1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/PostDominators.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/InstIterator.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Metadata.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/Pass.h" 43 #include "llvm/ProfileData/SampleProfReader.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorOr.h" 47 #include "llvm/Support/Format.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/Utils/Cloning.h" 51 #include <cctype> 52 53 using namespace llvm; 54 using namespace sampleprof; 55 56 #define DEBUG_TYPE "sample-profile" 57 58 // Command line option to specify the file to read samples from. This is 59 // mainly used for debugging. 60 static cl::opt<std::string> SampleProfileFile( 61 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 62 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 63 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 64 "sample-profile-max-propagate-iterations", cl::init(100), 65 cl::desc("Maximum number of iterations to go through when propagating " 66 "sample block/edge weights through the CFG.")); 67 static cl::opt<unsigned> SampleProfileRecordCoverage( 68 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 69 cl::desc("Emit a warning if less than N% of records in the input profile " 70 "are matched to the IR.")); 71 static cl::opt<unsigned> SampleProfileSampleCoverage( 72 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 73 cl::desc("Emit a warning if less than N% of samples in the input profile " 74 "are matched to the IR.")); 75 static cl::opt<double> SampleProfileHotThreshold( 76 "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"), 77 cl::desc("Inlined functions that account for more than N% of all samples " 78 "collected in the parent function, will be inlined again.")); 79 static cl::opt<double> SampleProfileGlobalHotThreshold( 80 "sample-profile-global-hot-threshold", cl::init(30), cl::value_desc("N"), 81 cl::desc("Top-level functions that account for more than N% of all samples " 82 "collected in the profile, will be marked as hot for the inliner " 83 "to consider.")); 84 static cl::opt<double> SampleProfileGlobalColdThreshold( 85 "sample-profile-global-cold-threshold", cl::init(0.5), cl::value_desc("N"), 86 cl::desc("Top-level functions that account for less than N% of all samples " 87 "collected in the profile, will be marked as cold for the inliner " 88 "to consider.")); 89 90 namespace { 91 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap; 92 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap; 93 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge; 94 typedef DenseMap<Edge, uint64_t> EdgeWeightMap; 95 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>> 96 BlockEdgeMap; 97 98 /// \brief Sample profile pass. 99 /// 100 /// This pass reads profile data from the file specified by 101 /// -sample-profile-file and annotates every affected function with the 102 /// profile information found in that file. 103 class SampleProfileLoader : public ModulePass { 104 public: 105 // Class identification, replacement for typeinfo 106 static char ID; 107 108 SampleProfileLoader(StringRef Name = SampleProfileFile) 109 : ModulePass(ID), DT(nullptr), PDT(nullptr), LI(nullptr), Reader(), 110 Samples(nullptr), Filename(Name), ProfileIsValid(false), 111 TotalCollectedSamples(0) { 112 initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry()); 113 } 114 115 bool doInitialization(Module &M) override; 116 117 void dump() { Reader->dump(); } 118 119 const char *getPassName() const override { return "Sample profile pass"; } 120 121 bool runOnModule(Module &M) override; 122 123 void getAnalysisUsage(AnalysisUsage &AU) const override { 124 AU.setPreservesCFG(); 125 } 126 127 protected: 128 bool runOnFunction(Function &F); 129 unsigned getFunctionLoc(Function &F); 130 bool emitAnnotations(Function &F); 131 ErrorOr<uint64_t> getInstWeight(const Instruction &I) const; 132 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB) const; 133 const FunctionSamples *findCalleeFunctionSamples(const CallInst &I) const; 134 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 135 bool inlineHotFunctions(Function &F); 136 bool emitInlineHints(Function &F); 137 void printEdgeWeight(raw_ostream &OS, Edge E); 138 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 139 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 140 bool computeBlockWeights(Function &F); 141 void findEquivalenceClasses(Function &F); 142 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 143 DominatorTreeBase<BasicBlock> *DomTree); 144 void propagateWeights(Function &F); 145 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 146 void buildEdges(Function &F); 147 bool propagateThroughEdges(Function &F); 148 void computeDominanceAndLoopInfo(Function &F); 149 unsigned getOffset(unsigned L, unsigned H) const; 150 void clearFunctionData(); 151 152 /// \brief Map basic blocks to their computed weights. 153 /// 154 /// The weight of a basic block is defined to be the maximum 155 /// of all the instruction weights in that block. 156 BlockWeightMap BlockWeights; 157 158 /// \brief Map edges to their computed weights. 159 /// 160 /// Edge weights are computed by propagating basic block weights in 161 /// SampleProfile::propagateWeights. 162 EdgeWeightMap EdgeWeights; 163 164 /// \brief Set of visited blocks during propagation. 165 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 166 167 /// \brief Set of visited edges during propagation. 168 SmallSet<Edge, 32> VisitedEdges; 169 170 /// \brief Equivalence classes for block weights. 171 /// 172 /// Two blocks BB1 and BB2 are in the same equivalence class if they 173 /// dominate and post-dominate each other, and they are in the same loop 174 /// nest. When this happens, the two blocks are guaranteed to execute 175 /// the same number of times. 176 EquivalenceClassMap EquivalenceClass; 177 178 /// \brief Dominance, post-dominance and loop information. 179 std::unique_ptr<DominatorTree> DT; 180 std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT; 181 std::unique_ptr<LoopInfo> LI; 182 183 /// \brief Predecessors for each basic block in the CFG. 184 BlockEdgeMap Predecessors; 185 186 /// \brief Successors for each basic block in the CFG. 187 BlockEdgeMap Successors; 188 189 /// \brief Profile reader object. 190 std::unique_ptr<SampleProfileReader> Reader; 191 192 /// \brief Samples collected for the body of this function. 193 FunctionSamples *Samples; 194 195 /// \brief Name of the profile file to load. 196 StringRef Filename; 197 198 /// \brief Flag indicating whether the profile input loaded successfully. 199 bool ProfileIsValid; 200 201 /// \brief Total number of samples collected in this profile. 202 /// 203 /// This is the sum of all the samples collected in all the functions executed 204 /// at runtime. 205 uint64_t TotalCollectedSamples; 206 }; 207 208 class SampleCoverageTracker { 209 public: 210 SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {} 211 212 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 213 uint32_t Discriminator, uint64_t Samples); 214 unsigned computeCoverage(unsigned Used, unsigned Total) const; 215 unsigned countUsedRecords(const FunctionSamples *FS) const; 216 unsigned countBodyRecords(const FunctionSamples *FS) const; 217 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 218 uint64_t countBodySamples(const FunctionSamples *FS) const; 219 void clear() { 220 SampleCoverage.clear(); 221 TotalUsedSamples = 0; 222 } 223 224 private: 225 typedef std::map<LineLocation, unsigned> BodySampleCoverageMap; 226 typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap> 227 FunctionSamplesCoverageMap; 228 229 /// Coverage map for sampling records. 230 /// 231 /// This map keeps a record of sampling records that have been matched to 232 /// an IR instruction. This is used to detect some form of staleness in 233 /// profiles (see flag -sample-profile-check-coverage). 234 /// 235 /// Each entry in the map corresponds to a FunctionSamples instance. This is 236 /// another map that counts how many times the sample record at the 237 /// given location has been used. 238 FunctionSamplesCoverageMap SampleCoverage; 239 240 /// Number of samples used from the profile. 241 /// 242 /// When a sampling record is used for the first time, the samples from 243 /// that record are added to this accumulator. Coverage is later computed 244 /// based on the total number of samples available in this function and 245 /// its callsites. 246 /// 247 /// Note that this accumulator tracks samples used from a single function 248 /// and all the inlined callsites. Strictly, we should have a map of counters 249 /// keyed by FunctionSamples pointers, but these stats are cleared after 250 /// every function, so we just need to keep a single counter. 251 uint64_t TotalUsedSamples; 252 }; 253 254 SampleCoverageTracker CoverageTracker; 255 256 /// Return true if the given callsite is hot wrt to its caller. 257 /// 258 /// Functions that were inlined in the original binary will be represented 259 /// in the inline stack in the sample profile. If the profile shows that 260 /// the original inline decision was "good" (i.e., the callsite is executed 261 /// frequently), then we will recreate the inline decision and apply the 262 /// profile from the inlined callsite. 263 /// 264 /// To decide whether an inlined callsite is hot, we compute the fraction 265 /// of samples used by the callsite with respect to the total number of samples 266 /// collected in the caller. 267 /// 268 /// If that fraction is larger than the default given by 269 /// SampleProfileHotThreshold, the callsite will be inlined again. 270 bool callsiteIsHot(const FunctionSamples *CallerFS, 271 const FunctionSamples *CallsiteFS) { 272 if (!CallsiteFS) 273 return false; // The callsite was not inlined in the original binary. 274 275 uint64_t ParentTotalSamples = CallerFS->getTotalSamples(); 276 if (ParentTotalSamples == 0) 277 return false; // Avoid division by zero. 278 279 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 280 if (CallsiteTotalSamples == 0) 281 return false; // Callsite is trivially cold. 282 283 double PercentSamples = 284 (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0; 285 return PercentSamples >= SampleProfileHotThreshold; 286 } 287 288 } 289 290 /// Mark as used the sample record for the given function samples at 291 /// (LineOffset, Discriminator). 292 /// 293 /// \returns true if this is the first time we mark the given record. 294 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 295 uint32_t LineOffset, 296 uint32_t Discriminator, 297 uint64_t Samples) { 298 LineLocation Loc(LineOffset, Discriminator); 299 unsigned &Count = SampleCoverage[FS][Loc]; 300 bool FirstTime = (++Count == 1); 301 if (FirstTime) 302 TotalUsedSamples += Samples; 303 return FirstTime; 304 } 305 306 /// Return the number of sample records that were applied from this profile. 307 /// 308 /// This count does not include records from cold inlined callsites. 309 unsigned 310 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const { 311 auto I = SampleCoverage.find(FS); 312 313 // The size of the coverage map for FS represents the number of records 314 // that were marked used at least once. 315 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 316 317 // If there are inlined callsites in this function, count the samples found 318 // in the respective bodies. However, do not bother counting callees with 0 319 // total samples, these are callees that were never invoked at runtime. 320 for (const auto &I : FS->getCallsiteSamples()) { 321 const FunctionSamples *CalleeSamples = &I.second; 322 if (callsiteIsHot(FS, CalleeSamples)) 323 Count += countUsedRecords(CalleeSamples); 324 } 325 326 return Count; 327 } 328 329 /// Return the number of sample records in the body of this profile. 330 /// 331 /// This count does not include records from cold inlined callsites. 332 unsigned 333 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const { 334 unsigned Count = FS->getBodySamples().size(); 335 336 // Only count records in hot callsites. 337 for (const auto &I : FS->getCallsiteSamples()) { 338 const FunctionSamples *CalleeSamples = &I.second; 339 if (callsiteIsHot(FS, CalleeSamples)) 340 Count += countBodyRecords(CalleeSamples); 341 } 342 343 return Count; 344 } 345 346 /// Return the number of samples collected in the body of this profile. 347 /// 348 /// This count does not include samples from cold inlined callsites. 349 uint64_t 350 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const { 351 uint64_t Total = 0; 352 for (const auto &I : FS->getBodySamples()) 353 Total += I.second.getSamples(); 354 355 // Only count samples in hot callsites. 356 for (const auto &I : FS->getCallsiteSamples()) { 357 const FunctionSamples *CalleeSamples = &I.second; 358 if (callsiteIsHot(FS, CalleeSamples)) 359 Total += countBodySamples(CalleeSamples); 360 } 361 362 return Total; 363 } 364 365 /// Return the fraction of sample records used in this profile. 366 /// 367 /// The returned value is an unsigned integer in the range 0-100 indicating 368 /// the percentage of sample records that were used while applying this 369 /// profile to the associated function. 370 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 371 unsigned Total) const { 372 assert(Used <= Total && 373 "number of used records cannot exceed the total number of records"); 374 return Total > 0 ? Used * 100 / Total : 100; 375 } 376 377 /// Clear all the per-function data used to load samples and propagate weights. 378 void SampleProfileLoader::clearFunctionData() { 379 BlockWeights.clear(); 380 EdgeWeights.clear(); 381 VisitedBlocks.clear(); 382 VisitedEdges.clear(); 383 EquivalenceClass.clear(); 384 DT = nullptr; 385 PDT = nullptr; 386 LI = nullptr; 387 Predecessors.clear(); 388 Successors.clear(); 389 CoverageTracker.clear(); 390 } 391 392 /// \brief Returns the offset of lineno \p L to head_lineno \p H 393 /// 394 /// \param L Lineno 395 /// \param H Header lineno of the function 396 /// 397 /// \returns offset to the header lineno. 16 bits are used to represent offset. 398 /// We assume that a single function will not exceed 65535 LOC. 399 unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const { 400 return (L - H) & 0xffff; 401 } 402 403 /// \brief Print the weight of edge \p E on stream \p OS. 404 /// 405 /// \param OS Stream to emit the output to. 406 /// \param E Edge to print. 407 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 408 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 409 << "]: " << EdgeWeights[E] << "\n"; 410 } 411 412 /// \brief Print the equivalence class of block \p BB on stream \p OS. 413 /// 414 /// \param OS Stream to emit the output to. 415 /// \param BB Block to print. 416 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 417 const BasicBlock *BB) { 418 const BasicBlock *Equiv = EquivalenceClass[BB]; 419 OS << "equivalence[" << BB->getName() 420 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 421 } 422 423 /// \brief Print the weight of block \p BB on stream \p OS. 424 /// 425 /// \param OS Stream to emit the output to. 426 /// \param BB Block to print. 427 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 428 const BasicBlock *BB) const { 429 const auto &I = BlockWeights.find(BB); 430 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 431 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 432 } 433 434 /// \brief Get the weight for an instruction. 435 /// 436 /// The "weight" of an instruction \p Inst is the number of samples 437 /// collected on that instruction at runtime. To retrieve it, we 438 /// need to compute the line number of \p Inst relative to the start of its 439 /// function. We use HeaderLineno to compute the offset. We then 440 /// look up the samples collected for \p Inst using BodySamples. 441 /// 442 /// \param Inst Instruction to query. 443 /// 444 /// \returns the weight of \p Inst. 445 ErrorOr<uint64_t> 446 SampleProfileLoader::getInstWeight(const Instruction &Inst) const { 447 DebugLoc DLoc = Inst.getDebugLoc(); 448 if (!DLoc) 449 return std::error_code(); 450 451 const FunctionSamples *FS = findFunctionSamples(Inst); 452 if (!FS) 453 return std::error_code(); 454 455 const DILocation *DIL = DLoc; 456 unsigned Lineno = DLoc.getLine(); 457 unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine(); 458 459 uint32_t LineOffset = getOffset(Lineno, HeaderLineno); 460 uint32_t Discriminator = DIL->getDiscriminator(); 461 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 462 if (R) { 463 bool FirstMark = 464 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 465 if (FirstMark) { 466 const Function *F = Inst.getParent()->getParent(); 467 LLVMContext &Ctx = F->getContext(); 468 emitOptimizationRemark( 469 Ctx, DEBUG_TYPE, *F, DLoc, 470 Twine("Applied ") + Twine(*R) + " samples from profile (offset: " + 471 Twine(LineOffset) + 472 ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")"); 473 } 474 DEBUG(dbgs() << " " << Lineno << "." << DIL->getDiscriminator() << ":" 475 << Inst << " (line offset: " << Lineno - HeaderLineno << "." 476 << DIL->getDiscriminator() << " - weight: " << R.get() 477 << ")\n"); 478 } 479 return R; 480 } 481 482 /// \brief Compute the weight of a basic block. 483 /// 484 /// The weight of basic block \p BB is the maximum weight of all the 485 /// instructions in BB. 486 /// 487 /// \param BB The basic block to query. 488 /// 489 /// \returns the weight for \p BB. 490 ErrorOr<uint64_t> 491 SampleProfileLoader::getBlockWeight(const BasicBlock *BB) const { 492 bool Found = false; 493 uint64_t Weight = 0; 494 for (auto &I : BB->getInstList()) { 495 const ErrorOr<uint64_t> &R = getInstWeight(I); 496 if (R && R.get() >= Weight) { 497 Weight = R.get(); 498 Found = true; 499 } 500 } 501 if (Found) 502 return Weight; 503 else 504 return std::error_code(); 505 } 506 507 /// \brief Compute and store the weights of every basic block. 508 /// 509 /// This populates the BlockWeights map by computing 510 /// the weights of every basic block in the CFG. 511 /// 512 /// \param F The function to query. 513 bool SampleProfileLoader::computeBlockWeights(Function &F) { 514 bool Changed = false; 515 DEBUG(dbgs() << "Block weights\n"); 516 for (const auto &BB : F) { 517 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 518 if (Weight) { 519 BlockWeights[&BB] = Weight.get(); 520 VisitedBlocks.insert(&BB); 521 Changed = true; 522 } 523 DEBUG(printBlockWeight(dbgs(), &BB)); 524 } 525 526 return Changed; 527 } 528 529 /// \brief Get the FunctionSamples for a call instruction. 530 /// 531 /// The FunctionSamples of a call instruction \p Inst is the inlined 532 /// instance in which that call instruction is calling to. It contains 533 /// all samples that resides in the inlined instance. We first find the 534 /// inlined instance in which the call instruction is from, then we 535 /// traverse its children to find the callsite with the matching 536 /// location and callee function name. 537 /// 538 /// \param Inst Call instruction to query. 539 /// 540 /// \returns The FunctionSamples pointer to the inlined instance. 541 const FunctionSamples * 542 SampleProfileLoader::findCalleeFunctionSamples(const CallInst &Inst) const { 543 const DILocation *DIL = Inst.getDebugLoc(); 544 if (!DIL) { 545 return nullptr; 546 } 547 DISubprogram *SP = DIL->getScope()->getSubprogram(); 548 if (!SP) 549 return nullptr; 550 551 Function *CalleeFunc = Inst.getCalledFunction(); 552 if (!CalleeFunc) { 553 return nullptr; 554 } 555 556 StringRef CalleeName = CalleeFunc->getName(); 557 const FunctionSamples *FS = findFunctionSamples(Inst); 558 if (FS == nullptr) 559 return nullptr; 560 561 return FS->findFunctionSamplesAt( 562 CallsiteLocation(getOffset(DIL->getLine(), SP->getLine()), 563 DIL->getDiscriminator(), CalleeName)); 564 } 565 566 /// \brief Get the FunctionSamples for an instruction. 567 /// 568 /// The FunctionSamples of an instruction \p Inst is the inlined instance 569 /// in which that instruction is coming from. We traverse the inline stack 570 /// of that instruction, and match it with the tree nodes in the profile. 571 /// 572 /// \param Inst Instruction to query. 573 /// 574 /// \returns the FunctionSamples pointer to the inlined instance. 575 const FunctionSamples * 576 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 577 SmallVector<CallsiteLocation, 10> S; 578 const DILocation *DIL = Inst.getDebugLoc(); 579 if (!DIL) { 580 return Samples; 581 } 582 StringRef CalleeName; 583 for (const DILocation *DIL = Inst.getDebugLoc(); DIL; 584 DIL = DIL->getInlinedAt()) { 585 DISubprogram *SP = DIL->getScope()->getSubprogram(); 586 if (!SP) 587 return nullptr; 588 if (!CalleeName.empty()) { 589 S.push_back(CallsiteLocation(getOffset(DIL->getLine(), SP->getLine()), 590 DIL->getDiscriminator(), CalleeName)); 591 } 592 CalleeName = SP->getLinkageName(); 593 } 594 if (S.size() == 0) 595 return Samples; 596 const FunctionSamples *FS = Samples; 597 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 598 FS = FS->findFunctionSamplesAt(S[i]); 599 } 600 return FS; 601 } 602 603 /// \brief Emit an inline hint if \p F is globally hot or cold. 604 /// 605 /// If \p F consumes a significant fraction of samples (indicated by 606 /// SampleProfileGlobalHotThreshold), apply the InlineHint attribute for the 607 /// inliner to consider the function hot. 608 /// 609 /// If \p F consumes a small fraction of samples (indicated by 610 /// SampleProfileGlobalColdThreshold), apply the Cold attribute for the inliner 611 /// to consider the function cold. 612 /// 613 /// FIXME - This setting of inline hints is sub-optimal. Instead of marking a 614 /// function globally hot or cold, we should be annotating individual callsites. 615 /// This is not currently possible, but work on the inliner will eventually 616 /// provide this ability. See http://reviews.llvm.org/D15003 for details and 617 /// discussion. 618 /// 619 /// \returns True if either attribute was applied to \p F. 620 bool SampleProfileLoader::emitInlineHints(Function &F) { 621 if (TotalCollectedSamples == 0) 622 return false; 623 624 uint64_t FunctionSamples = Samples->getTotalSamples(); 625 double SamplesPercent = 626 (double)FunctionSamples / (double)TotalCollectedSamples * 100.0; 627 628 // If the function collected more samples than the hot threshold, mark 629 // it globally hot. 630 if (SamplesPercent >= SampleProfileGlobalHotThreshold) { 631 F.addFnAttr(llvm::Attribute::InlineHint); 632 std::string Msg; 633 raw_string_ostream S(Msg); 634 S << "Applied inline hint to globally hot function '" << F.getName() 635 << "' with " << format("%.2f", SamplesPercent) 636 << "% of samples (threshold: " 637 << format("%.2f", SampleProfileGlobalHotThreshold.getValue()) << "%)"; 638 S.flush(); 639 emitOptimizationRemark(F.getContext(), DEBUG_TYPE, F, DebugLoc(), Msg); 640 return true; 641 } 642 643 // If the function collected fewer samples than the cold threshold, mark 644 // it globally cold. 645 if (SamplesPercent <= SampleProfileGlobalColdThreshold) { 646 F.addFnAttr(llvm::Attribute::Cold); 647 std::string Msg; 648 raw_string_ostream S(Msg); 649 S << "Applied cold hint to globally cold function '" << F.getName() 650 << "' with " << format("%.2f", SamplesPercent) 651 << "% of samples (threshold: " 652 << format("%.2f", SampleProfileGlobalColdThreshold.getValue()) << "%)"; 653 S.flush(); 654 emitOptimizationRemark(F.getContext(), DEBUG_TYPE, F, DebugLoc(), Msg); 655 return true; 656 } 657 658 return false; 659 } 660 661 /// \brief Iteratively inline hot callsites of a function. 662 /// 663 /// Iteratively traverse all callsites of the function \p F, and find if 664 /// the corresponding inlined instance exists and is hot in profile. If 665 /// it is hot enough, inline the callsites and adds new callsites of the 666 /// callee into the caller. 667 /// 668 /// TODO: investigate the possibility of not invoking InlineFunction directly. 669 /// 670 /// \param F function to perform iterative inlining. 671 /// 672 /// \returns True if there is any inline happened. 673 bool SampleProfileLoader::inlineHotFunctions(Function &F) { 674 bool Changed = false; 675 LLVMContext &Ctx = F.getContext(); 676 while (true) { 677 bool LocalChanged = false; 678 SmallVector<CallInst *, 10> CIS; 679 for (auto &BB : F) { 680 for (auto &I : BB.getInstList()) { 681 CallInst *CI = dyn_cast<CallInst>(&I); 682 if (CI && callsiteIsHot(Samples, findCalleeFunctionSamples(*CI))) 683 CIS.push_back(CI); 684 } 685 } 686 for (auto CI : CIS) { 687 InlineFunctionInfo IFI; 688 Function *CalledFunction = CI->getCalledFunction(); 689 DebugLoc DLoc = CI->getDebugLoc(); 690 uint64_t NumSamples = findCalleeFunctionSamples(*CI)->getTotalSamples(); 691 if (InlineFunction(CI, IFI)) { 692 LocalChanged = true; 693 emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc, 694 Twine("inlined hot callee '") + 695 CalledFunction->getName() + "' with " + 696 Twine(NumSamples) + " samples into '" + 697 F.getName() + "'"); 698 } 699 } 700 if (LocalChanged) { 701 Changed = true; 702 } else { 703 break; 704 } 705 } 706 return Changed; 707 } 708 709 /// \brief Find equivalence classes for the given block. 710 /// 711 /// This finds all the blocks that are guaranteed to execute the same 712 /// number of times as \p BB1. To do this, it traverses all the 713 /// descendants of \p BB1 in the dominator or post-dominator tree. 714 /// 715 /// A block BB2 will be in the same equivalence class as \p BB1 if 716 /// the following holds: 717 /// 718 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 719 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 720 /// dominate BB1 in the post-dominator tree. 721 /// 722 /// 2- Both BB2 and \p BB1 must be in the same loop. 723 /// 724 /// For every block BB2 that meets those two requirements, we set BB2's 725 /// equivalence class to \p BB1. 726 /// 727 /// \param BB1 Block to check. 728 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 729 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 730 /// with blocks from \p BB1's dominator tree, then 731 /// this is the post-dominator tree, and vice versa. 732 void SampleProfileLoader::findEquivalencesFor( 733 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 734 DominatorTreeBase<BasicBlock> *DomTree) { 735 const BasicBlock *EC = EquivalenceClass[BB1]; 736 uint64_t Weight = BlockWeights[EC]; 737 for (const auto *BB2 : Descendants) { 738 bool IsDomParent = DomTree->dominates(BB2, BB1); 739 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 740 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 741 EquivalenceClass[BB2] = EC; 742 743 // If BB2 is heavier than BB1, make BB2 have the same weight 744 // as BB1. 745 // 746 // Note that we don't worry about the opposite situation here 747 // (when BB2 is lighter than BB1). We will deal with this 748 // during the propagation phase. Right now, we just want to 749 // make sure that BB1 has the largest weight of all the 750 // members of its equivalence set. 751 Weight = std::max(Weight, BlockWeights[BB2]); 752 } 753 } 754 BlockWeights[EC] = Weight; 755 } 756 757 /// \brief Find equivalence classes. 758 /// 759 /// Since samples may be missing from blocks, we can fill in the gaps by setting 760 /// the weights of all the blocks in the same equivalence class to the same 761 /// weight. To compute the concept of equivalence, we use dominance and loop 762 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 763 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 764 /// 765 /// \param F The function to query. 766 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 767 SmallVector<BasicBlock *, 8> DominatedBBs; 768 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 769 // Find equivalence sets based on dominance and post-dominance information. 770 for (auto &BB : F) { 771 BasicBlock *BB1 = &BB; 772 773 // Compute BB1's equivalence class once. 774 if (EquivalenceClass.count(BB1)) { 775 DEBUG(printBlockEquivalence(dbgs(), BB1)); 776 continue; 777 } 778 779 // By default, blocks are in their own equivalence class. 780 EquivalenceClass[BB1] = BB1; 781 782 // Traverse all the blocks dominated by BB1. We are looking for 783 // every basic block BB2 such that: 784 // 785 // 1- BB1 dominates BB2. 786 // 2- BB2 post-dominates BB1. 787 // 3- BB1 and BB2 are in the same loop nest. 788 // 789 // If all those conditions hold, it means that BB2 is executed 790 // as many times as BB1, so they are placed in the same equivalence 791 // class by making BB2's equivalence class be BB1. 792 DominatedBBs.clear(); 793 DT->getDescendants(BB1, DominatedBBs); 794 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 795 796 DEBUG(printBlockEquivalence(dbgs(), BB1)); 797 } 798 799 // Assign weights to equivalence classes. 800 // 801 // All the basic blocks in the same equivalence class will execute 802 // the same number of times. Since we know that the head block in 803 // each equivalence class has the largest weight, assign that weight 804 // to all the blocks in that equivalence class. 805 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 806 for (auto &BI : F) { 807 const BasicBlock *BB = &BI; 808 const BasicBlock *EquivBB = EquivalenceClass[BB]; 809 if (BB != EquivBB) 810 BlockWeights[BB] = BlockWeights[EquivBB]; 811 DEBUG(printBlockWeight(dbgs(), BB)); 812 } 813 } 814 815 /// \brief Visit the given edge to decide if it has a valid weight. 816 /// 817 /// If \p E has not been visited before, we copy to \p UnknownEdge 818 /// and increment the count of unknown edges. 819 /// 820 /// \param E Edge to visit. 821 /// \param NumUnknownEdges Current number of unknown edges. 822 /// \param UnknownEdge Set if E has not been visited before. 823 /// 824 /// \returns E's weight, if known. Otherwise, return 0. 825 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 826 Edge *UnknownEdge) { 827 if (!VisitedEdges.count(E)) { 828 (*NumUnknownEdges)++; 829 *UnknownEdge = E; 830 return 0; 831 } 832 833 return EdgeWeights[E]; 834 } 835 836 /// \brief Propagate weights through incoming/outgoing edges. 837 /// 838 /// If the weight of a basic block is known, and there is only one edge 839 /// with an unknown weight, we can calculate the weight of that edge. 840 /// 841 /// Similarly, if all the edges have a known count, we can calculate the 842 /// count of the basic block, if needed. 843 /// 844 /// \param F Function to process. 845 /// 846 /// \returns True if new weights were assigned to edges or blocks. 847 bool SampleProfileLoader::propagateThroughEdges(Function &F) { 848 bool Changed = false; 849 DEBUG(dbgs() << "\nPropagation through edges\n"); 850 for (const auto &BI : F) { 851 const BasicBlock *BB = &BI; 852 const BasicBlock *EC = EquivalenceClass[BB]; 853 854 // Visit all the predecessor and successor edges to determine 855 // which ones have a weight assigned already. Note that it doesn't 856 // matter that we only keep track of a single unknown edge. The 857 // only case we are interested in handling is when only a single 858 // edge is unknown (see setEdgeOrBlockWeight). 859 for (unsigned i = 0; i < 2; i++) { 860 uint64_t TotalWeight = 0; 861 unsigned NumUnknownEdges = 0; 862 Edge UnknownEdge, SelfReferentialEdge; 863 864 if (i == 0) { 865 // First, visit all predecessor edges. 866 for (auto *Pred : Predecessors[BB]) { 867 Edge E = std::make_pair(Pred, BB); 868 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 869 if (E.first == E.second) 870 SelfReferentialEdge = E; 871 } 872 } else { 873 // On the second round, visit all successor edges. 874 for (auto *Succ : Successors[BB]) { 875 Edge E = std::make_pair(BB, Succ); 876 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 877 } 878 } 879 880 // After visiting all the edges, there are three cases that we 881 // can handle immediately: 882 // 883 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 884 // In this case, we simply check that the sum of all the edges 885 // is the same as BB's weight. If not, we change BB's weight 886 // to match. Additionally, if BB had not been visited before, 887 // we mark it visited. 888 // 889 // - Only one edge is unknown and BB has already been visited. 890 // In this case, we can compute the weight of the edge by 891 // subtracting the total block weight from all the known 892 // edge weights. If the edges weight more than BB, then the 893 // edge of the last remaining edge is set to zero. 894 // 895 // - There exists a self-referential edge and the weight of BB is 896 // known. In this case, this edge can be based on BB's weight. 897 // We add up all the other known edges and set the weight on 898 // the self-referential edge as we did in the previous case. 899 // 900 // In any other case, we must continue iterating. Eventually, 901 // all edges will get a weight, or iteration will stop when 902 // it reaches SampleProfileMaxPropagateIterations. 903 if (NumUnknownEdges <= 1) { 904 uint64_t &BBWeight = BlockWeights[EC]; 905 if (NumUnknownEdges == 0) { 906 // If we already know the weight of all edges, the weight of the 907 // basic block can be computed. It should be no larger than the sum 908 // of all edge weights. 909 if (TotalWeight > BBWeight) { 910 BBWeight = TotalWeight; 911 Changed = true; 912 DEBUG(dbgs() << "All edge weights for " << BB->getName() 913 << " known. Set weight for block: "; 914 printBlockWeight(dbgs(), BB);); 915 } 916 if (VisitedBlocks.insert(EC).second) 917 Changed = true; 918 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 919 // If there is a single unknown edge and the block has been 920 // visited, then we can compute E's weight. 921 if (BBWeight >= TotalWeight) 922 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 923 else 924 EdgeWeights[UnknownEdge] = 0; 925 VisitedEdges.insert(UnknownEdge); 926 Changed = true; 927 DEBUG(dbgs() << "Set weight for edge: "; 928 printEdgeWeight(dbgs(), UnknownEdge)); 929 } 930 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 931 uint64_t &BBWeight = BlockWeights[BB]; 932 // We have a self-referential edge and the weight of BB is known. 933 if (BBWeight >= TotalWeight) 934 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 935 else 936 EdgeWeights[SelfReferentialEdge] = 0; 937 VisitedEdges.insert(SelfReferentialEdge); 938 Changed = true; 939 DEBUG(dbgs() << "Set self-referential edge weight to: "; 940 printEdgeWeight(dbgs(), SelfReferentialEdge)); 941 } 942 } 943 } 944 945 return Changed; 946 } 947 948 /// \brief Build in/out edge lists for each basic block in the CFG. 949 /// 950 /// We are interested in unique edges. If a block B1 has multiple 951 /// edges to another block B2, we only add a single B1->B2 edge. 952 void SampleProfileLoader::buildEdges(Function &F) { 953 for (auto &BI : F) { 954 BasicBlock *B1 = &BI; 955 956 // Add predecessors for B1. 957 SmallPtrSet<BasicBlock *, 16> Visited; 958 if (!Predecessors[B1].empty()) 959 llvm_unreachable("Found a stale predecessors list in a basic block."); 960 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 961 BasicBlock *B2 = *PI; 962 if (Visited.insert(B2).second) 963 Predecessors[B1].push_back(B2); 964 } 965 966 // Add successors for B1. 967 Visited.clear(); 968 if (!Successors[B1].empty()) 969 llvm_unreachable("Found a stale successors list in a basic block."); 970 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 971 BasicBlock *B2 = *SI; 972 if (Visited.insert(B2).second) 973 Successors[B1].push_back(B2); 974 } 975 } 976 } 977 978 /// \brief Propagate weights into edges 979 /// 980 /// The following rules are applied to every block BB in the CFG: 981 /// 982 /// - If BB has a single predecessor/successor, then the weight 983 /// of that edge is the weight of the block. 984 /// 985 /// - If all incoming or outgoing edges are known except one, and the 986 /// weight of the block is already known, the weight of the unknown 987 /// edge will be the weight of the block minus the sum of all the known 988 /// edges. If the sum of all the known edges is larger than BB's weight, 989 /// we set the unknown edge weight to zero. 990 /// 991 /// - If there is a self-referential edge, and the weight of the block is 992 /// known, the weight for that edge is set to the weight of the block 993 /// minus the weight of the other incoming edges to that block (if 994 /// known). 995 void SampleProfileLoader::propagateWeights(Function &F) { 996 bool Changed = true; 997 unsigned I = 0; 998 999 // Add an entry count to the function using the samples gathered 1000 // at the function entry. 1001 F.setEntryCount(Samples->getHeadSamples()); 1002 1003 // Before propagation starts, build, for each block, a list of 1004 // unique predecessors and successors. This is necessary to handle 1005 // identical edges in multiway branches. Since we visit all blocks and all 1006 // edges of the CFG, it is cleaner to build these lists once at the start 1007 // of the pass. 1008 buildEdges(F); 1009 1010 // Propagate until we converge or we go past the iteration limit. 1011 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1012 Changed = propagateThroughEdges(F); 1013 } 1014 1015 // Generate MD_prof metadata for every branch instruction using the 1016 // edge weights computed during propagation. 1017 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1018 LLVMContext &Ctx = F.getContext(); 1019 MDBuilder MDB(Ctx); 1020 for (auto &BI : F) { 1021 BasicBlock *BB = &BI; 1022 TerminatorInst *TI = BB->getTerminator(); 1023 if (TI->getNumSuccessors() == 1) 1024 continue; 1025 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1026 continue; 1027 1028 DEBUG(dbgs() << "\nGetting weights for branch at line " 1029 << TI->getDebugLoc().getLine() << ".\n"); 1030 SmallVector<uint32_t, 4> Weights; 1031 uint32_t MaxWeight = 0; 1032 DebugLoc MaxDestLoc; 1033 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1034 BasicBlock *Succ = TI->getSuccessor(I); 1035 Edge E = std::make_pair(BB, Succ); 1036 uint64_t Weight = EdgeWeights[E]; 1037 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1038 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1039 // if needed. Sample counts in profiles are 64-bit unsigned values, 1040 // but internally branch weights are expressed as 32-bit values. 1041 if (Weight > std::numeric_limits<uint32_t>::max()) { 1042 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1043 Weight = std::numeric_limits<uint32_t>::max(); 1044 } 1045 Weights.push_back(static_cast<uint32_t>(Weight)); 1046 if (Weight != 0) { 1047 if (Weight > MaxWeight) { 1048 MaxWeight = Weight; 1049 MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc(); 1050 } 1051 } 1052 } 1053 1054 // Only set weights if there is at least one non-zero weight. 1055 // In any other case, let the analyzer set weights. 1056 if (MaxWeight > 0) { 1057 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1058 TI->setMetadata(llvm::LLVMContext::MD_prof, 1059 MDB.createBranchWeights(Weights)); 1060 DebugLoc BranchLoc = TI->getDebugLoc(); 1061 emitOptimizationRemark( 1062 Ctx, DEBUG_TYPE, F, MaxDestLoc, 1063 Twine("most popular destination for conditional branches at ") + 1064 ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" + 1065 Twine(BranchLoc.getLine()) + ":" + 1066 Twine(BranchLoc.getCol())) 1067 : Twine("<UNKNOWN LOCATION>"))); 1068 } else { 1069 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1070 } 1071 } 1072 } 1073 1074 /// \brief Get the line number for the function header. 1075 /// 1076 /// This looks up function \p F in the current compilation unit and 1077 /// retrieves the line number where the function is defined. This is 1078 /// line 0 for all the samples read from the profile file. Every line 1079 /// number is relative to this line. 1080 /// 1081 /// \param F Function object to query. 1082 /// 1083 /// \returns the line number where \p F is defined. If it returns 0, 1084 /// it means that there is no debug information available for \p F. 1085 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1086 if (DISubprogram *S = getDISubprogram(&F)) 1087 return S->getLine(); 1088 1089 // If the start of \p F is missing, emit a diagnostic to inform the user 1090 // about the missed opportunity. 1091 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1092 "No debug information found in function " + F.getName() + 1093 ": Function profile not used", 1094 DS_Warning)); 1095 return 0; 1096 } 1097 1098 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1099 DT.reset(new DominatorTree); 1100 DT->recalculate(F); 1101 1102 PDT.reset(new DominatorTreeBase<BasicBlock>(true)); 1103 PDT->recalculate(F); 1104 1105 LI.reset(new LoopInfo); 1106 LI->analyze(*DT); 1107 } 1108 1109 /// \brief Generate branch weight metadata for all branches in \p F. 1110 /// 1111 /// Branch weights are computed out of instruction samples using a 1112 /// propagation heuristic. Propagation proceeds in 3 phases: 1113 /// 1114 /// 1- Assignment of block weights. All the basic blocks in the function 1115 /// are initial assigned the same weight as their most frequently 1116 /// executed instruction. 1117 /// 1118 /// 2- Creation of equivalence classes. Since samples may be missing from 1119 /// blocks, we can fill in the gaps by setting the weights of all the 1120 /// blocks in the same equivalence class to the same weight. To compute 1121 /// the concept of equivalence, we use dominance and loop information. 1122 /// Two blocks B1 and B2 are in the same equivalence class if B1 1123 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1124 /// 1125 /// 3- Propagation of block weights into edges. This uses a simple 1126 /// propagation heuristic. The following rules are applied to every 1127 /// block BB in the CFG: 1128 /// 1129 /// - If BB has a single predecessor/successor, then the weight 1130 /// of that edge is the weight of the block. 1131 /// 1132 /// - If all the edges are known except one, and the weight of the 1133 /// block is already known, the weight of the unknown edge will 1134 /// be the weight of the block minus the sum of all the known 1135 /// edges. If the sum of all the known edges is larger than BB's weight, 1136 /// we set the unknown edge weight to zero. 1137 /// 1138 /// - If there is a self-referential edge, and the weight of the block is 1139 /// known, the weight for that edge is set to the weight of the block 1140 /// minus the weight of the other incoming edges to that block (if 1141 /// known). 1142 /// 1143 /// Since this propagation is not guaranteed to finalize for every CFG, we 1144 /// only allow it to proceed for a limited number of iterations (controlled 1145 /// by -sample-profile-max-propagate-iterations). 1146 /// 1147 /// FIXME: Try to replace this propagation heuristic with a scheme 1148 /// that is guaranteed to finalize. A work-list approach similar to 1149 /// the standard value propagation algorithm used by SSA-CCP might 1150 /// work here. 1151 /// 1152 /// Once all the branch weights are computed, we emit the MD_prof 1153 /// metadata on BB using the computed values for each of its branches. 1154 /// 1155 /// \param F The function to query. 1156 /// 1157 /// \returns true if \p F was modified. Returns false, otherwise. 1158 bool SampleProfileLoader::emitAnnotations(Function &F) { 1159 bool Changed = false; 1160 1161 if (getFunctionLoc(F) == 0) 1162 return false; 1163 1164 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 1165 << ": " << getFunctionLoc(F) << "\n"); 1166 1167 Changed |= emitInlineHints(F); 1168 1169 Changed |= inlineHotFunctions(F); 1170 1171 // Compute basic block weights. 1172 Changed |= computeBlockWeights(F); 1173 1174 if (Changed) { 1175 // Compute dominance and loop info needed for propagation. 1176 computeDominanceAndLoopInfo(F); 1177 1178 // Find equivalence classes. 1179 findEquivalenceClasses(F); 1180 1181 // Propagate weights to all edges. 1182 propagateWeights(F); 1183 } 1184 1185 // If coverage checking was requested, compute it now. 1186 if (SampleProfileRecordCoverage) { 1187 unsigned Used = CoverageTracker.countUsedRecords(Samples); 1188 unsigned Total = CoverageTracker.countBodyRecords(Samples); 1189 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1190 if (Coverage < SampleProfileRecordCoverage) { 1191 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1192 getDISubprogram(&F)->getFilename(), getFunctionLoc(F), 1193 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1194 Twine(Coverage) + "%) were applied", 1195 DS_Warning)); 1196 } 1197 } 1198 1199 if (SampleProfileSampleCoverage) { 1200 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1201 uint64_t Total = CoverageTracker.countBodySamples(Samples); 1202 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1203 if (Coverage < SampleProfileSampleCoverage) { 1204 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1205 getDISubprogram(&F)->getFilename(), getFunctionLoc(F), 1206 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1207 Twine(Coverage) + "%) were applied", 1208 DS_Warning)); 1209 } 1210 } 1211 return Changed; 1212 } 1213 1214 char SampleProfileLoader::ID = 0; 1215 INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile", 1216 "Sample Profile loader", false, false) 1217 INITIALIZE_PASS_DEPENDENCY(AddDiscriminators) 1218 INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile", 1219 "Sample Profile loader", false, false) 1220 1221 bool SampleProfileLoader::doInitialization(Module &M) { 1222 auto &Ctx = M.getContext(); 1223 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1224 if (std::error_code EC = ReaderOrErr.getError()) { 1225 std::string Msg = "Could not open profile: " + EC.message(); 1226 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1227 return false; 1228 } 1229 Reader = std::move(ReaderOrErr.get()); 1230 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1231 return true; 1232 } 1233 1234 ModulePass *llvm::createSampleProfileLoaderPass() { 1235 return new SampleProfileLoader(SampleProfileFile); 1236 } 1237 1238 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1239 return new SampleProfileLoader(Name); 1240 } 1241 1242 bool SampleProfileLoader::runOnModule(Module &M) { 1243 if (!ProfileIsValid) 1244 return false; 1245 1246 // Compute the total number of samples collected in this profile. 1247 for (const auto &I : Reader->getProfiles()) 1248 TotalCollectedSamples += I.second.getTotalSamples(); 1249 1250 bool retval = false; 1251 for (auto &F : M) 1252 if (!F.isDeclaration()) { 1253 clearFunctionData(); 1254 retval |= runOnFunction(F); 1255 } 1256 return retval; 1257 } 1258 1259 bool SampleProfileLoader::runOnFunction(Function &F) { 1260 F.setEntryCount(0); 1261 Samples = Reader->getSamplesFor(F); 1262 if (!Samples->empty()) 1263 return emitAnnotations(F); 1264 return false; 1265 } 1266