1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/SampleProfile.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/InlineCost.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 34 #include "llvm/Analysis/PostDominators.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfo.h" 38 #include "llvm/IR/DiagnosticInfo.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalValue.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/MDBuilder.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/ValueSymbolTable.h" 50 #include "llvm/Pass.h" 51 #include "llvm/ProfileData/InstrProf.h" 52 #include "llvm/ProfileData/SampleProfReader.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorOr.h" 56 #include "llvm/Support/Format.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Transforms/IPO.h" 59 #include "llvm/Transforms/Instrumentation.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include <cctype> 62 63 using namespace llvm; 64 using namespace sampleprof; 65 66 #define DEBUG_TYPE "sample-profile" 67 68 // Command line option to specify the file to read samples from. This is 69 // mainly used for debugging. 70 static cl::opt<std::string> SampleProfileFile( 71 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 72 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 73 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 74 "sample-profile-max-propagate-iterations", cl::init(100), 75 cl::desc("Maximum number of iterations to go through when propagating " 76 "sample block/edge weights through the CFG.")); 77 static cl::opt<unsigned> SampleProfileRecordCoverage( 78 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 79 cl::desc("Emit a warning if less than N% of records in the input profile " 80 "are matched to the IR.")); 81 static cl::opt<unsigned> SampleProfileSampleCoverage( 82 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 83 cl::desc("Emit a warning if less than N% of samples in the input profile " 84 "are matched to the IR.")); 85 static cl::opt<double> SampleProfileHotThreshold( 86 "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"), 87 cl::desc("Inlined functions that account for more than N% of all samples " 88 "collected in the parent function, will be inlined again.")); 89 90 namespace { 91 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap; 92 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap; 93 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge; 94 typedef DenseMap<Edge, uint64_t> EdgeWeightMap; 95 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>> 96 BlockEdgeMap; 97 98 class SampleCoverageTracker { 99 public: 100 SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {} 101 102 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 103 uint32_t Discriminator, uint64_t Samples); 104 unsigned computeCoverage(unsigned Used, unsigned Total) const; 105 unsigned countUsedRecords(const FunctionSamples *FS) const; 106 unsigned countBodyRecords(const FunctionSamples *FS) const; 107 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 108 uint64_t countBodySamples(const FunctionSamples *FS) const; 109 void clear() { 110 SampleCoverage.clear(); 111 TotalUsedSamples = 0; 112 } 113 114 private: 115 typedef std::map<LineLocation, unsigned> BodySampleCoverageMap; 116 typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap> 117 FunctionSamplesCoverageMap; 118 119 /// Coverage map for sampling records. 120 /// 121 /// This map keeps a record of sampling records that have been matched to 122 /// an IR instruction. This is used to detect some form of staleness in 123 /// profiles (see flag -sample-profile-check-coverage). 124 /// 125 /// Each entry in the map corresponds to a FunctionSamples instance. This is 126 /// another map that counts how many times the sample record at the 127 /// given location has been used. 128 FunctionSamplesCoverageMap SampleCoverage; 129 130 /// Number of samples used from the profile. 131 /// 132 /// When a sampling record is used for the first time, the samples from 133 /// that record are added to this accumulator. Coverage is later computed 134 /// based on the total number of samples available in this function and 135 /// its callsites. 136 /// 137 /// Note that this accumulator tracks samples used from a single function 138 /// and all the inlined callsites. Strictly, we should have a map of counters 139 /// keyed by FunctionSamples pointers, but these stats are cleared after 140 /// every function, so we just need to keep a single counter. 141 uint64_t TotalUsedSamples; 142 }; 143 144 /// \brief Sample profile pass. 145 /// 146 /// This pass reads profile data from the file specified by 147 /// -sample-profile-file and annotates every affected function with the 148 /// profile information found in that file. 149 class SampleProfileLoader { 150 public: 151 SampleProfileLoader( 152 StringRef Name, 153 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 154 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo) 155 : DT(nullptr), PDT(nullptr), LI(nullptr), GetAC(GetAssumptionCache), 156 GetTTI(GetTargetTransformInfo), Reader(), Samples(nullptr), 157 Filename(Name), ProfileIsValid(false), TotalCollectedSamples(0), 158 ORE(nullptr) {} 159 160 bool doInitialization(Module &M); 161 bool runOnModule(Module &M, ModuleAnalysisManager *AM); 162 163 void dump() { Reader->dump(); } 164 165 protected: 166 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 167 unsigned getFunctionLoc(Function &F); 168 bool emitAnnotations(Function &F); 169 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 170 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 171 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 172 std::vector<const FunctionSamples *> 173 findIndirectCallFunctionSamples(const Instruction &I) const; 174 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 175 bool inlineHotFunctions(Function &F, 176 DenseSet<GlobalValue::GUID> &ImportGUIDs); 177 void printEdgeWeight(raw_ostream &OS, Edge E); 178 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 179 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 180 bool computeBlockWeights(Function &F); 181 void findEquivalenceClasses(Function &F); 182 template <bool IsPostDom> 183 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 184 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 185 186 void propagateWeights(Function &F); 187 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 188 void buildEdges(Function &F); 189 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 190 void computeDominanceAndLoopInfo(Function &F); 191 unsigned getOffset(const DILocation *DIL) const; 192 void clearFunctionData(); 193 194 /// \brief Map basic blocks to their computed weights. 195 /// 196 /// The weight of a basic block is defined to be the maximum 197 /// of all the instruction weights in that block. 198 BlockWeightMap BlockWeights; 199 200 /// \brief Map edges to their computed weights. 201 /// 202 /// Edge weights are computed by propagating basic block weights in 203 /// SampleProfile::propagateWeights. 204 EdgeWeightMap EdgeWeights; 205 206 /// \brief Set of visited blocks during propagation. 207 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 208 209 /// \brief Set of visited edges during propagation. 210 SmallSet<Edge, 32> VisitedEdges; 211 212 /// \brief Equivalence classes for block weights. 213 /// 214 /// Two blocks BB1 and BB2 are in the same equivalence class if they 215 /// dominate and post-dominate each other, and they are in the same loop 216 /// nest. When this happens, the two blocks are guaranteed to execute 217 /// the same number of times. 218 EquivalenceClassMap EquivalenceClass; 219 220 /// Map from function name to Function *. Used to find the function from 221 /// the function name. If the function name contains suffix, additional 222 /// entry is added to map from the stripped name to the function if there 223 /// is one-to-one mapping. 224 StringMap<Function *> SymbolMap; 225 226 /// \brief Dominance, post-dominance and loop information. 227 std::unique_ptr<DominatorTree> DT; 228 std::unique_ptr<PostDomTreeBase<BasicBlock>> PDT; 229 std::unique_ptr<LoopInfo> LI; 230 231 std::function<AssumptionCache &(Function &)> GetAC; 232 std::function<TargetTransformInfo &(Function &)> GetTTI; 233 234 /// \brief Predecessors for each basic block in the CFG. 235 BlockEdgeMap Predecessors; 236 237 /// \brief Successors for each basic block in the CFG. 238 BlockEdgeMap Successors; 239 240 SampleCoverageTracker CoverageTracker; 241 242 /// \brief Profile reader object. 243 std::unique_ptr<SampleProfileReader> Reader; 244 245 /// \brief Samples collected for the body of this function. 246 FunctionSamples *Samples; 247 248 /// \brief Name of the profile file to load. 249 std::string Filename; 250 251 /// \brief Flag indicating whether the profile input loaded successfully. 252 bool ProfileIsValid; 253 254 /// \brief Total number of samples collected in this profile. 255 /// 256 /// This is the sum of all the samples collected in all the functions executed 257 /// at runtime. 258 uint64_t TotalCollectedSamples; 259 260 /// \brief Optimization Remark Emitter used to emit diagnostic remarks. 261 OptimizationRemarkEmitter *ORE; 262 }; 263 264 class SampleProfileLoaderLegacyPass : public ModulePass { 265 public: 266 // Class identification, replacement for typeinfo 267 static char ID; 268 269 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile) 270 : ModulePass(ID), SampleLoader(Name, 271 [&](Function &F) -> AssumptionCache & { 272 return ACT->getAssumptionCache(F); 273 }, 274 [&](Function &F) -> TargetTransformInfo & { 275 return TTIWP->getTTI(F); 276 }), 277 ACT(nullptr), TTIWP(nullptr) { 278 initializeSampleProfileLoaderLegacyPassPass( 279 *PassRegistry::getPassRegistry()); 280 } 281 282 void dump() { SampleLoader.dump(); } 283 284 bool doInitialization(Module &M) override { 285 return SampleLoader.doInitialization(M); 286 } 287 StringRef getPassName() const override { return "Sample profile pass"; } 288 bool runOnModule(Module &M) override; 289 290 void getAnalysisUsage(AnalysisUsage &AU) const override { 291 AU.addRequired<AssumptionCacheTracker>(); 292 AU.addRequired<TargetTransformInfoWrapperPass>(); 293 } 294 295 private: 296 SampleProfileLoader SampleLoader; 297 AssumptionCacheTracker *ACT; 298 TargetTransformInfoWrapperPass *TTIWP; 299 }; 300 301 /// Return true if the given callsite is hot wrt to its caller. 302 /// 303 /// Functions that were inlined in the original binary will be represented 304 /// in the inline stack in the sample profile. If the profile shows that 305 /// the original inline decision was "good" (i.e., the callsite is executed 306 /// frequently), then we will recreate the inline decision and apply the 307 /// profile from the inlined callsite. 308 /// 309 /// To decide whether an inlined callsite is hot, we compute the fraction 310 /// of samples used by the callsite with respect to the total number of samples 311 /// collected in the caller. 312 /// 313 /// If that fraction is larger than the default given by 314 /// SampleProfileHotThreshold, the callsite will be inlined again. 315 bool callsiteIsHot(const FunctionSamples *CallerFS, 316 const FunctionSamples *CallsiteFS) { 317 if (!CallsiteFS) 318 return false; // The callsite was not inlined in the original binary. 319 320 uint64_t ParentTotalSamples = CallerFS->getTotalSamples(); 321 if (ParentTotalSamples == 0) 322 return false; // Avoid division by zero. 323 324 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 325 if (CallsiteTotalSamples == 0) 326 return false; // Callsite is trivially cold. 327 328 double PercentSamples = 329 (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0; 330 return PercentSamples >= SampleProfileHotThreshold; 331 } 332 } 333 334 /// Mark as used the sample record for the given function samples at 335 /// (LineOffset, Discriminator). 336 /// 337 /// \returns true if this is the first time we mark the given record. 338 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 339 uint32_t LineOffset, 340 uint32_t Discriminator, 341 uint64_t Samples) { 342 LineLocation Loc(LineOffset, Discriminator); 343 unsigned &Count = SampleCoverage[FS][Loc]; 344 bool FirstTime = (++Count == 1); 345 if (FirstTime) 346 TotalUsedSamples += Samples; 347 return FirstTime; 348 } 349 350 /// Return the number of sample records that were applied from this profile. 351 /// 352 /// This count does not include records from cold inlined callsites. 353 unsigned 354 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const { 355 auto I = SampleCoverage.find(FS); 356 357 // The size of the coverage map for FS represents the number of records 358 // that were marked used at least once. 359 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 360 361 // If there are inlined callsites in this function, count the samples found 362 // in the respective bodies. However, do not bother counting callees with 0 363 // total samples, these are callees that were never invoked at runtime. 364 for (const auto &I : FS->getCallsiteSamples()) 365 for (const auto &J : I.second) { 366 const FunctionSamples *CalleeSamples = &J.second; 367 if (callsiteIsHot(FS, CalleeSamples)) 368 Count += countUsedRecords(CalleeSamples); 369 } 370 371 return Count; 372 } 373 374 /// Return the number of sample records in the body of this profile. 375 /// 376 /// This count does not include records from cold inlined callsites. 377 unsigned 378 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const { 379 unsigned Count = FS->getBodySamples().size(); 380 381 // Only count records in hot callsites. 382 for (const auto &I : FS->getCallsiteSamples()) 383 for (const auto &J : I.second) { 384 const FunctionSamples *CalleeSamples = &J.second; 385 if (callsiteIsHot(FS, CalleeSamples)) 386 Count += countBodyRecords(CalleeSamples); 387 } 388 389 return Count; 390 } 391 392 /// Return the number of samples collected in the body of this profile. 393 /// 394 /// This count does not include samples from cold inlined callsites. 395 uint64_t 396 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const { 397 uint64_t Total = 0; 398 for (const auto &I : FS->getBodySamples()) 399 Total += I.second.getSamples(); 400 401 // Only count samples in hot callsites. 402 for (const auto &I : FS->getCallsiteSamples()) 403 for (const auto &J : I.second) { 404 const FunctionSamples *CalleeSamples = &J.second; 405 if (callsiteIsHot(FS, CalleeSamples)) 406 Total += countBodySamples(CalleeSamples); 407 } 408 409 return Total; 410 } 411 412 /// Return the fraction of sample records used in this profile. 413 /// 414 /// The returned value is an unsigned integer in the range 0-100 indicating 415 /// the percentage of sample records that were used while applying this 416 /// profile to the associated function. 417 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 418 unsigned Total) const { 419 assert(Used <= Total && 420 "number of used records cannot exceed the total number of records"); 421 return Total > 0 ? Used * 100 / Total : 100; 422 } 423 424 /// Clear all the per-function data used to load samples and propagate weights. 425 void SampleProfileLoader::clearFunctionData() { 426 BlockWeights.clear(); 427 EdgeWeights.clear(); 428 VisitedBlocks.clear(); 429 VisitedEdges.clear(); 430 EquivalenceClass.clear(); 431 DT = nullptr; 432 PDT = nullptr; 433 LI = nullptr; 434 Predecessors.clear(); 435 Successors.clear(); 436 CoverageTracker.clear(); 437 } 438 439 /// Returns the line offset to the start line of the subprogram. 440 /// We assume that a single function will not exceed 65535 LOC. 441 unsigned SampleProfileLoader::getOffset(const DILocation *DIL) const { 442 return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) & 443 0xffff; 444 } 445 446 #ifndef NDEBUG 447 /// \brief Print the weight of edge \p E on stream \p OS. 448 /// 449 /// \param OS Stream to emit the output to. 450 /// \param E Edge to print. 451 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 452 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 453 << "]: " << EdgeWeights[E] << "\n"; 454 } 455 456 /// \brief Print the equivalence class of block \p BB on stream \p OS. 457 /// 458 /// \param OS Stream to emit the output to. 459 /// \param BB Block to print. 460 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 461 const BasicBlock *BB) { 462 const BasicBlock *Equiv = EquivalenceClass[BB]; 463 OS << "equivalence[" << BB->getName() 464 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 465 } 466 467 /// \brief Print the weight of block \p BB on stream \p OS. 468 /// 469 /// \param OS Stream to emit the output to. 470 /// \param BB Block to print. 471 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 472 const BasicBlock *BB) const { 473 const auto &I = BlockWeights.find(BB); 474 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 475 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 476 } 477 #endif 478 479 /// \brief Get the weight for an instruction. 480 /// 481 /// The "weight" of an instruction \p Inst is the number of samples 482 /// collected on that instruction at runtime. To retrieve it, we 483 /// need to compute the line number of \p Inst relative to the start of its 484 /// function. We use HeaderLineno to compute the offset. We then 485 /// look up the samples collected for \p Inst using BodySamples. 486 /// 487 /// \param Inst Instruction to query. 488 /// 489 /// \returns the weight of \p Inst. 490 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 491 const DebugLoc &DLoc = Inst.getDebugLoc(); 492 if (!DLoc) 493 return std::error_code(); 494 495 const FunctionSamples *FS = findFunctionSamples(Inst); 496 if (!FS) 497 return std::error_code(); 498 499 // Ignore all intrinsics and branch instructions. 500 // Branch instruction usually contains debug info from sources outside of 501 // the residing basic block, thus we ignore them during annotation. 502 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst)) 503 return std::error_code(); 504 505 // If a call/invoke instruction is inlined in profile, but not inlined here, 506 // it means that the inlined callsite has no sample, thus the call 507 // instruction should have 0 count. 508 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && 509 findCalleeFunctionSamples(Inst)) 510 return 0; 511 512 const DILocation *DIL = DLoc; 513 uint32_t LineOffset = getOffset(DIL); 514 uint32_t Discriminator = DIL->getBaseDiscriminator(); 515 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 516 if (R) { 517 bool FirstMark = 518 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 519 if (FirstMark) { 520 if (Discriminator) 521 ORE->emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AppliedSamples", &Inst) 522 << "Applied " << ore::NV("NumSamples", *R) 523 << " samples from profile (offset: " 524 << ore::NV("LineOffset", LineOffset) << "." 525 << ore::NV("Discriminator", Discriminator) << ")"); 526 else 527 ORE->emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AppliedSamples", &Inst) 528 << "Applied " << ore::NV("NumSamples", *R) 529 << " samples from profile (offset: " 530 << ore::NV("LineOffset", LineOffset) << ")"); 531 } 532 DEBUG(dbgs() << " " << DLoc.getLine() << "." 533 << DIL->getBaseDiscriminator() << ":" << Inst 534 << " (line offset: " << LineOffset << "." 535 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 536 << ")\n"); 537 } 538 return R; 539 } 540 541 /// \brief Compute the weight of a basic block. 542 /// 543 /// The weight of basic block \p BB is the maximum weight of all the 544 /// instructions in BB. 545 /// 546 /// \param BB The basic block to query. 547 /// 548 /// \returns the weight for \p BB. 549 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 550 uint64_t Max = 0; 551 bool HasWeight = false; 552 for (auto &I : BB->getInstList()) { 553 const ErrorOr<uint64_t> &R = getInstWeight(I); 554 if (R) { 555 Max = std::max(Max, R.get()); 556 HasWeight = true; 557 } 558 } 559 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 560 } 561 562 /// \brief Compute and store the weights of every basic block. 563 /// 564 /// This populates the BlockWeights map by computing 565 /// the weights of every basic block in the CFG. 566 /// 567 /// \param F The function to query. 568 bool SampleProfileLoader::computeBlockWeights(Function &F) { 569 bool Changed = false; 570 DEBUG(dbgs() << "Block weights\n"); 571 for (const auto &BB : F) { 572 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 573 if (Weight) { 574 BlockWeights[&BB] = Weight.get(); 575 VisitedBlocks.insert(&BB); 576 Changed = true; 577 } 578 DEBUG(printBlockWeight(dbgs(), &BB)); 579 } 580 581 return Changed; 582 } 583 584 /// \brief Get the FunctionSamples for a call instruction. 585 /// 586 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 587 /// instance in which that call instruction is calling to. It contains 588 /// all samples that resides in the inlined instance. We first find the 589 /// inlined instance in which the call instruction is from, then we 590 /// traverse its children to find the callsite with the matching 591 /// location. 592 /// 593 /// \param Inst Call/Invoke instruction to query. 594 /// 595 /// \returns The FunctionSamples pointer to the inlined instance. 596 const FunctionSamples * 597 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 598 const DILocation *DIL = Inst.getDebugLoc(); 599 if (!DIL) { 600 return nullptr; 601 } 602 603 StringRef CalleeName; 604 if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) 605 if (Function *Callee = CI->getCalledFunction()) 606 CalleeName = Callee->getName(); 607 608 const FunctionSamples *FS = findFunctionSamples(Inst); 609 if (FS == nullptr) 610 return nullptr; 611 612 return FS->findFunctionSamplesAt( 613 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), CalleeName); 614 } 615 616 /// Returns a vector of FunctionSamples that are the indirect call targets 617 /// of \p Inst. The vector is sorted by the total number of samples. 618 std::vector<const FunctionSamples *> 619 SampleProfileLoader::findIndirectCallFunctionSamples( 620 const Instruction &Inst) const { 621 const DILocation *DIL = Inst.getDebugLoc(); 622 std::vector<const FunctionSamples *> R; 623 624 if (!DIL) { 625 return R; 626 } 627 628 const FunctionSamples *FS = findFunctionSamples(Inst); 629 if (FS == nullptr) 630 return R; 631 632 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt( 633 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()))) { 634 if (M->size() == 0) 635 return R; 636 for (const auto &NameFS : *M) { 637 R.push_back(&NameFS.second); 638 } 639 std::sort(R.begin(), R.end(), 640 [](const FunctionSamples *L, const FunctionSamples *R) { 641 return L->getTotalSamples() > R->getTotalSamples(); 642 }); 643 } 644 return R; 645 } 646 647 /// \brief Get the FunctionSamples for an instruction. 648 /// 649 /// The FunctionSamples of an instruction \p Inst is the inlined instance 650 /// in which that instruction is coming from. We traverse the inline stack 651 /// of that instruction, and match it with the tree nodes in the profile. 652 /// 653 /// \param Inst Instruction to query. 654 /// 655 /// \returns the FunctionSamples pointer to the inlined instance. 656 const FunctionSamples * 657 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 658 SmallVector<std::pair<LineLocation, StringRef>, 10> S; 659 const DILocation *DIL = Inst.getDebugLoc(); 660 if (!DIL) 661 return Samples; 662 663 const DILocation *PrevDIL = DIL; 664 for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) { 665 S.push_back(std::make_pair( 666 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), 667 PrevDIL->getScope()->getSubprogram()->getLinkageName())); 668 PrevDIL = DIL; 669 } 670 if (S.size() == 0) 671 return Samples; 672 const FunctionSamples *FS = Samples; 673 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 674 FS = FS->findFunctionSamplesAt(S[i].first, S[i].second); 675 } 676 return FS; 677 } 678 679 /// \brief Iteratively inline hot callsites of a function. 680 /// 681 /// Iteratively traverse all callsites of the function \p F, and find if 682 /// the corresponding inlined instance exists and is hot in profile. If 683 /// it is hot enough, inline the callsites and adds new callsites of the 684 /// callee into the caller. If the call is an indirect call, first promote 685 /// it to direct call. Each indirect call is limited with a single target. 686 /// 687 /// \param F function to perform iterative inlining. 688 /// \param ImportGUIDs a set to be updated to include all GUIDs that come 689 /// from a different module but inlined in the profiled binary. 690 /// 691 /// \returns True if there is any inline happened. 692 bool SampleProfileLoader::inlineHotFunctions( 693 Function &F, DenseSet<GlobalValue::GUID> &ImportGUIDs) { 694 DenseSet<Instruction *> PromotedInsns; 695 bool Changed = false; 696 while (true) { 697 bool LocalChanged = false; 698 SmallVector<Instruction *, 10> CIS; 699 for (auto &BB : F) { 700 bool Hot = false; 701 SmallVector<Instruction *, 10> Candidates; 702 for (auto &I : BB.getInstList()) { 703 const FunctionSamples *FS = nullptr; 704 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 705 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { 706 Candidates.push_back(&I); 707 if (callsiteIsHot(Samples, FS)) 708 Hot = true; 709 } 710 } 711 if (Hot) { 712 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); 713 } 714 } 715 for (auto I : CIS) { 716 InlineFunctionInfo IFI(nullptr, &GetAC); 717 Function *CalledFunction = CallSite(I).getCalledFunction(); 718 // Do not inline recursive calls. 719 if (CalledFunction == &F) 720 continue; 721 Instruction *DI = I; 722 if (!CalledFunction && !PromotedInsns.count(I) && 723 CallSite(I).isIndirectCall()) { 724 for (const auto *FS : findIndirectCallFunctionSamples(*I)) { 725 auto CalleeFunctionName = FS->getName(); 726 // If it is a recursive call, we do not inline it as it could bloat 727 // the code exponentially. There is way to better handle this, e.g. 728 // clone the caller first, and inline the cloned caller if it is 729 // recursive. As llvm does not inline recursive calls, we will simply 730 // ignore it instead of handling it explicitly. 731 if (CalleeFunctionName == F.getName()) 732 continue; 733 const char *Reason = "Callee function not available"; 734 auto R = SymbolMap.find(CalleeFunctionName); 735 if (R == SymbolMap.end()) 736 continue; 737 CalledFunction = R->getValue(); 738 if (CalledFunction && isLegalToPromote(I, CalledFunction, &Reason)) { 739 // The indirect target was promoted and inlined in the profile, as a 740 // result, we do not have profile info for the branch probability. 741 // We set the probability to 80% taken to indicate that the static 742 // call is likely taken. 743 DI = dyn_cast<Instruction>( 744 promoteIndirectCall(I, CalledFunction, 80, 100, false, ORE) 745 ->stripPointerCasts()); 746 PromotedInsns.insert(I); 747 } else { 748 DEBUG(dbgs() << "\nFailed to promote indirect call to " 749 << CalleeFunctionName << " because " << Reason 750 << "\n"); 751 continue; 752 } 753 } 754 // If there is profile mismatch, we should not attempt to inline DI. 755 if (!isa<CallInst>(DI) && !isa<InvokeInst>(DI)) 756 continue; 757 } 758 if (!CalledFunction || !CalledFunction->getSubprogram()) { 759 // Handles functions that are imported from other modules. 760 for (const FunctionSamples *FS : findIndirectCallFunctionSamples(*I)) 761 FS->findImportedFunctions( 762 ImportGUIDs, F.getParent(), 763 Samples->getTotalSamples() * SampleProfileHotThreshold / 100); 764 continue; 765 } 766 assert(isa<CallInst>(DI) || isa<InvokeInst>(DI)); 767 CallSite CS(DI); 768 DebugLoc DLoc = I->getDebugLoc(); 769 BasicBlock *BB = I->getParent(); 770 InlineParams Params = getInlineParams(); 771 Params.ComputeFullInlineCost = true; 772 // Checks if there is anything in the reachable portion of the callee at 773 // this callsite that makes this inlining potentially illegal. Need to 774 // set ComputeFullInlineCost, otherwise getInlineCost may return early 775 // when cost exceeds threshold without checking all IRs in the callee. 776 // The acutal cost does not matter because we only checks isNever() to 777 // see if it is legal to inline the callsite. 778 InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC, 779 None, nullptr, nullptr); 780 if (Cost.isNever()) { 781 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB) 782 << "incompatible inlining"); 783 continue; 784 } 785 if (InlineFunction(CS, IFI)) { 786 LocalChanged = true; 787 // The call to InlineFunction erases DI, so we can't pass it here. 788 ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB) 789 << "inlined hot callee '" 790 << ore::NV("Callee", CalledFunction) << "' into '" 791 << ore::NV("Caller", &F) << "'"); 792 } 793 } 794 if (LocalChanged) { 795 Changed = true; 796 } else { 797 break; 798 } 799 } 800 return Changed; 801 } 802 803 /// \brief Find equivalence classes for the given block. 804 /// 805 /// This finds all the blocks that are guaranteed to execute the same 806 /// number of times as \p BB1. To do this, it traverses all the 807 /// descendants of \p BB1 in the dominator or post-dominator tree. 808 /// 809 /// A block BB2 will be in the same equivalence class as \p BB1 if 810 /// the following holds: 811 /// 812 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 813 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 814 /// dominate BB1 in the post-dominator tree. 815 /// 816 /// 2- Both BB2 and \p BB1 must be in the same loop. 817 /// 818 /// For every block BB2 that meets those two requirements, we set BB2's 819 /// equivalence class to \p BB1. 820 /// 821 /// \param BB1 Block to check. 822 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 823 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 824 /// with blocks from \p BB1's dominator tree, then 825 /// this is the post-dominator tree, and vice versa. 826 template <bool IsPostDom> 827 void SampleProfileLoader::findEquivalencesFor( 828 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 829 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 830 const BasicBlock *EC = EquivalenceClass[BB1]; 831 uint64_t Weight = BlockWeights[EC]; 832 for (const auto *BB2 : Descendants) { 833 bool IsDomParent = DomTree->dominates(BB2, BB1); 834 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 835 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 836 EquivalenceClass[BB2] = EC; 837 // If BB2 is visited, then the entire EC should be marked as visited. 838 if (VisitedBlocks.count(BB2)) { 839 VisitedBlocks.insert(EC); 840 } 841 842 // If BB2 is heavier than BB1, make BB2 have the same weight 843 // as BB1. 844 // 845 // Note that we don't worry about the opposite situation here 846 // (when BB2 is lighter than BB1). We will deal with this 847 // during the propagation phase. Right now, we just want to 848 // make sure that BB1 has the largest weight of all the 849 // members of its equivalence set. 850 Weight = std::max(Weight, BlockWeights[BB2]); 851 } 852 } 853 if (EC == &EC->getParent()->getEntryBlock()) { 854 BlockWeights[EC] = Samples->getHeadSamples() + 1; 855 } else { 856 BlockWeights[EC] = Weight; 857 } 858 } 859 860 /// \brief Find equivalence classes. 861 /// 862 /// Since samples may be missing from blocks, we can fill in the gaps by setting 863 /// the weights of all the blocks in the same equivalence class to the same 864 /// weight. To compute the concept of equivalence, we use dominance and loop 865 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 866 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 867 /// 868 /// \param F The function to query. 869 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 870 SmallVector<BasicBlock *, 8> DominatedBBs; 871 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 872 // Find equivalence sets based on dominance and post-dominance information. 873 for (auto &BB : F) { 874 BasicBlock *BB1 = &BB; 875 876 // Compute BB1's equivalence class once. 877 if (EquivalenceClass.count(BB1)) { 878 DEBUG(printBlockEquivalence(dbgs(), BB1)); 879 continue; 880 } 881 882 // By default, blocks are in their own equivalence class. 883 EquivalenceClass[BB1] = BB1; 884 885 // Traverse all the blocks dominated by BB1. We are looking for 886 // every basic block BB2 such that: 887 // 888 // 1- BB1 dominates BB2. 889 // 2- BB2 post-dominates BB1. 890 // 3- BB1 and BB2 are in the same loop nest. 891 // 892 // If all those conditions hold, it means that BB2 is executed 893 // as many times as BB1, so they are placed in the same equivalence 894 // class by making BB2's equivalence class be BB1. 895 DominatedBBs.clear(); 896 DT->getDescendants(BB1, DominatedBBs); 897 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 898 899 DEBUG(printBlockEquivalence(dbgs(), BB1)); 900 } 901 902 // Assign weights to equivalence classes. 903 // 904 // All the basic blocks in the same equivalence class will execute 905 // the same number of times. Since we know that the head block in 906 // each equivalence class has the largest weight, assign that weight 907 // to all the blocks in that equivalence class. 908 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 909 for (auto &BI : F) { 910 const BasicBlock *BB = &BI; 911 const BasicBlock *EquivBB = EquivalenceClass[BB]; 912 if (BB != EquivBB) 913 BlockWeights[BB] = BlockWeights[EquivBB]; 914 DEBUG(printBlockWeight(dbgs(), BB)); 915 } 916 } 917 918 /// \brief Visit the given edge to decide if it has a valid weight. 919 /// 920 /// If \p E has not been visited before, we copy to \p UnknownEdge 921 /// and increment the count of unknown edges. 922 /// 923 /// \param E Edge to visit. 924 /// \param NumUnknownEdges Current number of unknown edges. 925 /// \param UnknownEdge Set if E has not been visited before. 926 /// 927 /// \returns E's weight, if known. Otherwise, return 0. 928 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 929 Edge *UnknownEdge) { 930 if (!VisitedEdges.count(E)) { 931 (*NumUnknownEdges)++; 932 *UnknownEdge = E; 933 return 0; 934 } 935 936 return EdgeWeights[E]; 937 } 938 939 /// \brief Propagate weights through incoming/outgoing edges. 940 /// 941 /// If the weight of a basic block is known, and there is only one edge 942 /// with an unknown weight, we can calculate the weight of that edge. 943 /// 944 /// Similarly, if all the edges have a known count, we can calculate the 945 /// count of the basic block, if needed. 946 /// 947 /// \param F Function to process. 948 /// \param UpdateBlockCount Whether we should update basic block counts that 949 /// has already been annotated. 950 /// 951 /// \returns True if new weights were assigned to edges or blocks. 952 bool SampleProfileLoader::propagateThroughEdges(Function &F, 953 bool UpdateBlockCount) { 954 bool Changed = false; 955 DEBUG(dbgs() << "\nPropagation through edges\n"); 956 for (const auto &BI : F) { 957 const BasicBlock *BB = &BI; 958 const BasicBlock *EC = EquivalenceClass[BB]; 959 960 // Visit all the predecessor and successor edges to determine 961 // which ones have a weight assigned already. Note that it doesn't 962 // matter that we only keep track of a single unknown edge. The 963 // only case we are interested in handling is when only a single 964 // edge is unknown (see setEdgeOrBlockWeight). 965 for (unsigned i = 0; i < 2; i++) { 966 uint64_t TotalWeight = 0; 967 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 968 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 969 970 if (i == 0) { 971 // First, visit all predecessor edges. 972 NumTotalEdges = Predecessors[BB].size(); 973 for (auto *Pred : Predecessors[BB]) { 974 Edge E = std::make_pair(Pred, BB); 975 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 976 if (E.first == E.second) 977 SelfReferentialEdge = E; 978 } 979 if (NumTotalEdges == 1) { 980 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 981 } 982 } else { 983 // On the second round, visit all successor edges. 984 NumTotalEdges = Successors[BB].size(); 985 for (auto *Succ : Successors[BB]) { 986 Edge E = std::make_pair(BB, Succ); 987 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 988 } 989 if (NumTotalEdges == 1) { 990 SingleEdge = std::make_pair(BB, Successors[BB][0]); 991 } 992 } 993 994 // After visiting all the edges, there are three cases that we 995 // can handle immediately: 996 // 997 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 998 // In this case, we simply check that the sum of all the edges 999 // is the same as BB's weight. If not, we change BB's weight 1000 // to match. Additionally, if BB had not been visited before, 1001 // we mark it visited. 1002 // 1003 // - Only one edge is unknown and BB has already been visited. 1004 // In this case, we can compute the weight of the edge by 1005 // subtracting the total block weight from all the known 1006 // edge weights. If the edges weight more than BB, then the 1007 // edge of the last remaining edge is set to zero. 1008 // 1009 // - There exists a self-referential edge and the weight of BB is 1010 // known. In this case, this edge can be based on BB's weight. 1011 // We add up all the other known edges and set the weight on 1012 // the self-referential edge as we did in the previous case. 1013 // 1014 // In any other case, we must continue iterating. Eventually, 1015 // all edges will get a weight, or iteration will stop when 1016 // it reaches SampleProfileMaxPropagateIterations. 1017 if (NumUnknownEdges <= 1) { 1018 uint64_t &BBWeight = BlockWeights[EC]; 1019 if (NumUnknownEdges == 0) { 1020 if (!VisitedBlocks.count(EC)) { 1021 // If we already know the weight of all edges, the weight of the 1022 // basic block can be computed. It should be no larger than the sum 1023 // of all edge weights. 1024 if (TotalWeight > BBWeight) { 1025 BBWeight = TotalWeight; 1026 Changed = true; 1027 DEBUG(dbgs() << "All edge weights for " << BB->getName() 1028 << " known. Set weight for block: "; 1029 printBlockWeight(dbgs(), BB);); 1030 } 1031 } else if (NumTotalEdges == 1 && 1032 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1033 // If there is only one edge for the visited basic block, use the 1034 // block weight to adjust edge weight if edge weight is smaller. 1035 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1036 Changed = true; 1037 } 1038 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1039 // If there is a single unknown edge and the block has been 1040 // visited, then we can compute E's weight. 1041 if (BBWeight >= TotalWeight) 1042 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1043 else 1044 EdgeWeights[UnknownEdge] = 0; 1045 const BasicBlock *OtherEC; 1046 if (i == 0) 1047 OtherEC = EquivalenceClass[UnknownEdge.first]; 1048 else 1049 OtherEC = EquivalenceClass[UnknownEdge.second]; 1050 // Edge weights should never exceed the BB weights it connects. 1051 if (VisitedBlocks.count(OtherEC) && 1052 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1053 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1054 VisitedEdges.insert(UnknownEdge); 1055 Changed = true; 1056 DEBUG(dbgs() << "Set weight for edge: "; 1057 printEdgeWeight(dbgs(), UnknownEdge)); 1058 } 1059 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1060 // If a block Weights 0, all its in/out edges should weight 0. 1061 if (i == 0) { 1062 for (auto *Pred : Predecessors[BB]) { 1063 Edge E = std::make_pair(Pred, BB); 1064 EdgeWeights[E] = 0; 1065 VisitedEdges.insert(E); 1066 } 1067 } else { 1068 for (auto *Succ : Successors[BB]) { 1069 Edge E = std::make_pair(BB, Succ); 1070 EdgeWeights[E] = 0; 1071 VisitedEdges.insert(E); 1072 } 1073 } 1074 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1075 uint64_t &BBWeight = BlockWeights[BB]; 1076 // We have a self-referential edge and the weight of BB is known. 1077 if (BBWeight >= TotalWeight) 1078 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1079 else 1080 EdgeWeights[SelfReferentialEdge] = 0; 1081 VisitedEdges.insert(SelfReferentialEdge); 1082 Changed = true; 1083 DEBUG(dbgs() << "Set self-referential edge weight to: "; 1084 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1085 } 1086 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1087 BlockWeights[EC] = TotalWeight; 1088 VisitedBlocks.insert(EC); 1089 Changed = true; 1090 } 1091 } 1092 } 1093 1094 return Changed; 1095 } 1096 1097 /// \brief Build in/out edge lists for each basic block in the CFG. 1098 /// 1099 /// We are interested in unique edges. If a block B1 has multiple 1100 /// edges to another block B2, we only add a single B1->B2 edge. 1101 void SampleProfileLoader::buildEdges(Function &F) { 1102 for (auto &BI : F) { 1103 BasicBlock *B1 = &BI; 1104 1105 // Add predecessors for B1. 1106 SmallPtrSet<BasicBlock *, 16> Visited; 1107 if (!Predecessors[B1].empty()) 1108 llvm_unreachable("Found a stale predecessors list in a basic block."); 1109 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1110 BasicBlock *B2 = *PI; 1111 if (Visited.insert(B2).second) 1112 Predecessors[B1].push_back(B2); 1113 } 1114 1115 // Add successors for B1. 1116 Visited.clear(); 1117 if (!Successors[B1].empty()) 1118 llvm_unreachable("Found a stale successors list in a basic block."); 1119 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1120 BasicBlock *B2 = *SI; 1121 if (Visited.insert(B2).second) 1122 Successors[B1].push_back(B2); 1123 } 1124 } 1125 } 1126 1127 /// Sorts the CallTargetMap \p M by count in descending order and stores the 1128 /// sorted result in \p Sorted. Returns the total counts. 1129 static uint64_t SortCallTargets(SmallVector<InstrProfValueData, 2> &Sorted, 1130 const SampleRecord::CallTargetMap &M) { 1131 Sorted.clear(); 1132 uint64_t Sum = 0; 1133 for (auto I = M.begin(); I != M.end(); ++I) { 1134 Sum += I->getValue(); 1135 Sorted.push_back({Function::getGUID(I->getKey()), I->getValue()}); 1136 } 1137 std::sort(Sorted.begin(), Sorted.end(), 1138 [](const InstrProfValueData &L, const InstrProfValueData &R) { 1139 if (L.Count == R.Count) 1140 return L.Value > R.Value; 1141 else 1142 return L.Count > R.Count; 1143 }); 1144 return Sum; 1145 } 1146 1147 /// \brief Propagate weights into edges 1148 /// 1149 /// The following rules are applied to every block BB in the CFG: 1150 /// 1151 /// - If BB has a single predecessor/successor, then the weight 1152 /// of that edge is the weight of the block. 1153 /// 1154 /// - If all incoming or outgoing edges are known except one, and the 1155 /// weight of the block is already known, the weight of the unknown 1156 /// edge will be the weight of the block minus the sum of all the known 1157 /// edges. If the sum of all the known edges is larger than BB's weight, 1158 /// we set the unknown edge weight to zero. 1159 /// 1160 /// - If there is a self-referential edge, and the weight of the block is 1161 /// known, the weight for that edge is set to the weight of the block 1162 /// minus the weight of the other incoming edges to that block (if 1163 /// known). 1164 void SampleProfileLoader::propagateWeights(Function &F) { 1165 bool Changed = true; 1166 unsigned I = 0; 1167 1168 // If BB weight is larger than its corresponding loop's header BB weight, 1169 // use the BB weight to replace the loop header BB weight. 1170 for (auto &BI : F) { 1171 BasicBlock *BB = &BI; 1172 Loop *L = LI->getLoopFor(BB); 1173 if (!L) { 1174 continue; 1175 } 1176 BasicBlock *Header = L->getHeader(); 1177 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1178 BlockWeights[Header] = BlockWeights[BB]; 1179 } 1180 } 1181 1182 // Before propagation starts, build, for each block, a list of 1183 // unique predecessors and successors. This is necessary to handle 1184 // identical edges in multiway branches. Since we visit all blocks and all 1185 // edges of the CFG, it is cleaner to build these lists once at the start 1186 // of the pass. 1187 buildEdges(F); 1188 1189 // Propagate until we converge or we go past the iteration limit. 1190 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1191 Changed = propagateThroughEdges(F, false); 1192 } 1193 1194 // The first propagation propagates BB counts from annotated BBs to unknown 1195 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1196 // to propagate edge weights. 1197 VisitedEdges.clear(); 1198 Changed = true; 1199 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1200 Changed = propagateThroughEdges(F, false); 1201 } 1202 1203 // The 3rd propagation pass allows adjust annotated BB weights that are 1204 // obviously wrong. 1205 Changed = true; 1206 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1207 Changed = propagateThroughEdges(F, true); 1208 } 1209 1210 // Generate MD_prof metadata for every branch instruction using the 1211 // edge weights computed during propagation. 1212 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1213 LLVMContext &Ctx = F.getContext(); 1214 MDBuilder MDB(Ctx); 1215 for (auto &BI : F) { 1216 BasicBlock *BB = &BI; 1217 1218 if (BlockWeights[BB]) { 1219 for (auto &I : BB->getInstList()) { 1220 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1221 continue; 1222 CallSite CS(&I); 1223 if (!CS.getCalledFunction()) { 1224 const DebugLoc &DLoc = I.getDebugLoc(); 1225 if (!DLoc) 1226 continue; 1227 const DILocation *DIL = DLoc; 1228 uint32_t LineOffset = getOffset(DIL); 1229 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1230 1231 const FunctionSamples *FS = findFunctionSamples(I); 1232 if (!FS) 1233 continue; 1234 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1235 if (!T || T.get().size() == 0) 1236 continue; 1237 SmallVector<InstrProfValueData, 2> SortedCallTargets; 1238 uint64_t Sum = SortCallTargets(SortedCallTargets, T.get()); 1239 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1240 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1241 SortedCallTargets.size()); 1242 } else if (!dyn_cast<IntrinsicInst>(&I)) { 1243 SmallVector<uint32_t, 1> Weights; 1244 Weights.push_back(BlockWeights[BB]); 1245 I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); 1246 } 1247 } 1248 } 1249 TerminatorInst *TI = BB->getTerminator(); 1250 if (TI->getNumSuccessors() == 1) 1251 continue; 1252 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1253 continue; 1254 1255 DebugLoc BranchLoc = TI->getDebugLoc(); 1256 DEBUG(dbgs() << "\nGetting weights for branch at line " 1257 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1258 : Twine("<UNKNOWN LOCATION>")) 1259 << ".\n"); 1260 SmallVector<uint32_t, 4> Weights; 1261 uint32_t MaxWeight = 0; 1262 Instruction *MaxDestInst; 1263 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1264 BasicBlock *Succ = TI->getSuccessor(I); 1265 Edge E = std::make_pair(BB, Succ); 1266 uint64_t Weight = EdgeWeights[E]; 1267 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1268 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1269 // if needed. Sample counts in profiles are 64-bit unsigned values, 1270 // but internally branch weights are expressed as 32-bit values. 1271 if (Weight > std::numeric_limits<uint32_t>::max()) { 1272 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1273 Weight = std::numeric_limits<uint32_t>::max(); 1274 } 1275 // Weight is added by one to avoid propagation errors introduced by 1276 // 0 weights. 1277 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1278 if (Weight != 0) { 1279 if (Weight > MaxWeight) { 1280 MaxWeight = Weight; 1281 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1282 } 1283 } 1284 } 1285 1286 uint64_t TempWeight; 1287 // Only set weights if there is at least one non-zero weight. 1288 // In any other case, let the analyzer set weights. 1289 // Do not set weights if the weights are present. In ThinLTO, the profile 1290 // annotation is done twice. If the first annotation already set the 1291 // weights, the second pass does not need to set it. 1292 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1293 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1294 TI->setMetadata(llvm::LLVMContext::MD_prof, 1295 MDB.createBranchWeights(Weights)); 1296 ORE->emit(OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1297 << "most popular destination for conditional branches at " 1298 << ore::NV("CondBranchesLoc", BranchLoc)); 1299 } else { 1300 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1301 } 1302 } 1303 } 1304 1305 /// \brief Get the line number for the function header. 1306 /// 1307 /// This looks up function \p F in the current compilation unit and 1308 /// retrieves the line number where the function is defined. This is 1309 /// line 0 for all the samples read from the profile file. Every line 1310 /// number is relative to this line. 1311 /// 1312 /// \param F Function object to query. 1313 /// 1314 /// \returns the line number where \p F is defined. If it returns 0, 1315 /// it means that there is no debug information available for \p F. 1316 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1317 if (DISubprogram *S = F.getSubprogram()) 1318 return S->getLine(); 1319 1320 // If the start of \p F is missing, emit a diagnostic to inform the user 1321 // about the missed opportunity. 1322 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1323 "No debug information found in function " + F.getName() + 1324 ": Function profile not used", 1325 DS_Warning)); 1326 return 0; 1327 } 1328 1329 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1330 DT.reset(new DominatorTree); 1331 DT->recalculate(F); 1332 1333 PDT.reset(new PostDomTreeBase<BasicBlock>()); 1334 PDT->recalculate(F); 1335 1336 LI.reset(new LoopInfo); 1337 LI->analyze(*DT); 1338 } 1339 1340 /// \brief Generate branch weight metadata for all branches in \p F. 1341 /// 1342 /// Branch weights are computed out of instruction samples using a 1343 /// propagation heuristic. Propagation proceeds in 3 phases: 1344 /// 1345 /// 1- Assignment of block weights. All the basic blocks in the function 1346 /// are initial assigned the same weight as their most frequently 1347 /// executed instruction. 1348 /// 1349 /// 2- Creation of equivalence classes. Since samples may be missing from 1350 /// blocks, we can fill in the gaps by setting the weights of all the 1351 /// blocks in the same equivalence class to the same weight. To compute 1352 /// the concept of equivalence, we use dominance and loop information. 1353 /// Two blocks B1 and B2 are in the same equivalence class if B1 1354 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1355 /// 1356 /// 3- Propagation of block weights into edges. This uses a simple 1357 /// propagation heuristic. The following rules are applied to every 1358 /// block BB in the CFG: 1359 /// 1360 /// - If BB has a single predecessor/successor, then the weight 1361 /// of that edge is the weight of the block. 1362 /// 1363 /// - If all the edges are known except one, and the weight of the 1364 /// block is already known, the weight of the unknown edge will 1365 /// be the weight of the block minus the sum of all the known 1366 /// edges. If the sum of all the known edges is larger than BB's weight, 1367 /// we set the unknown edge weight to zero. 1368 /// 1369 /// - If there is a self-referential edge, and the weight of the block is 1370 /// known, the weight for that edge is set to the weight of the block 1371 /// minus the weight of the other incoming edges to that block (if 1372 /// known). 1373 /// 1374 /// Since this propagation is not guaranteed to finalize for every CFG, we 1375 /// only allow it to proceed for a limited number of iterations (controlled 1376 /// by -sample-profile-max-propagate-iterations). 1377 /// 1378 /// FIXME: Try to replace this propagation heuristic with a scheme 1379 /// that is guaranteed to finalize. A work-list approach similar to 1380 /// the standard value propagation algorithm used by SSA-CCP might 1381 /// work here. 1382 /// 1383 /// Once all the branch weights are computed, we emit the MD_prof 1384 /// metadata on BB using the computed values for each of its branches. 1385 /// 1386 /// \param F The function to query. 1387 /// 1388 /// \returns true if \p F was modified. Returns false, otherwise. 1389 bool SampleProfileLoader::emitAnnotations(Function &F) { 1390 bool Changed = false; 1391 1392 if (getFunctionLoc(F) == 0) 1393 return false; 1394 1395 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 1396 << ": " << getFunctionLoc(F) << "\n"); 1397 1398 DenseSet<GlobalValue::GUID> ImportGUIDs; 1399 Changed |= inlineHotFunctions(F, ImportGUIDs); 1400 1401 // Compute basic block weights. 1402 Changed |= computeBlockWeights(F); 1403 1404 if (Changed) { 1405 // Add an entry count to the function using the samples gathered at the 1406 // function entry. Also sets the GUIDs that comes from a different 1407 // module but inlined in the profiled binary. This is aiming at making 1408 // the IR match the profiled binary before annotation. 1409 F.setEntryCount(Samples->getHeadSamples() + 1, &ImportGUIDs); 1410 1411 // Compute dominance and loop info needed for propagation. 1412 computeDominanceAndLoopInfo(F); 1413 1414 // Find equivalence classes. 1415 findEquivalenceClasses(F); 1416 1417 // Propagate weights to all edges. 1418 propagateWeights(F); 1419 } 1420 1421 // If coverage checking was requested, compute it now. 1422 if (SampleProfileRecordCoverage) { 1423 unsigned Used = CoverageTracker.countUsedRecords(Samples); 1424 unsigned Total = CoverageTracker.countBodyRecords(Samples); 1425 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1426 if (Coverage < SampleProfileRecordCoverage) { 1427 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1428 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1429 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1430 Twine(Coverage) + "%) were applied", 1431 DS_Warning)); 1432 } 1433 } 1434 1435 if (SampleProfileSampleCoverage) { 1436 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1437 uint64_t Total = CoverageTracker.countBodySamples(Samples); 1438 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1439 if (Coverage < SampleProfileSampleCoverage) { 1440 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1441 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1442 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1443 Twine(Coverage) + "%) were applied", 1444 DS_Warning)); 1445 } 1446 } 1447 return Changed; 1448 } 1449 1450 char SampleProfileLoaderLegacyPass::ID = 0; 1451 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1452 "Sample Profile loader", false, false) 1453 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1454 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1455 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1456 "Sample Profile loader", false, false) 1457 1458 bool SampleProfileLoader::doInitialization(Module &M) { 1459 auto &Ctx = M.getContext(); 1460 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1461 if (std::error_code EC = ReaderOrErr.getError()) { 1462 std::string Msg = "Could not open profile: " + EC.message(); 1463 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1464 return false; 1465 } 1466 Reader = std::move(ReaderOrErr.get()); 1467 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1468 return true; 1469 } 1470 1471 ModulePass *llvm::createSampleProfileLoaderPass() { 1472 return new SampleProfileLoaderLegacyPass(SampleProfileFile); 1473 } 1474 1475 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1476 return new SampleProfileLoaderLegacyPass(Name); 1477 } 1478 1479 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM) { 1480 if (!ProfileIsValid) 1481 return false; 1482 1483 // Compute the total number of samples collected in this profile. 1484 for (const auto &I : Reader->getProfiles()) 1485 TotalCollectedSamples += I.second.getTotalSamples(); 1486 1487 // Populate the symbol map. 1488 for (const auto &N_F : M.getValueSymbolTable()) { 1489 std::string OrigName = N_F.getKey(); 1490 Function *F = dyn_cast<Function>(N_F.getValue()); 1491 if (F == nullptr) 1492 continue; 1493 SymbolMap[OrigName] = F; 1494 auto pos = OrigName.find('.'); 1495 if (pos != std::string::npos) { 1496 std::string NewName = OrigName.substr(0, pos); 1497 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1498 // Failiing to insert means there is already an entry in SymbolMap, 1499 // thus there are multiple functions that are mapped to the same 1500 // stripped name. In this case of name conflicting, set the value 1501 // to nullptr to avoid confusion. 1502 if (!r.second) 1503 r.first->second = nullptr; 1504 } 1505 } 1506 1507 bool retval = false; 1508 for (auto &F : M) 1509 if (!F.isDeclaration()) { 1510 clearFunctionData(); 1511 retval |= runOnFunction(F, AM); 1512 } 1513 if (M.getProfileSummary() == nullptr) 1514 M.setProfileSummary(Reader->getSummary().getMD(M.getContext())); 1515 return retval; 1516 } 1517 1518 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1519 ACT = &getAnalysis<AssumptionCacheTracker>(); 1520 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 1521 return SampleLoader.runOnModule(M, nullptr); 1522 } 1523 1524 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 1525 F.setEntryCount(0); 1526 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 1527 if (AM) { 1528 auto &FAM = 1529 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 1530 .getManager(); 1531 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1532 } else { 1533 OwnedORE = make_unique<OptimizationRemarkEmitter>(&F); 1534 ORE = OwnedORE.get(); 1535 } 1536 Samples = Reader->getSamplesFor(F); 1537 if (Samples && !Samples->empty()) 1538 return emitAnnotations(F); 1539 return false; 1540 } 1541 1542 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1543 ModuleAnalysisManager &AM) { 1544 FunctionAnalysisManager &FAM = 1545 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1546 1547 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 1548 return FAM.getResult<AssumptionAnalysis>(F); 1549 }; 1550 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 1551 return FAM.getResult<TargetIRAnalysis>(F); 1552 }; 1553 1554 SampleProfileLoader SampleLoader(ProfileFileName.empty() ? SampleProfileFile 1555 : ProfileFileName, 1556 GetAssumptionCache, GetTTI); 1557 1558 SampleLoader.doInitialization(M); 1559 1560 if (!SampleLoader.runOnModule(M, &AM)) 1561 return PreservedAnalyses::all(); 1562 1563 return PreservedAnalyses::none(); 1564 } 1565