1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 //      to indicate the weights of each edge coming out of the branch.
19 //      The weight of each edge is the weight of the target block for
20 //      that edge. The weight of a block B is computed as the maximum
21 //      number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/SampleProfile.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/PostDominators.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DebugInfo.h"
35 #include "llvm/IR/DiagnosticInfo.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/InstIterator.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Pass.h"
47 #include "llvm/ProfileData/InstrProf.h"
48 #include "llvm/ProfileData/SampleProfReader.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorOr.h"
52 #include "llvm/Support/Format.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/IPO.h"
55 #include "llvm/Transforms/Instrumentation.h"
56 #include "llvm/Transforms/Utils/Cloning.h"
57 #include <cctype>
58 
59 using namespace llvm;
60 using namespace sampleprof;
61 
62 #define DEBUG_TYPE "sample-profile"
63 
64 // Command line option to specify the file to read samples from. This is
65 // mainly used for debugging.
66 static cl::opt<std::string> SampleProfileFile(
67     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
68     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
69 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
70     "sample-profile-max-propagate-iterations", cl::init(100),
71     cl::desc("Maximum number of iterations to go through when propagating "
72              "sample block/edge weights through the CFG."));
73 static cl::opt<unsigned> SampleProfileRecordCoverage(
74     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
75     cl::desc("Emit a warning if less than N% of records in the input profile "
76              "are matched to the IR."));
77 static cl::opt<unsigned> SampleProfileSampleCoverage(
78     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
79     cl::desc("Emit a warning if less than N% of samples in the input profile "
80              "are matched to the IR."));
81 static cl::opt<double> SampleProfileHotThreshold(
82     "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"),
83     cl::desc("Inlined functions that account for more than N% of all samples "
84              "collected in the parent function, will be inlined again."));
85 
86 namespace {
87 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap;
88 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap;
89 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge;
90 typedef DenseMap<Edge, uint64_t> EdgeWeightMap;
91 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>
92     BlockEdgeMap;
93 
94 class SampleCoverageTracker {
95 public:
96   SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {}
97 
98   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
99                        uint32_t Discriminator, uint64_t Samples);
100   unsigned computeCoverage(unsigned Used, unsigned Total) const;
101   unsigned countUsedRecords(const FunctionSamples *FS) const;
102   unsigned countBodyRecords(const FunctionSamples *FS) const;
103   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
104   uint64_t countBodySamples(const FunctionSamples *FS) const;
105   void clear() {
106     SampleCoverage.clear();
107     TotalUsedSamples = 0;
108   }
109 
110 private:
111   typedef std::map<LineLocation, unsigned> BodySampleCoverageMap;
112   typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap>
113       FunctionSamplesCoverageMap;
114 
115   /// Coverage map for sampling records.
116   ///
117   /// This map keeps a record of sampling records that have been matched to
118   /// an IR instruction. This is used to detect some form of staleness in
119   /// profiles (see flag -sample-profile-check-coverage).
120   ///
121   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
122   /// another map that counts how many times the sample record at the
123   /// given location has been used.
124   FunctionSamplesCoverageMap SampleCoverage;
125 
126   /// Number of samples used from the profile.
127   ///
128   /// When a sampling record is used for the first time, the samples from
129   /// that record are added to this accumulator.  Coverage is later computed
130   /// based on the total number of samples available in this function and
131   /// its callsites.
132   ///
133   /// Note that this accumulator tracks samples used from a single function
134   /// and all the inlined callsites. Strictly, we should have a map of counters
135   /// keyed by FunctionSamples pointers, but these stats are cleared after
136   /// every function, so we just need to keep a single counter.
137   uint64_t TotalUsedSamples;
138 };
139 
140 /// \brief Sample profile pass.
141 ///
142 /// This pass reads profile data from the file specified by
143 /// -sample-profile-file and annotates every affected function with the
144 /// profile information found in that file.
145 class SampleProfileLoader {
146 public:
147   SampleProfileLoader(StringRef Name = SampleProfileFile)
148       : DT(nullptr), PDT(nullptr), LI(nullptr), ACT(nullptr), Reader(),
149         Samples(nullptr), Filename(Name), ProfileIsValid(false),
150         TotalCollectedSamples(0) {}
151 
152   bool doInitialization(Module &M);
153   bool runOnModule(Module &M);
154   void setACT(AssumptionCacheTracker *A) { ACT = A; }
155 
156   void dump() { Reader->dump(); }
157 
158 protected:
159   bool runOnFunction(Function &F);
160   unsigned getFunctionLoc(Function &F);
161   bool emitAnnotations(Function &F);
162   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
163   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
164   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
165   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
166   bool inlineHotFunctions(Function &F);
167   void printEdgeWeight(raw_ostream &OS, Edge E);
168   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
169   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
170   bool computeBlockWeights(Function &F);
171   void findEquivalenceClasses(Function &F);
172   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
173                            DominatorTreeBase<BasicBlock> *DomTree);
174   void propagateWeights(Function &F);
175   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
176   void buildEdges(Function &F);
177   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
178   void computeDominanceAndLoopInfo(Function &F);
179   unsigned getOffset(unsigned L, unsigned H) const;
180   void clearFunctionData();
181 
182   /// \brief Map basic blocks to their computed weights.
183   ///
184   /// The weight of a basic block is defined to be the maximum
185   /// of all the instruction weights in that block.
186   BlockWeightMap BlockWeights;
187 
188   /// \brief Map edges to their computed weights.
189   ///
190   /// Edge weights are computed by propagating basic block weights in
191   /// SampleProfile::propagateWeights.
192   EdgeWeightMap EdgeWeights;
193 
194   /// \brief Set of visited blocks during propagation.
195   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
196 
197   /// \brief Set of visited edges during propagation.
198   SmallSet<Edge, 32> VisitedEdges;
199 
200   /// \brief Equivalence classes for block weights.
201   ///
202   /// Two blocks BB1 and BB2 are in the same equivalence class if they
203   /// dominate and post-dominate each other, and they are in the same loop
204   /// nest. When this happens, the two blocks are guaranteed to execute
205   /// the same number of times.
206   EquivalenceClassMap EquivalenceClass;
207 
208   /// \brief Dominance, post-dominance and loop information.
209   std::unique_ptr<DominatorTree> DT;
210   std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT;
211   std::unique_ptr<LoopInfo> LI;
212 
213   AssumptionCacheTracker *ACT;
214 
215   /// \brief Predecessors for each basic block in the CFG.
216   BlockEdgeMap Predecessors;
217 
218   /// \brief Successors for each basic block in the CFG.
219   BlockEdgeMap Successors;
220 
221   SampleCoverageTracker CoverageTracker;
222 
223   /// \brief Profile reader object.
224   std::unique_ptr<SampleProfileReader> Reader;
225 
226   /// \brief Samples collected for the body of this function.
227   FunctionSamples *Samples;
228 
229   /// \brief Name of the profile file to load.
230   std::string Filename;
231 
232   /// \brief Flag indicating whether the profile input loaded successfully.
233   bool ProfileIsValid;
234 
235   /// \brief Total number of samples collected in this profile.
236   ///
237   /// This is the sum of all the samples collected in all the functions executed
238   /// at runtime.
239   uint64_t TotalCollectedSamples;
240 };
241 
242 class SampleProfileLoaderLegacyPass : public ModulePass {
243 public:
244   // Class identification, replacement for typeinfo
245   static char ID;
246 
247   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile)
248       : ModulePass(ID), SampleLoader(Name) {
249     initializeSampleProfileLoaderLegacyPassPass(
250         *PassRegistry::getPassRegistry());
251   }
252 
253   void dump() { SampleLoader.dump(); }
254 
255   bool doInitialization(Module &M) override {
256     return SampleLoader.doInitialization(M);
257   }
258   StringRef getPassName() const override { return "Sample profile pass"; }
259   bool runOnModule(Module &M) override;
260 
261   void getAnalysisUsage(AnalysisUsage &AU) const override {
262     AU.addRequired<AssumptionCacheTracker>();
263   }
264 
265 private:
266   SampleProfileLoader SampleLoader;
267 };
268 
269 /// Return true if the given callsite is hot wrt to its caller.
270 ///
271 /// Functions that were inlined in the original binary will be represented
272 /// in the inline stack in the sample profile. If the profile shows that
273 /// the original inline decision was "good" (i.e., the callsite is executed
274 /// frequently), then we will recreate the inline decision and apply the
275 /// profile from the inlined callsite.
276 ///
277 /// To decide whether an inlined callsite is hot, we compute the fraction
278 /// of samples used by the callsite with respect to the total number of samples
279 /// collected in the caller.
280 ///
281 /// If that fraction is larger than the default given by
282 /// SampleProfileHotThreshold, the callsite will be inlined again.
283 bool callsiteIsHot(const FunctionSamples *CallerFS,
284                    const FunctionSamples *CallsiteFS) {
285   if (!CallsiteFS)
286     return false; // The callsite was not inlined in the original binary.
287 
288   uint64_t ParentTotalSamples = CallerFS->getTotalSamples();
289   if (ParentTotalSamples == 0)
290     return false; // Avoid division by zero.
291 
292   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
293   if (CallsiteTotalSamples == 0)
294     return false; // Callsite is trivially cold.
295 
296   double PercentSamples =
297       (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0;
298   return PercentSamples >= SampleProfileHotThreshold;
299 }
300 }
301 
302 /// Mark as used the sample record for the given function samples at
303 /// (LineOffset, Discriminator).
304 ///
305 /// \returns true if this is the first time we mark the given record.
306 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
307                                             uint32_t LineOffset,
308                                             uint32_t Discriminator,
309                                             uint64_t Samples) {
310   LineLocation Loc(LineOffset, Discriminator);
311   unsigned &Count = SampleCoverage[FS][Loc];
312   bool FirstTime = (++Count == 1);
313   if (FirstTime)
314     TotalUsedSamples += Samples;
315   return FirstTime;
316 }
317 
318 /// Return the number of sample records that were applied from this profile.
319 ///
320 /// This count does not include records from cold inlined callsites.
321 unsigned
322 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const {
323   auto I = SampleCoverage.find(FS);
324 
325   // The size of the coverage map for FS represents the number of records
326   // that were marked used at least once.
327   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
328 
329   // If there are inlined callsites in this function, count the samples found
330   // in the respective bodies. However, do not bother counting callees with 0
331   // total samples, these are callees that were never invoked at runtime.
332   for (const auto &I : FS->getCallsiteSamples()) {
333     const FunctionSamples *CalleeSamples = &I.second;
334     if (callsiteIsHot(FS, CalleeSamples))
335       Count += countUsedRecords(CalleeSamples);
336   }
337 
338   return Count;
339 }
340 
341 /// Return the number of sample records in the body of this profile.
342 ///
343 /// This count does not include records from cold inlined callsites.
344 unsigned
345 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const {
346   unsigned Count = FS->getBodySamples().size();
347 
348   // Only count records in hot callsites.
349   for (const auto &I : FS->getCallsiteSamples()) {
350     const FunctionSamples *CalleeSamples = &I.second;
351     if (callsiteIsHot(FS, CalleeSamples))
352       Count += countBodyRecords(CalleeSamples);
353   }
354 
355   return Count;
356 }
357 
358 /// Return the number of samples collected in the body of this profile.
359 ///
360 /// This count does not include samples from cold inlined callsites.
361 uint64_t
362 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const {
363   uint64_t Total = 0;
364   for (const auto &I : FS->getBodySamples())
365     Total += I.second.getSamples();
366 
367   // Only count samples in hot callsites.
368   for (const auto &I : FS->getCallsiteSamples()) {
369     const FunctionSamples *CalleeSamples = &I.second;
370     if (callsiteIsHot(FS, CalleeSamples))
371       Total += countBodySamples(CalleeSamples);
372   }
373 
374   return Total;
375 }
376 
377 /// Return the fraction of sample records used in this profile.
378 ///
379 /// The returned value is an unsigned integer in the range 0-100 indicating
380 /// the percentage of sample records that were used while applying this
381 /// profile to the associated function.
382 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
383                                                 unsigned Total) const {
384   assert(Used <= Total &&
385          "number of used records cannot exceed the total number of records");
386   return Total > 0 ? Used * 100 / Total : 100;
387 }
388 
389 /// Clear all the per-function data used to load samples and propagate weights.
390 void SampleProfileLoader::clearFunctionData() {
391   BlockWeights.clear();
392   EdgeWeights.clear();
393   VisitedBlocks.clear();
394   VisitedEdges.clear();
395   EquivalenceClass.clear();
396   DT = nullptr;
397   PDT = nullptr;
398   LI = nullptr;
399   Predecessors.clear();
400   Successors.clear();
401   CoverageTracker.clear();
402 }
403 
404 /// \brief Returns the offset of lineno \p L to head_lineno \p H
405 ///
406 /// \param L  Lineno
407 /// \param H  Header lineno of the function
408 ///
409 /// \returns offset to the header lineno. 16 bits are used to represent offset.
410 /// We assume that a single function will not exceed 65535 LOC.
411 unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const {
412   return (L - H) & 0xffff;
413 }
414 
415 /// \brief Print the weight of edge \p E on stream \p OS.
416 ///
417 /// \param OS  Stream to emit the output to.
418 /// \param E  Edge to print.
419 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
420   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
421      << "]: " << EdgeWeights[E] << "\n";
422 }
423 
424 /// \brief Print the equivalence class of block \p BB on stream \p OS.
425 ///
426 /// \param OS  Stream to emit the output to.
427 /// \param BB  Block to print.
428 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
429                                                 const BasicBlock *BB) {
430   const BasicBlock *Equiv = EquivalenceClass[BB];
431   OS << "equivalence[" << BB->getName()
432      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
433 }
434 
435 /// \brief Print the weight of block \p BB on stream \p OS.
436 ///
437 /// \param OS  Stream to emit the output to.
438 /// \param BB  Block to print.
439 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
440                                            const BasicBlock *BB) const {
441   const auto &I = BlockWeights.find(BB);
442   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
443   OS << "weight[" << BB->getName() << "]: " << W << "\n";
444 }
445 
446 /// \brief Get the weight for an instruction.
447 ///
448 /// The "weight" of an instruction \p Inst is the number of samples
449 /// collected on that instruction at runtime. To retrieve it, we
450 /// need to compute the line number of \p Inst relative to the start of its
451 /// function. We use HeaderLineno to compute the offset. We then
452 /// look up the samples collected for \p Inst using BodySamples.
453 ///
454 /// \param Inst Instruction to query.
455 ///
456 /// \returns the weight of \p Inst.
457 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
458   const DebugLoc &DLoc = Inst.getDebugLoc();
459   if (!DLoc)
460     return std::error_code();
461 
462   const FunctionSamples *FS = findFunctionSamples(Inst);
463   if (!FS)
464     return std::error_code();
465 
466   // Ignore all intrinsics and branch instructions.
467   // Branch instruction usually contains debug info from sources outside of
468   // the residing basic block, thus we ignore them during annotation.
469   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst))
470     return std::error_code();
471 
472   // If a call/invoke instruction is inlined in profile, but not inlined here,
473   // it means that the inlined callsite has no sample, thus the call
474   // instruction should have 0 count.
475   bool IsCall = isa<CallInst>(Inst) || isa<InvokeInst>(Inst);
476   if (IsCall && findCalleeFunctionSamples(Inst))
477     return 0;
478 
479   const DILocation *DIL = DLoc;
480   unsigned Lineno = DLoc.getLine();
481   unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine();
482 
483   uint32_t LineOffset = getOffset(Lineno, HeaderLineno);
484   uint32_t Discriminator = DIL->getDiscriminator();
485   ErrorOr<uint64_t> R = IsCall
486                             ? FS->findCallSamplesAt(LineOffset, Discriminator)
487                             : FS->findSamplesAt(LineOffset, Discriminator);
488   if (R) {
489     bool FirstMark =
490         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
491     if (FirstMark) {
492       const Function *F = Inst.getParent()->getParent();
493       LLVMContext &Ctx = F->getContext();
494       emitOptimizationRemark(
495           Ctx, DEBUG_TYPE, *F, DLoc,
496           Twine("Applied ") + Twine(*R) +
497               " samples from profile (offset: " + Twine(LineOffset) +
498               ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")");
499     }
500     DEBUG(dbgs() << "    " << Lineno << "." << DIL->getDiscriminator() << ":"
501                  << Inst << " (line offset: " << Lineno - HeaderLineno << "."
502                  << DIL->getDiscriminator() << " - weight: " << R.get()
503                  << ")\n");
504   }
505   return R;
506 }
507 
508 /// \brief Compute the weight of a basic block.
509 ///
510 /// The weight of basic block \p BB is the maximum weight of all the
511 /// instructions in BB.
512 ///
513 /// \param BB The basic block to query.
514 ///
515 /// \returns the weight for \p BB.
516 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
517   uint64_t Max = 0;
518   bool HasWeight = false;
519   for (auto &I : BB->getInstList()) {
520     const ErrorOr<uint64_t> &R = getInstWeight(I);
521     if (R) {
522       Max = std::max(Max, R.get());
523       HasWeight = true;
524     }
525   }
526   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
527 }
528 
529 /// \brief Compute and store the weights of every basic block.
530 ///
531 /// This populates the BlockWeights map by computing
532 /// the weights of every basic block in the CFG.
533 ///
534 /// \param F The function to query.
535 bool SampleProfileLoader::computeBlockWeights(Function &F) {
536   bool Changed = false;
537   DEBUG(dbgs() << "Block weights\n");
538   for (const auto &BB : F) {
539     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
540     if (Weight) {
541       BlockWeights[&BB] = Weight.get();
542       VisitedBlocks.insert(&BB);
543       Changed = true;
544     }
545     DEBUG(printBlockWeight(dbgs(), &BB));
546   }
547 
548   return Changed;
549 }
550 
551 /// \brief Get the FunctionSamples for a call instruction.
552 ///
553 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
554 /// instance in which that call instruction is calling to. It contains
555 /// all samples that resides in the inlined instance. We first find the
556 /// inlined instance in which the call instruction is from, then we
557 /// traverse its children to find the callsite with the matching
558 /// location.
559 ///
560 /// \param Inst Call/Invoke instruction to query.
561 ///
562 /// \returns The FunctionSamples pointer to the inlined instance.
563 const FunctionSamples *
564 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
565   const DILocation *DIL = Inst.getDebugLoc();
566   if (!DIL) {
567     return nullptr;
568   }
569   DISubprogram *SP = DIL->getScope()->getSubprogram();
570   if (!SP)
571     return nullptr;
572 
573   const FunctionSamples *FS = findFunctionSamples(Inst);
574   if (FS == nullptr)
575     return nullptr;
576 
577   return FS->findFunctionSamplesAt(LineLocation(
578       getOffset(DIL->getLine(), SP->getLine()), DIL->getDiscriminator()));
579 }
580 
581 /// \brief Get the FunctionSamples for an instruction.
582 ///
583 /// The FunctionSamples of an instruction \p Inst is the inlined instance
584 /// in which that instruction is coming from. We traverse the inline stack
585 /// of that instruction, and match it with the tree nodes in the profile.
586 ///
587 /// \param Inst Instruction to query.
588 ///
589 /// \returns the FunctionSamples pointer to the inlined instance.
590 const FunctionSamples *
591 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
592   SmallVector<LineLocation, 10> S;
593   const DILocation *DIL = Inst.getDebugLoc();
594   if (!DIL) {
595     return Samples;
596   }
597   for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) {
598     DISubprogram *SP = DIL->getScope()->getSubprogram();
599     if (!SP)
600       return nullptr;
601     S.push_back(LineLocation(getOffset(DIL->getLine(), SP->getLine()),
602                              DIL->getDiscriminator()));
603   }
604   if (S.size() == 0)
605     return Samples;
606   const FunctionSamples *FS = Samples;
607   for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
608     FS = FS->findFunctionSamplesAt(S[i]);
609   }
610   return FS;
611 }
612 
613 /// \brief Iteratively inline hot callsites of a function.
614 ///
615 /// Iteratively traverse all callsites of the function \p F, and find if
616 /// the corresponding inlined instance exists and is hot in profile. If
617 /// it is hot enough, inline the callsites and adds new callsites of the
618 /// callee into the caller. If the call is an indirect call, first promote
619 /// it to direct call. Each indirect call is limited with a single target.
620 ///
621 /// \param F function to perform iterative inlining.
622 ///
623 /// \returns True if there is any inline happened.
624 bool SampleProfileLoader::inlineHotFunctions(Function &F) {
625   DenseSet<Instruction *> PromotedInsns;
626   bool Changed = false;
627   LLVMContext &Ctx = F.getContext();
628   std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&](
629       Function &F) -> AssumptionCache & { return ACT->getAssumptionCache(F); };
630   while (true) {
631     bool LocalChanged = false;
632     SmallVector<Instruction *, 10> CIS;
633     for (auto &BB : F) {
634       bool Hot = false;
635       SmallVector<Instruction *, 10> Candidates;
636       for (auto &I : BB.getInstList()) {
637         const FunctionSamples *FS = nullptr;
638         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
639             (FS = findCalleeFunctionSamples(I))) {
640           Candidates.push_back(&I);
641           if (callsiteIsHot(Samples, FS))
642             Hot = true;
643         }
644       }
645       if (Hot) {
646         CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
647       }
648     }
649     for (auto I : CIS) {
650       InlineFunctionInfo IFI(nullptr, ACT ? &GetAssumptionCache : nullptr);
651       Function *CalledFunction = CallSite(I).getCalledFunction();
652       Instruction *DI = I;
653       if (!CalledFunction && !PromotedInsns.count(I)) {
654         auto CalleeFunctionName = findCalleeFunctionSamples(*I)->getName();
655         const char *Reason = "Callee function not available";
656         CalledFunction = F.getParent()->getFunction(CalleeFunctionName);
657         if (CalledFunction && isLegalToPromote(I, CalledFunction, &Reason)) {
658           // The indirect target was promoted and inlined in the profile, as a
659           // result, we do not have profile info for the branch probability.
660           // We set the probability to 80% taken to indicate that the static
661           // call is likely taken.
662           DI = promoteIndirectCall(I, CalledFunction, 80, 100);
663           PromotedInsns.insert(I);
664         } else {
665           DEBUG(dbgs() << "\nFailed to promote indirect call to "
666                        << CalleeFunctionName << " because " << Reason << "\n");
667           continue;
668         }
669       }
670       if (!CalledFunction || !CalledFunction->getSubprogram())
671         continue;
672       CallSite CS(DI);
673       DebugLoc DLoc = I->getDebugLoc();
674       uint64_t NumSamples = findCalleeFunctionSamples(*I)->getTotalSamples();
675       if (InlineFunction(CS, IFI)) {
676         LocalChanged = true;
677         emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc,
678                                Twine("inlined hot callee '") +
679                                    CalledFunction->getName() + "' with " +
680                                    Twine(NumSamples) + " samples into '" +
681                                    F.getName() + "'");
682       }
683     }
684     if (LocalChanged) {
685       Changed = true;
686     } else {
687       break;
688     }
689   }
690   return Changed;
691 }
692 
693 /// \brief Find equivalence classes for the given block.
694 ///
695 /// This finds all the blocks that are guaranteed to execute the same
696 /// number of times as \p BB1. To do this, it traverses all the
697 /// descendants of \p BB1 in the dominator or post-dominator tree.
698 ///
699 /// A block BB2 will be in the same equivalence class as \p BB1 if
700 /// the following holds:
701 ///
702 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
703 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
704 ///    dominate BB1 in the post-dominator tree.
705 ///
706 /// 2- Both BB2 and \p BB1 must be in the same loop.
707 ///
708 /// For every block BB2 that meets those two requirements, we set BB2's
709 /// equivalence class to \p BB1.
710 ///
711 /// \param BB1  Block to check.
712 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
713 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
714 ///                 with blocks from \p BB1's dominator tree, then
715 ///                 this is the post-dominator tree, and vice versa.
716 void SampleProfileLoader::findEquivalencesFor(
717     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
718     DominatorTreeBase<BasicBlock> *DomTree) {
719   const BasicBlock *EC = EquivalenceClass[BB1];
720   uint64_t Weight = BlockWeights[EC];
721   for (const auto *BB2 : Descendants) {
722     bool IsDomParent = DomTree->dominates(BB2, BB1);
723     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
724     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
725       EquivalenceClass[BB2] = EC;
726       // If BB2 is visited, then the entire EC should be marked as visited.
727       if (VisitedBlocks.count(BB2)) {
728         VisitedBlocks.insert(EC);
729       }
730 
731       // If BB2 is heavier than BB1, make BB2 have the same weight
732       // as BB1.
733       //
734       // Note that we don't worry about the opposite situation here
735       // (when BB2 is lighter than BB1). We will deal with this
736       // during the propagation phase. Right now, we just want to
737       // make sure that BB1 has the largest weight of all the
738       // members of its equivalence set.
739       Weight = std::max(Weight, BlockWeights[BB2]);
740     }
741   }
742   if (EC == &EC->getParent()->getEntryBlock()) {
743     BlockWeights[EC] = Samples->getHeadSamples() + 1;
744   } else {
745     BlockWeights[EC] = Weight;
746   }
747 }
748 
749 /// \brief Find equivalence classes.
750 ///
751 /// Since samples may be missing from blocks, we can fill in the gaps by setting
752 /// the weights of all the blocks in the same equivalence class to the same
753 /// weight. To compute the concept of equivalence, we use dominance and loop
754 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
755 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
756 ///
757 /// \param F The function to query.
758 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
759   SmallVector<BasicBlock *, 8> DominatedBBs;
760   DEBUG(dbgs() << "\nBlock equivalence classes\n");
761   // Find equivalence sets based on dominance and post-dominance information.
762   for (auto &BB : F) {
763     BasicBlock *BB1 = &BB;
764 
765     // Compute BB1's equivalence class once.
766     if (EquivalenceClass.count(BB1)) {
767       DEBUG(printBlockEquivalence(dbgs(), BB1));
768       continue;
769     }
770 
771     // By default, blocks are in their own equivalence class.
772     EquivalenceClass[BB1] = BB1;
773 
774     // Traverse all the blocks dominated by BB1. We are looking for
775     // every basic block BB2 such that:
776     //
777     // 1- BB1 dominates BB2.
778     // 2- BB2 post-dominates BB1.
779     // 3- BB1 and BB2 are in the same loop nest.
780     //
781     // If all those conditions hold, it means that BB2 is executed
782     // as many times as BB1, so they are placed in the same equivalence
783     // class by making BB2's equivalence class be BB1.
784     DominatedBBs.clear();
785     DT->getDescendants(BB1, DominatedBBs);
786     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
787 
788     DEBUG(printBlockEquivalence(dbgs(), BB1));
789   }
790 
791   // Assign weights to equivalence classes.
792   //
793   // All the basic blocks in the same equivalence class will execute
794   // the same number of times. Since we know that the head block in
795   // each equivalence class has the largest weight, assign that weight
796   // to all the blocks in that equivalence class.
797   DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
798   for (auto &BI : F) {
799     const BasicBlock *BB = &BI;
800     const BasicBlock *EquivBB = EquivalenceClass[BB];
801     if (BB != EquivBB)
802       BlockWeights[BB] = BlockWeights[EquivBB];
803     DEBUG(printBlockWeight(dbgs(), BB));
804   }
805 }
806 
807 /// \brief Visit the given edge to decide if it has a valid weight.
808 ///
809 /// If \p E has not been visited before, we copy to \p UnknownEdge
810 /// and increment the count of unknown edges.
811 ///
812 /// \param E  Edge to visit.
813 /// \param NumUnknownEdges  Current number of unknown edges.
814 /// \param UnknownEdge  Set if E has not been visited before.
815 ///
816 /// \returns E's weight, if known. Otherwise, return 0.
817 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
818                                         Edge *UnknownEdge) {
819   if (!VisitedEdges.count(E)) {
820     (*NumUnknownEdges)++;
821     *UnknownEdge = E;
822     return 0;
823   }
824 
825   return EdgeWeights[E];
826 }
827 
828 /// \brief Propagate weights through incoming/outgoing edges.
829 ///
830 /// If the weight of a basic block is known, and there is only one edge
831 /// with an unknown weight, we can calculate the weight of that edge.
832 ///
833 /// Similarly, if all the edges have a known count, we can calculate the
834 /// count of the basic block, if needed.
835 ///
836 /// \param F  Function to process.
837 /// \param UpdateBlockCount  Whether we should update basic block counts that
838 ///                          has already been annotated.
839 ///
840 /// \returns  True if new weights were assigned to edges or blocks.
841 bool SampleProfileLoader::propagateThroughEdges(Function &F,
842                                                 bool UpdateBlockCount) {
843   bool Changed = false;
844   DEBUG(dbgs() << "\nPropagation through edges\n");
845   for (const auto &BI : F) {
846     const BasicBlock *BB = &BI;
847     const BasicBlock *EC = EquivalenceClass[BB];
848 
849     // Visit all the predecessor and successor edges to determine
850     // which ones have a weight assigned already. Note that it doesn't
851     // matter that we only keep track of a single unknown edge. The
852     // only case we are interested in handling is when only a single
853     // edge is unknown (see setEdgeOrBlockWeight).
854     for (unsigned i = 0; i < 2; i++) {
855       uint64_t TotalWeight = 0;
856       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
857       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
858 
859       if (i == 0) {
860         // First, visit all predecessor edges.
861         NumTotalEdges = Predecessors[BB].size();
862         for (auto *Pred : Predecessors[BB]) {
863           Edge E = std::make_pair(Pred, BB);
864           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
865           if (E.first == E.second)
866             SelfReferentialEdge = E;
867         }
868         if (NumTotalEdges == 1) {
869           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
870         }
871       } else {
872         // On the second round, visit all successor edges.
873         NumTotalEdges = Successors[BB].size();
874         for (auto *Succ : Successors[BB]) {
875           Edge E = std::make_pair(BB, Succ);
876           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
877         }
878         if (NumTotalEdges == 1) {
879           SingleEdge = std::make_pair(BB, Successors[BB][0]);
880         }
881       }
882 
883       // After visiting all the edges, there are three cases that we
884       // can handle immediately:
885       //
886       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
887       //   In this case, we simply check that the sum of all the edges
888       //   is the same as BB's weight. If not, we change BB's weight
889       //   to match. Additionally, if BB had not been visited before,
890       //   we mark it visited.
891       //
892       // - Only one edge is unknown and BB has already been visited.
893       //   In this case, we can compute the weight of the edge by
894       //   subtracting the total block weight from all the known
895       //   edge weights. If the edges weight more than BB, then the
896       //   edge of the last remaining edge is set to zero.
897       //
898       // - There exists a self-referential edge and the weight of BB is
899       //   known. In this case, this edge can be based on BB's weight.
900       //   We add up all the other known edges and set the weight on
901       //   the self-referential edge as we did in the previous case.
902       //
903       // In any other case, we must continue iterating. Eventually,
904       // all edges will get a weight, or iteration will stop when
905       // it reaches SampleProfileMaxPropagateIterations.
906       if (NumUnknownEdges <= 1) {
907         uint64_t &BBWeight = BlockWeights[EC];
908         if (NumUnknownEdges == 0) {
909           if (!VisitedBlocks.count(EC)) {
910             // If we already know the weight of all edges, the weight of the
911             // basic block can be computed. It should be no larger than the sum
912             // of all edge weights.
913             if (TotalWeight > BBWeight) {
914               BBWeight = TotalWeight;
915               Changed = true;
916               DEBUG(dbgs() << "All edge weights for " << BB->getName()
917                            << " known. Set weight for block: ";
918                     printBlockWeight(dbgs(), BB););
919             }
920           } else if (NumTotalEdges == 1 &&
921                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
922             // If there is only one edge for the visited basic block, use the
923             // block weight to adjust edge weight if edge weight is smaller.
924             EdgeWeights[SingleEdge] = BlockWeights[EC];
925             Changed = true;
926           }
927         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
928           // If there is a single unknown edge and the block has been
929           // visited, then we can compute E's weight.
930           if (BBWeight >= TotalWeight)
931             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
932           else
933             EdgeWeights[UnknownEdge] = 0;
934           const BasicBlock *OtherEC;
935           if (i == 0)
936             OtherEC = EquivalenceClass[UnknownEdge.first];
937           else
938             OtherEC = EquivalenceClass[UnknownEdge.second];
939           // Edge weights should never exceed the BB weights it connects.
940           if (VisitedBlocks.count(OtherEC) &&
941               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
942             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
943           VisitedEdges.insert(UnknownEdge);
944           Changed = true;
945           DEBUG(dbgs() << "Set weight for edge: ";
946                 printEdgeWeight(dbgs(), UnknownEdge));
947         }
948       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
949         // If a block Weights 0, all its in/out edges should weight 0.
950         if (i == 0) {
951           for (auto *Pred : Predecessors[BB]) {
952             Edge E = std::make_pair(Pred, BB);
953             EdgeWeights[E] = 0;
954             VisitedEdges.insert(E);
955           }
956         } else {
957           for (auto *Succ : Successors[BB]) {
958             Edge E = std::make_pair(BB, Succ);
959             EdgeWeights[E] = 0;
960             VisitedEdges.insert(E);
961           }
962         }
963       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
964         uint64_t &BBWeight = BlockWeights[BB];
965         // We have a self-referential edge and the weight of BB is known.
966         if (BBWeight >= TotalWeight)
967           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
968         else
969           EdgeWeights[SelfReferentialEdge] = 0;
970         VisitedEdges.insert(SelfReferentialEdge);
971         Changed = true;
972         DEBUG(dbgs() << "Set self-referential edge weight to: ";
973               printEdgeWeight(dbgs(), SelfReferentialEdge));
974       }
975       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
976         BlockWeights[EC] = TotalWeight;
977         VisitedBlocks.insert(EC);
978         Changed = true;
979       }
980     }
981   }
982 
983   return Changed;
984 }
985 
986 /// \brief Build in/out edge lists for each basic block in the CFG.
987 ///
988 /// We are interested in unique edges. If a block B1 has multiple
989 /// edges to another block B2, we only add a single B1->B2 edge.
990 void SampleProfileLoader::buildEdges(Function &F) {
991   for (auto &BI : F) {
992     BasicBlock *B1 = &BI;
993 
994     // Add predecessors for B1.
995     SmallPtrSet<BasicBlock *, 16> Visited;
996     if (!Predecessors[B1].empty())
997       llvm_unreachable("Found a stale predecessors list in a basic block.");
998     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
999       BasicBlock *B2 = *PI;
1000       if (Visited.insert(B2).second)
1001         Predecessors[B1].push_back(B2);
1002     }
1003 
1004     // Add successors for B1.
1005     Visited.clear();
1006     if (!Successors[B1].empty())
1007       llvm_unreachable("Found a stale successors list in a basic block.");
1008     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1009       BasicBlock *B2 = *SI;
1010       if (Visited.insert(B2).second)
1011         Successors[B1].push_back(B2);
1012     }
1013   }
1014 }
1015 
1016 /// Sorts the CallTargetMap \p M by count in descending order and stores the
1017 /// sorted result in \p Sorted. Returns the total counts.
1018 static uint64_t SortCallTargets(SmallVector<InstrProfValueData, 2> &Sorted,
1019                                 const SampleRecord::CallTargetMap &M) {
1020   Sorted.clear();
1021   uint64_t Sum = 0;
1022   for (auto I = M.begin(); I != M.end(); ++I) {
1023     Sum += I->getValue();
1024     Sorted.push_back({Function::getGUID(I->getKey()), I->getValue()});
1025   }
1026   std::sort(Sorted.begin(), Sorted.end(),
1027             [](const InstrProfValueData &L, const InstrProfValueData &R) {
1028               if (L.Count == R.Count)
1029                 return L.Value > R.Value;
1030               else
1031                 return L.Count > R.Count;
1032             });
1033   return Sum;
1034 }
1035 
1036 /// \brief Propagate weights into edges
1037 ///
1038 /// The following rules are applied to every block BB in the CFG:
1039 ///
1040 /// - If BB has a single predecessor/successor, then the weight
1041 ///   of that edge is the weight of the block.
1042 ///
1043 /// - If all incoming or outgoing edges are known except one, and the
1044 ///   weight of the block is already known, the weight of the unknown
1045 ///   edge will be the weight of the block minus the sum of all the known
1046 ///   edges. If the sum of all the known edges is larger than BB's weight,
1047 ///   we set the unknown edge weight to zero.
1048 ///
1049 /// - If there is a self-referential edge, and the weight of the block is
1050 ///   known, the weight for that edge is set to the weight of the block
1051 ///   minus the weight of the other incoming edges to that block (if
1052 ///   known).
1053 void SampleProfileLoader::propagateWeights(Function &F) {
1054   bool Changed = true;
1055   unsigned I = 0;
1056 
1057   // Add an entry count to the function using the samples gathered
1058   // at the function entry.
1059   F.setEntryCount(Samples->getHeadSamples() + 1);
1060 
1061   // If BB weight is larger than its corresponding loop's header BB weight,
1062   // use the BB weight to replace the loop header BB weight.
1063   for (auto &BI : F) {
1064     BasicBlock *BB = &BI;
1065     Loop *L = LI->getLoopFor(BB);
1066     if (!L) {
1067       continue;
1068     }
1069     BasicBlock *Header = L->getHeader();
1070     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1071       BlockWeights[Header] = BlockWeights[BB];
1072     }
1073   }
1074 
1075   // Before propagation starts, build, for each block, a list of
1076   // unique predecessors and successors. This is necessary to handle
1077   // identical edges in multiway branches. Since we visit all blocks and all
1078   // edges of the CFG, it is cleaner to build these lists once at the start
1079   // of the pass.
1080   buildEdges(F);
1081 
1082   // Propagate until we converge or we go past the iteration limit.
1083   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1084     Changed = propagateThroughEdges(F, false);
1085   }
1086 
1087   // The first propagation propagates BB counts from annotated BBs to unknown
1088   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1089   // to propagate edge weights.
1090   VisitedEdges.clear();
1091   Changed = true;
1092   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1093     Changed = propagateThroughEdges(F, false);
1094   }
1095 
1096   // The 3rd propagation pass allows adjust annotated BB weights that are
1097   // obviously wrong.
1098   Changed = true;
1099   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1100     Changed = propagateThroughEdges(F, true);
1101   }
1102 
1103   // Generate MD_prof metadata for every branch instruction using the
1104   // edge weights computed during propagation.
1105   DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1106   LLVMContext &Ctx = F.getContext();
1107   MDBuilder MDB(Ctx);
1108   for (auto &BI : F) {
1109     BasicBlock *BB = &BI;
1110 
1111     if (BlockWeights[BB]) {
1112       for (auto &I : BB->getInstList()) {
1113         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1114           continue;
1115         CallSite CS(&I);
1116         if (!CS.getCalledFunction()) {
1117           const DebugLoc &DLoc = I.getDebugLoc();
1118           if (!DLoc)
1119             continue;
1120           const DILocation *DIL = DLoc;
1121           uint32_t LineOffset = getOffset(
1122               DLoc.getLine(), DIL->getScope()->getSubprogram()->getLine());
1123           uint32_t Discriminator = DIL->getDiscriminator();
1124 
1125           const FunctionSamples *FS = findFunctionSamples(I);
1126           if (!FS)
1127             continue;
1128           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1129           if (!T || T.get().size() == 0)
1130             continue;
1131           SmallVector<InstrProfValueData, 2> SortedCallTargets;
1132           uint64_t Sum = SortCallTargets(SortedCallTargets, T.get());
1133           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1134                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1135                             SortedCallTargets.size());
1136         } else if (!dyn_cast<IntrinsicInst>(&I)) {
1137           SmallVector<uint32_t, 1> Weights;
1138           Weights.push_back(BlockWeights[BB]);
1139           I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
1140         }
1141       }
1142     }
1143     TerminatorInst *TI = BB->getTerminator();
1144     if (TI->getNumSuccessors() == 1)
1145       continue;
1146     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1147       continue;
1148 
1149     DEBUG(dbgs() << "\nGetting weights for branch at line "
1150                  << TI->getDebugLoc().getLine() << ".\n");
1151     SmallVector<uint32_t, 4> Weights;
1152     uint32_t MaxWeight = 0;
1153     DebugLoc MaxDestLoc;
1154     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1155       BasicBlock *Succ = TI->getSuccessor(I);
1156       Edge E = std::make_pair(BB, Succ);
1157       uint64_t Weight = EdgeWeights[E];
1158       DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1159       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1160       // if needed. Sample counts in profiles are 64-bit unsigned values,
1161       // but internally branch weights are expressed as 32-bit values.
1162       if (Weight > std::numeric_limits<uint32_t>::max()) {
1163         DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1164         Weight = std::numeric_limits<uint32_t>::max();
1165       }
1166       // Weight is added by one to avoid propagation errors introduced by
1167       // 0 weights.
1168       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1169       if (Weight != 0) {
1170         if (Weight > MaxWeight) {
1171           MaxWeight = Weight;
1172           MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc();
1173         }
1174       }
1175     }
1176 
1177     // Only set weights if there is at least one non-zero weight.
1178     // In any other case, let the analyzer set weights.
1179     if (MaxWeight > 0) {
1180       DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1181       TI->setMetadata(llvm::LLVMContext::MD_prof,
1182                       MDB.createBranchWeights(Weights));
1183       DebugLoc BranchLoc = TI->getDebugLoc();
1184       emitOptimizationRemark(
1185           Ctx, DEBUG_TYPE, F, MaxDestLoc,
1186           Twine("most popular destination for conditional branches at ") +
1187               ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" +
1188                                    Twine(BranchLoc.getLine()) + ":" +
1189                                    Twine(BranchLoc.getCol()))
1190                            : Twine("<UNKNOWN LOCATION>")));
1191     } else {
1192       DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1193     }
1194   }
1195 }
1196 
1197 /// \brief Get the line number for the function header.
1198 ///
1199 /// This looks up function \p F in the current compilation unit and
1200 /// retrieves the line number where the function is defined. This is
1201 /// line 0 for all the samples read from the profile file. Every line
1202 /// number is relative to this line.
1203 ///
1204 /// \param F  Function object to query.
1205 ///
1206 /// \returns the line number where \p F is defined. If it returns 0,
1207 ///          it means that there is no debug information available for \p F.
1208 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1209   if (DISubprogram *S = F.getSubprogram())
1210     return S->getLine();
1211 
1212   // If the start of \p F is missing, emit a diagnostic to inform the user
1213   // about the missed opportunity.
1214   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1215       "No debug information found in function " + F.getName() +
1216           ": Function profile not used",
1217       DS_Warning));
1218   return 0;
1219 }
1220 
1221 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1222   DT.reset(new DominatorTree);
1223   DT->recalculate(F);
1224 
1225   PDT.reset(new DominatorTreeBase<BasicBlock>(true));
1226   PDT->recalculate(F);
1227 
1228   LI.reset(new LoopInfo);
1229   LI->analyze(*DT);
1230 }
1231 
1232 /// \brief Generate branch weight metadata for all branches in \p F.
1233 ///
1234 /// Branch weights are computed out of instruction samples using a
1235 /// propagation heuristic. Propagation proceeds in 3 phases:
1236 ///
1237 /// 1- Assignment of block weights. All the basic blocks in the function
1238 ///    are initial assigned the same weight as their most frequently
1239 ///    executed instruction.
1240 ///
1241 /// 2- Creation of equivalence classes. Since samples may be missing from
1242 ///    blocks, we can fill in the gaps by setting the weights of all the
1243 ///    blocks in the same equivalence class to the same weight. To compute
1244 ///    the concept of equivalence, we use dominance and loop information.
1245 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1246 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1247 ///
1248 /// 3- Propagation of block weights into edges. This uses a simple
1249 ///    propagation heuristic. The following rules are applied to every
1250 ///    block BB in the CFG:
1251 ///
1252 ///    - If BB has a single predecessor/successor, then the weight
1253 ///      of that edge is the weight of the block.
1254 ///
1255 ///    - If all the edges are known except one, and the weight of the
1256 ///      block is already known, the weight of the unknown edge will
1257 ///      be the weight of the block minus the sum of all the known
1258 ///      edges. If the sum of all the known edges is larger than BB's weight,
1259 ///      we set the unknown edge weight to zero.
1260 ///
1261 ///    - If there is a self-referential edge, and the weight of the block is
1262 ///      known, the weight for that edge is set to the weight of the block
1263 ///      minus the weight of the other incoming edges to that block (if
1264 ///      known).
1265 ///
1266 /// Since this propagation is not guaranteed to finalize for every CFG, we
1267 /// only allow it to proceed for a limited number of iterations (controlled
1268 /// by -sample-profile-max-propagate-iterations).
1269 ///
1270 /// FIXME: Try to replace this propagation heuristic with a scheme
1271 /// that is guaranteed to finalize. A work-list approach similar to
1272 /// the standard value propagation algorithm used by SSA-CCP might
1273 /// work here.
1274 ///
1275 /// Once all the branch weights are computed, we emit the MD_prof
1276 /// metadata on BB using the computed values for each of its branches.
1277 ///
1278 /// \param F The function to query.
1279 ///
1280 /// \returns true if \p F was modified. Returns false, otherwise.
1281 bool SampleProfileLoader::emitAnnotations(Function &F) {
1282   bool Changed = false;
1283 
1284   if (getFunctionLoc(F) == 0)
1285     return false;
1286 
1287   DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
1288                << ": " << getFunctionLoc(F) << "\n");
1289 
1290   Changed |= inlineHotFunctions(F);
1291 
1292   // Compute basic block weights.
1293   Changed |= computeBlockWeights(F);
1294 
1295   if (Changed) {
1296     // Compute dominance and loop info needed for propagation.
1297     computeDominanceAndLoopInfo(F);
1298 
1299     // Find equivalence classes.
1300     findEquivalenceClasses(F);
1301 
1302     // Propagate weights to all edges.
1303     propagateWeights(F);
1304   }
1305 
1306   // If coverage checking was requested, compute it now.
1307   if (SampleProfileRecordCoverage) {
1308     unsigned Used = CoverageTracker.countUsedRecords(Samples);
1309     unsigned Total = CoverageTracker.countBodyRecords(Samples);
1310     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1311     if (Coverage < SampleProfileRecordCoverage) {
1312       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1313           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1314           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1315               Twine(Coverage) + "%) were applied",
1316           DS_Warning));
1317     }
1318   }
1319 
1320   if (SampleProfileSampleCoverage) {
1321     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1322     uint64_t Total = CoverageTracker.countBodySamples(Samples);
1323     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1324     if (Coverage < SampleProfileSampleCoverage) {
1325       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1326           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1327           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1328               Twine(Coverage) + "%) were applied",
1329           DS_Warning));
1330     }
1331   }
1332   return Changed;
1333 }
1334 
1335 char SampleProfileLoaderLegacyPass::ID = 0;
1336 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1337                       "Sample Profile loader", false, false)
1338 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1339 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1340                     "Sample Profile loader", false, false)
1341 
1342 bool SampleProfileLoader::doInitialization(Module &M) {
1343   auto &Ctx = M.getContext();
1344   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1345   if (std::error_code EC = ReaderOrErr.getError()) {
1346     std::string Msg = "Could not open profile: " + EC.message();
1347     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1348     return false;
1349   }
1350   Reader = std::move(ReaderOrErr.get());
1351   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1352   return true;
1353 }
1354 
1355 ModulePass *llvm::createSampleProfileLoaderPass() {
1356   return new SampleProfileLoaderLegacyPass(SampleProfileFile);
1357 }
1358 
1359 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1360   return new SampleProfileLoaderLegacyPass(Name);
1361 }
1362 
1363 bool SampleProfileLoader::runOnModule(Module &M) {
1364   if (!ProfileIsValid)
1365     return false;
1366 
1367   // Compute the total number of samples collected in this profile.
1368   for (const auto &I : Reader->getProfiles())
1369     TotalCollectedSamples += I.second.getTotalSamples();
1370 
1371   bool retval = false;
1372   for (auto &F : M)
1373     if (!F.isDeclaration()) {
1374       clearFunctionData();
1375       retval |= runOnFunction(F);
1376     }
1377   if (M.getProfileSummary() == nullptr)
1378     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
1379   return retval;
1380 }
1381 
1382 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1383   // FIXME: pass in AssumptionCache correctly for the new pass manager.
1384   SampleLoader.setACT(&getAnalysis<AssumptionCacheTracker>());
1385   return SampleLoader.runOnModule(M);
1386 }
1387 
1388 bool SampleProfileLoader::runOnFunction(Function &F) {
1389   F.setEntryCount(0);
1390   Samples = Reader->getSamplesFor(F);
1391   if (!Samples->empty())
1392     return emitAnnotations(F);
1393   return false;
1394 }
1395 
1396 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1397                                                ModuleAnalysisManager &AM) {
1398 
1399   SampleProfileLoader SampleLoader(SampleProfileFile);
1400 
1401   SampleLoader.doInitialization(M);
1402 
1403   if (!SampleLoader.runOnModule(M))
1404     return PreservedAnalyses::all();
1405 
1406   return PreservedAnalyses::none();
1407 }
1408