1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 //      to indicate the weights of each edge coming out of the branch.
19 //      The weight of each edge is the weight of the target block for
20 //      that edge. The weight of a block B is computed as the maximum
21 //      number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/SampleProfile.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/PostDominators.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DebugInfo.h"
35 #include "llvm/IR/DiagnosticInfo.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/InstIterator.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Pass.h"
47 #include "llvm/ProfileData/InstrProf.h"
48 #include "llvm/ProfileData/SampleProfReader.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorOr.h"
52 #include "llvm/Support/Format.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/IPO.h"
55 #include "llvm/Transforms/Instrumentation.h"
56 #include "llvm/Transforms/Utils/Cloning.h"
57 #include <cctype>
58 
59 using namespace llvm;
60 using namespace sampleprof;
61 
62 #define DEBUG_TYPE "sample-profile"
63 
64 // Command line option to specify the file to read samples from. This is
65 // mainly used for debugging.
66 static cl::opt<std::string> SampleProfileFile(
67     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
68     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
69 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
70     "sample-profile-max-propagate-iterations", cl::init(100),
71     cl::desc("Maximum number of iterations to go through when propagating "
72              "sample block/edge weights through the CFG."));
73 static cl::opt<unsigned> SampleProfileRecordCoverage(
74     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
75     cl::desc("Emit a warning if less than N% of records in the input profile "
76              "are matched to the IR."));
77 static cl::opt<unsigned> SampleProfileSampleCoverage(
78     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
79     cl::desc("Emit a warning if less than N% of samples in the input profile "
80              "are matched to the IR."));
81 static cl::opt<double> SampleProfileHotThreshold(
82     "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"),
83     cl::desc("Inlined functions that account for more than N% of all samples "
84              "collected in the parent function, will be inlined again."));
85 
86 namespace {
87 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap;
88 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap;
89 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge;
90 typedef DenseMap<Edge, uint64_t> EdgeWeightMap;
91 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>
92     BlockEdgeMap;
93 
94 class SampleCoverageTracker {
95 public:
96   SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {}
97 
98   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
99                        uint32_t Discriminator, uint64_t Samples);
100   unsigned computeCoverage(unsigned Used, unsigned Total) const;
101   unsigned countUsedRecords(const FunctionSamples *FS) const;
102   unsigned countBodyRecords(const FunctionSamples *FS) const;
103   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
104   uint64_t countBodySamples(const FunctionSamples *FS) const;
105   void clear() {
106     SampleCoverage.clear();
107     TotalUsedSamples = 0;
108   }
109 
110 private:
111   typedef std::map<LineLocation, unsigned> BodySampleCoverageMap;
112   typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap>
113       FunctionSamplesCoverageMap;
114 
115   /// Coverage map for sampling records.
116   ///
117   /// This map keeps a record of sampling records that have been matched to
118   /// an IR instruction. This is used to detect some form of staleness in
119   /// profiles (see flag -sample-profile-check-coverage).
120   ///
121   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
122   /// another map that counts how many times the sample record at the
123   /// given location has been used.
124   FunctionSamplesCoverageMap SampleCoverage;
125 
126   /// Number of samples used from the profile.
127   ///
128   /// When a sampling record is used for the first time, the samples from
129   /// that record are added to this accumulator.  Coverage is later computed
130   /// based on the total number of samples available in this function and
131   /// its callsites.
132   ///
133   /// Note that this accumulator tracks samples used from a single function
134   /// and all the inlined callsites. Strictly, we should have a map of counters
135   /// keyed by FunctionSamples pointers, but these stats are cleared after
136   /// every function, so we just need to keep a single counter.
137   uint64_t TotalUsedSamples;
138 };
139 
140 /// \brief Sample profile pass.
141 ///
142 /// This pass reads profile data from the file specified by
143 /// -sample-profile-file and annotates every affected function with the
144 /// profile information found in that file.
145 class SampleProfileLoader {
146 public:
147   SampleProfileLoader(StringRef Name = SampleProfileFile)
148       : DT(nullptr), PDT(nullptr), LI(nullptr), ACT(nullptr), Reader(),
149         Samples(nullptr), Filename(Name), ProfileIsValid(false),
150         TotalCollectedSamples(0) {}
151 
152   bool doInitialization(Module &M);
153   bool runOnModule(Module &M);
154   void setACT(AssumptionCacheTracker *A) { ACT = A; }
155 
156   void dump() { Reader->dump(); }
157 
158 protected:
159   bool runOnFunction(Function &F);
160   unsigned getFunctionLoc(Function &F);
161   bool emitAnnotations(Function &F);
162   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
163   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
164   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
165   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
166   bool inlineHotFunctions(Function &F,
167                           DenseSet<GlobalValue::GUID> &ImportGUIDs);
168   void printEdgeWeight(raw_ostream &OS, Edge E);
169   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
170   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
171   bool computeBlockWeights(Function &F);
172   void findEquivalenceClasses(Function &F);
173   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
174                            DominatorTreeBase<BasicBlock> *DomTree);
175   void propagateWeights(Function &F);
176   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
177   void buildEdges(Function &F);
178   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
179   void computeDominanceAndLoopInfo(Function &F);
180   unsigned getOffset(const DILocation *DIL) const;
181   void clearFunctionData();
182 
183   /// \brief Map basic blocks to their computed weights.
184   ///
185   /// The weight of a basic block is defined to be the maximum
186   /// of all the instruction weights in that block.
187   BlockWeightMap BlockWeights;
188 
189   /// \brief Map edges to their computed weights.
190   ///
191   /// Edge weights are computed by propagating basic block weights in
192   /// SampleProfile::propagateWeights.
193   EdgeWeightMap EdgeWeights;
194 
195   /// \brief Set of visited blocks during propagation.
196   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
197 
198   /// \brief Set of visited edges during propagation.
199   SmallSet<Edge, 32> VisitedEdges;
200 
201   /// \brief Equivalence classes for block weights.
202   ///
203   /// Two blocks BB1 and BB2 are in the same equivalence class if they
204   /// dominate and post-dominate each other, and they are in the same loop
205   /// nest. When this happens, the two blocks are guaranteed to execute
206   /// the same number of times.
207   EquivalenceClassMap EquivalenceClass;
208 
209   /// \brief Dominance, post-dominance and loop information.
210   std::unique_ptr<DominatorTree> DT;
211   std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT;
212   std::unique_ptr<LoopInfo> LI;
213 
214   AssumptionCacheTracker *ACT;
215 
216   /// \brief Predecessors for each basic block in the CFG.
217   BlockEdgeMap Predecessors;
218 
219   /// \brief Successors for each basic block in the CFG.
220   BlockEdgeMap Successors;
221 
222   SampleCoverageTracker CoverageTracker;
223 
224   /// \brief Profile reader object.
225   std::unique_ptr<SampleProfileReader> Reader;
226 
227   /// \brief Samples collected for the body of this function.
228   FunctionSamples *Samples;
229 
230   /// \brief Name of the profile file to load.
231   std::string Filename;
232 
233   /// \brief Flag indicating whether the profile input loaded successfully.
234   bool ProfileIsValid;
235 
236   /// \brief Total number of samples collected in this profile.
237   ///
238   /// This is the sum of all the samples collected in all the functions executed
239   /// at runtime.
240   uint64_t TotalCollectedSamples;
241 };
242 
243 class SampleProfileLoaderLegacyPass : public ModulePass {
244 public:
245   // Class identification, replacement for typeinfo
246   static char ID;
247 
248   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile)
249       : ModulePass(ID), SampleLoader(Name) {
250     initializeSampleProfileLoaderLegacyPassPass(
251         *PassRegistry::getPassRegistry());
252   }
253 
254   void dump() { SampleLoader.dump(); }
255 
256   bool doInitialization(Module &M) override {
257     return SampleLoader.doInitialization(M);
258   }
259   StringRef getPassName() const override { return "Sample profile pass"; }
260   bool runOnModule(Module &M) override;
261 
262   void getAnalysisUsage(AnalysisUsage &AU) const override {
263     AU.addRequired<AssumptionCacheTracker>();
264   }
265 
266 private:
267   SampleProfileLoader SampleLoader;
268 };
269 
270 /// Return true if the given callsite is hot wrt to its caller.
271 ///
272 /// Functions that were inlined in the original binary will be represented
273 /// in the inline stack in the sample profile. If the profile shows that
274 /// the original inline decision was "good" (i.e., the callsite is executed
275 /// frequently), then we will recreate the inline decision and apply the
276 /// profile from the inlined callsite.
277 ///
278 /// To decide whether an inlined callsite is hot, we compute the fraction
279 /// of samples used by the callsite with respect to the total number of samples
280 /// collected in the caller.
281 ///
282 /// If that fraction is larger than the default given by
283 /// SampleProfileHotThreshold, the callsite will be inlined again.
284 bool callsiteIsHot(const FunctionSamples *CallerFS,
285                    const FunctionSamples *CallsiteFS) {
286   if (!CallsiteFS)
287     return false; // The callsite was not inlined in the original binary.
288 
289   uint64_t ParentTotalSamples = CallerFS->getTotalSamples();
290   if (ParentTotalSamples == 0)
291     return false; // Avoid division by zero.
292 
293   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
294   if (CallsiteTotalSamples == 0)
295     return false; // Callsite is trivially cold.
296 
297   double PercentSamples =
298       (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0;
299   return PercentSamples >= SampleProfileHotThreshold;
300 }
301 }
302 
303 /// Mark as used the sample record for the given function samples at
304 /// (LineOffset, Discriminator).
305 ///
306 /// \returns true if this is the first time we mark the given record.
307 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
308                                             uint32_t LineOffset,
309                                             uint32_t Discriminator,
310                                             uint64_t Samples) {
311   LineLocation Loc(LineOffset, Discriminator);
312   unsigned &Count = SampleCoverage[FS][Loc];
313   bool FirstTime = (++Count == 1);
314   if (FirstTime)
315     TotalUsedSamples += Samples;
316   return FirstTime;
317 }
318 
319 /// Return the number of sample records that were applied from this profile.
320 ///
321 /// This count does not include records from cold inlined callsites.
322 unsigned
323 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const {
324   auto I = SampleCoverage.find(FS);
325 
326   // The size of the coverage map for FS represents the number of records
327   // that were marked used at least once.
328   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
329 
330   // If there are inlined callsites in this function, count the samples found
331   // in the respective bodies. However, do not bother counting callees with 0
332   // total samples, these are callees that were never invoked at runtime.
333   for (const auto &I : FS->getCallsiteSamples()) {
334     const FunctionSamples *CalleeSamples = &I.second;
335     if (callsiteIsHot(FS, CalleeSamples))
336       Count += countUsedRecords(CalleeSamples);
337   }
338 
339   return Count;
340 }
341 
342 /// Return the number of sample records in the body of this profile.
343 ///
344 /// This count does not include records from cold inlined callsites.
345 unsigned
346 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const {
347   unsigned Count = FS->getBodySamples().size();
348 
349   // Only count records in hot callsites.
350   for (const auto &I : FS->getCallsiteSamples()) {
351     const FunctionSamples *CalleeSamples = &I.second;
352     if (callsiteIsHot(FS, CalleeSamples))
353       Count += countBodyRecords(CalleeSamples);
354   }
355 
356   return Count;
357 }
358 
359 /// Return the number of samples collected in the body of this profile.
360 ///
361 /// This count does not include samples from cold inlined callsites.
362 uint64_t
363 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const {
364   uint64_t Total = 0;
365   for (const auto &I : FS->getBodySamples())
366     Total += I.second.getSamples();
367 
368   // Only count samples in hot callsites.
369   for (const auto &I : FS->getCallsiteSamples()) {
370     const FunctionSamples *CalleeSamples = &I.second;
371     if (callsiteIsHot(FS, CalleeSamples))
372       Total += countBodySamples(CalleeSamples);
373   }
374 
375   return Total;
376 }
377 
378 /// Return the fraction of sample records used in this profile.
379 ///
380 /// The returned value is an unsigned integer in the range 0-100 indicating
381 /// the percentage of sample records that were used while applying this
382 /// profile to the associated function.
383 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
384                                                 unsigned Total) const {
385   assert(Used <= Total &&
386          "number of used records cannot exceed the total number of records");
387   return Total > 0 ? Used * 100 / Total : 100;
388 }
389 
390 /// Clear all the per-function data used to load samples and propagate weights.
391 void SampleProfileLoader::clearFunctionData() {
392   BlockWeights.clear();
393   EdgeWeights.clear();
394   VisitedBlocks.clear();
395   VisitedEdges.clear();
396   EquivalenceClass.clear();
397   DT = nullptr;
398   PDT = nullptr;
399   LI = nullptr;
400   Predecessors.clear();
401   Successors.clear();
402   CoverageTracker.clear();
403 }
404 
405 /// Returns the line offset to the start line of the subprogram.
406 /// We assume that a single function will not exceed 65535 LOC.
407 unsigned SampleProfileLoader::getOffset(const DILocation *DIL) const {
408   return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) &
409          0xffff;
410 }
411 
412 /// \brief Print the weight of edge \p E on stream \p OS.
413 ///
414 /// \param OS  Stream to emit the output to.
415 /// \param E  Edge to print.
416 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
417   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
418      << "]: " << EdgeWeights[E] << "\n";
419 }
420 
421 /// \brief Print the equivalence class of block \p BB on stream \p OS.
422 ///
423 /// \param OS  Stream to emit the output to.
424 /// \param BB  Block to print.
425 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
426                                                 const BasicBlock *BB) {
427   const BasicBlock *Equiv = EquivalenceClass[BB];
428   OS << "equivalence[" << BB->getName()
429      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
430 }
431 
432 /// \brief Print the weight of block \p BB on stream \p OS.
433 ///
434 /// \param OS  Stream to emit the output to.
435 /// \param BB  Block to print.
436 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
437                                            const BasicBlock *BB) const {
438   const auto &I = BlockWeights.find(BB);
439   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
440   OS << "weight[" << BB->getName() << "]: " << W << "\n";
441 }
442 
443 /// \brief Get the weight for an instruction.
444 ///
445 /// The "weight" of an instruction \p Inst is the number of samples
446 /// collected on that instruction at runtime. To retrieve it, we
447 /// need to compute the line number of \p Inst relative to the start of its
448 /// function. We use HeaderLineno to compute the offset. We then
449 /// look up the samples collected for \p Inst using BodySamples.
450 ///
451 /// \param Inst Instruction to query.
452 ///
453 /// \returns the weight of \p Inst.
454 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
455   const DebugLoc &DLoc = Inst.getDebugLoc();
456   if (!DLoc)
457     return std::error_code();
458 
459   const FunctionSamples *FS = findFunctionSamples(Inst);
460   if (!FS)
461     return std::error_code();
462 
463   // Ignore all intrinsics and branch instructions.
464   // Branch instruction usually contains debug info from sources outside of
465   // the residing basic block, thus we ignore them during annotation.
466   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst))
467     return std::error_code();
468 
469   // If a call/invoke instruction is inlined in profile, but not inlined here,
470   // it means that the inlined callsite has no sample, thus the call
471   // instruction should have 0 count.
472   if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
473       findCalleeFunctionSamples(Inst))
474     return 0;
475 
476   const DILocation *DIL = DLoc;
477   uint32_t LineOffset = getOffset(DIL);
478   uint32_t Discriminator = DIL->getBaseDiscriminator();
479   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
480   if (R) {
481     bool FirstMark =
482         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
483     if (FirstMark) {
484       const Function *F = Inst.getParent()->getParent();
485       LLVMContext &Ctx = F->getContext();
486       emitOptimizationRemark(
487           Ctx, DEBUG_TYPE, *F, DLoc,
488           Twine("Applied ") + Twine(*R) +
489               " samples from profile (offset: " + Twine(LineOffset) +
490               ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")");
491     }
492     DEBUG(dbgs() << "    " << DLoc.getLine() << "."
493                  << DIL->getBaseDiscriminator() << ":" << Inst
494                  << " (line offset: " << LineOffset << "."
495                  << DIL->getBaseDiscriminator() << " - weight: " << R.get()
496                  << ")\n");
497   }
498   return R;
499 }
500 
501 /// \brief Compute the weight of a basic block.
502 ///
503 /// The weight of basic block \p BB is the maximum weight of all the
504 /// instructions in BB.
505 ///
506 /// \param BB The basic block to query.
507 ///
508 /// \returns the weight for \p BB.
509 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
510   uint64_t Max = 0;
511   bool HasWeight = false;
512   for (auto &I : BB->getInstList()) {
513     const ErrorOr<uint64_t> &R = getInstWeight(I);
514     if (R) {
515       Max = std::max(Max, R.get());
516       HasWeight = true;
517     }
518   }
519   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
520 }
521 
522 /// \brief Compute and store the weights of every basic block.
523 ///
524 /// This populates the BlockWeights map by computing
525 /// the weights of every basic block in the CFG.
526 ///
527 /// \param F The function to query.
528 bool SampleProfileLoader::computeBlockWeights(Function &F) {
529   bool Changed = false;
530   DEBUG(dbgs() << "Block weights\n");
531   for (const auto &BB : F) {
532     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
533     if (Weight) {
534       BlockWeights[&BB] = Weight.get();
535       VisitedBlocks.insert(&BB);
536       Changed = true;
537     }
538     DEBUG(printBlockWeight(dbgs(), &BB));
539   }
540 
541   return Changed;
542 }
543 
544 /// \brief Get the FunctionSamples for a call instruction.
545 ///
546 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
547 /// instance in which that call instruction is calling to. It contains
548 /// all samples that resides in the inlined instance. We first find the
549 /// inlined instance in which the call instruction is from, then we
550 /// traverse its children to find the callsite with the matching
551 /// location.
552 ///
553 /// \param Inst Call/Invoke instruction to query.
554 ///
555 /// \returns The FunctionSamples pointer to the inlined instance.
556 const FunctionSamples *
557 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
558   const DILocation *DIL = Inst.getDebugLoc();
559   if (!DIL) {
560     return nullptr;
561   }
562   const FunctionSamples *FS = findFunctionSamples(Inst);
563   if (FS == nullptr)
564     return nullptr;
565 
566   return FS->findFunctionSamplesAt(
567       LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()));
568 }
569 
570 /// \brief Get the FunctionSamples for an instruction.
571 ///
572 /// The FunctionSamples of an instruction \p Inst is the inlined instance
573 /// in which that instruction is coming from. We traverse the inline stack
574 /// of that instruction, and match it with the tree nodes in the profile.
575 ///
576 /// \param Inst Instruction to query.
577 ///
578 /// \returns the FunctionSamples pointer to the inlined instance.
579 const FunctionSamples *
580 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
581   SmallVector<LineLocation, 10> S;
582   const DILocation *DIL = Inst.getDebugLoc();
583   if (!DIL) {
584     return Samples;
585   }
586   for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt())
587     S.push_back(LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()));
588   if (S.size() == 0)
589     return Samples;
590   const FunctionSamples *FS = Samples;
591   for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
592     FS = FS->findFunctionSamplesAt(S[i]);
593   }
594   return FS;
595 }
596 
597 /// \brief Iteratively inline hot callsites of a function.
598 ///
599 /// Iteratively traverse all callsites of the function \p F, and find if
600 /// the corresponding inlined instance exists and is hot in profile. If
601 /// it is hot enough, inline the callsites and adds new callsites of the
602 /// callee into the caller. If the call is an indirect call, first promote
603 /// it to direct call. Each indirect call is limited with a single target.
604 ///
605 /// \param F function to perform iterative inlining.
606 /// \param ImportGUIDs a set to be updated to include all GUIDs that come
607 ///     from a different module but inlined in the profiled binary.
608 ///
609 /// \returns True if there is any inline happened.
610 bool SampleProfileLoader::inlineHotFunctions(
611     Function &F, DenseSet<GlobalValue::GUID> &ImportGUIDs) {
612   DenseSet<Instruction *> PromotedInsns;
613   bool Changed = false;
614   LLVMContext &Ctx = F.getContext();
615   std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&](
616       Function &F) -> AssumptionCache & { return ACT->getAssumptionCache(F); };
617   while (true) {
618     bool LocalChanged = false;
619     SmallVector<Instruction *, 10> CIS;
620     for (auto &BB : F) {
621       bool Hot = false;
622       SmallVector<Instruction *, 10> Candidates;
623       for (auto &I : BB.getInstList()) {
624         const FunctionSamples *FS = nullptr;
625         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
626             (FS = findCalleeFunctionSamples(I))) {
627           Candidates.push_back(&I);
628           if (callsiteIsHot(Samples, FS))
629             Hot = true;
630         }
631       }
632       if (Hot) {
633         CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
634       }
635     }
636     for (auto I : CIS) {
637       InlineFunctionInfo IFI(nullptr, ACT ? &GetAssumptionCache : nullptr);
638       Function *CalledFunction = CallSite(I).getCalledFunction();
639       Instruction *DI = I;
640       if (!CalledFunction && !PromotedInsns.count(I) &&
641           CallSite(I).isIndirectCall()) {
642         auto CalleeFunctionName = findCalleeFunctionSamples(*I)->getName();
643         const char *Reason = "Callee function not available";
644         CalledFunction = F.getParent()->getFunction(CalleeFunctionName);
645         if (CalledFunction && isLegalToPromote(I, CalledFunction, &Reason)) {
646           // The indirect target was promoted and inlined in the profile, as a
647           // result, we do not have profile info for the branch probability.
648           // We set the probability to 80% taken to indicate that the static
649           // call is likely taken.
650           DI = dyn_cast<Instruction>(
651               promoteIndirectCall(I, CalledFunction, 80, 100, false)
652                   ->stripPointerCasts());
653           PromotedInsns.insert(I);
654         } else {
655           DEBUG(dbgs() << "\nFailed to promote indirect call to "
656                        << CalleeFunctionName << " because " << Reason << "\n");
657           continue;
658         }
659       }
660       if (!CalledFunction || !CalledFunction->getSubprogram()) {
661         findCalleeFunctionSamples(*I)->findImportedFunctions(
662             ImportGUIDs, F.getParent(),
663             Samples->getTotalSamples() * SampleProfileHotThreshold / 100);
664         continue;
665       }
666       DebugLoc DLoc = I->getDebugLoc();
667       if (InlineFunction(CallSite(DI), IFI)) {
668         LocalChanged = true;
669         emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc,
670                                Twine("inlined hot callee '") +
671                                    CalledFunction->getName() + "' into '" +
672                                    F.getName() + "'");
673       }
674     }
675     if (LocalChanged) {
676       Changed = true;
677     } else {
678       break;
679     }
680   }
681   return Changed;
682 }
683 
684 /// \brief Find equivalence classes for the given block.
685 ///
686 /// This finds all the blocks that are guaranteed to execute the same
687 /// number of times as \p BB1. To do this, it traverses all the
688 /// descendants of \p BB1 in the dominator or post-dominator tree.
689 ///
690 /// A block BB2 will be in the same equivalence class as \p BB1 if
691 /// the following holds:
692 ///
693 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
694 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
695 ///    dominate BB1 in the post-dominator tree.
696 ///
697 /// 2- Both BB2 and \p BB1 must be in the same loop.
698 ///
699 /// For every block BB2 that meets those two requirements, we set BB2's
700 /// equivalence class to \p BB1.
701 ///
702 /// \param BB1  Block to check.
703 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
704 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
705 ///                 with blocks from \p BB1's dominator tree, then
706 ///                 this is the post-dominator tree, and vice versa.
707 void SampleProfileLoader::findEquivalencesFor(
708     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
709     DominatorTreeBase<BasicBlock> *DomTree) {
710   const BasicBlock *EC = EquivalenceClass[BB1];
711   uint64_t Weight = BlockWeights[EC];
712   for (const auto *BB2 : Descendants) {
713     bool IsDomParent = DomTree->dominates(BB2, BB1);
714     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
715     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
716       EquivalenceClass[BB2] = EC;
717       // If BB2 is visited, then the entire EC should be marked as visited.
718       if (VisitedBlocks.count(BB2)) {
719         VisitedBlocks.insert(EC);
720       }
721 
722       // If BB2 is heavier than BB1, make BB2 have the same weight
723       // as BB1.
724       //
725       // Note that we don't worry about the opposite situation here
726       // (when BB2 is lighter than BB1). We will deal with this
727       // during the propagation phase. Right now, we just want to
728       // make sure that BB1 has the largest weight of all the
729       // members of its equivalence set.
730       Weight = std::max(Weight, BlockWeights[BB2]);
731     }
732   }
733   if (EC == &EC->getParent()->getEntryBlock()) {
734     BlockWeights[EC] = Samples->getHeadSamples() + 1;
735   } else {
736     BlockWeights[EC] = Weight;
737   }
738 }
739 
740 /// \brief Find equivalence classes.
741 ///
742 /// Since samples may be missing from blocks, we can fill in the gaps by setting
743 /// the weights of all the blocks in the same equivalence class to the same
744 /// weight. To compute the concept of equivalence, we use dominance and loop
745 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
746 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
747 ///
748 /// \param F The function to query.
749 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
750   SmallVector<BasicBlock *, 8> DominatedBBs;
751   DEBUG(dbgs() << "\nBlock equivalence classes\n");
752   // Find equivalence sets based on dominance and post-dominance information.
753   for (auto &BB : F) {
754     BasicBlock *BB1 = &BB;
755 
756     // Compute BB1's equivalence class once.
757     if (EquivalenceClass.count(BB1)) {
758       DEBUG(printBlockEquivalence(dbgs(), BB1));
759       continue;
760     }
761 
762     // By default, blocks are in their own equivalence class.
763     EquivalenceClass[BB1] = BB1;
764 
765     // Traverse all the blocks dominated by BB1. We are looking for
766     // every basic block BB2 such that:
767     //
768     // 1- BB1 dominates BB2.
769     // 2- BB2 post-dominates BB1.
770     // 3- BB1 and BB2 are in the same loop nest.
771     //
772     // If all those conditions hold, it means that BB2 is executed
773     // as many times as BB1, so they are placed in the same equivalence
774     // class by making BB2's equivalence class be BB1.
775     DominatedBBs.clear();
776     DT->getDescendants(BB1, DominatedBBs);
777     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
778 
779     DEBUG(printBlockEquivalence(dbgs(), BB1));
780   }
781 
782   // Assign weights to equivalence classes.
783   //
784   // All the basic blocks in the same equivalence class will execute
785   // the same number of times. Since we know that the head block in
786   // each equivalence class has the largest weight, assign that weight
787   // to all the blocks in that equivalence class.
788   DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
789   for (auto &BI : F) {
790     const BasicBlock *BB = &BI;
791     const BasicBlock *EquivBB = EquivalenceClass[BB];
792     if (BB != EquivBB)
793       BlockWeights[BB] = BlockWeights[EquivBB];
794     DEBUG(printBlockWeight(dbgs(), BB));
795   }
796 }
797 
798 /// \brief Visit the given edge to decide if it has a valid weight.
799 ///
800 /// If \p E has not been visited before, we copy to \p UnknownEdge
801 /// and increment the count of unknown edges.
802 ///
803 /// \param E  Edge to visit.
804 /// \param NumUnknownEdges  Current number of unknown edges.
805 /// \param UnknownEdge  Set if E has not been visited before.
806 ///
807 /// \returns E's weight, if known. Otherwise, return 0.
808 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
809                                         Edge *UnknownEdge) {
810   if (!VisitedEdges.count(E)) {
811     (*NumUnknownEdges)++;
812     *UnknownEdge = E;
813     return 0;
814   }
815 
816   return EdgeWeights[E];
817 }
818 
819 /// \brief Propagate weights through incoming/outgoing edges.
820 ///
821 /// If the weight of a basic block is known, and there is only one edge
822 /// with an unknown weight, we can calculate the weight of that edge.
823 ///
824 /// Similarly, if all the edges have a known count, we can calculate the
825 /// count of the basic block, if needed.
826 ///
827 /// \param F  Function to process.
828 /// \param UpdateBlockCount  Whether we should update basic block counts that
829 ///                          has already been annotated.
830 ///
831 /// \returns  True if new weights were assigned to edges or blocks.
832 bool SampleProfileLoader::propagateThroughEdges(Function &F,
833                                                 bool UpdateBlockCount) {
834   bool Changed = false;
835   DEBUG(dbgs() << "\nPropagation through edges\n");
836   for (const auto &BI : F) {
837     const BasicBlock *BB = &BI;
838     const BasicBlock *EC = EquivalenceClass[BB];
839 
840     // Visit all the predecessor and successor edges to determine
841     // which ones have a weight assigned already. Note that it doesn't
842     // matter that we only keep track of a single unknown edge. The
843     // only case we are interested in handling is when only a single
844     // edge is unknown (see setEdgeOrBlockWeight).
845     for (unsigned i = 0; i < 2; i++) {
846       uint64_t TotalWeight = 0;
847       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
848       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
849 
850       if (i == 0) {
851         // First, visit all predecessor edges.
852         NumTotalEdges = Predecessors[BB].size();
853         for (auto *Pred : Predecessors[BB]) {
854           Edge E = std::make_pair(Pred, BB);
855           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
856           if (E.first == E.second)
857             SelfReferentialEdge = E;
858         }
859         if (NumTotalEdges == 1) {
860           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
861         }
862       } else {
863         // On the second round, visit all successor edges.
864         NumTotalEdges = Successors[BB].size();
865         for (auto *Succ : Successors[BB]) {
866           Edge E = std::make_pair(BB, Succ);
867           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
868         }
869         if (NumTotalEdges == 1) {
870           SingleEdge = std::make_pair(BB, Successors[BB][0]);
871         }
872       }
873 
874       // After visiting all the edges, there are three cases that we
875       // can handle immediately:
876       //
877       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
878       //   In this case, we simply check that the sum of all the edges
879       //   is the same as BB's weight. If not, we change BB's weight
880       //   to match. Additionally, if BB had not been visited before,
881       //   we mark it visited.
882       //
883       // - Only one edge is unknown and BB has already been visited.
884       //   In this case, we can compute the weight of the edge by
885       //   subtracting the total block weight from all the known
886       //   edge weights. If the edges weight more than BB, then the
887       //   edge of the last remaining edge is set to zero.
888       //
889       // - There exists a self-referential edge and the weight of BB is
890       //   known. In this case, this edge can be based on BB's weight.
891       //   We add up all the other known edges and set the weight on
892       //   the self-referential edge as we did in the previous case.
893       //
894       // In any other case, we must continue iterating. Eventually,
895       // all edges will get a weight, or iteration will stop when
896       // it reaches SampleProfileMaxPropagateIterations.
897       if (NumUnknownEdges <= 1) {
898         uint64_t &BBWeight = BlockWeights[EC];
899         if (NumUnknownEdges == 0) {
900           if (!VisitedBlocks.count(EC)) {
901             // If we already know the weight of all edges, the weight of the
902             // basic block can be computed. It should be no larger than the sum
903             // of all edge weights.
904             if (TotalWeight > BBWeight) {
905               BBWeight = TotalWeight;
906               Changed = true;
907               DEBUG(dbgs() << "All edge weights for " << BB->getName()
908                            << " known. Set weight for block: ";
909                     printBlockWeight(dbgs(), BB););
910             }
911           } else if (NumTotalEdges == 1 &&
912                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
913             // If there is only one edge for the visited basic block, use the
914             // block weight to adjust edge weight if edge weight is smaller.
915             EdgeWeights[SingleEdge] = BlockWeights[EC];
916             Changed = true;
917           }
918         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
919           // If there is a single unknown edge and the block has been
920           // visited, then we can compute E's weight.
921           if (BBWeight >= TotalWeight)
922             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
923           else
924             EdgeWeights[UnknownEdge] = 0;
925           const BasicBlock *OtherEC;
926           if (i == 0)
927             OtherEC = EquivalenceClass[UnknownEdge.first];
928           else
929             OtherEC = EquivalenceClass[UnknownEdge.second];
930           // Edge weights should never exceed the BB weights it connects.
931           if (VisitedBlocks.count(OtherEC) &&
932               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
933             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
934           VisitedEdges.insert(UnknownEdge);
935           Changed = true;
936           DEBUG(dbgs() << "Set weight for edge: ";
937                 printEdgeWeight(dbgs(), UnknownEdge));
938         }
939       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
940         // If a block Weights 0, all its in/out edges should weight 0.
941         if (i == 0) {
942           for (auto *Pred : Predecessors[BB]) {
943             Edge E = std::make_pair(Pred, BB);
944             EdgeWeights[E] = 0;
945             VisitedEdges.insert(E);
946           }
947         } else {
948           for (auto *Succ : Successors[BB]) {
949             Edge E = std::make_pair(BB, Succ);
950             EdgeWeights[E] = 0;
951             VisitedEdges.insert(E);
952           }
953         }
954       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
955         uint64_t &BBWeight = BlockWeights[BB];
956         // We have a self-referential edge and the weight of BB is known.
957         if (BBWeight >= TotalWeight)
958           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
959         else
960           EdgeWeights[SelfReferentialEdge] = 0;
961         VisitedEdges.insert(SelfReferentialEdge);
962         Changed = true;
963         DEBUG(dbgs() << "Set self-referential edge weight to: ";
964               printEdgeWeight(dbgs(), SelfReferentialEdge));
965       }
966       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
967         BlockWeights[EC] = TotalWeight;
968         VisitedBlocks.insert(EC);
969         Changed = true;
970       }
971     }
972   }
973 
974   return Changed;
975 }
976 
977 /// \brief Build in/out edge lists for each basic block in the CFG.
978 ///
979 /// We are interested in unique edges. If a block B1 has multiple
980 /// edges to another block B2, we only add a single B1->B2 edge.
981 void SampleProfileLoader::buildEdges(Function &F) {
982   for (auto &BI : F) {
983     BasicBlock *B1 = &BI;
984 
985     // Add predecessors for B1.
986     SmallPtrSet<BasicBlock *, 16> Visited;
987     if (!Predecessors[B1].empty())
988       llvm_unreachable("Found a stale predecessors list in a basic block.");
989     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
990       BasicBlock *B2 = *PI;
991       if (Visited.insert(B2).second)
992         Predecessors[B1].push_back(B2);
993     }
994 
995     // Add successors for B1.
996     Visited.clear();
997     if (!Successors[B1].empty())
998       llvm_unreachable("Found a stale successors list in a basic block.");
999     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1000       BasicBlock *B2 = *SI;
1001       if (Visited.insert(B2).second)
1002         Successors[B1].push_back(B2);
1003     }
1004   }
1005 }
1006 
1007 /// Sorts the CallTargetMap \p M by count in descending order and stores the
1008 /// sorted result in \p Sorted. Returns the total counts.
1009 static uint64_t SortCallTargets(SmallVector<InstrProfValueData, 2> &Sorted,
1010                                 const SampleRecord::CallTargetMap &M) {
1011   Sorted.clear();
1012   uint64_t Sum = 0;
1013   for (auto I = M.begin(); I != M.end(); ++I) {
1014     Sum += I->getValue();
1015     Sorted.push_back({Function::getGUID(I->getKey()), I->getValue()});
1016   }
1017   std::sort(Sorted.begin(), Sorted.end(),
1018             [](const InstrProfValueData &L, const InstrProfValueData &R) {
1019               if (L.Count == R.Count)
1020                 return L.Value > R.Value;
1021               else
1022                 return L.Count > R.Count;
1023             });
1024   return Sum;
1025 }
1026 
1027 /// \brief Propagate weights into edges
1028 ///
1029 /// The following rules are applied to every block BB in the CFG:
1030 ///
1031 /// - If BB has a single predecessor/successor, then the weight
1032 ///   of that edge is the weight of the block.
1033 ///
1034 /// - If all incoming or outgoing edges are known except one, and the
1035 ///   weight of the block is already known, the weight of the unknown
1036 ///   edge will be the weight of the block minus the sum of all the known
1037 ///   edges. If the sum of all the known edges is larger than BB's weight,
1038 ///   we set the unknown edge weight to zero.
1039 ///
1040 /// - If there is a self-referential edge, and the weight of the block is
1041 ///   known, the weight for that edge is set to the weight of the block
1042 ///   minus the weight of the other incoming edges to that block (if
1043 ///   known).
1044 void SampleProfileLoader::propagateWeights(Function &F) {
1045   bool Changed = true;
1046   unsigned I = 0;
1047 
1048   // If BB weight is larger than its corresponding loop's header BB weight,
1049   // use the BB weight to replace the loop header BB weight.
1050   for (auto &BI : F) {
1051     BasicBlock *BB = &BI;
1052     Loop *L = LI->getLoopFor(BB);
1053     if (!L) {
1054       continue;
1055     }
1056     BasicBlock *Header = L->getHeader();
1057     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1058       BlockWeights[Header] = BlockWeights[BB];
1059     }
1060   }
1061 
1062   // Before propagation starts, build, for each block, a list of
1063   // unique predecessors and successors. This is necessary to handle
1064   // identical edges in multiway branches. Since we visit all blocks and all
1065   // edges of the CFG, it is cleaner to build these lists once at the start
1066   // of the pass.
1067   buildEdges(F);
1068 
1069   // Propagate until we converge or we go past the iteration limit.
1070   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1071     Changed = propagateThroughEdges(F, false);
1072   }
1073 
1074   // The first propagation propagates BB counts from annotated BBs to unknown
1075   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1076   // to propagate edge weights.
1077   VisitedEdges.clear();
1078   Changed = true;
1079   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1080     Changed = propagateThroughEdges(F, false);
1081   }
1082 
1083   // The 3rd propagation pass allows adjust annotated BB weights that are
1084   // obviously wrong.
1085   Changed = true;
1086   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1087     Changed = propagateThroughEdges(F, true);
1088   }
1089 
1090   // Generate MD_prof metadata for every branch instruction using the
1091   // edge weights computed during propagation.
1092   DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1093   LLVMContext &Ctx = F.getContext();
1094   MDBuilder MDB(Ctx);
1095   for (auto &BI : F) {
1096     BasicBlock *BB = &BI;
1097 
1098     if (BlockWeights[BB]) {
1099       for (auto &I : BB->getInstList()) {
1100         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1101           continue;
1102         CallSite CS(&I);
1103         if (!CS.getCalledFunction()) {
1104           const DebugLoc &DLoc = I.getDebugLoc();
1105           if (!DLoc)
1106             continue;
1107           const DILocation *DIL = DLoc;
1108           uint32_t LineOffset = getOffset(DIL);
1109           uint32_t Discriminator = DIL->getBaseDiscriminator();
1110 
1111           const FunctionSamples *FS = findFunctionSamples(I);
1112           if (!FS)
1113             continue;
1114           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1115           if (!T || T.get().size() == 0)
1116             continue;
1117           SmallVector<InstrProfValueData, 2> SortedCallTargets;
1118           uint64_t Sum = SortCallTargets(SortedCallTargets, T.get());
1119           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1120                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1121                             SortedCallTargets.size());
1122         } else if (!dyn_cast<IntrinsicInst>(&I)) {
1123           SmallVector<uint32_t, 1> Weights;
1124           Weights.push_back(BlockWeights[BB]);
1125           I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
1126         }
1127       }
1128     }
1129     TerminatorInst *TI = BB->getTerminator();
1130     if (TI->getNumSuccessors() == 1)
1131       continue;
1132     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1133       continue;
1134 
1135     DEBUG(dbgs() << "\nGetting weights for branch at line "
1136                  << TI->getDebugLoc().getLine() << ".\n");
1137     SmallVector<uint32_t, 4> Weights;
1138     uint32_t MaxWeight = 0;
1139     DebugLoc MaxDestLoc;
1140     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1141       BasicBlock *Succ = TI->getSuccessor(I);
1142       Edge E = std::make_pair(BB, Succ);
1143       uint64_t Weight = EdgeWeights[E];
1144       DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1145       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1146       // if needed. Sample counts in profiles are 64-bit unsigned values,
1147       // but internally branch weights are expressed as 32-bit values.
1148       if (Weight > std::numeric_limits<uint32_t>::max()) {
1149         DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1150         Weight = std::numeric_limits<uint32_t>::max();
1151       }
1152       // Weight is added by one to avoid propagation errors introduced by
1153       // 0 weights.
1154       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1155       if (Weight != 0) {
1156         if (Weight > MaxWeight) {
1157           MaxWeight = Weight;
1158           MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc();
1159         }
1160       }
1161     }
1162 
1163     uint64_t TempWeight;
1164     // Only set weights if there is at least one non-zero weight.
1165     // In any other case, let the analyzer set weights.
1166     // Do not set weights if the weights are present. In ThinLTO, the profile
1167     // annotation is done twice. If the first annotation already set the
1168     // weights, the second pass does not need to set it.
1169     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1170       DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1171       TI->setMetadata(llvm::LLVMContext::MD_prof,
1172                       MDB.createBranchWeights(Weights));
1173       DebugLoc BranchLoc = TI->getDebugLoc();
1174       emitOptimizationRemark(
1175           Ctx, DEBUG_TYPE, F, MaxDestLoc,
1176           Twine("most popular destination for conditional branches at ") +
1177               ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" +
1178                                    Twine(BranchLoc.getLine()) + ":" +
1179                                    Twine(BranchLoc.getCol()))
1180                            : Twine("<UNKNOWN LOCATION>")));
1181     } else {
1182       DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1183     }
1184   }
1185 }
1186 
1187 /// \brief Get the line number for the function header.
1188 ///
1189 /// This looks up function \p F in the current compilation unit and
1190 /// retrieves the line number where the function is defined. This is
1191 /// line 0 for all the samples read from the profile file. Every line
1192 /// number is relative to this line.
1193 ///
1194 /// \param F  Function object to query.
1195 ///
1196 /// \returns the line number where \p F is defined. If it returns 0,
1197 ///          it means that there is no debug information available for \p F.
1198 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1199   if (DISubprogram *S = F.getSubprogram())
1200     return S->getLine();
1201 
1202   // If the start of \p F is missing, emit a diagnostic to inform the user
1203   // about the missed opportunity.
1204   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1205       "No debug information found in function " + F.getName() +
1206           ": Function profile not used",
1207       DS_Warning));
1208   return 0;
1209 }
1210 
1211 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1212   DT.reset(new DominatorTree);
1213   DT->recalculate(F);
1214 
1215   PDT.reset(new DominatorTreeBase<BasicBlock>(true));
1216   PDT->recalculate(F);
1217 
1218   LI.reset(new LoopInfo);
1219   LI->analyze(*DT);
1220 }
1221 
1222 /// \brief Generate branch weight metadata for all branches in \p F.
1223 ///
1224 /// Branch weights are computed out of instruction samples using a
1225 /// propagation heuristic. Propagation proceeds in 3 phases:
1226 ///
1227 /// 1- Assignment of block weights. All the basic blocks in the function
1228 ///    are initial assigned the same weight as their most frequently
1229 ///    executed instruction.
1230 ///
1231 /// 2- Creation of equivalence classes. Since samples may be missing from
1232 ///    blocks, we can fill in the gaps by setting the weights of all the
1233 ///    blocks in the same equivalence class to the same weight. To compute
1234 ///    the concept of equivalence, we use dominance and loop information.
1235 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1236 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1237 ///
1238 /// 3- Propagation of block weights into edges. This uses a simple
1239 ///    propagation heuristic. The following rules are applied to every
1240 ///    block BB in the CFG:
1241 ///
1242 ///    - If BB has a single predecessor/successor, then the weight
1243 ///      of that edge is the weight of the block.
1244 ///
1245 ///    - If all the edges are known except one, and the weight of the
1246 ///      block is already known, the weight of the unknown edge will
1247 ///      be the weight of the block minus the sum of all the known
1248 ///      edges. If the sum of all the known edges is larger than BB's weight,
1249 ///      we set the unknown edge weight to zero.
1250 ///
1251 ///    - If there is a self-referential edge, and the weight of the block is
1252 ///      known, the weight for that edge is set to the weight of the block
1253 ///      minus the weight of the other incoming edges to that block (if
1254 ///      known).
1255 ///
1256 /// Since this propagation is not guaranteed to finalize for every CFG, we
1257 /// only allow it to proceed for a limited number of iterations (controlled
1258 /// by -sample-profile-max-propagate-iterations).
1259 ///
1260 /// FIXME: Try to replace this propagation heuristic with a scheme
1261 /// that is guaranteed to finalize. A work-list approach similar to
1262 /// the standard value propagation algorithm used by SSA-CCP might
1263 /// work here.
1264 ///
1265 /// Once all the branch weights are computed, we emit the MD_prof
1266 /// metadata on BB using the computed values for each of its branches.
1267 ///
1268 /// \param F The function to query.
1269 ///
1270 /// \returns true if \p F was modified. Returns false, otherwise.
1271 bool SampleProfileLoader::emitAnnotations(Function &F) {
1272   bool Changed = false;
1273 
1274   if (getFunctionLoc(F) == 0)
1275     return false;
1276 
1277   DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
1278                << ": " << getFunctionLoc(F) << "\n");
1279 
1280   DenseSet<GlobalValue::GUID> ImportGUIDs;
1281   Changed |= inlineHotFunctions(F, ImportGUIDs);
1282 
1283   // Compute basic block weights.
1284   Changed |= computeBlockWeights(F);
1285 
1286   if (Changed) {
1287     // Add an entry count to the function using the samples gathered at the
1288     // function entry. Also sets the GUIDs that comes from a different
1289     // module but inlined in the profiled binary. This is aiming at making
1290     // the IR match the profiled binary before annotation.
1291     F.setEntryCount(Samples->getHeadSamples() + 1, &ImportGUIDs);
1292 
1293     // Compute dominance and loop info needed for propagation.
1294     computeDominanceAndLoopInfo(F);
1295 
1296     // Find equivalence classes.
1297     findEquivalenceClasses(F);
1298 
1299     // Propagate weights to all edges.
1300     propagateWeights(F);
1301   }
1302 
1303   // If coverage checking was requested, compute it now.
1304   if (SampleProfileRecordCoverage) {
1305     unsigned Used = CoverageTracker.countUsedRecords(Samples);
1306     unsigned Total = CoverageTracker.countBodyRecords(Samples);
1307     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1308     if (Coverage < SampleProfileRecordCoverage) {
1309       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1310           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1311           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1312               Twine(Coverage) + "%) were applied",
1313           DS_Warning));
1314     }
1315   }
1316 
1317   if (SampleProfileSampleCoverage) {
1318     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1319     uint64_t Total = CoverageTracker.countBodySamples(Samples);
1320     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1321     if (Coverage < SampleProfileSampleCoverage) {
1322       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1323           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1324           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1325               Twine(Coverage) + "%) were applied",
1326           DS_Warning));
1327     }
1328   }
1329   return Changed;
1330 }
1331 
1332 char SampleProfileLoaderLegacyPass::ID = 0;
1333 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1334                       "Sample Profile loader", false, false)
1335 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1336 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1337                     "Sample Profile loader", false, false)
1338 
1339 bool SampleProfileLoader::doInitialization(Module &M) {
1340   auto &Ctx = M.getContext();
1341   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1342   if (std::error_code EC = ReaderOrErr.getError()) {
1343     std::string Msg = "Could not open profile: " + EC.message();
1344     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1345     return false;
1346   }
1347   Reader = std::move(ReaderOrErr.get());
1348   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1349   return true;
1350 }
1351 
1352 ModulePass *llvm::createSampleProfileLoaderPass() {
1353   return new SampleProfileLoaderLegacyPass(SampleProfileFile);
1354 }
1355 
1356 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1357   return new SampleProfileLoaderLegacyPass(Name);
1358 }
1359 
1360 bool SampleProfileLoader::runOnModule(Module &M) {
1361   if (!ProfileIsValid)
1362     return false;
1363 
1364   // Compute the total number of samples collected in this profile.
1365   for (const auto &I : Reader->getProfiles())
1366     TotalCollectedSamples += I.second.getTotalSamples();
1367 
1368   bool retval = false;
1369   for (auto &F : M)
1370     if (!F.isDeclaration()) {
1371       clearFunctionData();
1372       retval |= runOnFunction(F);
1373     }
1374   if (M.getProfileSummary() == nullptr)
1375     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
1376   return retval;
1377 }
1378 
1379 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1380   // FIXME: pass in AssumptionCache correctly for the new pass manager.
1381   SampleLoader.setACT(&getAnalysis<AssumptionCacheTracker>());
1382   return SampleLoader.runOnModule(M);
1383 }
1384 
1385 bool SampleProfileLoader::runOnFunction(Function &F) {
1386   F.setEntryCount(0);
1387   Samples = Reader->getSamplesFor(F);
1388   if (Samples && !Samples->empty())
1389     return emitAnnotations(F);
1390   return false;
1391 }
1392 
1393 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1394                                                ModuleAnalysisManager &AM) {
1395 
1396   SampleProfileLoader SampleLoader(SampleProfileFile);
1397 
1398   SampleLoader.doInitialization(M);
1399 
1400   if (!SampleLoader.runOnModule(M))
1401     return PreservedAnalyses::all();
1402 
1403   return PreservedAnalyses::none();
1404 }
1405