (LineOffset, Discriminator). 214 /// 215 /// \returns true if this is the first time we mark the given record. 216 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *Samples, 217 uint32_t LineOffset, 218 uint32_t Discriminator) { 219 LineLocation Loc(LineOffset, Discriminator); 220 unsigned &Count = SampleCoverage[Samples][Loc]; 221 return ++Count == 1; 222 } 223 224 /// Return the number of sample records that were applied from this profile. 225 unsigned 226 SampleCoverageTracker::countUsedSamples(const FunctionSamples *Samples) const { 227 auto I = SampleCoverage.find(Samples); 228 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 229 for (const auto &I : Samples->getCallsiteSamples()) 230 Count += countUsedSamples(&I.second); 231 return Count; 232 } 233 234 /// Return the number of sample records in the body of this profile. 235 /// 236 /// The count includes all the samples in inlined callees. 237 unsigned 238 SampleCoverageTracker::countBodySamples(const FunctionSamples *Samples) const { 239 unsigned Count = Samples->getBodySamples().size(); 240 for (const auto &I : Samples->getCallsiteSamples()) 241 Count += countBodySamples(&I.second); 242 return Count; 243 } 244 245 /// Return the fraction of sample records used in this profile. 246 /// 247 /// The returned value is an unsigned integer in the range 0-100 indicating 248 /// the percentage of sample records that were used while applying this 249 /// profile to the associated function. 250 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 251 unsigned Total) const { 252 assert(Used <= Total && 253 "number of used records cannot exceed the total number of records"); 254 return Total > 0 ? Used * 100 / Total : 100; 255 } 256 257 /// Clear all the per-function data used to load samples and propagate weights. 258 void SampleProfileLoader::clearFunctionData() { 259 BlockWeights.clear(); 260 EdgeWeights.clear(); 261 VisitedBlocks.clear(); 262 VisitedEdges.clear(); 263 EquivalenceClass.clear(); 264 DT = nullptr; 265 PDT = nullptr; 266 LI = nullptr; 267 Predecessors.clear(); 268 Successors.clear(); 269 } 270 271 /// \brief Returns the offset of lineno \p L to head_lineno \p H 272 /// 273 /// \param L Lineno 274 /// \param H Header lineno of the function 275 /// 276 /// \returns offset to the header lineno. 16 bits are used to represent offset. 277 /// We assume that a single function will not exceed 65535 LOC. 278 unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const { 279 return (L - H) & 0xffff; 280 } 281 282 /// \brief Print the weight of edge \p E on stream \p OS. 283 /// 284 /// \param OS Stream to emit the output to. 285 /// \param E Edge to print. 286 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 287 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 288 << "]: " << EdgeWeights[E] << "\n"; 289 } 290 291 /// \brief Print the equivalence class of block \p BB on stream \p OS. 292 /// 293 /// \param OS Stream to emit the output to. 294 /// \param BB Block to print. 295 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 296 const BasicBlock *BB) { 297 const BasicBlock *Equiv = EquivalenceClass[BB]; 298 OS << "equivalence[" << BB->getName() 299 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 300 } 301 302 /// \brief Print the weight of block \p BB on stream \p OS. 303 /// 304 /// \param OS Stream to emit the output to. 305 /// \param BB Block to print. 306 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 307 const BasicBlock *BB) const { 308 const auto &I = BlockWeights.find(BB); 309 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 310 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 311 } 312 313 /// \brief Get the weight for an instruction. 314 /// 315 /// The "weight" of an instruction \p Inst is the number of samples 316 /// collected on that instruction at runtime. To retrieve it, we 317 /// need to compute the line number of \p Inst relative to the start of its 318 /// function. We use HeaderLineno to compute the offset. We then 319 /// look up the samples collected for \p Inst using BodySamples. 320 /// 321 /// \param Inst Instruction to query. 322 /// 323 /// \returns the weight of \p Inst. 324 ErrorOr<uint64_t> 325 SampleProfileLoader::getInstWeight(const Instruction &Inst) const { 326 DebugLoc DLoc = Inst.getDebugLoc(); 327 if (!DLoc) 328 return std::error_code(); 329 330 const FunctionSamples *FS = findFunctionSamples(Inst); 331 if (!FS) 332 return std::error_code(); 333 334 const DILocation *DIL = DLoc; 335 unsigned Lineno = DLoc.getLine(); 336 unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine(); 337 338 uint32_t LineOffset = getOffset(Lineno, HeaderLineno); 339 uint32_t Discriminator = DIL->getDiscriminator(); 340 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 341 if (R) { 342 bool FirstMark = 343 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator); 344 if (FirstMark) { 345 const Function *F = Inst.getParent()->getParent(); 346 LLVMContext &Ctx = F->getContext(); 347 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, DLoc, 348 Twine("Applied ") + Twine(*R) + 349 " samples from profile"); 350 } 351 DEBUG(dbgs() << " " << Lineno << "." << DIL->getDiscriminator() << ":" 352 << Inst << " (line offset: " << Lineno - HeaderLineno << "." 353 << DIL->getDiscriminator() << " - weight: " << R.get() 354 << ")\n"); 355 } 356 return R; 357 } 358 359 /// \brief Compute the weight of a basic block. 360 /// 361 /// The weight of basic block \p BB is the maximum weight of all the 362 /// instructions in BB. 363 /// 364 /// \param BB The basic block to query. 365 /// 366 /// \returns the weight for \p BB. 367 ErrorOr<uint64_t> 368 SampleProfileLoader::getBlockWeight(const BasicBlock *BB) const { 369 bool Found = false; 370 uint64_t Weight = 0; 371 for (auto &I : BB->getInstList()) { 372 const ErrorOr<uint64_t> &R = getInstWeight(I); 373 if (R && R.get() >= Weight) { 374 Weight = R.get(); 375 Found = true; 376 } 377 } 378 if (Found) 379 return Weight; 380 else 381 return std::error_code(); 382 } 383 384 /// \brief Compute and store the weights of every basic block. 385 /// 386 /// This populates the BlockWeights map by computing 387 /// the weights of every basic block in the CFG. 388 /// 389 /// \param F The function to query. 390 bool SampleProfileLoader::computeBlockWeights(Function &F) { 391 bool Changed = false; 392 DEBUG(dbgs() << "Block weights\n"); 393 for (const auto &BB : F) { 394 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 395 if (Weight) { 396 BlockWeights[&BB] = Weight.get(); 397 VisitedBlocks.insert(&BB); 398 Changed = true; 399 } 400 DEBUG(printBlockWeight(dbgs(), &BB)); 401 } 402 403 return Changed; 404 } 405 406 /// \brief Get the FunctionSamples for a call instruction. 407 /// 408 /// The FunctionSamples of a call instruction \p Inst is the inlined 409 /// instance in which that call instruction is calling to. It contains 410 /// all samples that resides in the inlined instance. We first find the 411 /// inlined instance in which the call instruction is from, then we 412 /// traverse its children to find the callsite with the matching 413 /// location and callee function name. 414 /// 415 /// \param Inst Call instruction to query. 416 /// 417 /// \returns The FunctionSamples pointer to the inlined instance. 418 const FunctionSamples * 419 SampleProfileLoader::findCalleeFunctionSamples(const CallInst &Inst) const { 420 const DILocation *DIL = Inst.getDebugLoc(); 421 if (!DIL) { 422 return nullptr; 423 } 424 DISubprogram *SP = DIL->getScope()->getSubprogram(); 425 if (!SP) 426 return nullptr; 427 428 Function *CalleeFunc = Inst.getCalledFunction(); 429 if (!CalleeFunc) { 430 return nullptr; 431 } 432 433 StringRef CalleeName = CalleeFunc->getName(); 434 const FunctionSamples *FS = findFunctionSamples(Inst); 435 if (FS == nullptr) 436 return nullptr; 437 438 return FS->findFunctionSamplesAt( 439 CallsiteLocation(getOffset(DIL->getLine(), SP->getLine()), 440 DIL->getDiscriminator(), CalleeName)); 441 } 442 443 /// \brief Get the FunctionSamples for an instruction. 444 /// 445 /// The FunctionSamples of an instruction \p Inst is the inlined instance 446 /// in which that instruction is coming from. We traverse the inline stack 447 /// of that instruction, and match it with the tree nodes in the profile. 448 /// 449 /// \param Inst Instruction to query. 450 /// 451 /// \returns the FunctionSamples pointer to the inlined instance. 452 const FunctionSamples * 453 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 454 SmallVector<CallsiteLocation, 10> S; 455 const DILocation *DIL = Inst.getDebugLoc(); 456 if (!DIL) { 457 return Samples; 458 } 459 StringRef CalleeName; 460 for (const DILocation *DIL = Inst.getDebugLoc(); DIL; 461 DIL = DIL->getInlinedAt()) { 462 DISubprogram *SP = DIL->getScope()->getSubprogram(); 463 if (!SP) 464 return nullptr; 465 if (!CalleeName.empty()) { 466 S.push_back(CallsiteLocation(getOffset(DIL->getLine(), SP->getLine()), 467 DIL->getDiscriminator(), CalleeName)); 468 } 469 CalleeName = SP->getLinkageName(); 470 } 471 if (S.size() == 0) 472 return Samples; 473 const FunctionSamples *FS = Samples; 474 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 475 FS = FS->findFunctionSamplesAt(S[i]); 476 } 477 return FS; 478 } 479 480 /// \brief Iteratively inline hot callsites of a function. 481 /// 482 /// Iteratively traverse all callsites of the function \p F, and find if 483 /// the corresponding inlined instance exists and is hot in profile. If 484 /// it is hot enough, inline the callsites and adds new callsites of the 485 /// callee into the caller. 486 /// 487 /// TODO: investigate the possibility of not invoking InlineFunction directly. 488 /// 489 /// \param F function to perform iterative inlining. 490 /// 491 /// \returns True if there is any inline happened. 492 bool SampleProfileLoader::inlineHotFunctions(Function &F) { 493 bool Changed = false; 494 LLVMContext &Ctx = F.getContext(); 495 while (true) { 496 bool LocalChanged = false; 497 SmallVector<CallInst *, 10> CIS; 498 for (auto &BB : F) { 499 for (auto &I : BB.getInstList()) { 500 CallInst *CI = dyn_cast<CallInst>(&I); 501 if (CI) { 502 const FunctionSamples *FS = findCalleeFunctionSamples(*CI); 503 if (FS && FS->getTotalSamples() > 0) { 504 CIS.push_back(CI); 505 } 506 } 507 } 508 } 509 for (auto CI : CIS) { 510 InlineFunctionInfo IFI; 511 Function *CalledFunction = CI->getCalledFunction(); 512 DebugLoc DLoc = CI->getDebugLoc(); 513 uint64_t NumSamples = findCalleeFunctionSamples(*CI)->getTotalSamples(); 514 if (InlineFunction(CI, IFI)) { 515 LocalChanged = true; 516 emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc, 517 Twine("inlined hot callee '") + 518 CalledFunction->getName() + "' with " + 519 Twine(NumSamples) + " samples into '" + 520 F.getName() + "'"); 521 } 522 } 523 if (LocalChanged) { 524 Changed = true; 525 } else { 526 break; 527 } 528 } 529 return Changed; 530 } 531 532 /// \brief Find equivalence classes for the given block. 533 /// 534 /// This finds all the blocks that are guaranteed to execute the same 535 /// number of times as \p BB1. To do this, it traverses all the 536 /// descendants of \p BB1 in the dominator or post-dominator tree. 537 /// 538 /// A block BB2 will be in the same equivalence class as \p BB1 if 539 /// the following holds: 540 /// 541 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 542 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 543 /// dominate BB1 in the post-dominator tree. 544 /// 545 /// 2- Both BB2 and \p BB1 must be in the same loop. 546 /// 547 /// For every block BB2 that meets those two requirements, we set BB2's 548 /// equivalence class to \p BB1. 549 /// 550 /// \param BB1 Block to check. 551 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 552 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 553 /// with blocks from \p BB1's dominator tree, then 554 /// this is the post-dominator tree, and vice versa. 555 void SampleProfileLoader::findEquivalencesFor( 556 BasicBlock *BB1, SmallVector<BasicBlock *, 8> Descendants, 557 DominatorTreeBase<BasicBlock> *DomTree) { 558 const BasicBlock *EC = EquivalenceClass[BB1]; 559 uint64_t Weight = BlockWeights[EC]; 560 for (const auto *BB2 : Descendants) { 561 bool IsDomParent = DomTree->dominates(BB2, BB1); 562 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 563 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 564 EquivalenceClass[BB2] = EC; 565 566 // If BB2 is heavier than BB1, make BB2 have the same weight 567 // as BB1. 568 // 569 // Note that we don't worry about the opposite situation here 570 // (when BB2 is lighter than BB1). We will deal with this 571 // during the propagation phase. Right now, we just want to 572 // make sure that BB1 has the largest weight of all the 573 // members of its equivalence set. 574 Weight = std::max(Weight, BlockWeights[BB2]); 575 } 576 } 577 BlockWeights[EC] = Weight; 578 } 579 580 /// \brief Find equivalence classes. 581 /// 582 /// Since samples may be missing from blocks, we can fill in the gaps by setting 583 /// the weights of all the blocks in the same equivalence class to the same 584 /// weight. To compute the concept of equivalence, we use dominance and loop 585 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 586 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 587 /// 588 /// \param F The function to query. 589 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 590 SmallVector<BasicBlock *, 8> DominatedBBs; 591 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 592 // Find equivalence sets based on dominance and post-dominance information. 593 for (auto &BB : F) { 594 BasicBlock *BB1 = &BB; 595 596 // Compute BB1's equivalence class once. 597 if (EquivalenceClass.count(BB1)) { 598 DEBUG(printBlockEquivalence(dbgs(), BB1)); 599 continue; 600 } 601 602 // By default, blocks are in their own equivalence class. 603 EquivalenceClass[BB1] = BB1; 604 605 // Traverse all the blocks dominated by BB1. We are looking for 606 // every basic block BB2 such that: 607 // 608 // 1- BB1 dominates BB2. 609 // 2- BB2 post-dominates BB1. 610 // 3- BB1 and BB2 are in the same loop nest. 611 // 612 // If all those conditions hold, it means that BB2 is executed 613 // as many times as BB1, so they are placed in the same equivalence 614 // class by making BB2's equivalence class be BB1. 615 DominatedBBs.clear(); 616 DT->getDescendants(BB1, DominatedBBs); 617 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 618 619 DEBUG(printBlockEquivalence(dbgs(), BB1)); 620 } 621 622 // Assign weights to equivalence classes. 623 // 624 // All the basic blocks in the same equivalence class will execute 625 // the same number of times. Since we know that the head block in 626 // each equivalence class has the largest weight, assign that weight 627 // to all the blocks in that equivalence class. 628 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 629 for (auto &BI : F) { 630 const BasicBlock *BB = &BI; 631 const BasicBlock *EquivBB = EquivalenceClass[BB]; 632 if (BB != EquivBB) 633 BlockWeights[BB] = BlockWeights[EquivBB]; 634 DEBUG(printBlockWeight(dbgs(), BB)); 635 } 636 } 637 638 /// \brief Visit the given edge to decide if it has a valid weight. 639 /// 640 /// If \p E has not been visited before, we copy to \p UnknownEdge 641 /// and increment the count of unknown edges. 642 /// 643 /// \param E Edge to visit. 644 /// \param NumUnknownEdges Current number of unknown edges. 645 /// \param UnknownEdge Set if E has not been visited before. 646 /// 647 /// \returns E's weight, if known. Otherwise, return 0. 648 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 649 Edge *UnknownEdge) { 650 if (!VisitedEdges.count(E)) { 651 (*NumUnknownEdges)++; 652 *UnknownEdge = E; 653 return 0; 654 } 655 656 return EdgeWeights[E]; 657 } 658 659 /// \brief Propagate weights through incoming/outgoing edges. 660 /// 661 /// If the weight of a basic block is known, and there is only one edge 662 /// with an unknown weight, we can calculate the weight of that edge. 663 /// 664 /// Similarly, if all the edges have a known count, we can calculate the 665 /// count of the basic block, if needed. 666 /// 667 /// \param F Function to process. 668 /// 669 /// \returns True if new weights were assigned to edges or blocks. 670 bool SampleProfileLoader::propagateThroughEdges(Function &F) { 671 bool Changed = false; 672 DEBUG(dbgs() << "\nPropagation through edges\n"); 673 for (const auto &BI : F) { 674 const BasicBlock *BB = &BI; 675 const BasicBlock *EC = EquivalenceClass[BB]; 676 677 // Visit all the predecessor and successor edges to determine 678 // which ones have a weight assigned already. Note that it doesn't 679 // matter that we only keep track of a single unknown edge. The 680 // only case we are interested in handling is when only a single 681 // edge is unknown (see setEdgeOrBlockWeight). 682 for (unsigned i = 0; i < 2; i++) { 683 uint64_t TotalWeight = 0; 684 unsigned NumUnknownEdges = 0; 685 Edge UnknownEdge, SelfReferentialEdge; 686 687 if (i == 0) { 688 // First, visit all predecessor edges. 689 for (auto *Pred : Predecessors[BB]) { 690 Edge E = std::make_pair(Pred, BB); 691 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 692 if (E.first == E.second) 693 SelfReferentialEdge = E; 694 } 695 } else { 696 // On the second round, visit all successor edges. 697 for (auto *Succ : Successors[BB]) { 698 Edge E = std::make_pair(BB, Succ); 699 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 700 } 701 } 702 703 // After visiting all the edges, there are three cases that we 704 // can handle immediately: 705 // 706 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 707 // In this case, we simply check that the sum of all the edges 708 // is the same as BB's weight. If not, we change BB's weight 709 // to match. Additionally, if BB had not been visited before, 710 // we mark it visited. 711 // 712 // - Only one edge is unknown and BB has already been visited. 713 // In this case, we can compute the weight of the edge by 714 // subtracting the total block weight from all the known 715 // edge weights. If the edges weight more than BB, then the 716 // edge of the last remaining edge is set to zero. 717 // 718 // - There exists a self-referential edge and the weight of BB is 719 // known. In this case, this edge can be based on BB's weight. 720 // We add up all the other known edges and set the weight on 721 // the self-referential edge as we did in the previous case. 722 // 723 // In any other case, we must continue iterating. Eventually, 724 // all edges will get a weight, or iteration will stop when 725 // it reaches SampleProfileMaxPropagateIterations. 726 if (NumUnknownEdges <= 1) { 727 uint64_t &BBWeight = BlockWeights[EC]; 728 if (NumUnknownEdges == 0) { 729 // If we already know the weight of all edges, the weight of the 730 // basic block can be computed. It should be no larger than the sum 731 // of all edge weights. 732 if (TotalWeight > BBWeight) { 733 BBWeight = TotalWeight; 734 Changed = true; 735 DEBUG(dbgs() << "All edge weights for " << BB->getName() 736 << " known. Set weight for block: "; 737 printBlockWeight(dbgs(), BB);); 738 } 739 if (VisitedBlocks.insert(EC).second) 740 Changed = true; 741 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 742 // If there is a single unknown edge and the block has been 743 // visited, then we can compute E's weight. 744 if (BBWeight >= TotalWeight) 745 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 746 else 747 EdgeWeights[UnknownEdge] = 0; 748 VisitedEdges.insert(UnknownEdge); 749 Changed = true; 750 DEBUG(dbgs() << "Set weight for edge: "; 751 printEdgeWeight(dbgs(), UnknownEdge)); 752 } 753 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 754 uint64_t &BBWeight = BlockWeights[BB]; 755 // We have a self-referential edge and the weight of BB is known. 756 if (BBWeight >= TotalWeight) 757 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 758 else 759 EdgeWeights[SelfReferentialEdge] = 0; 760 VisitedEdges.insert(SelfReferentialEdge); 761 Changed = true; 762 DEBUG(dbgs() << "Set self-referential edge weight to: "; 763 printEdgeWeight(dbgs(), SelfReferentialEdge)); 764 } 765 } 766 } 767 768 return Changed; 769 } 770 771 /// \brief Build in/out edge lists for each basic block in the CFG. 772 /// 773 /// We are interested in unique edges. If a block B1 has multiple 774 /// edges to another block B2, we only add a single B1->B2 edge. 775 void SampleProfileLoader::buildEdges(Function &F) { 776 for (auto &BI : F) { 777 BasicBlock *B1 = &BI; 778 779 // Add predecessors for B1. 780 SmallPtrSet<BasicBlock *, 16> Visited; 781 if (!Predecessors[B1].empty()) 782 llvm_unreachable("Found a stale predecessors list in a basic block."); 783 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 784 BasicBlock *B2 = *PI; 785 if (Visited.insert(B2).second) 786 Predecessors[B1].push_back(B2); 787 } 788 789 // Add successors for B1. 790 Visited.clear(); 791 if (!Successors[B1].empty()) 792 llvm_unreachable("Found a stale successors list in a basic block."); 793 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 794 BasicBlock *B2 = *SI; 795 if (Visited.insert(B2).second) 796 Successors[B1].push_back(B2); 797 } 798 } 799 } 800 801 /// \brief Propagate weights into edges 802 /// 803 /// The following rules are applied to every block BB in the CFG: 804 /// 805 /// - If BB has a single predecessor/successor, then the weight 806 /// of that edge is the weight of the block. 807 /// 808 /// - If all incoming or outgoing edges are known except one, and the 809 /// weight of the block is already known, the weight of the unknown 810 /// edge will be the weight of the block minus the sum of all the known 811 /// edges. If the sum of all the known edges is larger than BB's weight, 812 /// we set the unknown edge weight to zero. 813 /// 814 /// - If there is a self-referential edge, and the weight of the block is 815 /// known, the weight for that edge is set to the weight of the block 816 /// minus the weight of the other incoming edges to that block (if 817 /// known). 818 void SampleProfileLoader::propagateWeights(Function &F) { 819 bool Changed = true; 820 unsigned I = 0; 821 822 // Add an entry count to the function using the samples gathered 823 // at the function entry. 824 F.setEntryCount(Samples->getHeadSamples()); 825 826 // Before propagation starts, build, for each block, a list of 827 // unique predecessors and successors. This is necessary to handle 828 // identical edges in multiway branches. Since we visit all blocks and all 829 // edges of the CFG, it is cleaner to build these lists once at the start 830 // of the pass. 831 buildEdges(F); 832 833 // Propagate until we converge or we go past the iteration limit. 834 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 835 Changed = propagateThroughEdges(F); 836 } 837 838 // Generate MD_prof metadata for every branch instruction using the 839 // edge weights computed during propagation. 840 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 841 LLVMContext &Ctx = F.getContext(); 842 MDBuilder MDB(Ctx); 843 for (auto &BI : F) { 844 BasicBlock *BB = &BI; 845 TerminatorInst *TI = BB->getTerminator(); 846 if (TI->getNumSuccessors() == 1) 847 continue; 848 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 849 continue; 850 851 DEBUG(dbgs() << "\nGetting weights for branch at line " 852 << TI->getDebugLoc().getLine() << ".\n"); 853 SmallVector<uint32_t, 4> Weights; 854 uint32_t MaxWeight = 0; 855 DebugLoc MaxDestLoc; 856 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 857 BasicBlock *Succ = TI->getSuccessor(I); 858 Edge E = std::make_pair(BB, Succ); 859 uint64_t Weight = EdgeWeights[E]; 860 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 861 // Use uint32_t saturated arithmetic to adjust the incoming weights, 862 // if needed. Sample counts in profiles are 64-bit unsigned values, 863 // but internally branch weights are expressed as 32-bit values. 864 if (Weight > std::numeric_limits<uint32_t>::max()) { 865 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 866 Weight = std::numeric_limits<uint32_t>::max(); 867 } 868 Weights.push_back(static_cast<uint32_t>(Weight)); 869 if (Weight != 0) { 870 if (Weight > MaxWeight) { 871 MaxWeight = Weight; 872 MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc(); 873 } 874 } 875 } 876 877 // Only set weights if there is at least one non-zero weight. 878 // In any other case, let the analyzer set weights. 879 if (MaxWeight > 0) { 880 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 881 TI->setMetadata(llvm::LLVMContext::MD_prof, 882 MDB.createBranchWeights(Weights)); 883 DebugLoc BranchLoc = TI->getDebugLoc(); 884 emitOptimizationRemark( 885 Ctx, DEBUG_TYPE, F, MaxDestLoc, 886 Twine("most popular destination for conditional branches at ") + 887 ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" + 888 Twine(BranchLoc.getLine()) + ":" + 889 Twine(BranchLoc.getCol())) 890 : Twine("<UNKNOWN LOCATION>"))); 891 } else { 892 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 893 } 894 } 895 } 896 897 /// \brief Get the line number for the function header. 898 /// 899 /// This looks up function \p F in the current compilation unit and 900 /// retrieves the line number where the function is defined. This is 901 /// line 0 for all the samples read from the profile file. Every line 902 /// number is relative to this line. 903 /// 904 /// \param F Function object to query. 905 /// 906 /// \returns the line number where \p F is defined. If it returns 0, 907 /// it means that there is no debug information available for \p F. 908 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 909 if (DISubprogram *S = getDISubprogram(&F)) 910 return S->getLine(); 911 912 // If the start of \p F is missing, emit a diagnostic to inform the user 913 // about the missed opportunity. 914 F.getContext().diagnose(DiagnosticInfoSampleProfile( 915 "No debug information found in function " + F.getName() + 916 ": Function profile not used", 917 DS_Warning)); 918 return 0; 919 } 920 921 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 922 DT.reset(new DominatorTree); 923 DT->recalculate(F); 924 925 PDT.reset(new DominatorTreeBase<BasicBlock>(true)); 926 PDT->recalculate(F); 927 928 LI.reset(new LoopInfo); 929 LI->analyze(*DT); 930 } 931 932 /// \brief Generate branch weight metadata for all branches in \p F. 933 /// 934 /// Branch weights are computed out of instruction samples using a 935 /// propagation heuristic. Propagation proceeds in 3 phases: 936 /// 937 /// 1- Assignment of block weights. All the basic blocks in the function 938 /// are initial assigned the same weight as their most frequently 939 /// executed instruction. 940 /// 941 /// 2- Creation of equivalence classes. Since samples may be missing from 942 /// blocks, we can fill in the gaps by setting the weights of all the 943 /// blocks in the same equivalence class to the same weight. To compute 944 /// the concept of equivalence, we use dominance and loop information. 945 /// Two blocks B1 and B2 are in the same equivalence class if B1 946 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 947 /// 948 /// 3- Propagation of block weights into edges. This uses a simple 949 /// propagation heuristic. The following rules are applied to every 950 /// block BB in the CFG: 951 /// 952 /// - If BB has a single predecessor/successor, then the weight 953 /// of that edge is the weight of the block. 954 /// 955 /// - If all the edges are known except one, and the weight of the 956 /// block is already known, the weight of the unknown edge will 957 /// be the weight of the block minus the sum of all the known 958 /// edges. If the sum of all the known edges is larger than BB's weight, 959 /// we set the unknown edge weight to zero. 960 /// 961 /// - If there is a self-referential edge, and the weight of the block is 962 /// known, the weight for that edge is set to the weight of the block 963 /// minus the weight of the other incoming edges to that block (if 964 /// known). 965 /// 966 /// Since this propagation is not guaranteed to finalize for every CFG, we 967 /// only allow it to proceed for a limited number of iterations (controlled 968 /// by -sample-profile-max-propagate-iterations). 969 /// 970 /// FIXME: Try to replace this propagation heuristic with a scheme 971 /// that is guaranteed to finalize. A work-list approach similar to 972 /// the standard value propagation algorithm used by SSA-CCP might 973 /// work here. 974 /// 975 /// Once all the branch weights are computed, we emit the MD_prof 976 /// metadata on BB using the computed values for each of its branches. 977 /// 978 /// \param F The function to query. 979 /// 980 /// \returns true if \p F was modified. Returns false, otherwise. 981 bool SampleProfileLoader::emitAnnotations(Function &F) { 982 bool Changed = false; 983 984 if (getFunctionLoc(F) == 0) 985 return false; 986 987 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 988 << ": " << getFunctionLoc(F) << "\n"); 989 990 Changed |= inlineHotFunctions(F); 991 992 // Compute basic block weights. 993 Changed |= computeBlockWeights(F); 994 995 if (Changed) { 996 // Compute dominance and loop info needed for propagation. 997 computeDominanceAndLoopInfo(F); 998 999 // Find equivalence classes. 1000 findEquivalenceClasses(F); 1001 1002 // Propagate weights to all edges. 1003 propagateWeights(F); 1004 } 1005 1006 // If coverage checking was requested, compute it now. 1007 if (SampleProfileCoverage) { 1008 unsigned Used = CoverageTracker.countUsedSamples(Samples); 1009 unsigned Total = CoverageTracker.countBodySamples(Samples); 1010 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1011 if (Coverage < SampleProfileCoverage) { 1012 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1013 getDISubprogram(&F)->getFilename(), getFunctionLoc(F), 1014 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1015 Twine(Coverage) + "%) were applied", 1016 DS_Warning)); 1017 } 1018 } 1019 1020 return Changed; 1021 } 1022 1023 char SampleProfileLoader::ID = 0; 1024 INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile", 1025 "Sample Profile loader", false, false) 1026 INITIALIZE_PASS_DEPENDENCY(AddDiscriminators) 1027 INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile", 1028 "Sample Profile loader", false, false) 1029 1030 bool SampleProfileLoader::doInitialization(Module &M) { 1031 auto &Ctx = M.getContext(); 1032 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1033 if (std::error_code EC = ReaderOrErr.getError()) { 1034 std::string Msg = "Could not open profile: " + EC.message(); 1035 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1036 return false; 1037 } 1038 Reader = std::move(ReaderOrErr.get()); 1039 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1040 return true; 1041 } 1042 1043 ModulePass *llvm::createSampleProfileLoaderPass() { 1044 return new SampleProfileLoader(SampleProfileFile); 1045 } 1046 1047 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1048 return new SampleProfileLoader(Name); 1049 } 1050 1051 bool SampleProfileLoader::runOnModule(Module &M) { 1052 if (!ProfileIsValid) 1053 return false; 1054 1055 bool retval = false; 1056 for (auto &F : M) 1057 if (!F.isDeclaration()) { 1058 clearFunctionData(); 1059 retval |= runOnFunction(F); 1060 } 1061 return retval; 1062 } 1063 1064 bool SampleProfileLoader::runOnFunction(Function &F) { 1065 Samples = Reader->getSamplesFor(F); 1066 if (!Samples->empty()) 1067 return emitAnnotations(F); 1068 return false; 1069 } 1070