1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SampleProfileLoader transformation. This pass 10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 12 // profile information in the given profile. 13 // 14 // This pass generates branch weight annotations on the IR: 15 // 16 // - prof: Represents branch weights. This annotation is added to branches 17 // to indicate the weights of each edge coming out of the branch. 18 // The weight of each edge is the weight of the target block for 19 // that edge. The weight of a block B is computed as the maximum 20 // number of samples found in B. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/IPO/SampleProfile.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/PriorityQueue.h" 29 #include "llvm/ADT/SCCIterator.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/StringMap.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/ADT/Twine.h" 35 #include "llvm/Analysis/AssumptionCache.h" 36 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 37 #include "llvm/Analysis/CallGraph.h" 38 #include "llvm/Analysis/InlineAdvisor.h" 39 #include "llvm/Analysis/InlineCost.h" 40 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 41 #include "llvm/Analysis/ProfileSummaryInfo.h" 42 #include "llvm/Analysis/ReplayInlineAdvisor.h" 43 #include "llvm/Analysis/TargetLibraryInfo.h" 44 #include "llvm/Analysis/TargetTransformInfo.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DiagnosticInfo.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/MDBuilder.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/PassManager.h" 58 #include "llvm/IR/PseudoProbe.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/InitializePasses.h" 61 #include "llvm/Pass.h" 62 #include "llvm/ProfileData/InstrProf.h" 63 #include "llvm/ProfileData/SampleProf.h" 64 #include "llvm/ProfileData/SampleProfReader.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Transforms/IPO.h" 71 #include "llvm/Transforms/IPO/ProfiledCallGraph.h" 72 #include "llvm/Transforms/IPO/SampleContextTracker.h" 73 #include "llvm/Transforms/IPO/SampleProfileProbe.h" 74 #include "llvm/Transforms/Instrumentation.h" 75 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 76 #include "llvm/Transforms/Utils/Cloning.h" 77 #include "llvm/Transforms/Utils/SampleProfileLoaderBaseImpl.h" 78 #include "llvm/Transforms/Utils/SampleProfileLoaderBaseUtil.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <cstdint> 82 #include <functional> 83 #include <limits> 84 #include <map> 85 #include <memory> 86 #include <queue> 87 #include <string> 88 #include <system_error> 89 #include <utility> 90 #include <vector> 91 92 using namespace llvm; 93 using namespace sampleprof; 94 using namespace llvm::sampleprofutil; 95 using ProfileCount = Function::ProfileCount; 96 #define DEBUG_TYPE "sample-profile" 97 #define CSINLINE_DEBUG DEBUG_TYPE "-inline" 98 99 STATISTIC(NumCSInlined, 100 "Number of functions inlined with context sensitive profile"); 101 STATISTIC(NumCSNotInlined, 102 "Number of functions not inlined with context sensitive profile"); 103 STATISTIC(NumMismatchedProfile, 104 "Number of functions with CFG mismatched profile"); 105 STATISTIC(NumMatchedProfile, "Number of functions with CFG matched profile"); 106 STATISTIC(NumDuplicatedInlinesite, 107 "Number of inlined callsites with a partial distribution factor"); 108 109 STATISTIC(NumCSInlinedHitMinLimit, 110 "Number of functions with FDO inline stopped due to min size limit"); 111 STATISTIC(NumCSInlinedHitMaxLimit, 112 "Number of functions with FDO inline stopped due to max size limit"); 113 STATISTIC( 114 NumCSInlinedHitGrowthLimit, 115 "Number of functions with FDO inline stopped due to growth size limit"); 116 117 // Command line option to specify the file to read samples from. This is 118 // mainly used for debugging. 119 static cl::opt<std::string> SampleProfileFile( 120 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 121 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 122 123 // The named file contains a set of transformations that may have been applied 124 // to the symbol names between the program from which the sample data was 125 // collected and the current program's symbols. 126 static cl::opt<std::string> SampleProfileRemappingFile( 127 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), 128 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); 129 130 static cl::opt<bool> ProfileSampleAccurate( 131 "profile-sample-accurate", cl::Hidden, cl::init(false), 132 cl::desc("If the sample profile is accurate, we will mark all un-sampled " 133 "callsite and function as having 0 samples. Otherwise, treat " 134 "un-sampled callsites and functions conservatively as unknown. ")); 135 136 static cl::opt<bool> ProfileSampleBlockAccurate( 137 "profile-sample-block-accurate", cl::Hidden, cl::init(false), 138 cl::desc("If the sample profile is accurate, we will mark all un-sampled " 139 "branches and calls as having 0 samples. Otherwise, treat " 140 "them conservatively as unknown. ")); 141 142 static cl::opt<bool> ProfileAccurateForSymsInList( 143 "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore, 144 cl::init(true), 145 cl::desc("For symbols in profile symbol list, regard their profiles to " 146 "be accurate. It may be overriden by profile-sample-accurate. ")); 147 148 static cl::opt<bool> ProfileMergeInlinee( 149 "sample-profile-merge-inlinee", cl::Hidden, cl::init(true), 150 cl::desc("Merge past inlinee's profile to outline version if sample " 151 "profile loader decided not to inline a call site. It will " 152 "only be enabled when top-down order of profile loading is " 153 "enabled. ")); 154 155 static cl::opt<bool> ProfileTopDownLoad( 156 "sample-profile-top-down-load", cl::Hidden, cl::init(true), 157 cl::desc("Do profile annotation and inlining for functions in top-down " 158 "order of call graph during sample profile loading. It only " 159 "works for new pass manager. ")); 160 161 static cl::opt<bool> 162 UseProfiledCallGraph("use-profiled-call-graph", cl::init(true), cl::Hidden, 163 cl::desc("Process functions in a top-down order " 164 "defined by the profiled call graph when " 165 "-sample-profile-top-down-load is on.")); 166 cl::opt<bool> 167 SortProfiledSCC("sort-profiled-scc-member", cl::init(true), cl::Hidden, 168 cl::desc("Sort profiled recursion by edge weights.")); 169 170 static cl::opt<bool> ProfileSizeInline( 171 "sample-profile-inline-size", cl::Hidden, cl::init(false), 172 cl::desc("Inline cold call sites in profile loader if it's beneficial " 173 "for code size.")); 174 175 // Since profiles are consumed by many passes, turning on this option has 176 // side effects. For instance, pre-link SCC inliner would see merged profiles 177 // and inline the hot functions (that are skipped in this pass). 178 static cl::opt<bool> DisableSampleLoaderInlining( 179 "disable-sample-loader-inlining", cl::Hidden, cl::init(false), 180 cl::desc("If true, artifically skip inline transformation in sample-loader " 181 "pass, and merge (or scale) profiles (as configured by " 182 "--sample-profile-merge-inlinee).")); 183 184 cl::opt<int> ProfileInlineGrowthLimit( 185 "sample-profile-inline-growth-limit", cl::Hidden, cl::init(12), 186 cl::desc("The size growth ratio limit for proirity-based sample profile " 187 "loader inlining.")); 188 189 cl::opt<int> ProfileInlineLimitMin( 190 "sample-profile-inline-limit-min", cl::Hidden, cl::init(100), 191 cl::desc("The lower bound of size growth limit for " 192 "proirity-based sample profile loader inlining.")); 193 194 cl::opt<int> ProfileInlineLimitMax( 195 "sample-profile-inline-limit-max", cl::Hidden, cl::init(10000), 196 cl::desc("The upper bound of size growth limit for " 197 "proirity-based sample profile loader inlining.")); 198 199 cl::opt<int> SampleHotCallSiteThreshold( 200 "sample-profile-hot-inline-threshold", cl::Hidden, cl::init(3000), 201 cl::desc("Hot callsite threshold for proirity-based sample profile loader " 202 "inlining.")); 203 204 cl::opt<int> SampleColdCallSiteThreshold( 205 "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45), 206 cl::desc("Threshold for inlining cold callsites")); 207 208 static cl::opt<unsigned> ProfileICPRelativeHotness( 209 "sample-profile-icp-relative-hotness", cl::Hidden, cl::init(25), 210 cl::desc( 211 "Relative hotness percentage threshold for indirect " 212 "call promotion in proirity-based sample profile loader inlining.")); 213 214 static cl::opt<unsigned> ProfileICPRelativeHotnessSkip( 215 "sample-profile-icp-relative-hotness-skip", cl::Hidden, cl::init(1), 216 cl::desc( 217 "Skip relative hotness check for ICP up to given number of targets.")); 218 219 static cl::opt<bool> CallsitePrioritizedInline( 220 "sample-profile-prioritized-inline", cl::Hidden, cl::ZeroOrMore, 221 cl::init(false), 222 cl::desc("Use call site prioritized inlining for sample profile loader." 223 "Currently only CSSPGO is supported.")); 224 225 static cl::opt<bool> UsePreInlinerDecision( 226 "sample-profile-use-preinliner", cl::Hidden, cl::ZeroOrMore, 227 cl::init(false), 228 cl::desc("Use the preinliner decisions stored in profile context.")); 229 230 static cl::opt<bool> AllowRecursiveInline( 231 "sample-profile-recursive-inline", cl::Hidden, cl::ZeroOrMore, 232 cl::init(false), 233 cl::desc("Allow sample loader inliner to inline recursive calls.")); 234 235 static cl::opt<std::string> ProfileInlineReplayFile( 236 "sample-profile-inline-replay", cl::init(""), cl::value_desc("filename"), 237 cl::desc( 238 "Optimization remarks file containing inline remarks to be replayed " 239 "by inlining from sample profile loader."), 240 cl::Hidden); 241 242 static cl::opt<ReplayInlinerSettings::Scope> ProfileInlineReplayScope( 243 "sample-profile-inline-replay-scope", 244 cl::init(ReplayInlinerSettings::Scope::Function), 245 cl::values(clEnumValN(ReplayInlinerSettings::Scope::Function, "Function", 246 "Replay on functions that have remarks associated " 247 "with them (default)"), 248 clEnumValN(ReplayInlinerSettings::Scope::Module, "Module", 249 "Replay on the entire module")), 250 cl::desc("Whether inline replay should be applied to the entire " 251 "Module or just the Functions (default) that are present as " 252 "callers in remarks during sample profile inlining."), 253 cl::Hidden); 254 255 static cl::opt<ReplayInlinerSettings::Fallback> ProfileInlineReplayFallback( 256 "sample-profile-inline-replay-fallback", 257 cl::init(ReplayInlinerSettings::Fallback::Original), 258 cl::values( 259 clEnumValN( 260 ReplayInlinerSettings::Fallback::Original, "Original", 261 "All decisions not in replay send to original advisor (default)"), 262 clEnumValN(ReplayInlinerSettings::Fallback::AlwaysInline, 263 "AlwaysInline", "All decisions not in replay are inlined"), 264 clEnumValN(ReplayInlinerSettings::Fallback::NeverInline, "NeverInline", 265 "All decisions not in replay are not inlined")), 266 cl::desc("How sample profile inline replay treats sites that don't come " 267 "from the replay. Original: defers to original advisor, " 268 "AlwaysInline: inline all sites not in replay, NeverInline: " 269 "inline no sites not in replay"), 270 cl::Hidden); 271 272 static cl::opt<CallSiteFormat::Format> ProfileInlineReplayFormat( 273 "sample-profile-inline-replay-format", 274 cl::init(CallSiteFormat::Format::LineColumnDiscriminator), 275 cl::values( 276 clEnumValN(CallSiteFormat::Format::Line, "Line", "<Line Number>"), 277 clEnumValN(CallSiteFormat::Format::LineColumn, "LineColumn", 278 "<Line Number>:<Column Number>"), 279 clEnumValN(CallSiteFormat::Format::LineDiscriminator, 280 "LineDiscriminator", "<Line Number>.<Discriminator>"), 281 clEnumValN(CallSiteFormat::Format::LineColumnDiscriminator, 282 "LineColumnDiscriminator", 283 "<Line Number>:<Column Number>.<Discriminator> (default)")), 284 cl::desc("How sample profile inline replay file is formatted"), cl::Hidden); 285 286 static cl::opt<unsigned> 287 MaxNumPromotions("sample-profile-icp-max-prom", cl::init(3), cl::Hidden, 288 cl::ZeroOrMore, 289 cl::desc("Max number of promotions for a single indirect " 290 "call callsite in sample profile loader")); 291 292 static cl::opt<bool> OverwriteExistingWeights( 293 "overwrite-existing-weights", cl::Hidden, cl::init(false), 294 cl::desc("Ignore existing branch weights on IR and always overwrite.")); 295 296 extern cl::opt<bool> EnableExtTspBlockPlacement; 297 298 namespace { 299 300 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 301 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 302 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 303 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 304 using BlockEdgeMap = 305 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 306 307 class GUIDToFuncNameMapper { 308 public: 309 GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader, 310 DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap) 311 : CurrentReader(Reader), CurrentModule(M), 312 CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) { 313 if (!CurrentReader.useMD5()) 314 return; 315 316 for (const auto &F : CurrentModule) { 317 StringRef OrigName = F.getName(); 318 CurrentGUIDToFuncNameMap.insert( 319 {Function::getGUID(OrigName), OrigName}); 320 321 // Local to global var promotion used by optimization like thinlto 322 // will rename the var and add suffix like ".llvm.xxx" to the 323 // original local name. In sample profile, the suffixes of function 324 // names are all stripped. Since it is possible that the mapper is 325 // built in post-thin-link phase and var promotion has been done, 326 // we need to add the substring of function name without the suffix 327 // into the GUIDToFuncNameMap. 328 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 329 if (CanonName != OrigName) 330 CurrentGUIDToFuncNameMap.insert( 331 {Function::getGUID(CanonName), CanonName}); 332 } 333 334 // Update GUIDToFuncNameMap for each function including inlinees. 335 SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap); 336 } 337 338 ~GUIDToFuncNameMapper() { 339 if (!CurrentReader.useMD5()) 340 return; 341 342 CurrentGUIDToFuncNameMap.clear(); 343 344 // Reset GUIDToFuncNameMap for of each function as they're no 345 // longer valid at this point. 346 SetGUIDToFuncNameMapForAll(nullptr); 347 } 348 349 private: 350 void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) { 351 std::queue<FunctionSamples *> FSToUpdate; 352 for (auto &IFS : CurrentReader.getProfiles()) { 353 FSToUpdate.push(&IFS.second); 354 } 355 356 while (!FSToUpdate.empty()) { 357 FunctionSamples *FS = FSToUpdate.front(); 358 FSToUpdate.pop(); 359 FS->GUIDToFuncNameMap = Map; 360 for (const auto &ICS : FS->getCallsiteSamples()) { 361 const FunctionSamplesMap &FSMap = ICS.second; 362 for (auto &IFS : FSMap) { 363 FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second); 364 FSToUpdate.push(&FS); 365 } 366 } 367 } 368 } 369 370 SampleProfileReader &CurrentReader; 371 Module &CurrentModule; 372 DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap; 373 }; 374 375 // Inline candidate used by iterative callsite prioritized inliner 376 struct InlineCandidate { 377 CallBase *CallInstr; 378 const FunctionSamples *CalleeSamples; 379 // Prorated callsite count, which will be used to guide inlining. For example, 380 // if a callsite is duplicated in LTO prelink, then in LTO postlink the two 381 // copies will get their own distribution factors and their prorated counts 382 // will be used to decide if they should be inlined independently. 383 uint64_t CallsiteCount; 384 // Call site distribution factor to prorate the profile samples for a 385 // duplicated callsite. Default value is 1.0. 386 float CallsiteDistribution; 387 }; 388 389 // Inline candidate comparer using call site weight 390 struct CandidateComparer { 391 bool operator()(const InlineCandidate &LHS, const InlineCandidate &RHS) { 392 if (LHS.CallsiteCount != RHS.CallsiteCount) 393 return LHS.CallsiteCount < RHS.CallsiteCount; 394 395 const FunctionSamples *LCS = LHS.CalleeSamples; 396 const FunctionSamples *RCS = RHS.CalleeSamples; 397 assert(LCS && RCS && "Expect non-null FunctionSamples"); 398 399 // Tie breaker using number of samples try to favor smaller functions first 400 if (LCS->getBodySamples().size() != RCS->getBodySamples().size()) 401 return LCS->getBodySamples().size() > RCS->getBodySamples().size(); 402 403 // Tie breaker using GUID so we have stable/deterministic inlining order 404 return LCS->getGUID(LCS->getName()) < RCS->getGUID(RCS->getName()); 405 } 406 }; 407 408 using CandidateQueue = 409 PriorityQueue<InlineCandidate, std::vector<InlineCandidate>, 410 CandidateComparer>; 411 412 /// Sample profile pass. 413 /// 414 /// This pass reads profile data from the file specified by 415 /// -sample-profile-file and annotates every affected function with the 416 /// profile information found in that file. 417 class SampleProfileLoader final 418 : public SampleProfileLoaderBaseImpl<BasicBlock> { 419 public: 420 SampleProfileLoader( 421 StringRef Name, StringRef RemapName, ThinOrFullLTOPhase LTOPhase, 422 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 423 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo, 424 std::function<const TargetLibraryInfo &(Function &)> GetTLI) 425 : SampleProfileLoaderBaseImpl(std::string(Name), std::string(RemapName)), 426 GetAC(std::move(GetAssumptionCache)), 427 GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)), 428 LTOPhase(LTOPhase) {} 429 430 bool doInitialization(Module &M, FunctionAnalysisManager *FAM = nullptr); 431 bool runOnModule(Module &M, ModuleAnalysisManager *AM, 432 ProfileSummaryInfo *_PSI, CallGraph *CG); 433 434 protected: 435 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 436 bool emitAnnotations(Function &F); 437 ErrorOr<uint64_t> getInstWeight(const Instruction &I) override; 438 ErrorOr<uint64_t> getProbeWeight(const Instruction &I); 439 const FunctionSamples *findCalleeFunctionSamples(const CallBase &I) const; 440 const FunctionSamples * 441 findFunctionSamples(const Instruction &I) const override; 442 std::vector<const FunctionSamples *> 443 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 444 void findExternalInlineCandidate(CallBase *CB, const FunctionSamples *Samples, 445 DenseSet<GlobalValue::GUID> &InlinedGUIDs, 446 const StringMap<Function *> &SymbolMap, 447 uint64_t Threshold); 448 // Attempt to promote indirect call and also inline the promoted call 449 bool tryPromoteAndInlineCandidate( 450 Function &F, InlineCandidate &Candidate, uint64_t SumOrigin, 451 uint64_t &Sum, SmallVector<CallBase *, 8> *InlinedCallSites = nullptr); 452 453 bool inlineHotFunctions(Function &F, 454 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 455 Optional<InlineCost> getExternalInlineAdvisorCost(CallBase &CB); 456 bool getExternalInlineAdvisorShouldInline(CallBase &CB); 457 InlineCost shouldInlineCandidate(InlineCandidate &Candidate); 458 bool getInlineCandidate(InlineCandidate *NewCandidate, CallBase *CB); 459 bool 460 tryInlineCandidate(InlineCandidate &Candidate, 461 SmallVector<CallBase *, 8> *InlinedCallSites = nullptr); 462 bool 463 inlineHotFunctionsWithPriority(Function &F, 464 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 465 // Inline cold/small functions in addition to hot ones 466 bool shouldInlineColdCallee(CallBase &CallInst); 467 void emitOptimizationRemarksForInlineCandidates( 468 const SmallVectorImpl<CallBase *> &Candidates, const Function &F, 469 bool Hot); 470 void promoteMergeNotInlinedContextSamples( 471 DenseMap<CallBase *, const FunctionSamples *> NonInlinedCallSites, 472 const Function &F); 473 std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG); 474 std::unique_ptr<ProfiledCallGraph> buildProfiledCallGraph(CallGraph &CG); 475 void generateMDProfMetadata(Function &F); 476 477 /// Map from function name to Function *. Used to find the function from 478 /// the function name. If the function name contains suffix, additional 479 /// entry is added to map from the stripped name to the function if there 480 /// is one-to-one mapping. 481 StringMap<Function *> SymbolMap; 482 483 std::function<AssumptionCache &(Function &)> GetAC; 484 std::function<TargetTransformInfo &(Function &)> GetTTI; 485 std::function<const TargetLibraryInfo &(Function &)> GetTLI; 486 487 /// Profile tracker for different context. 488 std::unique_ptr<SampleContextTracker> ContextTracker; 489 490 /// Flag indicating whether input profile is context-sensitive 491 bool ProfileIsCSFlat = false; 492 493 /// Flag indicating which LTO/ThinLTO phase the pass is invoked in. 494 /// 495 /// We need to know the LTO phase because for example in ThinLTOPrelink 496 /// phase, in annotation, we should not promote indirect calls. Instead, 497 /// we will mark GUIDs that needs to be annotated to the function. 498 ThinOrFullLTOPhase LTOPhase; 499 500 /// Profle Symbol list tells whether a function name appears in the binary 501 /// used to generate the current profile. 502 std::unique_ptr<ProfileSymbolList> PSL; 503 504 /// Total number of samples collected in this profile. 505 /// 506 /// This is the sum of all the samples collected in all the functions executed 507 /// at runtime. 508 uint64_t TotalCollectedSamples = 0; 509 510 // Information recorded when we declined to inline a call site 511 // because we have determined it is too cold is accumulated for 512 // each callee function. Initially this is just the entry count. 513 struct NotInlinedProfileInfo { 514 uint64_t entryCount; 515 }; 516 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo; 517 518 // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for 519 // all the function symbols defined or declared in current module. 520 DenseMap<uint64_t, StringRef> GUIDToFuncNameMap; 521 522 // All the Names used in FunctionSamples including outline function 523 // names, inline instance names and call target names. 524 StringSet<> NamesInProfile; 525 526 // For symbol in profile symbol list, whether to regard their profiles 527 // to be accurate. It is mainly decided by existance of profile symbol 528 // list and -profile-accurate-for-symsinlist flag, but it can be 529 // overriden by -profile-sample-accurate or profile-sample-accurate 530 // attribute. 531 bool ProfAccForSymsInList; 532 533 // External inline advisor used to replay inline decision from remarks. 534 std::unique_ptr<InlineAdvisor> ExternalInlineAdvisor; 535 536 // A pseudo probe helper to correlate the imported sample counts. 537 std::unique_ptr<PseudoProbeManager> ProbeManager; 538 }; 539 540 class SampleProfileLoaderLegacyPass : public ModulePass { 541 public: 542 // Class identification, replacement for typeinfo 543 static char ID; 544 545 SampleProfileLoaderLegacyPass( 546 StringRef Name = SampleProfileFile, 547 ThinOrFullLTOPhase LTOPhase = ThinOrFullLTOPhase::None) 548 : ModulePass(ID), SampleLoader( 549 Name, SampleProfileRemappingFile, LTOPhase, 550 [&](Function &F) -> AssumptionCache & { 551 return ACT->getAssumptionCache(F); 552 }, 553 [&](Function &F) -> TargetTransformInfo & { 554 return TTIWP->getTTI(F); 555 }, 556 [&](Function &F) -> TargetLibraryInfo & { 557 return TLIWP->getTLI(F); 558 }) { 559 initializeSampleProfileLoaderLegacyPassPass( 560 *PassRegistry::getPassRegistry()); 561 } 562 563 void dump() { SampleLoader.dump(); } 564 565 bool doInitialization(Module &M) override { 566 return SampleLoader.doInitialization(M); 567 } 568 569 StringRef getPassName() const override { return "Sample profile pass"; } 570 bool runOnModule(Module &M) override; 571 572 void getAnalysisUsage(AnalysisUsage &AU) const override { 573 AU.addRequired<AssumptionCacheTracker>(); 574 AU.addRequired<TargetTransformInfoWrapperPass>(); 575 AU.addRequired<TargetLibraryInfoWrapperPass>(); 576 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 577 } 578 579 private: 580 SampleProfileLoader SampleLoader; 581 AssumptionCacheTracker *ACT = nullptr; 582 TargetTransformInfoWrapperPass *TTIWP = nullptr; 583 TargetLibraryInfoWrapperPass *TLIWP = nullptr; 584 }; 585 586 } // end anonymous namespace 587 588 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 589 if (FunctionSamples::ProfileIsProbeBased) 590 return getProbeWeight(Inst); 591 592 const DebugLoc &DLoc = Inst.getDebugLoc(); 593 if (!DLoc) 594 return std::error_code(); 595 596 // Ignore all intrinsics, phinodes and branch instructions. 597 // Branch and phinodes instruction usually contains debug info from sources 598 // outside of the residing basic block, thus we ignore them during annotation. 599 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst)) 600 return std::error_code(); 601 602 // For non-CS profile, if a direct call/invoke instruction is inlined in 603 // profile (findCalleeFunctionSamples returns non-empty result), but not 604 // inlined here, it means that the inlined callsite has no sample, thus the 605 // call instruction should have 0 count. 606 // For CS profile, the callsite count of previously inlined callees is 607 // populated with the entry count of the callees. 608 if (!ProfileIsCSFlat) 609 if (const auto *CB = dyn_cast<CallBase>(&Inst)) 610 if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB)) 611 return 0; 612 613 return getInstWeightImpl(Inst); 614 } 615 616 // Here use error_code to represent: 1) The dangling probe. 2) Ignore the weight 617 // of non-probe instruction. So if all instructions of the BB give error_code, 618 // tell the inference algorithm to infer the BB weight. 619 ErrorOr<uint64_t> SampleProfileLoader::getProbeWeight(const Instruction &Inst) { 620 assert(FunctionSamples::ProfileIsProbeBased && 621 "Profile is not pseudo probe based"); 622 Optional<PseudoProbe> Probe = extractProbe(Inst); 623 // Ignore the non-probe instruction. If none of the instruction in the BB is 624 // probe, we choose to infer the BB's weight. 625 if (!Probe) 626 return std::error_code(); 627 628 const FunctionSamples *FS = findFunctionSamples(Inst); 629 // If none of the instruction has FunctionSample, we choose to return zero 630 // value sample to indicate the BB is cold. This could happen when the 631 // instruction is from inlinee and no profile data is found. 632 // FIXME: This should not be affected by the source drift issue as 1) if the 633 // newly added function is top-level inliner, it won't match the CFG checksum 634 // in the function profile or 2) if it's the inlinee, the inlinee should have 635 // a profile, otherwise it wouldn't be inlined. For non-probe based profile, 636 // we can improve it by adding a switch for profile-sample-block-accurate for 637 // block level counts in the future. 638 if (!FS) 639 return 0; 640 641 // For non-CS profile, If a direct call/invoke instruction is inlined in 642 // profile (findCalleeFunctionSamples returns non-empty result), but not 643 // inlined here, it means that the inlined callsite has no sample, thus the 644 // call instruction should have 0 count. 645 // For CS profile, the callsite count of previously inlined callees is 646 // populated with the entry count of the callees. 647 if (!ProfileIsCSFlat) 648 if (const auto *CB = dyn_cast<CallBase>(&Inst)) 649 if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB)) 650 return 0; 651 652 const ErrorOr<uint64_t> &R = FS->findSamplesAt(Probe->Id, 0); 653 if (R) { 654 uint64_t Samples = R.get() * Probe->Factor; 655 bool FirstMark = CoverageTracker.markSamplesUsed(FS, Probe->Id, 0, Samples); 656 if (FirstMark) { 657 ORE->emit([&]() { 658 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 659 Remark << "Applied " << ore::NV("NumSamples", Samples); 660 Remark << " samples from profile (ProbeId="; 661 Remark << ore::NV("ProbeId", Probe->Id); 662 Remark << ", Factor="; 663 Remark << ore::NV("Factor", Probe->Factor); 664 Remark << ", OriginalSamples="; 665 Remark << ore::NV("OriginalSamples", R.get()); 666 Remark << ")"; 667 return Remark; 668 }); 669 } 670 LLVM_DEBUG(dbgs() << " " << Probe->Id << ":" << Inst 671 << " - weight: " << R.get() << " - factor: " 672 << format("%0.2f", Probe->Factor) << ")\n"); 673 return Samples; 674 } 675 return R; 676 } 677 678 /// Get the FunctionSamples for a call instruction. 679 /// 680 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 681 /// instance in which that call instruction is calling to. It contains 682 /// all samples that resides in the inlined instance. We first find the 683 /// inlined instance in which the call instruction is from, then we 684 /// traverse its children to find the callsite with the matching 685 /// location. 686 /// 687 /// \param Inst Call/Invoke instruction to query. 688 /// 689 /// \returns The FunctionSamples pointer to the inlined instance. 690 const FunctionSamples * 691 SampleProfileLoader::findCalleeFunctionSamples(const CallBase &Inst) const { 692 const DILocation *DIL = Inst.getDebugLoc(); 693 if (!DIL) { 694 return nullptr; 695 } 696 697 StringRef CalleeName; 698 if (Function *Callee = Inst.getCalledFunction()) 699 CalleeName = Callee->getName(); 700 701 if (ProfileIsCSFlat) 702 return ContextTracker->getCalleeContextSamplesFor(Inst, CalleeName); 703 704 const FunctionSamples *FS = findFunctionSamples(Inst); 705 if (FS == nullptr) 706 return nullptr; 707 708 return FS->findFunctionSamplesAt(FunctionSamples::getCallSiteIdentifier(DIL), 709 CalleeName, Reader->getRemapper()); 710 } 711 712 /// Returns a vector of FunctionSamples that are the indirect call targets 713 /// of \p Inst. The vector is sorted by the total number of samples. Stores 714 /// the total call count of the indirect call in \p Sum. 715 std::vector<const FunctionSamples *> 716 SampleProfileLoader::findIndirectCallFunctionSamples( 717 const Instruction &Inst, uint64_t &Sum) const { 718 const DILocation *DIL = Inst.getDebugLoc(); 719 std::vector<const FunctionSamples *> R; 720 721 if (!DIL) { 722 return R; 723 } 724 725 auto FSCompare = [](const FunctionSamples *L, const FunctionSamples *R) { 726 assert(L && R && "Expect non-null FunctionSamples"); 727 if (L->getEntrySamples() != R->getEntrySamples()) 728 return L->getEntrySamples() > R->getEntrySamples(); 729 return FunctionSamples::getGUID(L->getName()) < 730 FunctionSamples::getGUID(R->getName()); 731 }; 732 733 if (ProfileIsCSFlat) { 734 auto CalleeSamples = 735 ContextTracker->getIndirectCalleeContextSamplesFor(DIL); 736 if (CalleeSamples.empty()) 737 return R; 738 739 // For CSSPGO, we only use target context profile's entry count 740 // as that already includes both inlined callee and non-inlined ones.. 741 Sum = 0; 742 for (const auto *const FS : CalleeSamples) { 743 Sum += FS->getEntrySamples(); 744 R.push_back(FS); 745 } 746 llvm::sort(R, FSCompare); 747 return R; 748 } 749 750 const FunctionSamples *FS = findFunctionSamples(Inst); 751 if (FS == nullptr) 752 return R; 753 754 auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL); 755 auto T = FS->findCallTargetMapAt(CallSite); 756 Sum = 0; 757 if (T) 758 for (const auto &T_C : T.get()) 759 Sum += T_C.second; 760 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(CallSite)) { 761 if (M->empty()) 762 return R; 763 for (const auto &NameFS : *M) { 764 Sum += NameFS.second.getEntrySamples(); 765 R.push_back(&NameFS.second); 766 } 767 llvm::sort(R, FSCompare); 768 } 769 return R; 770 } 771 772 const FunctionSamples * 773 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 774 if (FunctionSamples::ProfileIsProbeBased) { 775 Optional<PseudoProbe> Probe = extractProbe(Inst); 776 if (!Probe) 777 return nullptr; 778 } 779 780 const DILocation *DIL = Inst.getDebugLoc(); 781 if (!DIL) 782 return Samples; 783 784 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr); 785 if (it.second) { 786 if (ProfileIsCSFlat) 787 it.first->second = ContextTracker->getContextSamplesFor(DIL); 788 else 789 it.first->second = 790 Samples->findFunctionSamples(DIL, Reader->getRemapper()); 791 } 792 return it.first->second; 793 } 794 795 /// Check whether the indirect call promotion history of \p Inst allows 796 /// the promotion for \p Candidate. 797 /// If the profile count for the promotion candidate \p Candidate is 798 /// NOMORE_ICP_MAGICNUM, it means \p Candidate has already been promoted 799 /// for \p Inst. If we already have at least MaxNumPromotions 800 /// NOMORE_ICP_MAGICNUM count values in the value profile of \p Inst, we 801 /// cannot promote for \p Inst anymore. 802 static bool doesHistoryAllowICP(const Instruction &Inst, StringRef Candidate) { 803 uint32_t NumVals = 0; 804 uint64_t TotalCount = 0; 805 std::unique_ptr<InstrProfValueData[]> ValueData = 806 std::make_unique<InstrProfValueData[]>(MaxNumPromotions); 807 bool Valid = 808 getValueProfDataFromInst(Inst, IPVK_IndirectCallTarget, MaxNumPromotions, 809 ValueData.get(), NumVals, TotalCount, true); 810 // No valid value profile so no promoted targets have been recorded 811 // before. Ok to do ICP. 812 if (!Valid) 813 return true; 814 815 unsigned NumPromoted = 0; 816 for (uint32_t I = 0; I < NumVals; I++) { 817 if (ValueData[I].Count != NOMORE_ICP_MAGICNUM) 818 continue; 819 820 // If the promotion candidate has NOMORE_ICP_MAGICNUM count in the 821 // metadata, it means the candidate has been promoted for this 822 // indirect call. 823 if (ValueData[I].Value == Function::getGUID(Candidate)) 824 return false; 825 NumPromoted++; 826 // If already have MaxNumPromotions promotion, don't do it anymore. 827 if (NumPromoted == MaxNumPromotions) 828 return false; 829 } 830 return true; 831 } 832 833 /// Update indirect call target profile metadata for \p Inst. 834 /// Usually \p Sum is the sum of counts of all the targets for \p Inst. 835 /// If it is 0, it means updateIDTMetaData is used to mark a 836 /// certain target to be promoted already. If it is not zero, 837 /// we expect to use it to update the total count in the value profile. 838 static void 839 updateIDTMetaData(Instruction &Inst, 840 const SmallVectorImpl<InstrProfValueData> &CallTargets, 841 uint64_t Sum) { 842 // Bail out early if MaxNumPromotions is zero. 843 // This prevents allocating an array of zero length below. 844 // 845 // Note `updateIDTMetaData` is called in two places so check 846 // `MaxNumPromotions` inside it. 847 if (MaxNumPromotions == 0) 848 return; 849 uint32_t NumVals = 0; 850 // OldSum is the existing total count in the value profile data. 851 uint64_t OldSum = 0; 852 std::unique_ptr<InstrProfValueData[]> ValueData = 853 std::make_unique<InstrProfValueData[]>(MaxNumPromotions); 854 bool Valid = 855 getValueProfDataFromInst(Inst, IPVK_IndirectCallTarget, MaxNumPromotions, 856 ValueData.get(), NumVals, OldSum, true); 857 858 DenseMap<uint64_t, uint64_t> ValueCountMap; 859 if (Sum == 0) { 860 assert((CallTargets.size() == 1 && 861 CallTargets[0].Count == NOMORE_ICP_MAGICNUM) && 862 "If sum is 0, assume only one element in CallTargets " 863 "with count being NOMORE_ICP_MAGICNUM"); 864 // Initialize ValueCountMap with existing value profile data. 865 if (Valid) { 866 for (uint32_t I = 0; I < NumVals; I++) 867 ValueCountMap[ValueData[I].Value] = ValueData[I].Count; 868 } 869 auto Pair = 870 ValueCountMap.try_emplace(CallTargets[0].Value, CallTargets[0].Count); 871 // If the target already exists in value profile, decrease the total 872 // count OldSum and reset the target's count to NOMORE_ICP_MAGICNUM. 873 if (!Pair.second) { 874 OldSum -= Pair.first->second; 875 Pair.first->second = NOMORE_ICP_MAGICNUM; 876 } 877 Sum = OldSum; 878 } else { 879 // Initialize ValueCountMap with existing NOMORE_ICP_MAGICNUM 880 // counts in the value profile. 881 if (Valid) { 882 for (uint32_t I = 0; I < NumVals; I++) { 883 if (ValueData[I].Count == NOMORE_ICP_MAGICNUM) 884 ValueCountMap[ValueData[I].Value] = ValueData[I].Count; 885 } 886 } 887 888 for (const auto &Data : CallTargets) { 889 auto Pair = ValueCountMap.try_emplace(Data.Value, Data.Count); 890 if (Pair.second) 891 continue; 892 // The target represented by Data.Value has already been promoted. 893 // Keep the count as NOMORE_ICP_MAGICNUM in the profile and decrease 894 // Sum by Data.Count. 895 assert(Sum >= Data.Count && "Sum should never be less than Data.Count"); 896 Sum -= Data.Count; 897 } 898 } 899 900 SmallVector<InstrProfValueData, 8> NewCallTargets; 901 for (const auto &ValueCount : ValueCountMap) { 902 NewCallTargets.emplace_back( 903 InstrProfValueData{ValueCount.first, ValueCount.second}); 904 } 905 906 llvm::sort(NewCallTargets, 907 [](const InstrProfValueData &L, const InstrProfValueData &R) { 908 if (L.Count != R.Count) 909 return L.Count > R.Count; 910 return L.Value > R.Value; 911 }); 912 913 uint32_t MaxMDCount = 914 std::min(NewCallTargets.size(), static_cast<size_t>(MaxNumPromotions)); 915 annotateValueSite(*Inst.getParent()->getParent()->getParent(), Inst, 916 NewCallTargets, Sum, IPVK_IndirectCallTarget, MaxMDCount); 917 } 918 919 /// Attempt to promote indirect call and also inline the promoted call. 920 /// 921 /// \param F Caller function. 922 /// \param Candidate ICP and inline candidate. 923 /// \param SumOrigin Original sum of target counts for indirect call before 924 /// promoting given candidate. 925 /// \param Sum Prorated sum of remaining target counts for indirect call 926 /// after promoting given candidate. 927 /// \param InlinedCallSite Output vector for new call sites exposed after 928 /// inlining. 929 bool SampleProfileLoader::tryPromoteAndInlineCandidate( 930 Function &F, InlineCandidate &Candidate, uint64_t SumOrigin, uint64_t &Sum, 931 SmallVector<CallBase *, 8> *InlinedCallSite) { 932 // Bail out early if sample-loader inliner is disabled. 933 if (DisableSampleLoaderInlining) 934 return false; 935 936 // Bail out early if MaxNumPromotions is zero. 937 // This prevents allocating an array of zero length in callees below. 938 if (MaxNumPromotions == 0) 939 return false; 940 auto CalleeFunctionName = Candidate.CalleeSamples->getFuncName(); 941 auto R = SymbolMap.find(CalleeFunctionName); 942 if (R == SymbolMap.end() || !R->getValue()) 943 return false; 944 945 auto &CI = *Candidate.CallInstr; 946 if (!doesHistoryAllowICP(CI, R->getValue()->getName())) 947 return false; 948 949 const char *Reason = "Callee function not available"; 950 // R->getValue() != &F is to prevent promoting a recursive call. 951 // If it is a recursive call, we do not inline it as it could bloat 952 // the code exponentially. There is way to better handle this, e.g. 953 // clone the caller first, and inline the cloned caller if it is 954 // recursive. As llvm does not inline recursive calls, we will 955 // simply ignore it instead of handling it explicitly. 956 if (!R->getValue()->isDeclaration() && R->getValue()->getSubprogram() && 957 R->getValue()->hasFnAttribute("use-sample-profile") && 958 R->getValue() != &F && isLegalToPromote(CI, R->getValue(), &Reason)) { 959 // For promoted target, set its value with NOMORE_ICP_MAGICNUM count 960 // in the value profile metadata so the target won't be promoted again. 961 SmallVector<InstrProfValueData, 1> SortedCallTargets = {InstrProfValueData{ 962 Function::getGUID(R->getValue()->getName()), NOMORE_ICP_MAGICNUM}}; 963 updateIDTMetaData(CI, SortedCallTargets, 0); 964 965 auto *DI = &pgo::promoteIndirectCall( 966 CI, R->getValue(), Candidate.CallsiteCount, Sum, false, ORE); 967 if (DI) { 968 Sum -= Candidate.CallsiteCount; 969 // Do not prorate the indirect callsite distribution since the original 970 // distribution will be used to scale down non-promoted profile target 971 // counts later. By doing this we lose track of the real callsite count 972 // for the leftover indirect callsite as a trade off for accurate call 973 // target counts. 974 // TODO: Ideally we would have two separate factors, one for call site 975 // counts and one is used to prorate call target counts. 976 // Do not update the promoted direct callsite distribution at this 977 // point since the original distribution combined with the callee profile 978 // will be used to prorate callsites from the callee if inlined. Once not 979 // inlined, the direct callsite distribution should be prorated so that 980 // the it will reflect the real callsite counts. 981 Candidate.CallInstr = DI; 982 if (isa<CallInst>(DI) || isa<InvokeInst>(DI)) { 983 bool Inlined = tryInlineCandidate(Candidate, InlinedCallSite); 984 if (!Inlined) { 985 // Prorate the direct callsite distribution so that it reflects real 986 // callsite counts. 987 setProbeDistributionFactor( 988 *DI, static_cast<float>(Candidate.CallsiteCount) / SumOrigin); 989 } 990 return Inlined; 991 } 992 } 993 } else { 994 LLVM_DEBUG(dbgs() << "\nFailed to promote indirect call to " 995 << Candidate.CalleeSamples->getFuncName() << " because " 996 << Reason << "\n"); 997 } 998 return false; 999 } 1000 1001 bool SampleProfileLoader::shouldInlineColdCallee(CallBase &CallInst) { 1002 if (!ProfileSizeInline) 1003 return false; 1004 1005 Function *Callee = CallInst.getCalledFunction(); 1006 if (Callee == nullptr) 1007 return false; 1008 1009 InlineCost Cost = getInlineCost(CallInst, getInlineParams(), GetTTI(*Callee), 1010 GetAC, GetTLI); 1011 1012 if (Cost.isNever()) 1013 return false; 1014 1015 if (Cost.isAlways()) 1016 return true; 1017 1018 return Cost.getCost() <= SampleColdCallSiteThreshold; 1019 } 1020 1021 void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates( 1022 const SmallVectorImpl<CallBase *> &Candidates, const Function &F, 1023 bool Hot) { 1024 for (auto I : Candidates) { 1025 Function *CalledFunction = I->getCalledFunction(); 1026 if (CalledFunction) { 1027 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt", 1028 I->getDebugLoc(), I->getParent()) 1029 << "previous inlining reattempted for " 1030 << (Hot ? "hotness: '" : "size: '") 1031 << ore::NV("Callee", CalledFunction) << "' into '" 1032 << ore::NV("Caller", &F) << "'"); 1033 } 1034 } 1035 } 1036 1037 void SampleProfileLoader::findExternalInlineCandidate( 1038 CallBase *CB, const FunctionSamples *Samples, 1039 DenseSet<GlobalValue::GUID> &InlinedGUIDs, 1040 const StringMap<Function *> &SymbolMap, uint64_t Threshold) { 1041 1042 // If ExternalInlineAdvisor wants to inline an external function 1043 // make sure it's imported 1044 if (CB && getExternalInlineAdvisorShouldInline(*CB)) { 1045 // Samples may not exist for replayed function, if so 1046 // just add the direct GUID and move on 1047 if (!Samples) { 1048 InlinedGUIDs.insert( 1049 FunctionSamples::getGUID(CB->getCalledFunction()->getName())); 1050 return; 1051 } 1052 // Otherwise, drop the threshold to import everything that we can 1053 Threshold = 0; 1054 } 1055 1056 assert(Samples && "expect non-null caller profile"); 1057 1058 // For AutoFDO profile, retrieve candidate profiles by walking over 1059 // the nested inlinee profiles. 1060 if (!ProfileIsCSFlat) { 1061 Samples->findInlinedFunctions(InlinedGUIDs, SymbolMap, Threshold); 1062 return; 1063 } 1064 1065 ContextTrieNode *Caller = 1066 ContextTracker->getContextFor(Samples->getContext()); 1067 std::queue<ContextTrieNode *> CalleeList; 1068 CalleeList.push(Caller); 1069 while (!CalleeList.empty()) { 1070 ContextTrieNode *Node = CalleeList.front(); 1071 CalleeList.pop(); 1072 FunctionSamples *CalleeSample = Node->getFunctionSamples(); 1073 // For CSSPGO profile, retrieve candidate profile by walking over the 1074 // trie built for context profile. Note that also take call targets 1075 // even if callee doesn't have a corresponding context profile. 1076 if (!CalleeSample) 1077 continue; 1078 1079 // If pre-inliner decision is used, honor that for importing as well. 1080 bool PreInline = 1081 UsePreInlinerDecision && 1082 CalleeSample->getContext().hasAttribute(ContextShouldBeInlined); 1083 if (!PreInline && CalleeSample->getEntrySamples() < Threshold) 1084 continue; 1085 1086 StringRef Name = CalleeSample->getFuncName(); 1087 Function *Func = SymbolMap.lookup(Name); 1088 // Add to the import list only when it's defined out of module. 1089 if (!Func || Func->isDeclaration()) 1090 InlinedGUIDs.insert(FunctionSamples::getGUID(CalleeSample->getName())); 1091 1092 // Import hot CallTargets, which may not be available in IR because full 1093 // profile annotation cannot be done until backend compilation in ThinLTO. 1094 for (const auto &BS : CalleeSample->getBodySamples()) 1095 for (const auto &TS : BS.second.getCallTargets()) 1096 if (TS.getValue() > Threshold) { 1097 StringRef CalleeName = CalleeSample->getFuncName(TS.getKey()); 1098 const Function *Callee = SymbolMap.lookup(CalleeName); 1099 if (!Callee || Callee->isDeclaration()) 1100 InlinedGUIDs.insert(FunctionSamples::getGUID(TS.getKey())); 1101 } 1102 1103 // Import hot child context profile associted with callees. Note that this 1104 // may have some overlap with the call target loop above, but doing this 1105 // based child context profile again effectively allow us to use the max of 1106 // entry count and call target count to determine importing. 1107 for (auto &Child : Node->getAllChildContext()) { 1108 ContextTrieNode *CalleeNode = &Child.second; 1109 CalleeList.push(CalleeNode); 1110 } 1111 } 1112 } 1113 1114 /// Iteratively inline hot callsites of a function. 1115 /// 1116 /// Iteratively traverse all callsites of the function \p F, so as to 1117 /// find out callsites with corresponding inline instances. 1118 /// 1119 /// For such callsites, 1120 /// - If it is hot enough, inline the callsites and adds callsites of the callee 1121 /// into the caller. If the call is an indirect call, first promote 1122 /// it to direct call. Each indirect call is limited with a single target. 1123 /// 1124 /// - If a callsite is not inlined, merge the its profile to the outline 1125 /// version (if --sample-profile-merge-inlinee is true), or scale the 1126 /// counters of standalone function based on the profile of inlined 1127 /// instances (if --sample-profile-merge-inlinee is false). 1128 /// 1129 /// Later passes may consume the updated profiles. 1130 /// 1131 /// \param F function to perform iterative inlining. 1132 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 1133 /// inlined in the profiled binary. 1134 /// 1135 /// \returns True if there is any inline happened. 1136 bool SampleProfileLoader::inlineHotFunctions( 1137 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 1138 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure 1139 // Profile symbol list is ignored when profile-sample-accurate is on. 1140 assert((!ProfAccForSymsInList || 1141 (!ProfileSampleAccurate && 1142 !F.hasFnAttribute("profile-sample-accurate"))) && 1143 "ProfAccForSymsInList should be false when profile-sample-accurate " 1144 "is enabled"); 1145 1146 DenseMap<CallBase *, const FunctionSamples *> LocalNotInlinedCallSites; 1147 bool Changed = false; 1148 bool LocalChanged = true; 1149 while (LocalChanged) { 1150 LocalChanged = false; 1151 SmallVector<CallBase *, 10> CIS; 1152 for (auto &BB : F) { 1153 bool Hot = false; 1154 SmallVector<CallBase *, 10> AllCandidates; 1155 SmallVector<CallBase *, 10> ColdCandidates; 1156 for (auto &I : BB.getInstList()) { 1157 const FunctionSamples *FS = nullptr; 1158 if (auto *CB = dyn_cast<CallBase>(&I)) { 1159 if (!isa<IntrinsicInst>(I)) { 1160 if ((FS = findCalleeFunctionSamples(*CB))) { 1161 assert((!FunctionSamples::UseMD5 || FS->GUIDToFuncNameMap) && 1162 "GUIDToFuncNameMap has to be populated"); 1163 AllCandidates.push_back(CB); 1164 if (FS->getEntrySamples() > 0 || ProfileIsCSFlat) 1165 LocalNotInlinedCallSites.try_emplace(CB, FS); 1166 if (callsiteIsHot(FS, PSI, ProfAccForSymsInList)) 1167 Hot = true; 1168 else if (shouldInlineColdCallee(*CB)) 1169 ColdCandidates.push_back(CB); 1170 } else if (getExternalInlineAdvisorShouldInline(*CB)) { 1171 AllCandidates.push_back(CB); 1172 } 1173 } 1174 } 1175 } 1176 if (Hot || ExternalInlineAdvisor) { 1177 CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end()); 1178 emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true); 1179 } else { 1180 CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end()); 1181 emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false); 1182 } 1183 } 1184 for (CallBase *I : CIS) { 1185 Function *CalledFunction = I->getCalledFunction(); 1186 InlineCandidate Candidate = {I, LocalNotInlinedCallSites.lookup(I), 1187 0 /* dummy count */, 1188 1.0 /* dummy distribution factor */}; 1189 // Do not inline recursive calls. 1190 if (CalledFunction == &F) 1191 continue; 1192 if (I->isIndirectCall()) { 1193 uint64_t Sum; 1194 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 1195 uint64_t SumOrigin = Sum; 1196 if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { 1197 findExternalInlineCandidate(I, FS, InlinedGUIDs, SymbolMap, 1198 PSI->getOrCompHotCountThreshold()); 1199 continue; 1200 } 1201 if (!callsiteIsHot(FS, PSI, ProfAccForSymsInList)) 1202 continue; 1203 1204 Candidate = {I, FS, FS->getEntrySamples(), 1.0}; 1205 if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum)) { 1206 LocalNotInlinedCallSites.erase(I); 1207 LocalChanged = true; 1208 } 1209 } 1210 } else if (CalledFunction && CalledFunction->getSubprogram() && 1211 !CalledFunction->isDeclaration()) { 1212 if (tryInlineCandidate(Candidate)) { 1213 LocalNotInlinedCallSites.erase(I); 1214 LocalChanged = true; 1215 } 1216 } else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { 1217 findExternalInlineCandidate(I, findCalleeFunctionSamples(*I), 1218 InlinedGUIDs, SymbolMap, 1219 PSI->getOrCompHotCountThreshold()); 1220 } 1221 } 1222 Changed |= LocalChanged; 1223 } 1224 1225 // For CS profile, profile for not inlined context will be merged when 1226 // base profile is being retrieved. 1227 if (!FunctionSamples::ProfileIsCSFlat) 1228 promoteMergeNotInlinedContextSamples(LocalNotInlinedCallSites, F); 1229 return Changed; 1230 } 1231 1232 bool SampleProfileLoader::tryInlineCandidate( 1233 InlineCandidate &Candidate, SmallVector<CallBase *, 8> *InlinedCallSites) { 1234 // Do not attempt to inline a candidate if 1235 // --disable-sample-loader-inlining is true. 1236 if (DisableSampleLoaderInlining) 1237 return false; 1238 1239 CallBase &CB = *Candidate.CallInstr; 1240 Function *CalledFunction = CB.getCalledFunction(); 1241 assert(CalledFunction && "Expect a callee with definition"); 1242 DebugLoc DLoc = CB.getDebugLoc(); 1243 BasicBlock *BB = CB.getParent(); 1244 1245 InlineCost Cost = shouldInlineCandidate(Candidate); 1246 if (Cost.isNever()) { 1247 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB) 1248 << "incompatible inlining"); 1249 return false; 1250 } 1251 1252 if (!Cost) 1253 return false; 1254 1255 InlineFunctionInfo IFI(nullptr, GetAC); 1256 IFI.UpdateProfile = false; 1257 if (!InlineFunction(CB, IFI).isSuccess()) 1258 return false; 1259 1260 // Merge the attributes based on the inlining. 1261 AttributeFuncs::mergeAttributesForInlining(*BB->getParent(), 1262 *CalledFunction); 1263 1264 // The call to InlineFunction erases I, so we can't pass it here. 1265 emitInlinedIntoBasedOnCost(*ORE, DLoc, BB, *CalledFunction, 1266 *BB->getParent(), Cost, true, CSINLINE_DEBUG); 1267 1268 // Now populate the list of newly exposed call sites. 1269 if (InlinedCallSites) { 1270 InlinedCallSites->clear(); 1271 for (auto &I : IFI.InlinedCallSites) 1272 InlinedCallSites->push_back(I); 1273 } 1274 1275 if (ProfileIsCSFlat) 1276 ContextTracker->markContextSamplesInlined(Candidate.CalleeSamples); 1277 ++NumCSInlined; 1278 1279 // Prorate inlined probes for a duplicated inlining callsite which probably 1280 // has a distribution less than 100%. Samples for an inlinee should be 1281 // distributed among the copies of the original callsite based on each 1282 // callsite's distribution factor for counts accuracy. Note that an inlined 1283 // probe may come with its own distribution factor if it has been duplicated 1284 // in the inlinee body. The two factor are multiplied to reflect the 1285 // aggregation of duplication. 1286 if (Candidate.CallsiteDistribution < 1) { 1287 for (auto &I : IFI.InlinedCallSites) { 1288 if (Optional<PseudoProbe> Probe = extractProbe(*I)) 1289 setProbeDistributionFactor(*I, Probe->Factor * 1290 Candidate.CallsiteDistribution); 1291 } 1292 NumDuplicatedInlinesite++; 1293 } 1294 1295 return true; 1296 } 1297 1298 bool SampleProfileLoader::getInlineCandidate(InlineCandidate *NewCandidate, 1299 CallBase *CB) { 1300 assert(CB && "Expect non-null call instruction"); 1301 1302 if (isa<IntrinsicInst>(CB)) 1303 return false; 1304 1305 // Find the callee's profile. For indirect call, find hottest target profile. 1306 const FunctionSamples *CalleeSamples = findCalleeFunctionSamples(*CB); 1307 // If ExternalInlineAdvisor wants to inline this site, do so even 1308 // if Samples are not present. 1309 if (!CalleeSamples && !getExternalInlineAdvisorShouldInline(*CB)) 1310 return false; 1311 1312 float Factor = 1.0; 1313 if (Optional<PseudoProbe> Probe = extractProbe(*CB)) 1314 Factor = Probe->Factor; 1315 1316 uint64_t CallsiteCount = 1317 CalleeSamples ? CalleeSamples->getEntrySamples() * Factor : 0; 1318 *NewCandidate = {CB, CalleeSamples, CallsiteCount, Factor}; 1319 return true; 1320 } 1321 1322 Optional<InlineCost> 1323 SampleProfileLoader::getExternalInlineAdvisorCost(CallBase &CB) { 1324 std::unique_ptr<InlineAdvice> Advice = nullptr; 1325 if (ExternalInlineAdvisor) { 1326 Advice = ExternalInlineAdvisor->getAdvice(CB); 1327 if (Advice) { 1328 if (!Advice->isInliningRecommended()) { 1329 Advice->recordUnattemptedInlining(); 1330 return InlineCost::getNever("not previously inlined"); 1331 } 1332 Advice->recordInlining(); 1333 return InlineCost::getAlways("previously inlined"); 1334 } 1335 } 1336 1337 return {}; 1338 } 1339 1340 bool SampleProfileLoader::getExternalInlineAdvisorShouldInline(CallBase &CB) { 1341 Optional<InlineCost> Cost = getExternalInlineAdvisorCost(CB); 1342 return Cost ? !!Cost.getValue() : false; 1343 } 1344 1345 InlineCost 1346 SampleProfileLoader::shouldInlineCandidate(InlineCandidate &Candidate) { 1347 if (Optional<InlineCost> ReplayCost = 1348 getExternalInlineAdvisorCost(*Candidate.CallInstr)) 1349 return ReplayCost.getValue(); 1350 // Adjust threshold based on call site hotness, only do this for callsite 1351 // prioritized inliner because otherwise cost-benefit check is done earlier. 1352 int SampleThreshold = SampleColdCallSiteThreshold; 1353 if (CallsitePrioritizedInline) { 1354 if (Candidate.CallsiteCount > PSI->getHotCountThreshold()) 1355 SampleThreshold = SampleHotCallSiteThreshold; 1356 else if (!ProfileSizeInline) 1357 return InlineCost::getNever("cold callsite"); 1358 } 1359 1360 Function *Callee = Candidate.CallInstr->getCalledFunction(); 1361 assert(Callee && "Expect a definition for inline candidate of direct call"); 1362 1363 InlineParams Params = getInlineParams(); 1364 // We will ignore the threshold from inline cost, so always get full cost. 1365 Params.ComputeFullInlineCost = true; 1366 Params.AllowRecursiveCall = AllowRecursiveInline; 1367 // Checks if there is anything in the reachable portion of the callee at 1368 // this callsite that makes this inlining potentially illegal. Need to 1369 // set ComputeFullInlineCost, otherwise getInlineCost may return early 1370 // when cost exceeds threshold without checking all IRs in the callee. 1371 // The acutal cost does not matter because we only checks isNever() to 1372 // see if it is legal to inline the callsite. 1373 InlineCost Cost = getInlineCost(*Candidate.CallInstr, Callee, Params, 1374 GetTTI(*Callee), GetAC, GetTLI); 1375 1376 // Honor always inline and never inline from call analyzer 1377 if (Cost.isNever() || Cost.isAlways()) 1378 return Cost; 1379 1380 // With CSSPGO, the preinliner in llvm-profgen can estimate global inline 1381 // decisions based on hotness as well as accurate function byte sizes for 1382 // given context using function/inlinee sizes from previous build. It 1383 // stores the decision in profile, and also adjust/merge context profile 1384 // aiming at better context-sensitive post-inline profile quality, assuming 1385 // all inline decision estimates are going to be honored by compiler. Here 1386 // we replay that inline decision under `sample-profile-use-preinliner`. 1387 // Note that we don't need to handle negative decision from preinliner as 1388 // context profile for not inlined calls are merged by preinliner already. 1389 if (UsePreInlinerDecision && Candidate.CalleeSamples) { 1390 // Once two node are merged due to promotion, we're losing some context 1391 // so the original context-sensitive preinliner decision should be ignored 1392 // for SyntheticContext. 1393 SampleContext &Context = Candidate.CalleeSamples->getContext(); 1394 if (!Context.hasState(SyntheticContext) && 1395 Context.hasAttribute(ContextShouldBeInlined)) 1396 return InlineCost::getAlways("preinliner"); 1397 } 1398 1399 // For old FDO inliner, we inline the call site as long as cost is not 1400 // "Never". The cost-benefit check is done earlier. 1401 if (!CallsitePrioritizedInline) { 1402 return InlineCost::get(Cost.getCost(), INT_MAX); 1403 } 1404 1405 // Otherwise only use the cost from call analyzer, but overwite threshold with 1406 // Sample PGO threshold. 1407 return InlineCost::get(Cost.getCost(), SampleThreshold); 1408 } 1409 1410 bool SampleProfileLoader::inlineHotFunctionsWithPriority( 1411 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 1412 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure 1413 // Profile symbol list is ignored when profile-sample-accurate is on. 1414 assert((!ProfAccForSymsInList || 1415 (!ProfileSampleAccurate && 1416 !F.hasFnAttribute("profile-sample-accurate"))) && 1417 "ProfAccForSymsInList should be false when profile-sample-accurate " 1418 "is enabled"); 1419 1420 // Populating worklist with initial call sites from root inliner, along 1421 // with call site weights. 1422 CandidateQueue CQueue; 1423 InlineCandidate NewCandidate; 1424 for (auto &BB : F) { 1425 for (auto &I : BB.getInstList()) { 1426 auto *CB = dyn_cast<CallBase>(&I); 1427 if (!CB) 1428 continue; 1429 if (getInlineCandidate(&NewCandidate, CB)) 1430 CQueue.push(NewCandidate); 1431 } 1432 } 1433 1434 // Cap the size growth from profile guided inlining. This is needed even 1435 // though cost of each inline candidate already accounts for callee size, 1436 // because with top-down inlining, we can grow inliner size significantly 1437 // with large number of smaller inlinees each pass the cost check. 1438 assert(ProfileInlineLimitMax >= ProfileInlineLimitMin && 1439 "Max inline size limit should not be smaller than min inline size " 1440 "limit."); 1441 unsigned SizeLimit = F.getInstructionCount() * ProfileInlineGrowthLimit; 1442 SizeLimit = std::min(SizeLimit, (unsigned)ProfileInlineLimitMax); 1443 SizeLimit = std::max(SizeLimit, (unsigned)ProfileInlineLimitMin); 1444 if (ExternalInlineAdvisor) 1445 SizeLimit = std::numeric_limits<unsigned>::max(); 1446 1447 DenseMap<CallBase *, const FunctionSamples *> LocalNotInlinedCallSites; 1448 1449 // Perform iterative BFS call site prioritized inlining 1450 bool Changed = false; 1451 while (!CQueue.empty() && F.getInstructionCount() < SizeLimit) { 1452 InlineCandidate Candidate = CQueue.top(); 1453 CQueue.pop(); 1454 CallBase *I = Candidate.CallInstr; 1455 Function *CalledFunction = I->getCalledFunction(); 1456 1457 if (CalledFunction == &F) 1458 continue; 1459 if (I->isIndirectCall()) { 1460 uint64_t Sum = 0; 1461 auto CalleeSamples = findIndirectCallFunctionSamples(*I, Sum); 1462 uint64_t SumOrigin = Sum; 1463 Sum *= Candidate.CallsiteDistribution; 1464 unsigned ICPCount = 0; 1465 for (const auto *FS : CalleeSamples) { 1466 // TODO: Consider disable pre-lTO ICP for MonoLTO as well 1467 if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { 1468 findExternalInlineCandidate(I, FS, InlinedGUIDs, SymbolMap, 1469 PSI->getOrCompHotCountThreshold()); 1470 continue; 1471 } 1472 uint64_t EntryCountDistributed = 1473 FS->getEntrySamples() * Candidate.CallsiteDistribution; 1474 // In addition to regular inline cost check, we also need to make sure 1475 // ICP isn't introducing excessive speculative checks even if individual 1476 // target looks beneficial to promote and inline. That means we should 1477 // only do ICP when there's a small number dominant targets. 1478 if (ICPCount >= ProfileICPRelativeHotnessSkip && 1479 EntryCountDistributed * 100 < SumOrigin * ProfileICPRelativeHotness) 1480 break; 1481 // TODO: Fix CallAnalyzer to handle all indirect calls. 1482 // For indirect call, we don't run CallAnalyzer to get InlineCost 1483 // before actual inlining. This is because we could see two different 1484 // types from the same definition, which makes CallAnalyzer choke as 1485 // it's expecting matching parameter type on both caller and callee 1486 // side. See example from PR18962 for the triggering cases (the bug was 1487 // fixed, but we generate different types). 1488 if (!PSI->isHotCount(EntryCountDistributed)) 1489 break; 1490 SmallVector<CallBase *, 8> InlinedCallSites; 1491 // Attach function profile for promoted indirect callee, and update 1492 // call site count for the promoted inline candidate too. 1493 Candidate = {I, FS, EntryCountDistributed, 1494 Candidate.CallsiteDistribution}; 1495 if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum, 1496 &InlinedCallSites)) { 1497 for (auto *CB : InlinedCallSites) { 1498 if (getInlineCandidate(&NewCandidate, CB)) 1499 CQueue.emplace(NewCandidate); 1500 } 1501 ICPCount++; 1502 Changed = true; 1503 } else if (!ContextTracker) { 1504 LocalNotInlinedCallSites.try_emplace(I, FS); 1505 } 1506 } 1507 } else if (CalledFunction && CalledFunction->getSubprogram() && 1508 !CalledFunction->isDeclaration()) { 1509 SmallVector<CallBase *, 8> InlinedCallSites; 1510 if (tryInlineCandidate(Candidate, &InlinedCallSites)) { 1511 for (auto *CB : InlinedCallSites) { 1512 if (getInlineCandidate(&NewCandidate, CB)) 1513 CQueue.emplace(NewCandidate); 1514 } 1515 Changed = true; 1516 } else if (!ContextTracker) { 1517 LocalNotInlinedCallSites.try_emplace(I, Candidate.CalleeSamples); 1518 } 1519 } else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { 1520 findExternalInlineCandidate(I, findCalleeFunctionSamples(*I), 1521 InlinedGUIDs, SymbolMap, 1522 PSI->getOrCompHotCountThreshold()); 1523 } 1524 } 1525 1526 if (!CQueue.empty()) { 1527 if (SizeLimit == (unsigned)ProfileInlineLimitMax) 1528 ++NumCSInlinedHitMaxLimit; 1529 else if (SizeLimit == (unsigned)ProfileInlineLimitMin) 1530 ++NumCSInlinedHitMinLimit; 1531 else 1532 ++NumCSInlinedHitGrowthLimit; 1533 } 1534 1535 // For CS profile, profile for not inlined context will be merged when 1536 // base profile is being retrieved. 1537 if (!FunctionSamples::ProfileIsCSFlat) 1538 promoteMergeNotInlinedContextSamples(LocalNotInlinedCallSites, F); 1539 return Changed; 1540 } 1541 1542 void SampleProfileLoader::promoteMergeNotInlinedContextSamples( 1543 DenseMap<CallBase *, const FunctionSamples *> NonInlinedCallSites, 1544 const Function &F) { 1545 // Accumulate not inlined callsite information into notInlinedSamples 1546 for (const auto &Pair : NonInlinedCallSites) { 1547 CallBase *I = Pair.getFirst(); 1548 Function *Callee = I->getCalledFunction(); 1549 if (!Callee || Callee->isDeclaration()) 1550 continue; 1551 1552 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline", 1553 I->getDebugLoc(), I->getParent()) 1554 << "previous inlining not repeated: '" 1555 << ore::NV("Callee", Callee) << "' into '" 1556 << ore::NV("Caller", &F) << "'"); 1557 1558 ++NumCSNotInlined; 1559 const FunctionSamples *FS = Pair.getSecond(); 1560 if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) { 1561 continue; 1562 } 1563 1564 // Do not merge a context that is already duplicated into the base profile. 1565 if (FS->getContext().hasAttribute(sampleprof::ContextDuplicatedIntoBase)) 1566 continue; 1567 1568 if (ProfileMergeInlinee) { 1569 // A function call can be replicated by optimizations like callsite 1570 // splitting or jump threading and the replicates end up sharing the 1571 // sample nested callee profile instead of slicing the original 1572 // inlinee's profile. We want to do merge exactly once by filtering out 1573 // callee profiles with a non-zero head sample count. 1574 if (FS->getHeadSamples() == 0) { 1575 // Use entry samples as head samples during the merge, as inlinees 1576 // don't have head samples. 1577 const_cast<FunctionSamples *>(FS)->addHeadSamples( 1578 FS->getEntrySamples()); 1579 1580 // Note that we have to do the merge right after processing function. 1581 // This allows OutlineFS's profile to be used for annotation during 1582 // top-down processing of functions' annotation. 1583 FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee); 1584 OutlineFS->merge(*FS, 1); 1585 // Set outlined profile to be synthetic to not bias the inliner. 1586 OutlineFS->SetContextSynthetic(); 1587 } 1588 } else { 1589 auto pair = 1590 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0}); 1591 pair.first->second.entryCount += FS->getEntrySamples(); 1592 } 1593 } 1594 } 1595 1596 /// Returns the sorted CallTargetMap \p M by count in descending order. 1597 static SmallVector<InstrProfValueData, 2> 1598 GetSortedValueDataFromCallTargets(const SampleRecord::CallTargetMap &M) { 1599 SmallVector<InstrProfValueData, 2> R; 1600 for (const auto &I : SampleRecord::SortCallTargets(M)) { 1601 R.emplace_back( 1602 InstrProfValueData{FunctionSamples::getGUID(I.first), I.second}); 1603 } 1604 return R; 1605 } 1606 1607 // Generate MD_prof metadata for every branch instruction using the 1608 // edge weights computed during propagation. 1609 void SampleProfileLoader::generateMDProfMetadata(Function &F) { 1610 // Generate MD_prof metadata for every branch instruction using the 1611 // edge weights computed during propagation. 1612 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1613 LLVMContext &Ctx = F.getContext(); 1614 MDBuilder MDB(Ctx); 1615 for (auto &BI : F) { 1616 BasicBlock *BB = &BI; 1617 1618 if (BlockWeights[BB]) { 1619 for (auto &I : BB->getInstList()) { 1620 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1621 continue; 1622 if (!cast<CallBase>(I).getCalledFunction()) { 1623 const DebugLoc &DLoc = I.getDebugLoc(); 1624 if (!DLoc) 1625 continue; 1626 const DILocation *DIL = DLoc; 1627 const FunctionSamples *FS = findFunctionSamples(I); 1628 if (!FS) 1629 continue; 1630 auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL); 1631 auto T = FS->findCallTargetMapAt(CallSite); 1632 if (!T || T.get().empty()) 1633 continue; 1634 if (FunctionSamples::ProfileIsProbeBased) { 1635 // Prorate the callsite counts based on the pre-ICP distribution 1636 // factor to reflect what is already done to the callsite before 1637 // ICP, such as calliste cloning. 1638 if (Optional<PseudoProbe> Probe = extractProbe(I)) { 1639 if (Probe->Factor < 1) 1640 T = SampleRecord::adjustCallTargets(T.get(), Probe->Factor); 1641 } 1642 } 1643 SmallVector<InstrProfValueData, 2> SortedCallTargets = 1644 GetSortedValueDataFromCallTargets(T.get()); 1645 uint64_t Sum = 0; 1646 for (const auto &C : T.get()) 1647 Sum += C.second; 1648 // With CSSPGO all indirect call targets are counted torwards the 1649 // original indirect call site in the profile, including both 1650 // inlined and non-inlined targets. 1651 if (!FunctionSamples::ProfileIsCSFlat) { 1652 if (const FunctionSamplesMap *M = 1653 FS->findFunctionSamplesMapAt(CallSite)) { 1654 for (const auto &NameFS : *M) 1655 Sum += NameFS.second.getEntrySamples(); 1656 } 1657 } 1658 if (Sum) 1659 updateIDTMetaData(I, SortedCallTargets, Sum); 1660 else if (OverwriteExistingWeights) 1661 I.setMetadata(LLVMContext::MD_prof, nullptr); 1662 } else if (!isa<IntrinsicInst>(&I)) { 1663 I.setMetadata(LLVMContext::MD_prof, 1664 MDB.createBranchWeights( 1665 {static_cast<uint32_t>(BlockWeights[BB])})); 1666 } 1667 } 1668 } else if (OverwriteExistingWeights || ProfileSampleBlockAccurate) { 1669 // Set profile metadata (possibly annotated by LTO prelink) to zero or 1670 // clear it for cold code. 1671 for (auto &I : BB->getInstList()) { 1672 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 1673 if (cast<CallBase>(I).isIndirectCall()) 1674 I.setMetadata(LLVMContext::MD_prof, nullptr); 1675 else 1676 I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(0)); 1677 } 1678 } 1679 } 1680 1681 Instruction *TI = BB->getTerminator(); 1682 if (TI->getNumSuccessors() == 1) 1683 continue; 1684 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI) && 1685 !isa<IndirectBrInst>(TI)) 1686 continue; 1687 1688 DebugLoc BranchLoc = TI->getDebugLoc(); 1689 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " 1690 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1691 : Twine("<UNKNOWN LOCATION>")) 1692 << ".\n"); 1693 SmallVector<uint32_t, 4> Weights; 1694 uint32_t MaxWeight = 0; 1695 Instruction *MaxDestInst; 1696 // Since profi treats multiple edges (multiway branches) as a single edge, 1697 // we need to distribute the computed weight among the branches. We do 1698 // this by evenly splitting the edge weight among destinations. 1699 DenseMap<const BasicBlock *, uint64_t> EdgeMultiplicity; 1700 std::vector<uint64_t> EdgeIndex; 1701 if (SampleProfileUseProfi) { 1702 EdgeIndex.resize(TI->getNumSuccessors()); 1703 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1704 const BasicBlock *Succ = TI->getSuccessor(I); 1705 EdgeIndex[I] = EdgeMultiplicity[Succ]; 1706 EdgeMultiplicity[Succ]++; 1707 } 1708 } 1709 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1710 BasicBlock *Succ = TI->getSuccessor(I); 1711 Edge E = std::make_pair(BB, Succ); 1712 uint64_t Weight = EdgeWeights[E]; 1713 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1714 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1715 // if needed. Sample counts in profiles are 64-bit unsigned values, 1716 // but internally branch weights are expressed as 32-bit values. 1717 if (Weight > std::numeric_limits<uint32_t>::max()) { 1718 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1719 Weight = std::numeric_limits<uint32_t>::max(); 1720 } 1721 if (!SampleProfileUseProfi) { 1722 // Weight is added by one to avoid propagation errors introduced by 1723 // 0 weights. 1724 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1725 } else { 1726 // Profi creates proper weights that do not require "+1" adjustments but 1727 // we evenly split the weight among branches with the same destination. 1728 uint64_t W = Weight / EdgeMultiplicity[Succ]; 1729 // Rounding up, if needed, so that first branches are hotter. 1730 if (EdgeIndex[I] < Weight % EdgeMultiplicity[Succ]) 1731 W++; 1732 Weights.push_back(static_cast<uint32_t>(W)); 1733 } 1734 if (Weight != 0) { 1735 if (Weight > MaxWeight) { 1736 MaxWeight = Weight; 1737 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1738 } 1739 } 1740 } 1741 1742 uint64_t TempWeight; 1743 // Only set weights if there is at least one non-zero weight. 1744 // In any other case, let the analyzer set weights. 1745 // Do not set weights if the weights are present unless under 1746 // OverwriteExistingWeights. In ThinLTO, the profile annotation is done 1747 // twice. If the first annotation already set the weights, the second pass 1748 // does not need to set it. With OverwriteExistingWeights, Blocks with zero 1749 // weight should have their existing metadata (possibly annotated by LTO 1750 // prelink) cleared. 1751 if (MaxWeight > 0 && 1752 (!TI->extractProfTotalWeight(TempWeight) || OverwriteExistingWeights)) { 1753 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1754 TI->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); 1755 ORE->emit([&]() { 1756 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1757 << "most popular destination for conditional branches at " 1758 << ore::NV("CondBranchesLoc", BranchLoc); 1759 }); 1760 } else { 1761 if (OverwriteExistingWeights) { 1762 TI->setMetadata(LLVMContext::MD_prof, nullptr); 1763 LLVM_DEBUG(dbgs() << "CLEARED. All branch weights are zero.\n"); 1764 } else { 1765 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1766 } 1767 } 1768 } 1769 } 1770 1771 /// Once all the branch weights are computed, we emit the MD_prof 1772 /// metadata on BB using the computed values for each of its branches. 1773 /// 1774 /// \param F The function to query. 1775 /// 1776 /// \returns true if \p F was modified. Returns false, otherwise. 1777 bool SampleProfileLoader::emitAnnotations(Function &F) { 1778 bool Changed = false; 1779 1780 if (FunctionSamples::ProfileIsProbeBased) { 1781 if (!ProbeManager->profileIsValid(F, *Samples)) { 1782 LLVM_DEBUG( 1783 dbgs() << "Profile is invalid due to CFG mismatch for Function " 1784 << F.getName()); 1785 ++NumMismatchedProfile; 1786 return false; 1787 } 1788 ++NumMatchedProfile; 1789 } else { 1790 if (getFunctionLoc(F) == 0) 1791 return false; 1792 1793 LLVM_DEBUG(dbgs() << "Line number for the first instruction in " 1794 << F.getName() << ": " << getFunctionLoc(F) << "\n"); 1795 } 1796 1797 DenseSet<GlobalValue::GUID> InlinedGUIDs; 1798 if (CallsitePrioritizedInline) 1799 Changed |= inlineHotFunctionsWithPriority(F, InlinedGUIDs); 1800 else 1801 Changed |= inlineHotFunctions(F, InlinedGUIDs); 1802 1803 Changed |= computeAndPropagateWeights(F, InlinedGUIDs); 1804 1805 if (Changed) 1806 generateMDProfMetadata(F); 1807 1808 emitCoverageRemarks(F); 1809 return Changed; 1810 } 1811 1812 char SampleProfileLoaderLegacyPass::ID = 0; 1813 1814 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1815 "Sample Profile loader", false, false) 1816 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1817 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1818 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1819 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1820 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1821 "Sample Profile loader", false, false) 1822 1823 std::unique_ptr<ProfiledCallGraph> 1824 SampleProfileLoader::buildProfiledCallGraph(CallGraph &CG) { 1825 std::unique_ptr<ProfiledCallGraph> ProfiledCG; 1826 if (ProfileIsCSFlat) 1827 ProfiledCG = std::make_unique<ProfiledCallGraph>(*ContextTracker); 1828 else 1829 ProfiledCG = std::make_unique<ProfiledCallGraph>(Reader->getProfiles()); 1830 1831 // Add all functions into the profiled call graph even if they are not in 1832 // the profile. This makes sure functions missing from the profile still 1833 // gets a chance to be processed. 1834 for (auto &Node : CG) { 1835 const auto *F = Node.first; 1836 if (!F || F->isDeclaration() || !F->hasFnAttribute("use-sample-profile")) 1837 continue; 1838 ProfiledCG->addProfiledFunction(FunctionSamples::getCanonicalFnName(*F)); 1839 } 1840 1841 return ProfiledCG; 1842 } 1843 1844 std::vector<Function *> 1845 SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) { 1846 std::vector<Function *> FunctionOrderList; 1847 FunctionOrderList.reserve(M.size()); 1848 1849 if (!ProfileTopDownLoad && UseProfiledCallGraph) 1850 errs() << "WARNING: -use-profiled-call-graph ignored, should be used " 1851 "together with -sample-profile-top-down-load.\n"; 1852 1853 if (!ProfileTopDownLoad || CG == nullptr) { 1854 if (ProfileMergeInlinee) { 1855 // Disable ProfileMergeInlinee if profile is not loaded in top down order, 1856 // because the profile for a function may be used for the profile 1857 // annotation of its outline copy before the profile merging of its 1858 // non-inlined inline instances, and that is not the way how 1859 // ProfileMergeInlinee is supposed to work. 1860 ProfileMergeInlinee = false; 1861 } 1862 1863 for (Function &F : M) 1864 if (!F.isDeclaration() && F.hasFnAttribute("use-sample-profile")) 1865 FunctionOrderList.push_back(&F); 1866 return FunctionOrderList; 1867 } 1868 1869 assert(&CG->getModule() == &M); 1870 1871 if (UseProfiledCallGraph || 1872 (ProfileIsCSFlat && !UseProfiledCallGraph.getNumOccurrences())) { 1873 // Use profiled call edges to augment the top-down order. There are cases 1874 // that the top-down order computed based on the static call graph doesn't 1875 // reflect real execution order. For example 1876 // 1877 // 1. Incomplete static call graph due to unknown indirect call targets. 1878 // Adjusting the order by considering indirect call edges from the 1879 // profile can enable the inlining of indirect call targets by allowing 1880 // the caller processed before them. 1881 // 2. Mutual call edges in an SCC. The static processing order computed for 1882 // an SCC may not reflect the call contexts in the context-sensitive 1883 // profile, thus may cause potential inlining to be overlooked. The 1884 // function order in one SCC is being adjusted to a top-down order based 1885 // on the profile to favor more inlining. This is only a problem with CS 1886 // profile. 1887 // 3. Transitive indirect call edges due to inlining. When a callee function 1888 // (say B) is inlined into into a caller function (say A) in LTO prelink, 1889 // every call edge originated from the callee B will be transferred to 1890 // the caller A. If any transferred edge (say A->C) is indirect, the 1891 // original profiled indirect edge B->C, even if considered, would not 1892 // enforce a top-down order from the caller A to the potential indirect 1893 // call target C in LTO postlink since the inlined callee B is gone from 1894 // the static call graph. 1895 // 4. #3 can happen even for direct call targets, due to functions defined 1896 // in header files. A header function (say A), when included into source 1897 // files, is defined multiple times but only one definition survives due 1898 // to ODR. Therefore, the LTO prelink inlining done on those dropped 1899 // definitions can be useless based on a local file scope. More 1900 // importantly, the inlinee (say B), once fully inlined to a 1901 // to-be-dropped A, will have no profile to consume when its outlined 1902 // version is compiled. This can lead to a profile-less prelink 1903 // compilation for the outlined version of B which may be called from 1904 // external modules. while this isn't easy to fix, we rely on the 1905 // postlink AutoFDO pipeline to optimize B. Since the survived copy of 1906 // the A can be inlined in its local scope in prelink, it may not exist 1907 // in the merged IR in postlink, and we'll need the profiled call edges 1908 // to enforce a top-down order for the rest of the functions. 1909 // 1910 // Considering those cases, a profiled call graph completely independent of 1911 // the static call graph is constructed based on profile data, where 1912 // function objects are not even needed to handle case #3 and case 4. 1913 // 1914 // Note that static callgraph edges are completely ignored since they 1915 // can be conflicting with profiled edges for cyclic SCCs and may result in 1916 // an SCC order incompatible with profile-defined one. Using strictly 1917 // profile order ensures a maximum inlining experience. On the other hand, 1918 // static call edges are not so important when they don't correspond to a 1919 // context in the profile. 1920 1921 std::unique_ptr<ProfiledCallGraph> ProfiledCG = buildProfiledCallGraph(*CG); 1922 scc_iterator<ProfiledCallGraph *> CGI = scc_begin(ProfiledCG.get()); 1923 while (!CGI.isAtEnd()) { 1924 auto Range = *CGI; 1925 if (SortProfiledSCC) { 1926 // Sort nodes in one SCC based on callsite hotness. 1927 scc_member_iterator<ProfiledCallGraph *> SI(*CGI); 1928 Range = *SI; 1929 } 1930 for (auto *Node : Range) { 1931 Function *F = SymbolMap.lookup(Node->Name); 1932 if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile")) 1933 FunctionOrderList.push_back(F); 1934 } 1935 ++CGI; 1936 } 1937 } else { 1938 scc_iterator<CallGraph *> CGI = scc_begin(CG); 1939 while (!CGI.isAtEnd()) { 1940 for (CallGraphNode *Node : *CGI) { 1941 auto *F = Node->getFunction(); 1942 if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile")) 1943 FunctionOrderList.push_back(F); 1944 } 1945 ++CGI; 1946 } 1947 } 1948 1949 LLVM_DEBUG({ 1950 dbgs() << "Function processing order:\n"; 1951 for (auto F : reverse(FunctionOrderList)) { 1952 dbgs() << F->getName() << "\n"; 1953 } 1954 }); 1955 1956 std::reverse(FunctionOrderList.begin(), FunctionOrderList.end()); 1957 return FunctionOrderList; 1958 } 1959 1960 bool SampleProfileLoader::doInitialization(Module &M, 1961 FunctionAnalysisManager *FAM) { 1962 auto &Ctx = M.getContext(); 1963 1964 auto ReaderOrErr = SampleProfileReader::create( 1965 Filename, Ctx, FSDiscriminatorPass::Base, RemappingFilename); 1966 if (std::error_code EC = ReaderOrErr.getError()) { 1967 std::string Msg = "Could not open profile: " + EC.message(); 1968 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1969 return false; 1970 } 1971 Reader = std::move(ReaderOrErr.get()); 1972 Reader->setSkipFlatProf(LTOPhase == ThinOrFullLTOPhase::ThinLTOPostLink); 1973 // set module before reading the profile so reader may be able to only 1974 // read the function profiles which are used by the current module. 1975 Reader->setModule(&M); 1976 if (std::error_code EC = Reader->read()) { 1977 std::string Msg = "profile reading failed: " + EC.message(); 1978 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1979 return false; 1980 } 1981 1982 PSL = Reader->getProfileSymbolList(); 1983 1984 // While profile-sample-accurate is on, ignore symbol list. 1985 ProfAccForSymsInList = 1986 ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate; 1987 if (ProfAccForSymsInList) { 1988 NamesInProfile.clear(); 1989 if (auto NameTable = Reader->getNameTable()) 1990 NamesInProfile.insert(NameTable->begin(), NameTable->end()); 1991 CoverageTracker.setProfAccForSymsInList(true); 1992 } 1993 1994 if (FAM && !ProfileInlineReplayFile.empty()) { 1995 ExternalInlineAdvisor = getReplayInlineAdvisor( 1996 M, *FAM, Ctx, /*OriginalAdvisor=*/nullptr, 1997 ReplayInlinerSettings{ProfileInlineReplayFile, 1998 ProfileInlineReplayScope, 1999 ProfileInlineReplayFallback, 2000 {ProfileInlineReplayFormat}}, 2001 /*EmitRemarks=*/false); 2002 } 2003 2004 // Apply tweaks if context-sensitive or probe-based profile is available. 2005 if (Reader->profileIsCSFlat() || Reader->profileIsCSNested() || 2006 Reader->profileIsProbeBased()) { 2007 if (!UseIterativeBFIInference.getNumOccurrences()) 2008 UseIterativeBFIInference = true; 2009 if (!SampleProfileUseProfi.getNumOccurrences()) 2010 SampleProfileUseProfi = true; 2011 if (!EnableExtTspBlockPlacement.getNumOccurrences()) 2012 EnableExtTspBlockPlacement = true; 2013 } 2014 2015 if (Reader->profileIsCSFlat() || Reader->profileIsCSNested()) { 2016 ProfileIsCSFlat = Reader->profileIsCSFlat(); 2017 // Enable priority-base inliner and size inline by default for CSSPGO. 2018 if (!ProfileSizeInline.getNumOccurrences()) 2019 ProfileSizeInline = true; 2020 if (!CallsitePrioritizedInline.getNumOccurrences()) 2021 CallsitePrioritizedInline = true; 2022 2023 // For CSSPGO, use preinliner decision by default when available. 2024 if (!UsePreInlinerDecision.getNumOccurrences()) 2025 UsePreInlinerDecision = true; 2026 2027 // For CSSPGO, we also allow recursive inline to best use context profile. 2028 if (!AllowRecursiveInline.getNumOccurrences()) 2029 AllowRecursiveInline = true; 2030 2031 if (FunctionSamples::ProfileIsCSFlat) { 2032 // Tracker for profiles under different context 2033 ContextTracker = std::make_unique<SampleContextTracker>( 2034 Reader->getProfiles(), &GUIDToFuncNameMap); 2035 } 2036 } 2037 2038 // Load pseudo probe descriptors for probe-based function samples. 2039 if (Reader->profileIsProbeBased()) { 2040 ProbeManager = std::make_unique<PseudoProbeManager>(M); 2041 if (!ProbeManager->moduleIsProbed(M)) { 2042 const char *Msg = 2043 "Pseudo-probe-based profile requires SampleProfileProbePass"; 2044 Ctx.diagnose(DiagnosticInfoSampleProfile(M.getModuleIdentifier(), Msg, 2045 DS_Warning)); 2046 return false; 2047 } 2048 } 2049 2050 return true; 2051 } 2052 2053 ModulePass *llvm::createSampleProfileLoaderPass() { 2054 return new SampleProfileLoaderLegacyPass(); 2055 } 2056 2057 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 2058 return new SampleProfileLoaderLegacyPass(Name); 2059 } 2060 2061 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, 2062 ProfileSummaryInfo *_PSI, CallGraph *CG) { 2063 GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap); 2064 2065 PSI = _PSI; 2066 if (M.getProfileSummary(/* IsCS */ false) == nullptr) { 2067 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()), 2068 ProfileSummary::PSK_Sample); 2069 PSI->refresh(); 2070 } 2071 // Compute the total number of samples collected in this profile. 2072 for (const auto &I : Reader->getProfiles()) 2073 TotalCollectedSamples += I.second.getTotalSamples(); 2074 2075 auto Remapper = Reader->getRemapper(); 2076 // Populate the symbol map. 2077 for (const auto &N_F : M.getValueSymbolTable()) { 2078 StringRef OrigName = N_F.getKey(); 2079 Function *F = dyn_cast<Function>(N_F.getValue()); 2080 if (F == nullptr || OrigName.empty()) 2081 continue; 2082 SymbolMap[OrigName] = F; 2083 StringRef NewName = FunctionSamples::getCanonicalFnName(*F); 2084 if (OrigName != NewName && !NewName.empty()) { 2085 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 2086 // Failiing to insert means there is already an entry in SymbolMap, 2087 // thus there are multiple functions that are mapped to the same 2088 // stripped name. In this case of name conflicting, set the value 2089 // to nullptr to avoid confusion. 2090 if (!r.second) 2091 r.first->second = nullptr; 2092 OrigName = NewName; 2093 } 2094 // Insert the remapped names into SymbolMap. 2095 if (Remapper) { 2096 if (auto MapName = Remapper->lookUpNameInProfile(OrigName)) { 2097 if (*MapName != OrigName && !MapName->empty()) 2098 SymbolMap.insert(std::make_pair(*MapName, F)); 2099 } 2100 } 2101 } 2102 assert(SymbolMap.count(StringRef()) == 0 && 2103 "No empty StringRef should be added in SymbolMap"); 2104 2105 bool retval = false; 2106 for (auto F : buildFunctionOrder(M, CG)) { 2107 assert(!F->isDeclaration()); 2108 clearFunctionData(); 2109 retval |= runOnFunction(*F, AM); 2110 } 2111 2112 // Account for cold calls not inlined.... 2113 if (!ProfileIsCSFlat) 2114 for (const std::pair<Function *, NotInlinedProfileInfo> &pair : 2115 notInlinedCallInfo) 2116 updateProfileCallee(pair.first, pair.second.entryCount); 2117 2118 return retval; 2119 } 2120 2121 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 2122 ACT = &getAnalysis<AssumptionCacheTracker>(); 2123 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 2124 TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>(); 2125 ProfileSummaryInfo *PSI = 2126 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2127 return SampleLoader.runOnModule(M, nullptr, PSI, nullptr); 2128 } 2129 2130 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 2131 LLVM_DEBUG(dbgs() << "\n\nProcessing Function " << F.getName() << "\n"); 2132 DILocation2SampleMap.clear(); 2133 // By default the entry count is initialized to -1, which will be treated 2134 // conservatively by getEntryCount as the same as unknown (None). This is 2135 // to avoid newly added code to be treated as cold. If we have samples 2136 // this will be overwritten in emitAnnotations. 2137 uint64_t initialEntryCount = -1; 2138 2139 ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL; 2140 if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) { 2141 // initialize all the function entry counts to 0. It means all the 2142 // functions without profile will be regarded as cold. 2143 initialEntryCount = 0; 2144 // profile-sample-accurate is a user assertion which has a higher precedence 2145 // than symbol list. When profile-sample-accurate is on, ignore symbol list. 2146 ProfAccForSymsInList = false; 2147 } 2148 CoverageTracker.setProfAccForSymsInList(ProfAccForSymsInList); 2149 2150 // PSL -- profile symbol list include all the symbols in sampled binary. 2151 // If ProfileAccurateForSymsInList is enabled, PSL is used to treat 2152 // old functions without samples being cold, without having to worry 2153 // about new and hot functions being mistakenly treated as cold. 2154 if (ProfAccForSymsInList) { 2155 // Initialize the entry count to 0 for functions in the list. 2156 if (PSL->contains(F.getName())) 2157 initialEntryCount = 0; 2158 2159 // Function in the symbol list but without sample will be regarded as 2160 // cold. To minimize the potential negative performance impact it could 2161 // have, we want to be a little conservative here saying if a function 2162 // shows up in the profile, no matter as outline function, inline instance 2163 // or call targets, treat the function as not being cold. This will handle 2164 // the cases such as most callsites of a function are inlined in sampled 2165 // binary but not inlined in current build (because of source code drift, 2166 // imprecise debug information, or the callsites are all cold individually 2167 // but not cold accumulatively...), so the outline function showing up as 2168 // cold in sampled binary will actually not be cold after current build. 2169 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 2170 if (NamesInProfile.count(CanonName)) 2171 initialEntryCount = -1; 2172 } 2173 2174 // Initialize entry count when the function has no existing entry 2175 // count value. 2176 if (!F.getEntryCount().hasValue()) 2177 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real)); 2178 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 2179 if (AM) { 2180 auto &FAM = 2181 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 2182 .getManager(); 2183 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 2184 } else { 2185 OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F); 2186 ORE = OwnedORE.get(); 2187 } 2188 2189 if (ProfileIsCSFlat) 2190 Samples = ContextTracker->getBaseSamplesFor(F); 2191 else 2192 Samples = Reader->getSamplesFor(F); 2193 2194 if (Samples && !Samples->empty()) 2195 return emitAnnotations(F); 2196 return false; 2197 } 2198 2199 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 2200 ModuleAnalysisManager &AM) { 2201 FunctionAnalysisManager &FAM = 2202 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2203 2204 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 2205 return FAM.getResult<AssumptionAnalysis>(F); 2206 }; 2207 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 2208 return FAM.getResult<TargetIRAnalysis>(F); 2209 }; 2210 auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & { 2211 return FAM.getResult<TargetLibraryAnalysis>(F); 2212 }; 2213 2214 SampleProfileLoader SampleLoader( 2215 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 2216 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile 2217 : ProfileRemappingFileName, 2218 LTOPhase, GetAssumptionCache, GetTTI, GetTLI); 2219 2220 if (!SampleLoader.doInitialization(M, &FAM)) 2221 return PreservedAnalyses::all(); 2222 2223 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 2224 CallGraph &CG = AM.getResult<CallGraphAnalysis>(M); 2225 if (!SampleLoader.runOnModule(M, &AM, PSI, &CG)) 2226 return PreservedAnalyses::all(); 2227 2228 return PreservedAnalyses::none(); 2229 } 2230