1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/SampleProfile.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/PostDominators.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DebugInfo.h" 35 #include "llvm/IR/DiagnosticInfo.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/InstIterator.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/MDBuilder.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/Pass.h" 46 #include "llvm/ProfileData/SampleProfReader.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/ErrorOr.h" 50 #include "llvm/Support/Format.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Transforms/IPO.h" 53 #include "llvm/Transforms/Utils/Cloning.h" 54 #include <cctype> 55 56 using namespace llvm; 57 using namespace sampleprof; 58 59 #define DEBUG_TYPE "sample-profile" 60 61 // Command line option to specify the file to read samples from. This is 62 // mainly used for debugging. 63 static cl::opt<std::string> SampleProfileFile( 64 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 65 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 66 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 67 "sample-profile-max-propagate-iterations", cl::init(100), 68 cl::desc("Maximum number of iterations to go through when propagating " 69 "sample block/edge weights through the CFG.")); 70 static cl::opt<unsigned> SampleProfileRecordCoverage( 71 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 72 cl::desc("Emit a warning if less than N% of records in the input profile " 73 "are matched to the IR.")); 74 static cl::opt<unsigned> SampleProfileSampleCoverage( 75 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 76 cl::desc("Emit a warning if less than N% of samples in the input profile " 77 "are matched to the IR.")); 78 static cl::opt<double> SampleProfileHotThreshold( 79 "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"), 80 cl::desc("Inlined functions that account for more than N% of all samples " 81 "collected in the parent function, will be inlined again.")); 82 83 namespace { 84 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap; 85 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap; 86 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge; 87 typedef DenseMap<Edge, uint64_t> EdgeWeightMap; 88 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>> 89 BlockEdgeMap; 90 91 /// \brief Sample profile pass. 92 /// 93 /// This pass reads profile data from the file specified by 94 /// -sample-profile-file and annotates every affected function with the 95 /// profile information found in that file. 96 class SampleProfileLoader { 97 public: 98 SampleProfileLoader(StringRef Name = SampleProfileFile) 99 : DT(nullptr), PDT(nullptr), LI(nullptr), ACT(nullptr), Reader(), 100 Samples(nullptr), Filename(Name), ProfileIsValid(false), 101 TotalCollectedSamples(0) {} 102 103 bool doInitialization(Module &M); 104 bool runOnModule(Module &M); 105 void setACT(AssumptionCacheTracker *A) { ACT = A; } 106 107 void dump() { Reader->dump(); } 108 109 protected: 110 bool runOnFunction(Function &F); 111 unsigned getFunctionLoc(Function &F); 112 bool emitAnnotations(Function &F); 113 ErrorOr<uint64_t> getInstWeight(const Instruction &I) const; 114 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB) const; 115 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 116 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 117 bool inlineHotFunctions(Function &F); 118 void printEdgeWeight(raw_ostream &OS, Edge E); 119 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 120 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 121 bool computeBlockWeights(Function &F); 122 void findEquivalenceClasses(Function &F); 123 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 124 DominatorTreeBase<BasicBlock> *DomTree); 125 void propagateWeights(Function &F); 126 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 127 void buildEdges(Function &F); 128 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 129 void computeDominanceAndLoopInfo(Function &F); 130 unsigned getOffset(unsigned L, unsigned H) const; 131 void clearFunctionData(); 132 133 /// \brief Map basic blocks to their computed weights. 134 /// 135 /// The weight of a basic block is defined to be the maximum 136 /// of all the instruction weights in that block. 137 BlockWeightMap BlockWeights; 138 139 /// \brief Map edges to their computed weights. 140 /// 141 /// Edge weights are computed by propagating basic block weights in 142 /// SampleProfile::propagateWeights. 143 EdgeWeightMap EdgeWeights; 144 145 /// \brief Set of visited blocks during propagation. 146 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 147 148 /// \brief Set of visited edges during propagation. 149 SmallSet<Edge, 32> VisitedEdges; 150 151 /// \brief Equivalence classes for block weights. 152 /// 153 /// Two blocks BB1 and BB2 are in the same equivalence class if they 154 /// dominate and post-dominate each other, and they are in the same loop 155 /// nest. When this happens, the two blocks are guaranteed to execute 156 /// the same number of times. 157 EquivalenceClassMap EquivalenceClass; 158 159 /// \brief Dominance, post-dominance and loop information. 160 std::unique_ptr<DominatorTree> DT; 161 std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT; 162 std::unique_ptr<LoopInfo> LI; 163 164 AssumptionCacheTracker *ACT; 165 166 /// \brief Predecessors for each basic block in the CFG. 167 BlockEdgeMap Predecessors; 168 169 /// \brief Successors for each basic block in the CFG. 170 BlockEdgeMap Successors; 171 172 /// \brief Profile reader object. 173 std::unique_ptr<SampleProfileReader> Reader; 174 175 /// \brief Samples collected for the body of this function. 176 FunctionSamples *Samples; 177 178 /// \brief Name of the profile file to load. 179 StringRef Filename; 180 181 /// \brief Flag indicating whether the profile input loaded successfully. 182 bool ProfileIsValid; 183 184 /// \brief Total number of samples collected in this profile. 185 /// 186 /// This is the sum of all the samples collected in all the functions executed 187 /// at runtime. 188 uint64_t TotalCollectedSamples; 189 }; 190 191 class SampleProfileLoaderLegacyPass : public ModulePass { 192 public: 193 // Class identification, replacement for typeinfo 194 static char ID; 195 196 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile) 197 : ModulePass(ID), SampleLoader(Name) { 198 initializeSampleProfileLoaderLegacyPassPass( 199 *PassRegistry::getPassRegistry()); 200 } 201 202 void dump() { SampleLoader.dump(); } 203 204 bool doInitialization(Module &M) override { 205 return SampleLoader.doInitialization(M); 206 } 207 StringRef getPassName() const override { return "Sample profile pass"; } 208 bool runOnModule(Module &M) override; 209 210 void getAnalysisUsage(AnalysisUsage &AU) const override { 211 AU.addRequired<AssumptionCacheTracker>(); 212 } 213 214 private: 215 SampleProfileLoader SampleLoader; 216 }; 217 218 class SampleCoverageTracker { 219 public: 220 SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {} 221 222 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 223 uint32_t Discriminator, uint64_t Samples); 224 unsigned computeCoverage(unsigned Used, unsigned Total) const; 225 unsigned countUsedRecords(const FunctionSamples *FS) const; 226 unsigned countBodyRecords(const FunctionSamples *FS) const; 227 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 228 uint64_t countBodySamples(const FunctionSamples *FS) const; 229 void clear() { 230 SampleCoverage.clear(); 231 TotalUsedSamples = 0; 232 } 233 234 private: 235 typedef std::map<LineLocation, unsigned> BodySampleCoverageMap; 236 typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap> 237 FunctionSamplesCoverageMap; 238 239 /// Coverage map for sampling records. 240 /// 241 /// This map keeps a record of sampling records that have been matched to 242 /// an IR instruction. This is used to detect some form of staleness in 243 /// profiles (see flag -sample-profile-check-coverage). 244 /// 245 /// Each entry in the map corresponds to a FunctionSamples instance. This is 246 /// another map that counts how many times the sample record at the 247 /// given location has been used. 248 FunctionSamplesCoverageMap SampleCoverage; 249 250 /// Number of samples used from the profile. 251 /// 252 /// When a sampling record is used for the first time, the samples from 253 /// that record are added to this accumulator. Coverage is later computed 254 /// based on the total number of samples available in this function and 255 /// its callsites. 256 /// 257 /// Note that this accumulator tracks samples used from a single function 258 /// and all the inlined callsites. Strictly, we should have a map of counters 259 /// keyed by FunctionSamples pointers, but these stats are cleared after 260 /// every function, so we just need to keep a single counter. 261 uint64_t TotalUsedSamples; 262 }; 263 264 SampleCoverageTracker CoverageTracker; 265 266 /// Return true if the given callsite is hot wrt to its caller. 267 /// 268 /// Functions that were inlined in the original binary will be represented 269 /// in the inline stack in the sample profile. If the profile shows that 270 /// the original inline decision was "good" (i.e., the callsite is executed 271 /// frequently), then we will recreate the inline decision and apply the 272 /// profile from the inlined callsite. 273 /// 274 /// To decide whether an inlined callsite is hot, we compute the fraction 275 /// of samples used by the callsite with respect to the total number of samples 276 /// collected in the caller. 277 /// 278 /// If that fraction is larger than the default given by 279 /// SampleProfileHotThreshold, the callsite will be inlined again. 280 bool callsiteIsHot(const FunctionSamples *CallerFS, 281 const FunctionSamples *CallsiteFS) { 282 if (!CallsiteFS) 283 return false; // The callsite was not inlined in the original binary. 284 285 uint64_t ParentTotalSamples = CallerFS->getTotalSamples(); 286 if (ParentTotalSamples == 0) 287 return false; // Avoid division by zero. 288 289 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 290 if (CallsiteTotalSamples == 0) 291 return false; // Callsite is trivially cold. 292 293 double PercentSamples = 294 (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0; 295 return PercentSamples >= SampleProfileHotThreshold; 296 } 297 } 298 299 /// Mark as used the sample record for the given function samples at 300 /// (LineOffset, Discriminator). 301 /// 302 /// \returns true if this is the first time we mark the given record. 303 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 304 uint32_t LineOffset, 305 uint32_t Discriminator, 306 uint64_t Samples) { 307 LineLocation Loc(LineOffset, Discriminator); 308 unsigned &Count = SampleCoverage[FS][Loc]; 309 bool FirstTime = (++Count == 1); 310 if (FirstTime) 311 TotalUsedSamples += Samples; 312 return FirstTime; 313 } 314 315 /// Return the number of sample records that were applied from this profile. 316 /// 317 /// This count does not include records from cold inlined callsites. 318 unsigned 319 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const { 320 auto I = SampleCoverage.find(FS); 321 322 // The size of the coverage map for FS represents the number of records 323 // that were marked used at least once. 324 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 325 326 // If there are inlined callsites in this function, count the samples found 327 // in the respective bodies. However, do not bother counting callees with 0 328 // total samples, these are callees that were never invoked at runtime. 329 for (const auto &I : FS->getCallsiteSamples()) { 330 const FunctionSamples *CalleeSamples = &I.second; 331 if (callsiteIsHot(FS, CalleeSamples)) 332 Count += countUsedRecords(CalleeSamples); 333 } 334 335 return Count; 336 } 337 338 /// Return the number of sample records in the body of this profile. 339 /// 340 /// This count does not include records from cold inlined callsites. 341 unsigned 342 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const { 343 unsigned Count = FS->getBodySamples().size(); 344 345 // Only count records in hot callsites. 346 for (const auto &I : FS->getCallsiteSamples()) { 347 const FunctionSamples *CalleeSamples = &I.second; 348 if (callsiteIsHot(FS, CalleeSamples)) 349 Count += countBodyRecords(CalleeSamples); 350 } 351 352 return Count; 353 } 354 355 /// Return the number of samples collected in the body of this profile. 356 /// 357 /// This count does not include samples from cold inlined callsites. 358 uint64_t 359 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const { 360 uint64_t Total = 0; 361 for (const auto &I : FS->getBodySamples()) 362 Total += I.second.getSamples(); 363 364 // Only count samples in hot callsites. 365 for (const auto &I : FS->getCallsiteSamples()) { 366 const FunctionSamples *CalleeSamples = &I.second; 367 if (callsiteIsHot(FS, CalleeSamples)) 368 Total += countBodySamples(CalleeSamples); 369 } 370 371 return Total; 372 } 373 374 /// Return the fraction of sample records used in this profile. 375 /// 376 /// The returned value is an unsigned integer in the range 0-100 indicating 377 /// the percentage of sample records that were used while applying this 378 /// profile to the associated function. 379 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 380 unsigned Total) const { 381 assert(Used <= Total && 382 "number of used records cannot exceed the total number of records"); 383 return Total > 0 ? Used * 100 / Total : 100; 384 } 385 386 /// Clear all the per-function data used to load samples and propagate weights. 387 void SampleProfileLoader::clearFunctionData() { 388 BlockWeights.clear(); 389 EdgeWeights.clear(); 390 VisitedBlocks.clear(); 391 VisitedEdges.clear(); 392 EquivalenceClass.clear(); 393 DT = nullptr; 394 PDT = nullptr; 395 LI = nullptr; 396 Predecessors.clear(); 397 Successors.clear(); 398 CoverageTracker.clear(); 399 } 400 401 /// \brief Returns the offset of lineno \p L to head_lineno \p H 402 /// 403 /// \param L Lineno 404 /// \param H Header lineno of the function 405 /// 406 /// \returns offset to the header lineno. 16 bits are used to represent offset. 407 /// We assume that a single function will not exceed 65535 LOC. 408 unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const { 409 return (L - H) & 0xffff; 410 } 411 412 /// \brief Print the weight of edge \p E on stream \p OS. 413 /// 414 /// \param OS Stream to emit the output to. 415 /// \param E Edge to print. 416 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 417 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 418 << "]: " << EdgeWeights[E] << "\n"; 419 } 420 421 /// \brief Print the equivalence class of block \p BB on stream \p OS. 422 /// 423 /// \param OS Stream to emit the output to. 424 /// \param BB Block to print. 425 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 426 const BasicBlock *BB) { 427 const BasicBlock *Equiv = EquivalenceClass[BB]; 428 OS << "equivalence[" << BB->getName() 429 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 430 } 431 432 /// \brief Print the weight of block \p BB on stream \p OS. 433 /// 434 /// \param OS Stream to emit the output to. 435 /// \param BB Block to print. 436 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 437 const BasicBlock *BB) const { 438 const auto &I = BlockWeights.find(BB); 439 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 440 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 441 } 442 443 /// \brief Get the weight for an instruction. 444 /// 445 /// The "weight" of an instruction \p Inst is the number of samples 446 /// collected on that instruction at runtime. To retrieve it, we 447 /// need to compute the line number of \p Inst relative to the start of its 448 /// function. We use HeaderLineno to compute the offset. We then 449 /// look up the samples collected for \p Inst using BodySamples. 450 /// 451 /// \param Inst Instruction to query. 452 /// 453 /// \returns the weight of \p Inst. 454 ErrorOr<uint64_t> 455 SampleProfileLoader::getInstWeight(const Instruction &Inst) const { 456 const DebugLoc &DLoc = Inst.getDebugLoc(); 457 if (!DLoc) 458 return std::error_code(); 459 460 const FunctionSamples *FS = findFunctionSamples(Inst); 461 if (!FS) 462 return std::error_code(); 463 464 // Ignore all intrinsics and branch instructions. 465 // Branch instruction usually contains debug info from sources outside of 466 // the residing basic block, thus we ignore them during annotation. 467 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst)) 468 return std::error_code(); 469 470 // If a call/invoke instruction is inlined in profile, but not inlined here, 471 // it means that the inlined callsite has no sample, thus the call 472 // instruction should have 0 count. 473 bool IsCall = isa<CallInst>(Inst) || isa<InvokeInst>(Inst); 474 if (IsCall && findCalleeFunctionSamples(Inst)) 475 return 0; 476 477 const DILocation *DIL = DLoc; 478 unsigned Lineno = DLoc.getLine(); 479 unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine(); 480 481 uint32_t LineOffset = getOffset(Lineno, HeaderLineno); 482 uint32_t Discriminator = DIL->getDiscriminator(); 483 ErrorOr<uint64_t> R = IsCall 484 ? FS->findCallSamplesAt(LineOffset, Discriminator) 485 : FS->findSamplesAt(LineOffset, Discriminator); 486 if (R) { 487 bool FirstMark = 488 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 489 if (FirstMark) { 490 const Function *F = Inst.getParent()->getParent(); 491 LLVMContext &Ctx = F->getContext(); 492 emitOptimizationRemark( 493 Ctx, DEBUG_TYPE, *F, DLoc, 494 Twine("Applied ") + Twine(*R) + " samples from profile (offset: " + 495 Twine(LineOffset) + 496 ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")"); 497 } 498 DEBUG(dbgs() << " " << Lineno << "." << DIL->getDiscriminator() << ":" 499 << Inst << " (line offset: " << Lineno - HeaderLineno << "." 500 << DIL->getDiscriminator() << " - weight: " << R.get() 501 << ")\n"); 502 } 503 return R; 504 } 505 506 /// \brief Compute the weight of a basic block. 507 /// 508 /// The weight of basic block \p BB is the maximum weight of all the 509 /// instructions in BB. 510 /// 511 /// \param BB The basic block to query. 512 /// 513 /// \returns the weight for \p BB. 514 ErrorOr<uint64_t> 515 SampleProfileLoader::getBlockWeight(const BasicBlock *BB) const { 516 uint64_t Max = 0; 517 bool HasWeight = false; 518 for (auto &I : BB->getInstList()) { 519 const ErrorOr<uint64_t> &R = getInstWeight(I); 520 if (R) { 521 Max = std::max(Max, R.get()); 522 HasWeight = true; 523 } 524 } 525 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 526 } 527 528 /// \brief Compute and store the weights of every basic block. 529 /// 530 /// This populates the BlockWeights map by computing 531 /// the weights of every basic block in the CFG. 532 /// 533 /// \param F The function to query. 534 bool SampleProfileLoader::computeBlockWeights(Function &F) { 535 bool Changed = false; 536 DEBUG(dbgs() << "Block weights\n"); 537 for (const auto &BB : F) { 538 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 539 if (Weight) { 540 BlockWeights[&BB] = Weight.get(); 541 VisitedBlocks.insert(&BB); 542 Changed = true; 543 } 544 DEBUG(printBlockWeight(dbgs(), &BB)); 545 } 546 547 return Changed; 548 } 549 550 /// \brief Get the FunctionSamples for a call instruction. 551 /// 552 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 553 /// instance in which that call instruction is calling to. It contains 554 /// all samples that resides in the inlined instance. We first find the 555 /// inlined instance in which the call instruction is from, then we 556 /// traverse its children to find the callsite with the matching 557 /// location. 558 /// 559 /// \param Inst Call/Invoke instruction to query. 560 /// 561 /// \returns The FunctionSamples pointer to the inlined instance. 562 const FunctionSamples * 563 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 564 const DILocation *DIL = Inst.getDebugLoc(); 565 if (!DIL) { 566 return nullptr; 567 } 568 DISubprogram *SP = DIL->getScope()->getSubprogram(); 569 if (!SP) 570 return nullptr; 571 572 const FunctionSamples *FS = findFunctionSamples(Inst); 573 if (FS == nullptr) 574 return nullptr; 575 576 return FS->findFunctionSamplesAt(LineLocation( 577 getOffset(DIL->getLine(), SP->getLine()), DIL->getDiscriminator())); 578 } 579 580 /// \brief Get the FunctionSamples for an instruction. 581 /// 582 /// The FunctionSamples of an instruction \p Inst is the inlined instance 583 /// in which that instruction is coming from. We traverse the inline stack 584 /// of that instruction, and match it with the tree nodes in the profile. 585 /// 586 /// \param Inst Instruction to query. 587 /// 588 /// \returns the FunctionSamples pointer to the inlined instance. 589 const FunctionSamples * 590 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 591 SmallVector<LineLocation, 10> S; 592 const DILocation *DIL = Inst.getDebugLoc(); 593 if (!DIL) { 594 return Samples; 595 } 596 for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) { 597 DISubprogram *SP = DIL->getScope()->getSubprogram(); 598 if (!SP) 599 return nullptr; 600 S.push_back(LineLocation(getOffset(DIL->getLine(), SP->getLine()), 601 DIL->getDiscriminator())); 602 } 603 if (S.size() == 0) 604 return Samples; 605 const FunctionSamples *FS = Samples; 606 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 607 FS = FS->findFunctionSamplesAt(S[i]); 608 } 609 return FS; 610 } 611 612 /// \brief Iteratively inline hot callsites of a function. 613 /// 614 /// Iteratively traverse all callsites of the function \p F, and find if 615 /// the corresponding inlined instance exists and is hot in profile. If 616 /// it is hot enough, inline the callsites and adds new callsites of the 617 /// callee into the caller. 618 /// 619 /// TODO: investigate the possibility of not invoking InlineFunction directly. 620 /// 621 /// \param F function to perform iterative inlining. 622 /// 623 /// \returns True if there is any inline happened. 624 bool SampleProfileLoader::inlineHotFunctions(Function &F) { 625 bool Changed = false; 626 LLVMContext &Ctx = F.getContext(); 627 std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&]( 628 Function &F) -> AssumptionCache & { return ACT->getAssumptionCache(F); }; 629 while (true) { 630 bool LocalChanged = false; 631 SmallVector<Instruction *, 10> CIS; 632 for (auto &BB : F) { 633 bool Hot = false; 634 SmallVector<Instruction *, 10> Candidates; 635 for (auto &I : BB.getInstList()) { 636 const FunctionSamples *FS = nullptr; 637 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 638 (FS = findCalleeFunctionSamples(I))) { 639 Candidates.push_back(&I); 640 if (callsiteIsHot(Samples, FS)) 641 Hot = true; 642 } 643 } 644 if (Hot) { 645 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); 646 } 647 } 648 for (auto I : CIS) { 649 InlineFunctionInfo IFI(nullptr, ACT ? &GetAssumptionCache : nullptr); 650 CallInst *CI = dyn_cast<CallInst>(I); 651 InvokeInst *II = dyn_cast<InvokeInst>(I); 652 Function *CalledFunction = 653 (CI == nullptr ? II->getCalledFunction() : CI->getCalledFunction()); 654 if (!CalledFunction || !CalledFunction->getSubprogram()) 655 continue; 656 DebugLoc DLoc = I->getDebugLoc(); 657 uint64_t NumSamples = findCalleeFunctionSamples(*I)->getTotalSamples(); 658 if ((CI && InlineFunction(CI, IFI)) || (II && InlineFunction(II, IFI))) { 659 LocalChanged = true; 660 emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc, 661 Twine("inlined hot callee '") + 662 CalledFunction->getName() + "' with " + 663 Twine(NumSamples) + " samples into '" + 664 F.getName() + "'"); 665 } 666 } 667 if (LocalChanged) { 668 Changed = true; 669 } else { 670 break; 671 } 672 } 673 return Changed; 674 } 675 676 /// \brief Find equivalence classes for the given block. 677 /// 678 /// This finds all the blocks that are guaranteed to execute the same 679 /// number of times as \p BB1. To do this, it traverses all the 680 /// descendants of \p BB1 in the dominator or post-dominator tree. 681 /// 682 /// A block BB2 will be in the same equivalence class as \p BB1 if 683 /// the following holds: 684 /// 685 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 686 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 687 /// dominate BB1 in the post-dominator tree. 688 /// 689 /// 2- Both BB2 and \p BB1 must be in the same loop. 690 /// 691 /// For every block BB2 that meets those two requirements, we set BB2's 692 /// equivalence class to \p BB1. 693 /// 694 /// \param BB1 Block to check. 695 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 696 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 697 /// with blocks from \p BB1's dominator tree, then 698 /// this is the post-dominator tree, and vice versa. 699 void SampleProfileLoader::findEquivalencesFor( 700 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 701 DominatorTreeBase<BasicBlock> *DomTree) { 702 const BasicBlock *EC = EquivalenceClass[BB1]; 703 uint64_t Weight = BlockWeights[EC]; 704 for (const auto *BB2 : Descendants) { 705 bool IsDomParent = DomTree->dominates(BB2, BB1); 706 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 707 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 708 EquivalenceClass[BB2] = EC; 709 // If BB2 is visited, then the entire EC should be marked as visited. 710 if (VisitedBlocks.count(BB2)) { 711 VisitedBlocks.insert(EC); 712 } 713 714 // If BB2 is heavier than BB1, make BB2 have the same weight 715 // as BB1. 716 // 717 // Note that we don't worry about the opposite situation here 718 // (when BB2 is lighter than BB1). We will deal with this 719 // during the propagation phase. Right now, we just want to 720 // make sure that BB1 has the largest weight of all the 721 // members of its equivalence set. 722 Weight = std::max(Weight, BlockWeights[BB2]); 723 } 724 } 725 if (EC == &EC->getParent()->getEntryBlock()) { 726 BlockWeights[EC] = Samples->getHeadSamples() + 1; 727 } else { 728 BlockWeights[EC] = Weight; 729 } 730 } 731 732 /// \brief Find equivalence classes. 733 /// 734 /// Since samples may be missing from blocks, we can fill in the gaps by setting 735 /// the weights of all the blocks in the same equivalence class to the same 736 /// weight. To compute the concept of equivalence, we use dominance and loop 737 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 738 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 739 /// 740 /// \param F The function to query. 741 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 742 SmallVector<BasicBlock *, 8> DominatedBBs; 743 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 744 // Find equivalence sets based on dominance and post-dominance information. 745 for (auto &BB : F) { 746 BasicBlock *BB1 = &BB; 747 748 // Compute BB1's equivalence class once. 749 if (EquivalenceClass.count(BB1)) { 750 DEBUG(printBlockEquivalence(dbgs(), BB1)); 751 continue; 752 } 753 754 // By default, blocks are in their own equivalence class. 755 EquivalenceClass[BB1] = BB1; 756 757 // Traverse all the blocks dominated by BB1. We are looking for 758 // every basic block BB2 such that: 759 // 760 // 1- BB1 dominates BB2. 761 // 2- BB2 post-dominates BB1. 762 // 3- BB1 and BB2 are in the same loop nest. 763 // 764 // If all those conditions hold, it means that BB2 is executed 765 // as many times as BB1, so they are placed in the same equivalence 766 // class by making BB2's equivalence class be BB1. 767 DominatedBBs.clear(); 768 DT->getDescendants(BB1, DominatedBBs); 769 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 770 771 DEBUG(printBlockEquivalence(dbgs(), BB1)); 772 } 773 774 // Assign weights to equivalence classes. 775 // 776 // All the basic blocks in the same equivalence class will execute 777 // the same number of times. Since we know that the head block in 778 // each equivalence class has the largest weight, assign that weight 779 // to all the blocks in that equivalence class. 780 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 781 for (auto &BI : F) { 782 const BasicBlock *BB = &BI; 783 const BasicBlock *EquivBB = EquivalenceClass[BB]; 784 if (BB != EquivBB) 785 BlockWeights[BB] = BlockWeights[EquivBB]; 786 DEBUG(printBlockWeight(dbgs(), BB)); 787 } 788 } 789 790 /// \brief Visit the given edge to decide if it has a valid weight. 791 /// 792 /// If \p E has not been visited before, we copy to \p UnknownEdge 793 /// and increment the count of unknown edges. 794 /// 795 /// \param E Edge to visit. 796 /// \param NumUnknownEdges Current number of unknown edges. 797 /// \param UnknownEdge Set if E has not been visited before. 798 /// 799 /// \returns E's weight, if known. Otherwise, return 0. 800 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 801 Edge *UnknownEdge) { 802 if (!VisitedEdges.count(E)) { 803 (*NumUnknownEdges)++; 804 *UnknownEdge = E; 805 return 0; 806 } 807 808 return EdgeWeights[E]; 809 } 810 811 /// \brief Propagate weights through incoming/outgoing edges. 812 /// 813 /// If the weight of a basic block is known, and there is only one edge 814 /// with an unknown weight, we can calculate the weight of that edge. 815 /// 816 /// Similarly, if all the edges have a known count, we can calculate the 817 /// count of the basic block, if needed. 818 /// 819 /// \param F Function to process. 820 /// \param UpdateBlockCount Whether we should update basic block counts that 821 /// has already been annotated. 822 /// 823 /// \returns True if new weights were assigned to edges or blocks. 824 bool SampleProfileLoader::propagateThroughEdges(Function &F, 825 bool UpdateBlockCount) { 826 bool Changed = false; 827 DEBUG(dbgs() << "\nPropagation through edges\n"); 828 for (const auto &BI : F) { 829 const BasicBlock *BB = &BI; 830 const BasicBlock *EC = EquivalenceClass[BB]; 831 832 // Visit all the predecessor and successor edges to determine 833 // which ones have a weight assigned already. Note that it doesn't 834 // matter that we only keep track of a single unknown edge. The 835 // only case we are interested in handling is when only a single 836 // edge is unknown (see setEdgeOrBlockWeight). 837 for (unsigned i = 0; i < 2; i++) { 838 uint64_t TotalWeight = 0; 839 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 840 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 841 842 if (i == 0) { 843 // First, visit all predecessor edges. 844 NumTotalEdges = Predecessors[BB].size(); 845 for (auto *Pred : Predecessors[BB]) { 846 Edge E = std::make_pair(Pred, BB); 847 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 848 if (E.first == E.second) 849 SelfReferentialEdge = E; 850 } 851 if (NumTotalEdges == 1) { 852 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 853 } 854 } else { 855 // On the second round, visit all successor edges. 856 NumTotalEdges = Successors[BB].size(); 857 for (auto *Succ : Successors[BB]) { 858 Edge E = std::make_pair(BB, Succ); 859 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 860 } 861 if (NumTotalEdges == 1) { 862 SingleEdge = std::make_pair(BB, Successors[BB][0]); 863 } 864 } 865 866 // After visiting all the edges, there are three cases that we 867 // can handle immediately: 868 // 869 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 870 // In this case, we simply check that the sum of all the edges 871 // is the same as BB's weight. If not, we change BB's weight 872 // to match. Additionally, if BB had not been visited before, 873 // we mark it visited. 874 // 875 // - Only one edge is unknown and BB has already been visited. 876 // In this case, we can compute the weight of the edge by 877 // subtracting the total block weight from all the known 878 // edge weights. If the edges weight more than BB, then the 879 // edge of the last remaining edge is set to zero. 880 // 881 // - There exists a self-referential edge and the weight of BB is 882 // known. In this case, this edge can be based on BB's weight. 883 // We add up all the other known edges and set the weight on 884 // the self-referential edge as we did in the previous case. 885 // 886 // In any other case, we must continue iterating. Eventually, 887 // all edges will get a weight, or iteration will stop when 888 // it reaches SampleProfileMaxPropagateIterations. 889 if (NumUnknownEdges <= 1) { 890 uint64_t &BBWeight = BlockWeights[EC]; 891 if (NumUnknownEdges == 0) { 892 if (!VisitedBlocks.count(EC)) { 893 // If we already know the weight of all edges, the weight of the 894 // basic block can be computed. It should be no larger than the sum 895 // of all edge weights. 896 if (TotalWeight > BBWeight) { 897 BBWeight = TotalWeight; 898 Changed = true; 899 DEBUG(dbgs() << "All edge weights for " << BB->getName() 900 << " known. Set weight for block: "; 901 printBlockWeight(dbgs(), BB);); 902 } 903 } else if (NumTotalEdges == 1 && 904 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 905 // If there is only one edge for the visited basic block, use the 906 // block weight to adjust edge weight if edge weight is smaller. 907 EdgeWeights[SingleEdge] = BlockWeights[EC]; 908 Changed = true; 909 } 910 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 911 // If there is a single unknown edge and the block has been 912 // visited, then we can compute E's weight. 913 if (BBWeight >= TotalWeight) 914 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 915 else 916 EdgeWeights[UnknownEdge] = 0; 917 const BasicBlock *OtherEC; 918 if (i == 0) 919 OtherEC = EquivalenceClass[UnknownEdge.first]; 920 else 921 OtherEC = EquivalenceClass[UnknownEdge.second]; 922 // Edge weights should never exceed the BB weights it connects. 923 if (VisitedBlocks.count(OtherEC) && 924 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 925 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 926 VisitedEdges.insert(UnknownEdge); 927 Changed = true; 928 DEBUG(dbgs() << "Set weight for edge: "; 929 printEdgeWeight(dbgs(), UnknownEdge)); 930 } 931 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 932 // If a block Weights 0, all its in/out edges should weight 0. 933 if (i == 0) { 934 for (auto *Pred : Predecessors[BB]) { 935 Edge E = std::make_pair(Pred, BB); 936 EdgeWeights[E] = 0; 937 VisitedEdges.insert(E); 938 } 939 } else { 940 for (auto *Succ : Successors[BB]) { 941 Edge E = std::make_pair(BB, Succ); 942 EdgeWeights[E] = 0; 943 VisitedEdges.insert(E); 944 } 945 } 946 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 947 uint64_t &BBWeight = BlockWeights[BB]; 948 // We have a self-referential edge and the weight of BB is known. 949 if (BBWeight >= TotalWeight) 950 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 951 else 952 EdgeWeights[SelfReferentialEdge] = 0; 953 VisitedEdges.insert(SelfReferentialEdge); 954 Changed = true; 955 DEBUG(dbgs() << "Set self-referential edge weight to: "; 956 printEdgeWeight(dbgs(), SelfReferentialEdge)); 957 } 958 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 959 BlockWeights[EC] = TotalWeight; 960 VisitedBlocks.insert(EC); 961 Changed = true; 962 } 963 } 964 } 965 966 return Changed; 967 } 968 969 /// \brief Build in/out edge lists for each basic block in the CFG. 970 /// 971 /// We are interested in unique edges. If a block B1 has multiple 972 /// edges to another block B2, we only add a single B1->B2 edge. 973 void SampleProfileLoader::buildEdges(Function &F) { 974 for (auto &BI : F) { 975 BasicBlock *B1 = &BI; 976 977 // Add predecessors for B1. 978 SmallPtrSet<BasicBlock *, 16> Visited; 979 if (!Predecessors[B1].empty()) 980 llvm_unreachable("Found a stale predecessors list in a basic block."); 981 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 982 BasicBlock *B2 = *PI; 983 if (Visited.insert(B2).second) 984 Predecessors[B1].push_back(B2); 985 } 986 987 // Add successors for B1. 988 Visited.clear(); 989 if (!Successors[B1].empty()) 990 llvm_unreachable("Found a stale successors list in a basic block."); 991 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 992 BasicBlock *B2 = *SI; 993 if (Visited.insert(B2).second) 994 Successors[B1].push_back(B2); 995 } 996 } 997 } 998 999 /// \brief Propagate weights into edges 1000 /// 1001 /// The following rules are applied to every block BB in the CFG: 1002 /// 1003 /// - If BB has a single predecessor/successor, then the weight 1004 /// of that edge is the weight of the block. 1005 /// 1006 /// - If all incoming or outgoing edges are known except one, and the 1007 /// weight of the block is already known, the weight of the unknown 1008 /// edge will be the weight of the block minus the sum of all the known 1009 /// edges. If the sum of all the known edges is larger than BB's weight, 1010 /// we set the unknown edge weight to zero. 1011 /// 1012 /// - If there is a self-referential edge, and the weight of the block is 1013 /// known, the weight for that edge is set to the weight of the block 1014 /// minus the weight of the other incoming edges to that block (if 1015 /// known). 1016 void SampleProfileLoader::propagateWeights(Function &F) { 1017 bool Changed = true; 1018 unsigned I = 0; 1019 1020 // Add an entry count to the function using the samples gathered 1021 // at the function entry. 1022 F.setEntryCount(Samples->getHeadSamples() + 1); 1023 1024 // If BB weight is larger than its corresponding loop's header BB weight, 1025 // use the BB weight to replace the loop header BB weight. 1026 for (auto &BI : F) { 1027 BasicBlock *BB = &BI; 1028 Loop *L = LI->getLoopFor(BB); 1029 if (!L) { 1030 continue; 1031 } 1032 BasicBlock *Header = L->getHeader(); 1033 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1034 BlockWeights[Header] = BlockWeights[BB]; 1035 } 1036 } 1037 1038 // Before propagation starts, build, for each block, a list of 1039 // unique predecessors and successors. This is necessary to handle 1040 // identical edges in multiway branches. Since we visit all blocks and all 1041 // edges of the CFG, it is cleaner to build these lists once at the start 1042 // of the pass. 1043 buildEdges(F); 1044 1045 // Propagate until we converge or we go past the iteration limit. 1046 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1047 Changed = propagateThroughEdges(F, false); 1048 } 1049 1050 // The first propagation propagates BB counts from annotated BBs to unknown 1051 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1052 // to propagate edge weights. 1053 VisitedEdges.clear(); 1054 Changed = true; 1055 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1056 Changed = propagateThroughEdges(F, false); 1057 } 1058 1059 // The 3rd propagation pass allows adjust annotated BB weights that are 1060 // obviously wrong. 1061 Changed = true; 1062 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1063 Changed = propagateThroughEdges(F, true); 1064 } 1065 1066 // Generate MD_prof metadata for every branch instruction using the 1067 // edge weights computed during propagation. 1068 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1069 LLVMContext &Ctx = F.getContext(); 1070 MDBuilder MDB(Ctx); 1071 for (auto &BI : F) { 1072 BasicBlock *BB = &BI; 1073 1074 if (BlockWeights[BB]) { 1075 for (auto &I : BB->getInstList()) { 1076 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1077 if (!dyn_cast<IntrinsicInst>(&I)) { 1078 SmallVector<uint32_t, 1> Weights; 1079 Weights.push_back(BlockWeights[BB]); 1080 CI->setMetadata(LLVMContext::MD_prof, 1081 MDB.createBranchWeights(Weights)); 1082 } 1083 } 1084 } 1085 } 1086 TerminatorInst *TI = BB->getTerminator(); 1087 if (TI->getNumSuccessors() == 1) 1088 continue; 1089 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1090 continue; 1091 1092 DEBUG(dbgs() << "\nGetting weights for branch at line " 1093 << TI->getDebugLoc().getLine() << ".\n"); 1094 SmallVector<uint32_t, 4> Weights; 1095 uint32_t MaxWeight = 0; 1096 DebugLoc MaxDestLoc; 1097 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1098 BasicBlock *Succ = TI->getSuccessor(I); 1099 Edge E = std::make_pair(BB, Succ); 1100 uint64_t Weight = EdgeWeights[E]; 1101 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1102 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1103 // if needed. Sample counts in profiles are 64-bit unsigned values, 1104 // but internally branch weights are expressed as 32-bit values. 1105 if (Weight > std::numeric_limits<uint32_t>::max()) { 1106 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1107 Weight = std::numeric_limits<uint32_t>::max(); 1108 } 1109 // Weight is added by one to avoid propagation errors introduced by 1110 // 0 weights. 1111 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1112 if (Weight != 0) { 1113 if (Weight > MaxWeight) { 1114 MaxWeight = Weight; 1115 MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc(); 1116 } 1117 } 1118 } 1119 1120 // Only set weights if there is at least one non-zero weight. 1121 // In any other case, let the analyzer set weights. 1122 if (MaxWeight > 0) { 1123 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1124 TI->setMetadata(llvm::LLVMContext::MD_prof, 1125 MDB.createBranchWeights(Weights)); 1126 DebugLoc BranchLoc = TI->getDebugLoc(); 1127 emitOptimizationRemark( 1128 Ctx, DEBUG_TYPE, F, MaxDestLoc, 1129 Twine("most popular destination for conditional branches at ") + 1130 ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" + 1131 Twine(BranchLoc.getLine()) + ":" + 1132 Twine(BranchLoc.getCol())) 1133 : Twine("<UNKNOWN LOCATION>"))); 1134 } else { 1135 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1136 } 1137 } 1138 } 1139 1140 /// \brief Get the line number for the function header. 1141 /// 1142 /// This looks up function \p F in the current compilation unit and 1143 /// retrieves the line number where the function is defined. This is 1144 /// line 0 for all the samples read from the profile file. Every line 1145 /// number is relative to this line. 1146 /// 1147 /// \param F Function object to query. 1148 /// 1149 /// \returns the line number where \p F is defined. If it returns 0, 1150 /// it means that there is no debug information available for \p F. 1151 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1152 if (DISubprogram *S = F.getSubprogram()) 1153 return S->getLine(); 1154 1155 // If the start of \p F is missing, emit a diagnostic to inform the user 1156 // about the missed opportunity. 1157 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1158 "No debug information found in function " + F.getName() + 1159 ": Function profile not used", 1160 DS_Warning)); 1161 return 0; 1162 } 1163 1164 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1165 DT.reset(new DominatorTree); 1166 DT->recalculate(F); 1167 1168 PDT.reset(new DominatorTreeBase<BasicBlock>(true)); 1169 PDT->recalculate(F); 1170 1171 LI.reset(new LoopInfo); 1172 LI->analyze(*DT); 1173 } 1174 1175 /// \brief Generate branch weight metadata for all branches in \p F. 1176 /// 1177 /// Branch weights are computed out of instruction samples using a 1178 /// propagation heuristic. Propagation proceeds in 3 phases: 1179 /// 1180 /// 1- Assignment of block weights. All the basic blocks in the function 1181 /// are initial assigned the same weight as their most frequently 1182 /// executed instruction. 1183 /// 1184 /// 2- Creation of equivalence classes. Since samples may be missing from 1185 /// blocks, we can fill in the gaps by setting the weights of all the 1186 /// blocks in the same equivalence class to the same weight. To compute 1187 /// the concept of equivalence, we use dominance and loop information. 1188 /// Two blocks B1 and B2 are in the same equivalence class if B1 1189 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1190 /// 1191 /// 3- Propagation of block weights into edges. This uses a simple 1192 /// propagation heuristic. The following rules are applied to every 1193 /// block BB in the CFG: 1194 /// 1195 /// - If BB has a single predecessor/successor, then the weight 1196 /// of that edge is the weight of the block. 1197 /// 1198 /// - If all the edges are known except one, and the weight of the 1199 /// block is already known, the weight of the unknown edge will 1200 /// be the weight of the block minus the sum of all the known 1201 /// edges. If the sum of all the known edges is larger than BB's weight, 1202 /// we set the unknown edge weight to zero. 1203 /// 1204 /// - If there is a self-referential edge, and the weight of the block is 1205 /// known, the weight for that edge is set to the weight of the block 1206 /// minus the weight of the other incoming edges to that block (if 1207 /// known). 1208 /// 1209 /// Since this propagation is not guaranteed to finalize for every CFG, we 1210 /// only allow it to proceed for a limited number of iterations (controlled 1211 /// by -sample-profile-max-propagate-iterations). 1212 /// 1213 /// FIXME: Try to replace this propagation heuristic with a scheme 1214 /// that is guaranteed to finalize. A work-list approach similar to 1215 /// the standard value propagation algorithm used by SSA-CCP might 1216 /// work here. 1217 /// 1218 /// Once all the branch weights are computed, we emit the MD_prof 1219 /// metadata on BB using the computed values for each of its branches. 1220 /// 1221 /// \param F The function to query. 1222 /// 1223 /// \returns true if \p F was modified. Returns false, otherwise. 1224 bool SampleProfileLoader::emitAnnotations(Function &F) { 1225 bool Changed = false; 1226 1227 if (getFunctionLoc(F) == 0) 1228 return false; 1229 1230 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 1231 << ": " << getFunctionLoc(F) << "\n"); 1232 1233 Changed |= inlineHotFunctions(F); 1234 1235 // Compute basic block weights. 1236 Changed |= computeBlockWeights(F); 1237 1238 if (Changed) { 1239 // Compute dominance and loop info needed for propagation. 1240 computeDominanceAndLoopInfo(F); 1241 1242 // Find equivalence classes. 1243 findEquivalenceClasses(F); 1244 1245 // Propagate weights to all edges. 1246 propagateWeights(F); 1247 } 1248 1249 // If coverage checking was requested, compute it now. 1250 if (SampleProfileRecordCoverage) { 1251 unsigned Used = CoverageTracker.countUsedRecords(Samples); 1252 unsigned Total = CoverageTracker.countBodyRecords(Samples); 1253 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1254 if (Coverage < SampleProfileRecordCoverage) { 1255 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1256 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1257 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1258 Twine(Coverage) + "%) were applied", 1259 DS_Warning)); 1260 } 1261 } 1262 1263 if (SampleProfileSampleCoverage) { 1264 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1265 uint64_t Total = CoverageTracker.countBodySamples(Samples); 1266 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1267 if (Coverage < SampleProfileSampleCoverage) { 1268 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1269 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1270 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1271 Twine(Coverage) + "%) were applied", 1272 DS_Warning)); 1273 } 1274 } 1275 return Changed; 1276 } 1277 1278 char SampleProfileLoaderLegacyPass::ID = 0; 1279 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1280 "Sample Profile loader", false, false) 1281 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1282 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1283 "Sample Profile loader", false, false) 1284 1285 bool SampleProfileLoader::doInitialization(Module &M) { 1286 auto &Ctx = M.getContext(); 1287 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1288 if (std::error_code EC = ReaderOrErr.getError()) { 1289 std::string Msg = "Could not open profile: " + EC.message(); 1290 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1291 return false; 1292 } 1293 Reader = std::move(ReaderOrErr.get()); 1294 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1295 return true; 1296 } 1297 1298 ModulePass *llvm::createSampleProfileLoaderPass() { 1299 return new SampleProfileLoaderLegacyPass(SampleProfileFile); 1300 } 1301 1302 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1303 return new SampleProfileLoaderLegacyPass(Name); 1304 } 1305 1306 bool SampleProfileLoader::runOnModule(Module &M) { 1307 if (!ProfileIsValid) 1308 return false; 1309 1310 // Compute the total number of samples collected in this profile. 1311 for (const auto &I : Reader->getProfiles()) 1312 TotalCollectedSamples += I.second.getTotalSamples(); 1313 1314 bool retval = false; 1315 for (auto &F : M) 1316 if (!F.isDeclaration()) { 1317 clearFunctionData(); 1318 retval |= runOnFunction(F); 1319 } 1320 M.setProfileSummary(Reader->getSummary().getMD(M.getContext())); 1321 return retval; 1322 } 1323 1324 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1325 // FIXME: pass in AssumptionCache correctly for the new pass manager. 1326 SampleLoader.setACT(&getAnalysis<AssumptionCacheTracker>()); 1327 return SampleLoader.runOnModule(M); 1328 } 1329 1330 bool SampleProfileLoader::runOnFunction(Function &F) { 1331 F.setEntryCount(0); 1332 Samples = Reader->getSamplesFor(F); 1333 if (!Samples->empty()) 1334 return emitAnnotations(F); 1335 return false; 1336 } 1337 1338 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1339 ModuleAnalysisManager &AM) { 1340 1341 SampleProfileLoader SampleLoader(SampleProfileFile); 1342 1343 SampleLoader.doInitialization(M); 1344 1345 if (!SampleLoader.runOnModule(M)) 1346 return PreservedAnalyses::all(); 1347 1348 return PreservedAnalyses::none(); 1349 } 1350