1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/SampleProfile.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/PostDominators.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DebugInfo.h" 35 #include "llvm/IR/DiagnosticInfo.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/InstIterator.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Metadata.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/ValueSymbolTable.h" 47 #include "llvm/Pass.h" 48 #include "llvm/ProfileData/InstrProf.h" 49 #include "llvm/ProfileData/SampleProfReader.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorOr.h" 53 #include "llvm/Support/Format.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Transforms/IPO.h" 56 #include "llvm/Transforms/Instrumentation.h" 57 #include "llvm/Transforms/Utils/Cloning.h" 58 #include <cctype> 59 60 using namespace llvm; 61 using namespace sampleprof; 62 63 #define DEBUG_TYPE "sample-profile" 64 65 // Command line option to specify the file to read samples from. This is 66 // mainly used for debugging. 67 static cl::opt<std::string> SampleProfileFile( 68 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 69 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 70 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 71 "sample-profile-max-propagate-iterations", cl::init(100), 72 cl::desc("Maximum number of iterations to go through when propagating " 73 "sample block/edge weights through the CFG.")); 74 static cl::opt<unsigned> SampleProfileRecordCoverage( 75 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 76 cl::desc("Emit a warning if less than N% of records in the input profile " 77 "are matched to the IR.")); 78 static cl::opt<unsigned> SampleProfileSampleCoverage( 79 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 80 cl::desc("Emit a warning if less than N% of samples in the input profile " 81 "are matched to the IR.")); 82 static cl::opt<double> SampleProfileHotThreshold( 83 "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"), 84 cl::desc("Inlined functions that account for more than N% of all samples " 85 "collected in the parent function, will be inlined again.")); 86 87 namespace { 88 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap; 89 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap; 90 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge; 91 typedef DenseMap<Edge, uint64_t> EdgeWeightMap; 92 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>> 93 BlockEdgeMap; 94 95 class SampleCoverageTracker { 96 public: 97 SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {} 98 99 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 100 uint32_t Discriminator, uint64_t Samples); 101 unsigned computeCoverage(unsigned Used, unsigned Total) const; 102 unsigned countUsedRecords(const FunctionSamples *FS) const; 103 unsigned countBodyRecords(const FunctionSamples *FS) const; 104 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 105 uint64_t countBodySamples(const FunctionSamples *FS) const; 106 void clear() { 107 SampleCoverage.clear(); 108 TotalUsedSamples = 0; 109 } 110 111 private: 112 typedef std::map<LineLocation, unsigned> BodySampleCoverageMap; 113 typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap> 114 FunctionSamplesCoverageMap; 115 116 /// Coverage map for sampling records. 117 /// 118 /// This map keeps a record of sampling records that have been matched to 119 /// an IR instruction. This is used to detect some form of staleness in 120 /// profiles (see flag -sample-profile-check-coverage). 121 /// 122 /// Each entry in the map corresponds to a FunctionSamples instance. This is 123 /// another map that counts how many times the sample record at the 124 /// given location has been used. 125 FunctionSamplesCoverageMap SampleCoverage; 126 127 /// Number of samples used from the profile. 128 /// 129 /// When a sampling record is used for the first time, the samples from 130 /// that record are added to this accumulator. Coverage is later computed 131 /// based on the total number of samples available in this function and 132 /// its callsites. 133 /// 134 /// Note that this accumulator tracks samples used from a single function 135 /// and all the inlined callsites. Strictly, we should have a map of counters 136 /// keyed by FunctionSamples pointers, but these stats are cleared after 137 /// every function, so we just need to keep a single counter. 138 uint64_t TotalUsedSamples; 139 }; 140 141 /// \brief Sample profile pass. 142 /// 143 /// This pass reads profile data from the file specified by 144 /// -sample-profile-file and annotates every affected function with the 145 /// profile information found in that file. 146 class SampleProfileLoader { 147 public: 148 SampleProfileLoader(StringRef Name = SampleProfileFile) 149 : DT(nullptr), PDT(nullptr), LI(nullptr), ACT(nullptr), Reader(), 150 Samples(nullptr), Filename(Name), ProfileIsValid(false), 151 TotalCollectedSamples(0) {} 152 153 bool doInitialization(Module &M); 154 bool runOnModule(Module &M); 155 void setACT(AssumptionCacheTracker *A) { ACT = A; } 156 157 void dump() { Reader->dump(); } 158 159 protected: 160 bool runOnFunction(Function &F); 161 unsigned getFunctionLoc(Function &F); 162 bool emitAnnotations(Function &F); 163 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 164 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 165 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 166 std::vector<const FunctionSamples *> 167 findIndirectCallFunctionSamples(const Instruction &I) const; 168 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 169 bool inlineHotFunctions(Function &F, 170 DenseSet<GlobalValue::GUID> &ImportGUIDs); 171 void printEdgeWeight(raw_ostream &OS, Edge E); 172 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 173 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 174 bool computeBlockWeights(Function &F); 175 void findEquivalenceClasses(Function &F); 176 template <bool IsPostDom> 177 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 178 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 179 180 void propagateWeights(Function &F); 181 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 182 void buildEdges(Function &F); 183 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 184 void computeDominanceAndLoopInfo(Function &F); 185 unsigned getOffset(const DILocation *DIL) const; 186 void clearFunctionData(); 187 188 /// \brief Map basic blocks to their computed weights. 189 /// 190 /// The weight of a basic block is defined to be the maximum 191 /// of all the instruction weights in that block. 192 BlockWeightMap BlockWeights; 193 194 /// \brief Map edges to their computed weights. 195 /// 196 /// Edge weights are computed by propagating basic block weights in 197 /// SampleProfile::propagateWeights. 198 EdgeWeightMap EdgeWeights; 199 200 /// \brief Set of visited blocks during propagation. 201 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 202 203 /// \brief Set of visited edges during propagation. 204 SmallSet<Edge, 32> VisitedEdges; 205 206 /// \brief Equivalence classes for block weights. 207 /// 208 /// Two blocks BB1 and BB2 are in the same equivalence class if they 209 /// dominate and post-dominate each other, and they are in the same loop 210 /// nest. When this happens, the two blocks are guaranteed to execute 211 /// the same number of times. 212 EquivalenceClassMap EquivalenceClass; 213 214 /// Map from function name to Function *. Used to find the function from 215 /// the function name. If the function name contains suffix, additional 216 /// entry is added to map from the stripped name to the function if there 217 /// is one-to-one mapping. 218 StringMap<Function *> SymbolMap; 219 220 /// \brief Dominance, post-dominance and loop information. 221 std::unique_ptr<DominatorTree> DT; 222 std::unique_ptr<PostDomTreeBase<BasicBlock>> PDT; 223 std::unique_ptr<LoopInfo> LI; 224 225 AssumptionCacheTracker *ACT; 226 227 /// \brief Predecessors for each basic block in the CFG. 228 BlockEdgeMap Predecessors; 229 230 /// \brief Successors for each basic block in the CFG. 231 BlockEdgeMap Successors; 232 233 SampleCoverageTracker CoverageTracker; 234 235 /// \brief Profile reader object. 236 std::unique_ptr<SampleProfileReader> Reader; 237 238 /// \brief Samples collected for the body of this function. 239 FunctionSamples *Samples; 240 241 /// \brief Name of the profile file to load. 242 std::string Filename; 243 244 /// \brief Flag indicating whether the profile input loaded successfully. 245 bool ProfileIsValid; 246 247 /// \brief Total number of samples collected in this profile. 248 /// 249 /// This is the sum of all the samples collected in all the functions executed 250 /// at runtime. 251 uint64_t TotalCollectedSamples; 252 }; 253 254 class SampleProfileLoaderLegacyPass : public ModulePass { 255 public: 256 // Class identification, replacement for typeinfo 257 static char ID; 258 259 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile) 260 : ModulePass(ID), SampleLoader(Name) { 261 initializeSampleProfileLoaderLegacyPassPass( 262 *PassRegistry::getPassRegistry()); 263 } 264 265 void dump() { SampleLoader.dump(); } 266 267 bool doInitialization(Module &M) override { 268 return SampleLoader.doInitialization(M); 269 } 270 StringRef getPassName() const override { return "Sample profile pass"; } 271 bool runOnModule(Module &M) override; 272 273 void getAnalysisUsage(AnalysisUsage &AU) const override { 274 AU.addRequired<AssumptionCacheTracker>(); 275 } 276 277 private: 278 SampleProfileLoader SampleLoader; 279 }; 280 281 /// Return true if the given callsite is hot wrt to its caller. 282 /// 283 /// Functions that were inlined in the original binary will be represented 284 /// in the inline stack in the sample profile. If the profile shows that 285 /// the original inline decision was "good" (i.e., the callsite is executed 286 /// frequently), then we will recreate the inline decision and apply the 287 /// profile from the inlined callsite. 288 /// 289 /// To decide whether an inlined callsite is hot, we compute the fraction 290 /// of samples used by the callsite with respect to the total number of samples 291 /// collected in the caller. 292 /// 293 /// If that fraction is larger than the default given by 294 /// SampleProfileHotThreshold, the callsite will be inlined again. 295 bool callsiteIsHot(const FunctionSamples *CallerFS, 296 const FunctionSamples *CallsiteFS) { 297 if (!CallsiteFS) 298 return false; // The callsite was not inlined in the original binary. 299 300 uint64_t ParentTotalSamples = CallerFS->getTotalSamples(); 301 if (ParentTotalSamples == 0) 302 return false; // Avoid division by zero. 303 304 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 305 if (CallsiteTotalSamples == 0) 306 return false; // Callsite is trivially cold. 307 308 double PercentSamples = 309 (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0; 310 return PercentSamples >= SampleProfileHotThreshold; 311 } 312 } 313 314 /// Mark as used the sample record for the given function samples at 315 /// (LineOffset, Discriminator). 316 /// 317 /// \returns true if this is the first time we mark the given record. 318 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 319 uint32_t LineOffset, 320 uint32_t Discriminator, 321 uint64_t Samples) { 322 LineLocation Loc(LineOffset, Discriminator); 323 unsigned &Count = SampleCoverage[FS][Loc]; 324 bool FirstTime = (++Count == 1); 325 if (FirstTime) 326 TotalUsedSamples += Samples; 327 return FirstTime; 328 } 329 330 /// Return the number of sample records that were applied from this profile. 331 /// 332 /// This count does not include records from cold inlined callsites. 333 unsigned 334 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const { 335 auto I = SampleCoverage.find(FS); 336 337 // The size of the coverage map for FS represents the number of records 338 // that were marked used at least once. 339 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 340 341 // If there are inlined callsites in this function, count the samples found 342 // in the respective bodies. However, do not bother counting callees with 0 343 // total samples, these are callees that were never invoked at runtime. 344 for (const auto &I : FS->getCallsiteSamples()) 345 for (const auto &J : I.second) { 346 const FunctionSamples *CalleeSamples = &J.second; 347 if (callsiteIsHot(FS, CalleeSamples)) 348 Count += countUsedRecords(CalleeSamples); 349 } 350 351 return Count; 352 } 353 354 /// Return the number of sample records in the body of this profile. 355 /// 356 /// This count does not include records from cold inlined callsites. 357 unsigned 358 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const { 359 unsigned Count = FS->getBodySamples().size(); 360 361 // Only count records in hot callsites. 362 for (const auto &I : FS->getCallsiteSamples()) 363 for (const auto &J : I.second) { 364 const FunctionSamples *CalleeSamples = &J.second; 365 if (callsiteIsHot(FS, CalleeSamples)) 366 Count += countBodyRecords(CalleeSamples); 367 } 368 369 return Count; 370 } 371 372 /// Return the number of samples collected in the body of this profile. 373 /// 374 /// This count does not include samples from cold inlined callsites. 375 uint64_t 376 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const { 377 uint64_t Total = 0; 378 for (const auto &I : FS->getBodySamples()) 379 Total += I.second.getSamples(); 380 381 // Only count samples in hot callsites. 382 for (const auto &I : FS->getCallsiteSamples()) 383 for (const auto &J : I.second) { 384 const FunctionSamples *CalleeSamples = &J.second; 385 if (callsiteIsHot(FS, CalleeSamples)) 386 Total += countBodySamples(CalleeSamples); 387 } 388 389 return Total; 390 } 391 392 /// Return the fraction of sample records used in this profile. 393 /// 394 /// The returned value is an unsigned integer in the range 0-100 indicating 395 /// the percentage of sample records that were used while applying this 396 /// profile to the associated function. 397 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 398 unsigned Total) const { 399 assert(Used <= Total && 400 "number of used records cannot exceed the total number of records"); 401 return Total > 0 ? Used * 100 / Total : 100; 402 } 403 404 /// Clear all the per-function data used to load samples and propagate weights. 405 void SampleProfileLoader::clearFunctionData() { 406 BlockWeights.clear(); 407 EdgeWeights.clear(); 408 VisitedBlocks.clear(); 409 VisitedEdges.clear(); 410 EquivalenceClass.clear(); 411 DT = nullptr; 412 PDT = nullptr; 413 LI = nullptr; 414 Predecessors.clear(); 415 Successors.clear(); 416 CoverageTracker.clear(); 417 } 418 419 /// Returns the line offset to the start line of the subprogram. 420 /// We assume that a single function will not exceed 65535 LOC. 421 unsigned SampleProfileLoader::getOffset(const DILocation *DIL) const { 422 return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) & 423 0xffff; 424 } 425 426 /// \brief Print the weight of edge \p E on stream \p OS. 427 /// 428 /// \param OS Stream to emit the output to. 429 /// \param E Edge to print. 430 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 431 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 432 << "]: " << EdgeWeights[E] << "\n"; 433 } 434 435 /// \brief Print the equivalence class of block \p BB on stream \p OS. 436 /// 437 /// \param OS Stream to emit the output to. 438 /// \param BB Block to print. 439 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 440 const BasicBlock *BB) { 441 const BasicBlock *Equiv = EquivalenceClass[BB]; 442 OS << "equivalence[" << BB->getName() 443 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 444 } 445 446 /// \brief Print the weight of block \p BB on stream \p OS. 447 /// 448 /// \param OS Stream to emit the output to. 449 /// \param BB Block to print. 450 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 451 const BasicBlock *BB) const { 452 const auto &I = BlockWeights.find(BB); 453 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 454 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 455 } 456 457 /// \brief Get the weight for an instruction. 458 /// 459 /// The "weight" of an instruction \p Inst is the number of samples 460 /// collected on that instruction at runtime. To retrieve it, we 461 /// need to compute the line number of \p Inst relative to the start of its 462 /// function. We use HeaderLineno to compute the offset. We then 463 /// look up the samples collected for \p Inst using BodySamples. 464 /// 465 /// \param Inst Instruction to query. 466 /// 467 /// \returns the weight of \p Inst. 468 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 469 const DebugLoc &DLoc = Inst.getDebugLoc(); 470 if (!DLoc) 471 return std::error_code(); 472 473 const FunctionSamples *FS = findFunctionSamples(Inst); 474 if (!FS) 475 return std::error_code(); 476 477 // Ignore all intrinsics and branch instructions. 478 // Branch instruction usually contains debug info from sources outside of 479 // the residing basic block, thus we ignore them during annotation. 480 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst)) 481 return std::error_code(); 482 483 // If a call/invoke instruction is inlined in profile, but not inlined here, 484 // it means that the inlined callsite has no sample, thus the call 485 // instruction should have 0 count. 486 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && 487 findCalleeFunctionSamples(Inst)) 488 return 0; 489 490 const DILocation *DIL = DLoc; 491 uint32_t LineOffset = getOffset(DIL); 492 uint32_t Discriminator = DIL->getBaseDiscriminator(); 493 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 494 if (R) { 495 bool FirstMark = 496 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 497 if (FirstMark) { 498 const Function *F = Inst.getParent()->getParent(); 499 LLVMContext &Ctx = F->getContext(); 500 emitOptimizationRemark( 501 Ctx, DEBUG_TYPE, *F, DLoc, 502 Twine("Applied ") + Twine(*R) + 503 " samples from profile (offset: " + Twine(LineOffset) + 504 ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")"); 505 } 506 DEBUG(dbgs() << " " << DLoc.getLine() << "." 507 << DIL->getBaseDiscriminator() << ":" << Inst 508 << " (line offset: " << LineOffset << "." 509 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 510 << ")\n"); 511 } 512 return R; 513 } 514 515 /// \brief Compute the weight of a basic block. 516 /// 517 /// The weight of basic block \p BB is the maximum weight of all the 518 /// instructions in BB. 519 /// 520 /// \param BB The basic block to query. 521 /// 522 /// \returns the weight for \p BB. 523 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 524 uint64_t Max = 0; 525 bool HasWeight = false; 526 for (auto &I : BB->getInstList()) { 527 const ErrorOr<uint64_t> &R = getInstWeight(I); 528 if (R) { 529 Max = std::max(Max, R.get()); 530 HasWeight = true; 531 } 532 } 533 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 534 } 535 536 /// \brief Compute and store the weights of every basic block. 537 /// 538 /// This populates the BlockWeights map by computing 539 /// the weights of every basic block in the CFG. 540 /// 541 /// \param F The function to query. 542 bool SampleProfileLoader::computeBlockWeights(Function &F) { 543 bool Changed = false; 544 DEBUG(dbgs() << "Block weights\n"); 545 for (const auto &BB : F) { 546 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 547 if (Weight) { 548 BlockWeights[&BB] = Weight.get(); 549 VisitedBlocks.insert(&BB); 550 Changed = true; 551 } 552 DEBUG(printBlockWeight(dbgs(), &BB)); 553 } 554 555 return Changed; 556 } 557 558 /// \brief Get the FunctionSamples for a call instruction. 559 /// 560 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 561 /// instance in which that call instruction is calling to. It contains 562 /// all samples that resides in the inlined instance. We first find the 563 /// inlined instance in which the call instruction is from, then we 564 /// traverse its children to find the callsite with the matching 565 /// location. 566 /// 567 /// \param Inst Call/Invoke instruction to query. 568 /// 569 /// \returns The FunctionSamples pointer to the inlined instance. 570 const FunctionSamples * 571 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 572 const DILocation *DIL = Inst.getDebugLoc(); 573 if (!DIL) { 574 return nullptr; 575 } 576 577 StringRef CalleeName; 578 if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) 579 if (Function *Callee = CI->getCalledFunction()) 580 CalleeName = Callee->getName(); 581 582 const FunctionSamples *FS = findFunctionSamples(Inst); 583 if (FS == nullptr) 584 return nullptr; 585 586 return FS->findFunctionSamplesAt( 587 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), CalleeName); 588 } 589 590 /// Returns a vector of FunctionSamples that are the indirect call targets 591 /// of \p Inst. The vector is sorted by the total number of samples. 592 std::vector<const FunctionSamples *> 593 SampleProfileLoader::findIndirectCallFunctionSamples( 594 const Instruction &Inst) const { 595 const DILocation *DIL = Inst.getDebugLoc(); 596 std::vector<const FunctionSamples *> R; 597 598 if (!DIL) { 599 return R; 600 } 601 602 const FunctionSamples *FS = findFunctionSamples(Inst); 603 if (FS == nullptr) 604 return R; 605 606 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt( 607 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()))) { 608 if (M->size() == 0) 609 return R; 610 for (const auto &NameFS : *M) { 611 R.push_back(&NameFS.second); 612 } 613 std::sort(R.begin(), R.end(), 614 [](const FunctionSamples *L, const FunctionSamples *R) { 615 return L->getTotalSamples() > R->getTotalSamples(); 616 }); 617 } 618 return R; 619 } 620 621 /// \brief Get the FunctionSamples for an instruction. 622 /// 623 /// The FunctionSamples of an instruction \p Inst is the inlined instance 624 /// in which that instruction is coming from. We traverse the inline stack 625 /// of that instruction, and match it with the tree nodes in the profile. 626 /// 627 /// \param Inst Instruction to query. 628 /// 629 /// \returns the FunctionSamples pointer to the inlined instance. 630 const FunctionSamples * 631 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 632 SmallVector<std::pair<LineLocation, StringRef>, 10> S; 633 const DILocation *DIL = Inst.getDebugLoc(); 634 if (!DIL) 635 return Samples; 636 637 const DILocation *PrevDIL = DIL; 638 for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) { 639 S.push_back(std::make_pair( 640 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), 641 PrevDIL->getScope()->getSubprogram()->getLinkageName())); 642 PrevDIL = DIL; 643 } 644 if (S.size() == 0) 645 return Samples; 646 const FunctionSamples *FS = Samples; 647 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 648 FS = FS->findFunctionSamplesAt(S[i].first, S[i].second); 649 } 650 return FS; 651 } 652 653 /// \brief Iteratively inline hot callsites of a function. 654 /// 655 /// Iteratively traverse all callsites of the function \p F, and find if 656 /// the corresponding inlined instance exists and is hot in profile. If 657 /// it is hot enough, inline the callsites and adds new callsites of the 658 /// callee into the caller. If the call is an indirect call, first promote 659 /// it to direct call. Each indirect call is limited with a single target. 660 /// 661 /// \param F function to perform iterative inlining. 662 /// \param ImportGUIDs a set to be updated to include all GUIDs that come 663 /// from a different module but inlined in the profiled binary. 664 /// 665 /// \returns True if there is any inline happened. 666 bool SampleProfileLoader::inlineHotFunctions( 667 Function &F, DenseSet<GlobalValue::GUID> &ImportGUIDs) { 668 DenseSet<Instruction *> PromotedInsns; 669 bool Changed = false; 670 LLVMContext &Ctx = F.getContext(); 671 std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&]( 672 Function &F) -> AssumptionCache & { return ACT->getAssumptionCache(F); }; 673 while (true) { 674 bool LocalChanged = false; 675 SmallVector<Instruction *, 10> CIS; 676 for (auto &BB : F) { 677 bool Hot = false; 678 SmallVector<Instruction *, 10> Candidates; 679 for (auto &I : BB.getInstList()) { 680 const FunctionSamples *FS = nullptr; 681 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 682 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { 683 Candidates.push_back(&I); 684 if (callsiteIsHot(Samples, FS)) 685 Hot = true; 686 } 687 } 688 if (Hot) { 689 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); 690 } 691 } 692 for (auto I : CIS) { 693 InlineFunctionInfo IFI(nullptr, ACT ? &GetAssumptionCache : nullptr); 694 Function *CalledFunction = CallSite(I).getCalledFunction(); 695 // Do not inline recursive calls. 696 if (CalledFunction == &F) 697 continue; 698 Instruction *DI = I; 699 if (!CalledFunction && !PromotedInsns.count(I) && 700 CallSite(I).isIndirectCall()) 701 for (const auto *FS : findIndirectCallFunctionSamples(*I)) { 702 auto CalleeFunctionName = FS->getName(); 703 // If it is a recursive call, we do not inline it as it could bloat 704 // the code exponentially. There is way to better handle this, e.g. 705 // clone the caller first, and inline the cloned caller if it is 706 // recursive. As llvm does not inline recursive calls, we will simply 707 // ignore it instead of handling it explicitly. 708 if (CalleeFunctionName == F.getName()) 709 continue; 710 const char *Reason = "Callee function not available"; 711 auto R = SymbolMap.find(CalleeFunctionName); 712 if (R == SymbolMap.end()) 713 continue; 714 CalledFunction = R->getValue(); 715 if (CalledFunction && isLegalToPromote(I, CalledFunction, &Reason)) { 716 // The indirect target was promoted and inlined in the profile, as a 717 // result, we do not have profile info for the branch probability. 718 // We set the probability to 80% taken to indicate that the static 719 // call is likely taken. 720 DI = dyn_cast<Instruction>( 721 promoteIndirectCall(I, CalledFunction, 80, 100, false) 722 ->stripPointerCasts()); 723 PromotedInsns.insert(I); 724 } else { 725 DEBUG(dbgs() << "\nFailed to promote indirect call to " 726 << CalleeFunctionName << " because " << Reason 727 << "\n"); 728 continue; 729 } 730 } 731 if (!CalledFunction || !CalledFunction->getSubprogram()) { 732 findCalleeFunctionSamples(*I)->findImportedFunctions( 733 ImportGUIDs, F.getParent(), 734 Samples->getTotalSamples() * SampleProfileHotThreshold / 100); 735 continue; 736 } 737 DebugLoc DLoc = I->getDebugLoc(); 738 if (InlineFunction(CallSite(DI), IFI)) { 739 LocalChanged = true; 740 emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc, 741 Twine("inlined hot callee '") + 742 CalledFunction->getName() + "' into '" + 743 F.getName() + "'"); 744 } 745 } 746 if (LocalChanged) { 747 Changed = true; 748 } else { 749 break; 750 } 751 } 752 return Changed; 753 } 754 755 /// \brief Find equivalence classes for the given block. 756 /// 757 /// This finds all the blocks that are guaranteed to execute the same 758 /// number of times as \p BB1. To do this, it traverses all the 759 /// descendants of \p BB1 in the dominator or post-dominator tree. 760 /// 761 /// A block BB2 will be in the same equivalence class as \p BB1 if 762 /// the following holds: 763 /// 764 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 765 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 766 /// dominate BB1 in the post-dominator tree. 767 /// 768 /// 2- Both BB2 and \p BB1 must be in the same loop. 769 /// 770 /// For every block BB2 that meets those two requirements, we set BB2's 771 /// equivalence class to \p BB1. 772 /// 773 /// \param BB1 Block to check. 774 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 775 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 776 /// with blocks from \p BB1's dominator tree, then 777 /// this is the post-dominator tree, and vice versa. 778 template <bool IsPostDom> 779 void SampleProfileLoader::findEquivalencesFor( 780 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 781 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 782 const BasicBlock *EC = EquivalenceClass[BB1]; 783 uint64_t Weight = BlockWeights[EC]; 784 for (const auto *BB2 : Descendants) { 785 bool IsDomParent = DomTree->dominates(BB2, BB1); 786 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 787 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 788 EquivalenceClass[BB2] = EC; 789 // If BB2 is visited, then the entire EC should be marked as visited. 790 if (VisitedBlocks.count(BB2)) { 791 VisitedBlocks.insert(EC); 792 } 793 794 // If BB2 is heavier than BB1, make BB2 have the same weight 795 // as BB1. 796 // 797 // Note that we don't worry about the opposite situation here 798 // (when BB2 is lighter than BB1). We will deal with this 799 // during the propagation phase. Right now, we just want to 800 // make sure that BB1 has the largest weight of all the 801 // members of its equivalence set. 802 Weight = std::max(Weight, BlockWeights[BB2]); 803 } 804 } 805 if (EC == &EC->getParent()->getEntryBlock()) { 806 BlockWeights[EC] = Samples->getHeadSamples() + 1; 807 } else { 808 BlockWeights[EC] = Weight; 809 } 810 } 811 812 /// \brief Find equivalence classes. 813 /// 814 /// Since samples may be missing from blocks, we can fill in the gaps by setting 815 /// the weights of all the blocks in the same equivalence class to the same 816 /// weight. To compute the concept of equivalence, we use dominance and loop 817 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 818 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 819 /// 820 /// \param F The function to query. 821 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 822 SmallVector<BasicBlock *, 8> DominatedBBs; 823 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 824 // Find equivalence sets based on dominance and post-dominance information. 825 for (auto &BB : F) { 826 BasicBlock *BB1 = &BB; 827 828 // Compute BB1's equivalence class once. 829 if (EquivalenceClass.count(BB1)) { 830 DEBUG(printBlockEquivalence(dbgs(), BB1)); 831 continue; 832 } 833 834 // By default, blocks are in their own equivalence class. 835 EquivalenceClass[BB1] = BB1; 836 837 // Traverse all the blocks dominated by BB1. We are looking for 838 // every basic block BB2 such that: 839 // 840 // 1- BB1 dominates BB2. 841 // 2- BB2 post-dominates BB1. 842 // 3- BB1 and BB2 are in the same loop nest. 843 // 844 // If all those conditions hold, it means that BB2 is executed 845 // as many times as BB1, so they are placed in the same equivalence 846 // class by making BB2's equivalence class be BB1. 847 DominatedBBs.clear(); 848 DT->getDescendants(BB1, DominatedBBs); 849 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 850 851 DEBUG(printBlockEquivalence(dbgs(), BB1)); 852 } 853 854 // Assign weights to equivalence classes. 855 // 856 // All the basic blocks in the same equivalence class will execute 857 // the same number of times. Since we know that the head block in 858 // each equivalence class has the largest weight, assign that weight 859 // to all the blocks in that equivalence class. 860 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 861 for (auto &BI : F) { 862 const BasicBlock *BB = &BI; 863 const BasicBlock *EquivBB = EquivalenceClass[BB]; 864 if (BB != EquivBB) 865 BlockWeights[BB] = BlockWeights[EquivBB]; 866 DEBUG(printBlockWeight(dbgs(), BB)); 867 } 868 } 869 870 /// \brief Visit the given edge to decide if it has a valid weight. 871 /// 872 /// If \p E has not been visited before, we copy to \p UnknownEdge 873 /// and increment the count of unknown edges. 874 /// 875 /// \param E Edge to visit. 876 /// \param NumUnknownEdges Current number of unknown edges. 877 /// \param UnknownEdge Set if E has not been visited before. 878 /// 879 /// \returns E's weight, if known. Otherwise, return 0. 880 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 881 Edge *UnknownEdge) { 882 if (!VisitedEdges.count(E)) { 883 (*NumUnknownEdges)++; 884 *UnknownEdge = E; 885 return 0; 886 } 887 888 return EdgeWeights[E]; 889 } 890 891 /// \brief Propagate weights through incoming/outgoing edges. 892 /// 893 /// If the weight of a basic block is known, and there is only one edge 894 /// with an unknown weight, we can calculate the weight of that edge. 895 /// 896 /// Similarly, if all the edges have a known count, we can calculate the 897 /// count of the basic block, if needed. 898 /// 899 /// \param F Function to process. 900 /// \param UpdateBlockCount Whether we should update basic block counts that 901 /// has already been annotated. 902 /// 903 /// \returns True if new weights were assigned to edges or blocks. 904 bool SampleProfileLoader::propagateThroughEdges(Function &F, 905 bool UpdateBlockCount) { 906 bool Changed = false; 907 DEBUG(dbgs() << "\nPropagation through edges\n"); 908 for (const auto &BI : F) { 909 const BasicBlock *BB = &BI; 910 const BasicBlock *EC = EquivalenceClass[BB]; 911 912 // Visit all the predecessor and successor edges to determine 913 // which ones have a weight assigned already. Note that it doesn't 914 // matter that we only keep track of a single unknown edge. The 915 // only case we are interested in handling is when only a single 916 // edge is unknown (see setEdgeOrBlockWeight). 917 for (unsigned i = 0; i < 2; i++) { 918 uint64_t TotalWeight = 0; 919 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 920 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 921 922 if (i == 0) { 923 // First, visit all predecessor edges. 924 NumTotalEdges = Predecessors[BB].size(); 925 for (auto *Pred : Predecessors[BB]) { 926 Edge E = std::make_pair(Pred, BB); 927 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 928 if (E.first == E.second) 929 SelfReferentialEdge = E; 930 } 931 if (NumTotalEdges == 1) { 932 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 933 } 934 } else { 935 // On the second round, visit all successor edges. 936 NumTotalEdges = Successors[BB].size(); 937 for (auto *Succ : Successors[BB]) { 938 Edge E = std::make_pair(BB, Succ); 939 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 940 } 941 if (NumTotalEdges == 1) { 942 SingleEdge = std::make_pair(BB, Successors[BB][0]); 943 } 944 } 945 946 // After visiting all the edges, there are three cases that we 947 // can handle immediately: 948 // 949 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 950 // In this case, we simply check that the sum of all the edges 951 // is the same as BB's weight. If not, we change BB's weight 952 // to match. Additionally, if BB had not been visited before, 953 // we mark it visited. 954 // 955 // - Only one edge is unknown and BB has already been visited. 956 // In this case, we can compute the weight of the edge by 957 // subtracting the total block weight from all the known 958 // edge weights. If the edges weight more than BB, then the 959 // edge of the last remaining edge is set to zero. 960 // 961 // - There exists a self-referential edge and the weight of BB is 962 // known. In this case, this edge can be based on BB's weight. 963 // We add up all the other known edges and set the weight on 964 // the self-referential edge as we did in the previous case. 965 // 966 // In any other case, we must continue iterating. Eventually, 967 // all edges will get a weight, or iteration will stop when 968 // it reaches SampleProfileMaxPropagateIterations. 969 if (NumUnknownEdges <= 1) { 970 uint64_t &BBWeight = BlockWeights[EC]; 971 if (NumUnknownEdges == 0) { 972 if (!VisitedBlocks.count(EC)) { 973 // If we already know the weight of all edges, the weight of the 974 // basic block can be computed. It should be no larger than the sum 975 // of all edge weights. 976 if (TotalWeight > BBWeight) { 977 BBWeight = TotalWeight; 978 Changed = true; 979 DEBUG(dbgs() << "All edge weights for " << BB->getName() 980 << " known. Set weight for block: "; 981 printBlockWeight(dbgs(), BB);); 982 } 983 } else if (NumTotalEdges == 1 && 984 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 985 // If there is only one edge for the visited basic block, use the 986 // block weight to adjust edge weight if edge weight is smaller. 987 EdgeWeights[SingleEdge] = BlockWeights[EC]; 988 Changed = true; 989 } 990 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 991 // If there is a single unknown edge and the block has been 992 // visited, then we can compute E's weight. 993 if (BBWeight >= TotalWeight) 994 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 995 else 996 EdgeWeights[UnknownEdge] = 0; 997 const BasicBlock *OtherEC; 998 if (i == 0) 999 OtherEC = EquivalenceClass[UnknownEdge.first]; 1000 else 1001 OtherEC = EquivalenceClass[UnknownEdge.second]; 1002 // Edge weights should never exceed the BB weights it connects. 1003 if (VisitedBlocks.count(OtherEC) && 1004 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1005 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1006 VisitedEdges.insert(UnknownEdge); 1007 Changed = true; 1008 DEBUG(dbgs() << "Set weight for edge: "; 1009 printEdgeWeight(dbgs(), UnknownEdge)); 1010 } 1011 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1012 // If a block Weights 0, all its in/out edges should weight 0. 1013 if (i == 0) { 1014 for (auto *Pred : Predecessors[BB]) { 1015 Edge E = std::make_pair(Pred, BB); 1016 EdgeWeights[E] = 0; 1017 VisitedEdges.insert(E); 1018 } 1019 } else { 1020 for (auto *Succ : Successors[BB]) { 1021 Edge E = std::make_pair(BB, Succ); 1022 EdgeWeights[E] = 0; 1023 VisitedEdges.insert(E); 1024 } 1025 } 1026 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1027 uint64_t &BBWeight = BlockWeights[BB]; 1028 // We have a self-referential edge and the weight of BB is known. 1029 if (BBWeight >= TotalWeight) 1030 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1031 else 1032 EdgeWeights[SelfReferentialEdge] = 0; 1033 VisitedEdges.insert(SelfReferentialEdge); 1034 Changed = true; 1035 DEBUG(dbgs() << "Set self-referential edge weight to: "; 1036 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1037 } 1038 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1039 BlockWeights[EC] = TotalWeight; 1040 VisitedBlocks.insert(EC); 1041 Changed = true; 1042 } 1043 } 1044 } 1045 1046 return Changed; 1047 } 1048 1049 /// \brief Build in/out edge lists for each basic block in the CFG. 1050 /// 1051 /// We are interested in unique edges. If a block B1 has multiple 1052 /// edges to another block B2, we only add a single B1->B2 edge. 1053 void SampleProfileLoader::buildEdges(Function &F) { 1054 for (auto &BI : F) { 1055 BasicBlock *B1 = &BI; 1056 1057 // Add predecessors for B1. 1058 SmallPtrSet<BasicBlock *, 16> Visited; 1059 if (!Predecessors[B1].empty()) 1060 llvm_unreachable("Found a stale predecessors list in a basic block."); 1061 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1062 BasicBlock *B2 = *PI; 1063 if (Visited.insert(B2).second) 1064 Predecessors[B1].push_back(B2); 1065 } 1066 1067 // Add successors for B1. 1068 Visited.clear(); 1069 if (!Successors[B1].empty()) 1070 llvm_unreachable("Found a stale successors list in a basic block."); 1071 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1072 BasicBlock *B2 = *SI; 1073 if (Visited.insert(B2).second) 1074 Successors[B1].push_back(B2); 1075 } 1076 } 1077 } 1078 1079 /// Sorts the CallTargetMap \p M by count in descending order and stores the 1080 /// sorted result in \p Sorted. Returns the total counts. 1081 static uint64_t SortCallTargets(SmallVector<InstrProfValueData, 2> &Sorted, 1082 const SampleRecord::CallTargetMap &M) { 1083 Sorted.clear(); 1084 uint64_t Sum = 0; 1085 for (auto I = M.begin(); I != M.end(); ++I) { 1086 Sum += I->getValue(); 1087 Sorted.push_back({Function::getGUID(I->getKey()), I->getValue()}); 1088 } 1089 std::sort(Sorted.begin(), Sorted.end(), 1090 [](const InstrProfValueData &L, const InstrProfValueData &R) { 1091 if (L.Count == R.Count) 1092 return L.Value > R.Value; 1093 else 1094 return L.Count > R.Count; 1095 }); 1096 return Sum; 1097 } 1098 1099 /// \brief Propagate weights into edges 1100 /// 1101 /// The following rules are applied to every block BB in the CFG: 1102 /// 1103 /// - If BB has a single predecessor/successor, then the weight 1104 /// of that edge is the weight of the block. 1105 /// 1106 /// - If all incoming or outgoing edges are known except one, and the 1107 /// weight of the block is already known, the weight of the unknown 1108 /// edge will be the weight of the block minus the sum of all the known 1109 /// edges. If the sum of all the known edges is larger than BB's weight, 1110 /// we set the unknown edge weight to zero. 1111 /// 1112 /// - If there is a self-referential edge, and the weight of the block is 1113 /// known, the weight for that edge is set to the weight of the block 1114 /// minus the weight of the other incoming edges to that block (if 1115 /// known). 1116 void SampleProfileLoader::propagateWeights(Function &F) { 1117 bool Changed = true; 1118 unsigned I = 0; 1119 1120 // If BB weight is larger than its corresponding loop's header BB weight, 1121 // use the BB weight to replace the loop header BB weight. 1122 for (auto &BI : F) { 1123 BasicBlock *BB = &BI; 1124 Loop *L = LI->getLoopFor(BB); 1125 if (!L) { 1126 continue; 1127 } 1128 BasicBlock *Header = L->getHeader(); 1129 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1130 BlockWeights[Header] = BlockWeights[BB]; 1131 } 1132 } 1133 1134 // Before propagation starts, build, for each block, a list of 1135 // unique predecessors and successors. This is necessary to handle 1136 // identical edges in multiway branches. Since we visit all blocks and all 1137 // edges of the CFG, it is cleaner to build these lists once at the start 1138 // of the pass. 1139 buildEdges(F); 1140 1141 // Propagate until we converge or we go past the iteration limit. 1142 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1143 Changed = propagateThroughEdges(F, false); 1144 } 1145 1146 // The first propagation propagates BB counts from annotated BBs to unknown 1147 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1148 // to propagate edge weights. 1149 VisitedEdges.clear(); 1150 Changed = true; 1151 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1152 Changed = propagateThroughEdges(F, false); 1153 } 1154 1155 // The 3rd propagation pass allows adjust annotated BB weights that are 1156 // obviously wrong. 1157 Changed = true; 1158 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1159 Changed = propagateThroughEdges(F, true); 1160 } 1161 1162 // Generate MD_prof metadata for every branch instruction using the 1163 // edge weights computed during propagation. 1164 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1165 LLVMContext &Ctx = F.getContext(); 1166 MDBuilder MDB(Ctx); 1167 for (auto &BI : F) { 1168 BasicBlock *BB = &BI; 1169 1170 if (BlockWeights[BB]) { 1171 for (auto &I : BB->getInstList()) { 1172 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1173 continue; 1174 CallSite CS(&I); 1175 if (!CS.getCalledFunction()) { 1176 const DebugLoc &DLoc = I.getDebugLoc(); 1177 if (!DLoc) 1178 continue; 1179 const DILocation *DIL = DLoc; 1180 uint32_t LineOffset = getOffset(DIL); 1181 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1182 1183 const FunctionSamples *FS = findFunctionSamples(I); 1184 if (!FS) 1185 continue; 1186 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1187 if (!T || T.get().size() == 0) 1188 continue; 1189 SmallVector<InstrProfValueData, 2> SortedCallTargets; 1190 uint64_t Sum = SortCallTargets(SortedCallTargets, T.get()); 1191 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1192 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1193 SortedCallTargets.size()); 1194 } else if (!dyn_cast<IntrinsicInst>(&I)) { 1195 SmallVector<uint32_t, 1> Weights; 1196 Weights.push_back(BlockWeights[BB]); 1197 I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); 1198 } 1199 } 1200 } 1201 TerminatorInst *TI = BB->getTerminator(); 1202 if (TI->getNumSuccessors() == 1) 1203 continue; 1204 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1205 continue; 1206 1207 DebugLoc BranchLoc = TI->getDebugLoc(); 1208 DEBUG(dbgs() << "\nGetting weights for branch at line " 1209 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1210 : Twine("<UNKNOWN LOCATION>")) 1211 << ".\n"); 1212 SmallVector<uint32_t, 4> Weights; 1213 uint32_t MaxWeight = 0; 1214 DebugLoc MaxDestLoc; 1215 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1216 BasicBlock *Succ = TI->getSuccessor(I); 1217 Edge E = std::make_pair(BB, Succ); 1218 uint64_t Weight = EdgeWeights[E]; 1219 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1220 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1221 // if needed. Sample counts in profiles are 64-bit unsigned values, 1222 // but internally branch weights are expressed as 32-bit values. 1223 if (Weight > std::numeric_limits<uint32_t>::max()) { 1224 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1225 Weight = std::numeric_limits<uint32_t>::max(); 1226 } 1227 // Weight is added by one to avoid propagation errors introduced by 1228 // 0 weights. 1229 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1230 if (Weight != 0) { 1231 if (Weight > MaxWeight) { 1232 MaxWeight = Weight; 1233 MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc(); 1234 } 1235 } 1236 } 1237 1238 uint64_t TempWeight; 1239 // Only set weights if there is at least one non-zero weight. 1240 // In any other case, let the analyzer set weights. 1241 // Do not set weights if the weights are present. In ThinLTO, the profile 1242 // annotation is done twice. If the first annotation already set the 1243 // weights, the second pass does not need to set it. 1244 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1245 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1246 TI->setMetadata(llvm::LLVMContext::MD_prof, 1247 MDB.createBranchWeights(Weights)); 1248 emitOptimizationRemark( 1249 Ctx, DEBUG_TYPE, F, MaxDestLoc, 1250 Twine("most popular destination for conditional branches at ") + 1251 ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" + 1252 Twine(BranchLoc.getLine()) + ":" + 1253 Twine(BranchLoc.getCol())) 1254 : Twine("<UNKNOWN LOCATION>"))); 1255 } else { 1256 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1257 } 1258 } 1259 } 1260 1261 /// \brief Get the line number for the function header. 1262 /// 1263 /// This looks up function \p F in the current compilation unit and 1264 /// retrieves the line number where the function is defined. This is 1265 /// line 0 for all the samples read from the profile file. Every line 1266 /// number is relative to this line. 1267 /// 1268 /// \param F Function object to query. 1269 /// 1270 /// \returns the line number where \p F is defined. If it returns 0, 1271 /// it means that there is no debug information available for \p F. 1272 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1273 if (DISubprogram *S = F.getSubprogram()) 1274 return S->getLine(); 1275 1276 // If the start of \p F is missing, emit a diagnostic to inform the user 1277 // about the missed opportunity. 1278 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1279 "No debug information found in function " + F.getName() + 1280 ": Function profile not used", 1281 DS_Warning)); 1282 return 0; 1283 } 1284 1285 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1286 DT.reset(new DominatorTree); 1287 DT->recalculate(F); 1288 1289 PDT.reset(new PostDomTreeBase<BasicBlock>()); 1290 PDT->recalculate(F); 1291 1292 LI.reset(new LoopInfo); 1293 LI->analyze(*DT); 1294 } 1295 1296 /// \brief Generate branch weight metadata for all branches in \p F. 1297 /// 1298 /// Branch weights are computed out of instruction samples using a 1299 /// propagation heuristic. Propagation proceeds in 3 phases: 1300 /// 1301 /// 1- Assignment of block weights. All the basic blocks in the function 1302 /// are initial assigned the same weight as their most frequently 1303 /// executed instruction. 1304 /// 1305 /// 2- Creation of equivalence classes. Since samples may be missing from 1306 /// blocks, we can fill in the gaps by setting the weights of all the 1307 /// blocks in the same equivalence class to the same weight. To compute 1308 /// the concept of equivalence, we use dominance and loop information. 1309 /// Two blocks B1 and B2 are in the same equivalence class if B1 1310 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1311 /// 1312 /// 3- Propagation of block weights into edges. This uses a simple 1313 /// propagation heuristic. The following rules are applied to every 1314 /// block BB in the CFG: 1315 /// 1316 /// - If BB has a single predecessor/successor, then the weight 1317 /// of that edge is the weight of the block. 1318 /// 1319 /// - If all the edges are known except one, and the weight of the 1320 /// block is already known, the weight of the unknown edge will 1321 /// be the weight of the block minus the sum of all the known 1322 /// edges. If the sum of all the known edges is larger than BB's weight, 1323 /// we set the unknown edge weight to zero. 1324 /// 1325 /// - If there is a self-referential edge, and the weight of the block is 1326 /// known, the weight for that edge is set to the weight of the block 1327 /// minus the weight of the other incoming edges to that block (if 1328 /// known). 1329 /// 1330 /// Since this propagation is not guaranteed to finalize for every CFG, we 1331 /// only allow it to proceed for a limited number of iterations (controlled 1332 /// by -sample-profile-max-propagate-iterations). 1333 /// 1334 /// FIXME: Try to replace this propagation heuristic with a scheme 1335 /// that is guaranteed to finalize. A work-list approach similar to 1336 /// the standard value propagation algorithm used by SSA-CCP might 1337 /// work here. 1338 /// 1339 /// Once all the branch weights are computed, we emit the MD_prof 1340 /// metadata on BB using the computed values for each of its branches. 1341 /// 1342 /// \param F The function to query. 1343 /// 1344 /// \returns true if \p F was modified. Returns false, otherwise. 1345 bool SampleProfileLoader::emitAnnotations(Function &F) { 1346 bool Changed = false; 1347 1348 if (getFunctionLoc(F) == 0) 1349 return false; 1350 1351 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 1352 << ": " << getFunctionLoc(F) << "\n"); 1353 1354 DenseSet<GlobalValue::GUID> ImportGUIDs; 1355 Changed |= inlineHotFunctions(F, ImportGUIDs); 1356 1357 // Compute basic block weights. 1358 Changed |= computeBlockWeights(F); 1359 1360 if (Changed) { 1361 // Add an entry count to the function using the samples gathered at the 1362 // function entry. Also sets the GUIDs that comes from a different 1363 // module but inlined in the profiled binary. This is aiming at making 1364 // the IR match the profiled binary before annotation. 1365 F.setEntryCount(Samples->getHeadSamples() + 1, &ImportGUIDs); 1366 1367 // Compute dominance and loop info needed for propagation. 1368 computeDominanceAndLoopInfo(F); 1369 1370 // Find equivalence classes. 1371 findEquivalenceClasses(F); 1372 1373 // Propagate weights to all edges. 1374 propagateWeights(F); 1375 } 1376 1377 // If coverage checking was requested, compute it now. 1378 if (SampleProfileRecordCoverage) { 1379 unsigned Used = CoverageTracker.countUsedRecords(Samples); 1380 unsigned Total = CoverageTracker.countBodyRecords(Samples); 1381 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1382 if (Coverage < SampleProfileRecordCoverage) { 1383 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1384 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1385 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1386 Twine(Coverage) + "%) were applied", 1387 DS_Warning)); 1388 } 1389 } 1390 1391 if (SampleProfileSampleCoverage) { 1392 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1393 uint64_t Total = CoverageTracker.countBodySamples(Samples); 1394 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1395 if (Coverage < SampleProfileSampleCoverage) { 1396 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1397 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1398 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1399 Twine(Coverage) + "%) were applied", 1400 DS_Warning)); 1401 } 1402 } 1403 return Changed; 1404 } 1405 1406 char SampleProfileLoaderLegacyPass::ID = 0; 1407 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1408 "Sample Profile loader", false, false) 1409 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1410 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1411 "Sample Profile loader", false, false) 1412 1413 bool SampleProfileLoader::doInitialization(Module &M) { 1414 auto &Ctx = M.getContext(); 1415 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1416 if (std::error_code EC = ReaderOrErr.getError()) { 1417 std::string Msg = "Could not open profile: " + EC.message(); 1418 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1419 return false; 1420 } 1421 Reader = std::move(ReaderOrErr.get()); 1422 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1423 return true; 1424 } 1425 1426 ModulePass *llvm::createSampleProfileLoaderPass() { 1427 return new SampleProfileLoaderLegacyPass(SampleProfileFile); 1428 } 1429 1430 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1431 return new SampleProfileLoaderLegacyPass(Name); 1432 } 1433 1434 bool SampleProfileLoader::runOnModule(Module &M) { 1435 if (!ProfileIsValid) 1436 return false; 1437 1438 // Compute the total number of samples collected in this profile. 1439 for (const auto &I : Reader->getProfiles()) 1440 TotalCollectedSamples += I.second.getTotalSamples(); 1441 1442 // Populate the symbol map. 1443 for (const auto &N_F : M.getValueSymbolTable()) { 1444 std::string OrigName = N_F.getKey(); 1445 Function *F = dyn_cast<Function>(N_F.getValue()); 1446 if (F == nullptr) 1447 continue; 1448 SymbolMap[OrigName] = F; 1449 auto pos = OrigName.find('.'); 1450 if (pos != std::string::npos) { 1451 std::string NewName = OrigName.substr(0, pos); 1452 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1453 // Failiing to insert means there is already an entry in SymbolMap, 1454 // thus there are multiple functions that are mapped to the same 1455 // stripped name. In this case of name conflicting, set the value 1456 // to nullptr to avoid confusion. 1457 if (!r.second) 1458 r.first->second = nullptr; 1459 } 1460 } 1461 1462 bool retval = false; 1463 for (auto &F : M) 1464 if (!F.isDeclaration()) { 1465 clearFunctionData(); 1466 retval |= runOnFunction(F); 1467 } 1468 if (M.getProfileSummary() == nullptr) 1469 M.setProfileSummary(Reader->getSummary().getMD(M.getContext())); 1470 return retval; 1471 } 1472 1473 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1474 // FIXME: pass in AssumptionCache correctly for the new pass manager. 1475 SampleLoader.setACT(&getAnalysis<AssumptionCacheTracker>()); 1476 return SampleLoader.runOnModule(M); 1477 } 1478 1479 bool SampleProfileLoader::runOnFunction(Function &F) { 1480 F.setEntryCount(0); 1481 Samples = Reader->getSamplesFor(F); 1482 if (Samples && !Samples->empty()) 1483 return emitAnnotations(F); 1484 return false; 1485 } 1486 1487 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1488 ModuleAnalysisManager &AM) { 1489 1490 SampleProfileLoader SampleLoader( 1491 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName); 1492 1493 SampleLoader.doInitialization(M); 1494 1495 if (!SampleLoader.runOnModule(M)) 1496 return PreservedAnalyses::all(); 1497 1498 return PreservedAnalyses::none(); 1499 } 1500