1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 //      to indicate the weights of each edge coming out of the branch.
19 //      The weight of each edge is the weight of the target block for
20 //      that edge. The weight of a block B is computed as the maximum
21 //      number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/SampleProfile.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/PostDominators.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DebugInfo.h"
35 #include "llvm/IR/DiagnosticInfo.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstIterator.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/MDBuilder.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/Pass.h"
46 #include "llvm/ProfileData/SampleProfReader.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorOr.h"
50 #include "llvm/Support/Format.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Transforms/IPO.h"
53 #include "llvm/Transforms/Utils/Cloning.h"
54 #include <cctype>
55 
56 using namespace llvm;
57 using namespace sampleprof;
58 
59 #define DEBUG_TYPE "sample-profile"
60 
61 // Command line option to specify the file to read samples from. This is
62 // mainly used for debugging.
63 static cl::opt<std::string> SampleProfileFile(
64     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
65     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
66 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
67     "sample-profile-max-propagate-iterations", cl::init(100),
68     cl::desc("Maximum number of iterations to go through when propagating "
69              "sample block/edge weights through the CFG."));
70 static cl::opt<unsigned> SampleProfileRecordCoverage(
71     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
72     cl::desc("Emit a warning if less than N% of records in the input profile "
73              "are matched to the IR."));
74 static cl::opt<unsigned> SampleProfileSampleCoverage(
75     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
76     cl::desc("Emit a warning if less than N% of samples in the input profile "
77              "are matched to the IR."));
78 static cl::opt<double> SampleProfileHotThreshold(
79     "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"),
80     cl::desc("Inlined functions that account for more than N% of all samples "
81              "collected in the parent function, will be inlined again."));
82 
83 namespace {
84 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap;
85 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap;
86 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge;
87 typedef DenseMap<Edge, uint64_t> EdgeWeightMap;
88 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>
89     BlockEdgeMap;
90 
91 class SampleCoverageTracker {
92 public:
93   SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {}
94 
95   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
96                        uint32_t Discriminator, uint64_t Samples);
97   unsigned computeCoverage(unsigned Used, unsigned Total) const;
98   unsigned countUsedRecords(const FunctionSamples *FS) const;
99   unsigned countBodyRecords(const FunctionSamples *FS) const;
100   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
101   uint64_t countBodySamples(const FunctionSamples *FS) const;
102   void clear() {
103     SampleCoverage.clear();
104     TotalUsedSamples = 0;
105   }
106 
107 private:
108   typedef std::map<LineLocation, unsigned> BodySampleCoverageMap;
109   typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap>
110       FunctionSamplesCoverageMap;
111 
112   /// Coverage map for sampling records.
113   ///
114   /// This map keeps a record of sampling records that have been matched to
115   /// an IR instruction. This is used to detect some form of staleness in
116   /// profiles (see flag -sample-profile-check-coverage).
117   ///
118   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
119   /// another map that counts how many times the sample record at the
120   /// given location has been used.
121   FunctionSamplesCoverageMap SampleCoverage;
122 
123   /// Number of samples used from the profile.
124   ///
125   /// When a sampling record is used for the first time, the samples from
126   /// that record are added to this accumulator.  Coverage is later computed
127   /// based on the total number of samples available in this function and
128   /// its callsites.
129   ///
130   /// Note that this accumulator tracks samples used from a single function
131   /// and all the inlined callsites. Strictly, we should have a map of counters
132   /// keyed by FunctionSamples pointers, but these stats are cleared after
133   /// every function, so we just need to keep a single counter.
134   uint64_t TotalUsedSamples;
135 };
136 
137 /// \brief Sample profile pass.
138 ///
139 /// This pass reads profile data from the file specified by
140 /// -sample-profile-file and annotates every affected function with the
141 /// profile information found in that file.
142 class SampleProfileLoader {
143 public:
144   SampleProfileLoader(StringRef Name = SampleProfileFile)
145       : DT(nullptr), PDT(nullptr), LI(nullptr), ACT(nullptr), Reader(),
146         Samples(nullptr), Filename(Name), ProfileIsValid(false),
147         TotalCollectedSamples(0) {}
148 
149   bool doInitialization(Module &M);
150   bool runOnModule(Module &M);
151   void setACT(AssumptionCacheTracker *A) { ACT = A; }
152 
153   void dump() { Reader->dump(); }
154 
155 protected:
156   bool runOnFunction(Function &F);
157   unsigned getFunctionLoc(Function &F);
158   bool emitAnnotations(Function &F);
159   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
160   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
161   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
162   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
163   bool inlineHotFunctions(Function &F);
164   void printEdgeWeight(raw_ostream &OS, Edge E);
165   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
166   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
167   bool computeBlockWeights(Function &F);
168   void findEquivalenceClasses(Function &F);
169   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
170                            DominatorTreeBase<BasicBlock> *DomTree);
171   void propagateWeights(Function &F);
172   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
173   void buildEdges(Function &F);
174   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
175   void computeDominanceAndLoopInfo(Function &F);
176   unsigned getOffset(unsigned L, unsigned H) const;
177   void clearFunctionData();
178 
179   /// \brief Map basic blocks to their computed weights.
180   ///
181   /// The weight of a basic block is defined to be the maximum
182   /// of all the instruction weights in that block.
183   BlockWeightMap BlockWeights;
184 
185   /// \brief Map edges to their computed weights.
186   ///
187   /// Edge weights are computed by propagating basic block weights in
188   /// SampleProfile::propagateWeights.
189   EdgeWeightMap EdgeWeights;
190 
191   /// \brief Set of visited blocks during propagation.
192   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
193 
194   /// \brief Set of visited edges during propagation.
195   SmallSet<Edge, 32> VisitedEdges;
196 
197   /// \brief Equivalence classes for block weights.
198   ///
199   /// Two blocks BB1 and BB2 are in the same equivalence class if they
200   /// dominate and post-dominate each other, and they are in the same loop
201   /// nest. When this happens, the two blocks are guaranteed to execute
202   /// the same number of times.
203   EquivalenceClassMap EquivalenceClass;
204 
205   /// \brief Dominance, post-dominance and loop information.
206   std::unique_ptr<DominatorTree> DT;
207   std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT;
208   std::unique_ptr<LoopInfo> LI;
209 
210   AssumptionCacheTracker *ACT;
211 
212   /// \brief Predecessors for each basic block in the CFG.
213   BlockEdgeMap Predecessors;
214 
215   /// \brief Successors for each basic block in the CFG.
216   BlockEdgeMap Successors;
217 
218   SampleCoverageTracker CoverageTracker;
219 
220   /// \brief Profile reader object.
221   std::unique_ptr<SampleProfileReader> Reader;
222 
223   /// \brief Samples collected for the body of this function.
224   FunctionSamples *Samples;
225 
226   /// \brief Name of the profile file to load.
227   std::string Filename;
228 
229   /// \brief Flag indicating whether the profile input loaded successfully.
230   bool ProfileIsValid;
231 
232   /// \brief Total number of samples collected in this profile.
233   ///
234   /// This is the sum of all the samples collected in all the functions executed
235   /// at runtime.
236   uint64_t TotalCollectedSamples;
237 };
238 
239 class SampleProfileLoaderLegacyPass : public ModulePass {
240 public:
241   // Class identification, replacement for typeinfo
242   static char ID;
243 
244   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile)
245       : ModulePass(ID), SampleLoader(Name) {
246     initializeSampleProfileLoaderLegacyPassPass(
247         *PassRegistry::getPassRegistry());
248   }
249 
250   void dump() { SampleLoader.dump(); }
251 
252   bool doInitialization(Module &M) override {
253     return SampleLoader.doInitialization(M);
254   }
255   StringRef getPassName() const override { return "Sample profile pass"; }
256   bool runOnModule(Module &M) override;
257 
258   void getAnalysisUsage(AnalysisUsage &AU) const override {
259     AU.addRequired<AssumptionCacheTracker>();
260   }
261 
262 private:
263   SampleProfileLoader SampleLoader;
264 };
265 
266 /// Return true if the given callsite is hot wrt to its caller.
267 ///
268 /// Functions that were inlined in the original binary will be represented
269 /// in the inline stack in the sample profile. If the profile shows that
270 /// the original inline decision was "good" (i.e., the callsite is executed
271 /// frequently), then we will recreate the inline decision and apply the
272 /// profile from the inlined callsite.
273 ///
274 /// To decide whether an inlined callsite is hot, we compute the fraction
275 /// of samples used by the callsite with respect to the total number of samples
276 /// collected in the caller.
277 ///
278 /// If that fraction is larger than the default given by
279 /// SampleProfileHotThreshold, the callsite will be inlined again.
280 bool callsiteIsHot(const FunctionSamples *CallerFS,
281                    const FunctionSamples *CallsiteFS) {
282   if (!CallsiteFS)
283     return false; // The callsite was not inlined in the original binary.
284 
285   uint64_t ParentTotalSamples = CallerFS->getTotalSamples();
286   if (ParentTotalSamples == 0)
287     return false; // Avoid division by zero.
288 
289   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
290   if (CallsiteTotalSamples == 0)
291     return false; // Callsite is trivially cold.
292 
293   double PercentSamples =
294       (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0;
295   return PercentSamples >= SampleProfileHotThreshold;
296 }
297 }
298 
299 /// Mark as used the sample record for the given function samples at
300 /// (LineOffset, Discriminator).
301 ///
302 /// \returns true if this is the first time we mark the given record.
303 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
304                                             uint32_t LineOffset,
305                                             uint32_t Discriminator,
306                                             uint64_t Samples) {
307   LineLocation Loc(LineOffset, Discriminator);
308   unsigned &Count = SampleCoverage[FS][Loc];
309   bool FirstTime = (++Count == 1);
310   if (FirstTime)
311     TotalUsedSamples += Samples;
312   return FirstTime;
313 }
314 
315 /// Return the number of sample records that were applied from this profile.
316 ///
317 /// This count does not include records from cold inlined callsites.
318 unsigned
319 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const {
320   auto I = SampleCoverage.find(FS);
321 
322   // The size of the coverage map for FS represents the number of records
323   // that were marked used at least once.
324   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
325 
326   // If there are inlined callsites in this function, count the samples found
327   // in the respective bodies. However, do not bother counting callees with 0
328   // total samples, these are callees that were never invoked at runtime.
329   for (const auto &I : FS->getCallsiteSamples()) {
330     const FunctionSamples *CalleeSamples = &I.second;
331     if (callsiteIsHot(FS, CalleeSamples))
332       Count += countUsedRecords(CalleeSamples);
333   }
334 
335   return Count;
336 }
337 
338 /// Return the number of sample records in the body of this profile.
339 ///
340 /// This count does not include records from cold inlined callsites.
341 unsigned
342 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const {
343   unsigned Count = FS->getBodySamples().size();
344 
345   // Only count records in hot callsites.
346   for (const auto &I : FS->getCallsiteSamples()) {
347     const FunctionSamples *CalleeSamples = &I.second;
348     if (callsiteIsHot(FS, CalleeSamples))
349       Count += countBodyRecords(CalleeSamples);
350   }
351 
352   return Count;
353 }
354 
355 /// Return the number of samples collected in the body of this profile.
356 ///
357 /// This count does not include samples from cold inlined callsites.
358 uint64_t
359 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const {
360   uint64_t Total = 0;
361   for (const auto &I : FS->getBodySamples())
362     Total += I.second.getSamples();
363 
364   // Only count samples in hot callsites.
365   for (const auto &I : FS->getCallsiteSamples()) {
366     const FunctionSamples *CalleeSamples = &I.second;
367     if (callsiteIsHot(FS, CalleeSamples))
368       Total += countBodySamples(CalleeSamples);
369   }
370 
371   return Total;
372 }
373 
374 /// Return the fraction of sample records used in this profile.
375 ///
376 /// The returned value is an unsigned integer in the range 0-100 indicating
377 /// the percentage of sample records that were used while applying this
378 /// profile to the associated function.
379 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
380                                                 unsigned Total) const {
381   assert(Used <= Total &&
382          "number of used records cannot exceed the total number of records");
383   return Total > 0 ? Used * 100 / Total : 100;
384 }
385 
386 /// Clear all the per-function data used to load samples and propagate weights.
387 void SampleProfileLoader::clearFunctionData() {
388   BlockWeights.clear();
389   EdgeWeights.clear();
390   VisitedBlocks.clear();
391   VisitedEdges.clear();
392   EquivalenceClass.clear();
393   DT = nullptr;
394   PDT = nullptr;
395   LI = nullptr;
396   Predecessors.clear();
397   Successors.clear();
398   CoverageTracker.clear();
399 }
400 
401 /// \brief Returns the offset of lineno \p L to head_lineno \p H
402 ///
403 /// \param L  Lineno
404 /// \param H  Header lineno of the function
405 ///
406 /// \returns offset to the header lineno. 16 bits are used to represent offset.
407 /// We assume that a single function will not exceed 65535 LOC.
408 unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const {
409   return (L - H) & 0xffff;
410 }
411 
412 /// \brief Print the weight of edge \p E on stream \p OS.
413 ///
414 /// \param OS  Stream to emit the output to.
415 /// \param E  Edge to print.
416 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
417   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
418      << "]: " << EdgeWeights[E] << "\n";
419 }
420 
421 /// \brief Print the equivalence class of block \p BB on stream \p OS.
422 ///
423 /// \param OS  Stream to emit the output to.
424 /// \param BB  Block to print.
425 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
426                                                 const BasicBlock *BB) {
427   const BasicBlock *Equiv = EquivalenceClass[BB];
428   OS << "equivalence[" << BB->getName()
429      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
430 }
431 
432 /// \brief Print the weight of block \p BB on stream \p OS.
433 ///
434 /// \param OS  Stream to emit the output to.
435 /// \param BB  Block to print.
436 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
437                                            const BasicBlock *BB) const {
438   const auto &I = BlockWeights.find(BB);
439   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
440   OS << "weight[" << BB->getName() << "]: " << W << "\n";
441 }
442 
443 /// \brief Get the weight for an instruction.
444 ///
445 /// The "weight" of an instruction \p Inst is the number of samples
446 /// collected on that instruction at runtime. To retrieve it, we
447 /// need to compute the line number of \p Inst relative to the start of its
448 /// function. We use HeaderLineno to compute the offset. We then
449 /// look up the samples collected for \p Inst using BodySamples.
450 ///
451 /// \param Inst Instruction to query.
452 ///
453 /// \returns the weight of \p Inst.
454 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
455   const DebugLoc &DLoc = Inst.getDebugLoc();
456   if (!DLoc)
457     return std::error_code();
458 
459   const FunctionSamples *FS = findFunctionSamples(Inst);
460   if (!FS)
461     return std::error_code();
462 
463   // Ignore all intrinsics and branch instructions.
464   // Branch instruction usually contains debug info from sources outside of
465   // the residing basic block, thus we ignore them during annotation.
466   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst))
467     return std::error_code();
468 
469   // If a call/invoke instruction is inlined in profile, but not inlined here,
470   // it means that the inlined callsite has no sample, thus the call
471   // instruction should have 0 count.
472   bool IsCall = isa<CallInst>(Inst) || isa<InvokeInst>(Inst);
473   if (IsCall && findCalleeFunctionSamples(Inst))
474     return 0;
475 
476   const DILocation *DIL = DLoc;
477   unsigned Lineno = DLoc.getLine();
478   unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine();
479 
480   uint32_t LineOffset = getOffset(Lineno, HeaderLineno);
481   uint32_t Discriminator = DIL->getDiscriminator();
482   ErrorOr<uint64_t> R = IsCall
483                             ? FS->findCallSamplesAt(LineOffset, Discriminator)
484                             : FS->findSamplesAt(LineOffset, Discriminator);
485   if (R) {
486     bool FirstMark =
487         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
488     if (FirstMark) {
489       const Function *F = Inst.getParent()->getParent();
490       LLVMContext &Ctx = F->getContext();
491       emitOptimizationRemark(
492           Ctx, DEBUG_TYPE, *F, DLoc,
493           Twine("Applied ") + Twine(*R) +
494               " samples from profile (offset: " + Twine(LineOffset) +
495               ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")");
496     }
497     DEBUG(dbgs() << "    " << Lineno << "." << DIL->getDiscriminator() << ":"
498                  << Inst << " (line offset: " << Lineno - HeaderLineno << "."
499                  << DIL->getDiscriminator() << " - weight: " << R.get()
500                  << ")\n");
501   }
502   return R;
503 }
504 
505 /// \brief Compute the weight of a basic block.
506 ///
507 /// The weight of basic block \p BB is the maximum weight of all the
508 /// instructions in BB.
509 ///
510 /// \param BB The basic block to query.
511 ///
512 /// \returns the weight for \p BB.
513 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
514   uint64_t Max = 0;
515   bool HasWeight = false;
516   for (auto &I : BB->getInstList()) {
517     const ErrorOr<uint64_t> &R = getInstWeight(I);
518     if (R) {
519       Max = std::max(Max, R.get());
520       HasWeight = true;
521     }
522   }
523   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
524 }
525 
526 /// \brief Compute and store the weights of every basic block.
527 ///
528 /// This populates the BlockWeights map by computing
529 /// the weights of every basic block in the CFG.
530 ///
531 /// \param F The function to query.
532 bool SampleProfileLoader::computeBlockWeights(Function &F) {
533   bool Changed = false;
534   DEBUG(dbgs() << "Block weights\n");
535   for (const auto &BB : F) {
536     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
537     if (Weight) {
538       BlockWeights[&BB] = Weight.get();
539       VisitedBlocks.insert(&BB);
540       Changed = true;
541     }
542     DEBUG(printBlockWeight(dbgs(), &BB));
543   }
544 
545   return Changed;
546 }
547 
548 /// \brief Get the FunctionSamples for a call instruction.
549 ///
550 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
551 /// instance in which that call instruction is calling to. It contains
552 /// all samples that resides in the inlined instance. We first find the
553 /// inlined instance in which the call instruction is from, then we
554 /// traverse its children to find the callsite with the matching
555 /// location.
556 ///
557 /// \param Inst Call/Invoke instruction to query.
558 ///
559 /// \returns The FunctionSamples pointer to the inlined instance.
560 const FunctionSamples *
561 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
562   const DILocation *DIL = Inst.getDebugLoc();
563   if (!DIL) {
564     return nullptr;
565   }
566   DISubprogram *SP = DIL->getScope()->getSubprogram();
567   if (!SP)
568     return nullptr;
569 
570   const FunctionSamples *FS = findFunctionSamples(Inst);
571   if (FS == nullptr)
572     return nullptr;
573 
574   return FS->findFunctionSamplesAt(LineLocation(
575       getOffset(DIL->getLine(), SP->getLine()), DIL->getDiscriminator()));
576 }
577 
578 /// \brief Get the FunctionSamples for an instruction.
579 ///
580 /// The FunctionSamples of an instruction \p Inst is the inlined instance
581 /// in which that instruction is coming from. We traverse the inline stack
582 /// of that instruction, and match it with the tree nodes in the profile.
583 ///
584 /// \param Inst Instruction to query.
585 ///
586 /// \returns the FunctionSamples pointer to the inlined instance.
587 const FunctionSamples *
588 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
589   SmallVector<LineLocation, 10> S;
590   const DILocation *DIL = Inst.getDebugLoc();
591   if (!DIL) {
592     return Samples;
593   }
594   for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) {
595     DISubprogram *SP = DIL->getScope()->getSubprogram();
596     if (!SP)
597       return nullptr;
598     S.push_back(LineLocation(getOffset(DIL->getLine(), SP->getLine()),
599                              DIL->getDiscriminator()));
600   }
601   if (S.size() == 0)
602     return Samples;
603   const FunctionSamples *FS = Samples;
604   for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
605     FS = FS->findFunctionSamplesAt(S[i]);
606   }
607   return FS;
608 }
609 
610 /// \brief Iteratively inline hot callsites of a function.
611 ///
612 /// Iteratively traverse all callsites of the function \p F, and find if
613 /// the corresponding inlined instance exists and is hot in profile. If
614 /// it is hot enough, inline the callsites and adds new callsites of the
615 /// callee into the caller.
616 ///
617 /// TODO: investigate the possibility of not invoking InlineFunction directly.
618 ///
619 /// \param F function to perform iterative inlining.
620 ///
621 /// \returns True if there is any inline happened.
622 bool SampleProfileLoader::inlineHotFunctions(Function &F) {
623   bool Changed = false;
624   LLVMContext &Ctx = F.getContext();
625   std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&](
626       Function &F) -> AssumptionCache & { return ACT->getAssumptionCache(F); };
627   while (true) {
628     bool LocalChanged = false;
629     SmallVector<Instruction *, 10> CIS;
630     for (auto &BB : F) {
631       bool Hot = false;
632       SmallVector<Instruction *, 10> Candidates;
633       for (auto &I : BB.getInstList()) {
634         const FunctionSamples *FS = nullptr;
635         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
636             (FS = findCalleeFunctionSamples(I))) {
637           Candidates.push_back(&I);
638           if (callsiteIsHot(Samples, FS))
639             Hot = true;
640         }
641       }
642       if (Hot) {
643         CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
644       }
645     }
646     for (auto I : CIS) {
647       InlineFunctionInfo IFI(nullptr, ACT ? &GetAssumptionCache : nullptr);
648       CallSite CS(I);
649       Function *CalledFunction = CS.getCalledFunction();
650       if (!CalledFunction || !CalledFunction->getSubprogram())
651         continue;
652       DebugLoc DLoc = I->getDebugLoc();
653       uint64_t NumSamples = findCalleeFunctionSamples(*I)->getTotalSamples();
654       if (InlineFunction(CS, IFI)) {
655         LocalChanged = true;
656         emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc,
657                                Twine("inlined hot callee '") +
658                                    CalledFunction->getName() + "' with " +
659                                    Twine(NumSamples) + " samples into '" +
660                                    F.getName() + "'");
661       }
662     }
663     if (LocalChanged) {
664       Changed = true;
665     } else {
666       break;
667     }
668   }
669   return Changed;
670 }
671 
672 /// \brief Find equivalence classes for the given block.
673 ///
674 /// This finds all the blocks that are guaranteed to execute the same
675 /// number of times as \p BB1. To do this, it traverses all the
676 /// descendants of \p BB1 in the dominator or post-dominator tree.
677 ///
678 /// A block BB2 will be in the same equivalence class as \p BB1 if
679 /// the following holds:
680 ///
681 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
682 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
683 ///    dominate BB1 in the post-dominator tree.
684 ///
685 /// 2- Both BB2 and \p BB1 must be in the same loop.
686 ///
687 /// For every block BB2 that meets those two requirements, we set BB2's
688 /// equivalence class to \p BB1.
689 ///
690 /// \param BB1  Block to check.
691 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
692 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
693 ///                 with blocks from \p BB1's dominator tree, then
694 ///                 this is the post-dominator tree, and vice versa.
695 void SampleProfileLoader::findEquivalencesFor(
696     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
697     DominatorTreeBase<BasicBlock> *DomTree) {
698   const BasicBlock *EC = EquivalenceClass[BB1];
699   uint64_t Weight = BlockWeights[EC];
700   for (const auto *BB2 : Descendants) {
701     bool IsDomParent = DomTree->dominates(BB2, BB1);
702     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
703     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
704       EquivalenceClass[BB2] = EC;
705       // If BB2 is visited, then the entire EC should be marked as visited.
706       if (VisitedBlocks.count(BB2)) {
707         VisitedBlocks.insert(EC);
708       }
709 
710       // If BB2 is heavier than BB1, make BB2 have the same weight
711       // as BB1.
712       //
713       // Note that we don't worry about the opposite situation here
714       // (when BB2 is lighter than BB1). We will deal with this
715       // during the propagation phase. Right now, we just want to
716       // make sure that BB1 has the largest weight of all the
717       // members of its equivalence set.
718       Weight = std::max(Weight, BlockWeights[BB2]);
719     }
720   }
721   if (EC == &EC->getParent()->getEntryBlock()) {
722     BlockWeights[EC] = Samples->getHeadSamples() + 1;
723   } else {
724     BlockWeights[EC] = Weight;
725   }
726 }
727 
728 /// \brief Find equivalence classes.
729 ///
730 /// Since samples may be missing from blocks, we can fill in the gaps by setting
731 /// the weights of all the blocks in the same equivalence class to the same
732 /// weight. To compute the concept of equivalence, we use dominance and loop
733 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
734 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
735 ///
736 /// \param F The function to query.
737 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
738   SmallVector<BasicBlock *, 8> DominatedBBs;
739   DEBUG(dbgs() << "\nBlock equivalence classes\n");
740   // Find equivalence sets based on dominance and post-dominance information.
741   for (auto &BB : F) {
742     BasicBlock *BB1 = &BB;
743 
744     // Compute BB1's equivalence class once.
745     if (EquivalenceClass.count(BB1)) {
746       DEBUG(printBlockEquivalence(dbgs(), BB1));
747       continue;
748     }
749 
750     // By default, blocks are in their own equivalence class.
751     EquivalenceClass[BB1] = BB1;
752 
753     // Traverse all the blocks dominated by BB1. We are looking for
754     // every basic block BB2 such that:
755     //
756     // 1- BB1 dominates BB2.
757     // 2- BB2 post-dominates BB1.
758     // 3- BB1 and BB2 are in the same loop nest.
759     //
760     // If all those conditions hold, it means that BB2 is executed
761     // as many times as BB1, so they are placed in the same equivalence
762     // class by making BB2's equivalence class be BB1.
763     DominatedBBs.clear();
764     DT->getDescendants(BB1, DominatedBBs);
765     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
766 
767     DEBUG(printBlockEquivalence(dbgs(), BB1));
768   }
769 
770   // Assign weights to equivalence classes.
771   //
772   // All the basic blocks in the same equivalence class will execute
773   // the same number of times. Since we know that the head block in
774   // each equivalence class has the largest weight, assign that weight
775   // to all the blocks in that equivalence class.
776   DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
777   for (auto &BI : F) {
778     const BasicBlock *BB = &BI;
779     const BasicBlock *EquivBB = EquivalenceClass[BB];
780     if (BB != EquivBB)
781       BlockWeights[BB] = BlockWeights[EquivBB];
782     DEBUG(printBlockWeight(dbgs(), BB));
783   }
784 }
785 
786 /// \brief Visit the given edge to decide if it has a valid weight.
787 ///
788 /// If \p E has not been visited before, we copy to \p UnknownEdge
789 /// and increment the count of unknown edges.
790 ///
791 /// \param E  Edge to visit.
792 /// \param NumUnknownEdges  Current number of unknown edges.
793 /// \param UnknownEdge  Set if E has not been visited before.
794 ///
795 /// \returns E's weight, if known. Otherwise, return 0.
796 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
797                                         Edge *UnknownEdge) {
798   if (!VisitedEdges.count(E)) {
799     (*NumUnknownEdges)++;
800     *UnknownEdge = E;
801     return 0;
802   }
803 
804   return EdgeWeights[E];
805 }
806 
807 /// \brief Propagate weights through incoming/outgoing edges.
808 ///
809 /// If the weight of a basic block is known, and there is only one edge
810 /// with an unknown weight, we can calculate the weight of that edge.
811 ///
812 /// Similarly, if all the edges have a known count, we can calculate the
813 /// count of the basic block, if needed.
814 ///
815 /// \param F  Function to process.
816 /// \param UpdateBlockCount  Whether we should update basic block counts that
817 ///                          has already been annotated.
818 ///
819 /// \returns  True if new weights were assigned to edges or blocks.
820 bool SampleProfileLoader::propagateThroughEdges(Function &F,
821                                                 bool UpdateBlockCount) {
822   bool Changed = false;
823   DEBUG(dbgs() << "\nPropagation through edges\n");
824   for (const auto &BI : F) {
825     const BasicBlock *BB = &BI;
826     const BasicBlock *EC = EquivalenceClass[BB];
827 
828     // Visit all the predecessor and successor edges to determine
829     // which ones have a weight assigned already. Note that it doesn't
830     // matter that we only keep track of a single unknown edge. The
831     // only case we are interested in handling is when only a single
832     // edge is unknown (see setEdgeOrBlockWeight).
833     for (unsigned i = 0; i < 2; i++) {
834       uint64_t TotalWeight = 0;
835       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
836       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
837 
838       if (i == 0) {
839         // First, visit all predecessor edges.
840         NumTotalEdges = Predecessors[BB].size();
841         for (auto *Pred : Predecessors[BB]) {
842           Edge E = std::make_pair(Pred, BB);
843           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
844           if (E.first == E.second)
845             SelfReferentialEdge = E;
846         }
847         if (NumTotalEdges == 1) {
848           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
849         }
850       } else {
851         // On the second round, visit all successor edges.
852         NumTotalEdges = Successors[BB].size();
853         for (auto *Succ : Successors[BB]) {
854           Edge E = std::make_pair(BB, Succ);
855           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
856         }
857         if (NumTotalEdges == 1) {
858           SingleEdge = std::make_pair(BB, Successors[BB][0]);
859         }
860       }
861 
862       // After visiting all the edges, there are three cases that we
863       // can handle immediately:
864       //
865       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
866       //   In this case, we simply check that the sum of all the edges
867       //   is the same as BB's weight. If not, we change BB's weight
868       //   to match. Additionally, if BB had not been visited before,
869       //   we mark it visited.
870       //
871       // - Only one edge is unknown and BB has already been visited.
872       //   In this case, we can compute the weight of the edge by
873       //   subtracting the total block weight from all the known
874       //   edge weights. If the edges weight more than BB, then the
875       //   edge of the last remaining edge is set to zero.
876       //
877       // - There exists a self-referential edge and the weight of BB is
878       //   known. In this case, this edge can be based on BB's weight.
879       //   We add up all the other known edges and set the weight on
880       //   the self-referential edge as we did in the previous case.
881       //
882       // In any other case, we must continue iterating. Eventually,
883       // all edges will get a weight, or iteration will stop when
884       // it reaches SampleProfileMaxPropagateIterations.
885       if (NumUnknownEdges <= 1) {
886         uint64_t &BBWeight = BlockWeights[EC];
887         if (NumUnknownEdges == 0) {
888           if (!VisitedBlocks.count(EC)) {
889             // If we already know the weight of all edges, the weight of the
890             // basic block can be computed. It should be no larger than the sum
891             // of all edge weights.
892             if (TotalWeight > BBWeight) {
893               BBWeight = TotalWeight;
894               Changed = true;
895               DEBUG(dbgs() << "All edge weights for " << BB->getName()
896                            << " known. Set weight for block: ";
897                     printBlockWeight(dbgs(), BB););
898             }
899           } else if (NumTotalEdges == 1 &&
900                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
901             // If there is only one edge for the visited basic block, use the
902             // block weight to adjust edge weight if edge weight is smaller.
903             EdgeWeights[SingleEdge] = BlockWeights[EC];
904             Changed = true;
905           }
906         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
907           // If there is a single unknown edge and the block has been
908           // visited, then we can compute E's weight.
909           if (BBWeight >= TotalWeight)
910             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
911           else
912             EdgeWeights[UnknownEdge] = 0;
913           const BasicBlock *OtherEC;
914           if (i == 0)
915             OtherEC = EquivalenceClass[UnknownEdge.first];
916           else
917             OtherEC = EquivalenceClass[UnknownEdge.second];
918           // Edge weights should never exceed the BB weights it connects.
919           if (VisitedBlocks.count(OtherEC) &&
920               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
921             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
922           VisitedEdges.insert(UnknownEdge);
923           Changed = true;
924           DEBUG(dbgs() << "Set weight for edge: ";
925                 printEdgeWeight(dbgs(), UnknownEdge));
926         }
927       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
928         // If a block Weights 0, all its in/out edges should weight 0.
929         if (i == 0) {
930           for (auto *Pred : Predecessors[BB]) {
931             Edge E = std::make_pair(Pred, BB);
932             EdgeWeights[E] = 0;
933             VisitedEdges.insert(E);
934           }
935         } else {
936           for (auto *Succ : Successors[BB]) {
937             Edge E = std::make_pair(BB, Succ);
938             EdgeWeights[E] = 0;
939             VisitedEdges.insert(E);
940           }
941         }
942       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
943         uint64_t &BBWeight = BlockWeights[BB];
944         // We have a self-referential edge and the weight of BB is known.
945         if (BBWeight >= TotalWeight)
946           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
947         else
948           EdgeWeights[SelfReferentialEdge] = 0;
949         VisitedEdges.insert(SelfReferentialEdge);
950         Changed = true;
951         DEBUG(dbgs() << "Set self-referential edge weight to: ";
952               printEdgeWeight(dbgs(), SelfReferentialEdge));
953       }
954       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
955         BlockWeights[EC] = TotalWeight;
956         VisitedBlocks.insert(EC);
957         Changed = true;
958       }
959     }
960   }
961 
962   return Changed;
963 }
964 
965 /// \brief Build in/out edge lists for each basic block in the CFG.
966 ///
967 /// We are interested in unique edges. If a block B1 has multiple
968 /// edges to another block B2, we only add a single B1->B2 edge.
969 void SampleProfileLoader::buildEdges(Function &F) {
970   for (auto &BI : F) {
971     BasicBlock *B1 = &BI;
972 
973     // Add predecessors for B1.
974     SmallPtrSet<BasicBlock *, 16> Visited;
975     if (!Predecessors[B1].empty())
976       llvm_unreachable("Found a stale predecessors list in a basic block.");
977     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
978       BasicBlock *B2 = *PI;
979       if (Visited.insert(B2).second)
980         Predecessors[B1].push_back(B2);
981     }
982 
983     // Add successors for B1.
984     Visited.clear();
985     if (!Successors[B1].empty())
986       llvm_unreachable("Found a stale successors list in a basic block.");
987     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
988       BasicBlock *B2 = *SI;
989       if (Visited.insert(B2).second)
990         Successors[B1].push_back(B2);
991     }
992   }
993 }
994 
995 /// \brief Propagate weights into edges
996 ///
997 /// The following rules are applied to every block BB in the CFG:
998 ///
999 /// - If BB has a single predecessor/successor, then the weight
1000 ///   of that edge is the weight of the block.
1001 ///
1002 /// - If all incoming or outgoing edges are known except one, and the
1003 ///   weight of the block is already known, the weight of the unknown
1004 ///   edge will be the weight of the block minus the sum of all the known
1005 ///   edges. If the sum of all the known edges is larger than BB's weight,
1006 ///   we set the unknown edge weight to zero.
1007 ///
1008 /// - If there is a self-referential edge, and the weight of the block is
1009 ///   known, the weight for that edge is set to the weight of the block
1010 ///   minus the weight of the other incoming edges to that block (if
1011 ///   known).
1012 void SampleProfileLoader::propagateWeights(Function &F) {
1013   bool Changed = true;
1014   unsigned I = 0;
1015 
1016   // Add an entry count to the function using the samples gathered
1017   // at the function entry.
1018   F.setEntryCount(Samples->getHeadSamples() + 1);
1019 
1020   // If BB weight is larger than its corresponding loop's header BB weight,
1021   // use the BB weight to replace the loop header BB weight.
1022   for (auto &BI : F) {
1023     BasicBlock *BB = &BI;
1024     Loop *L = LI->getLoopFor(BB);
1025     if (!L) {
1026       continue;
1027     }
1028     BasicBlock *Header = L->getHeader();
1029     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1030       BlockWeights[Header] = BlockWeights[BB];
1031     }
1032   }
1033 
1034   // Before propagation starts, build, for each block, a list of
1035   // unique predecessors and successors. This is necessary to handle
1036   // identical edges in multiway branches. Since we visit all blocks and all
1037   // edges of the CFG, it is cleaner to build these lists once at the start
1038   // of the pass.
1039   buildEdges(F);
1040 
1041   // Propagate until we converge or we go past the iteration limit.
1042   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1043     Changed = propagateThroughEdges(F, false);
1044   }
1045 
1046   // The first propagation propagates BB counts from annotated BBs to unknown
1047   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1048   // to propagate edge weights.
1049   VisitedEdges.clear();
1050   Changed = true;
1051   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1052     Changed = propagateThroughEdges(F, false);
1053   }
1054 
1055   // The 3rd propagation pass allows adjust annotated BB weights that are
1056   // obviously wrong.
1057   Changed = true;
1058   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1059     Changed = propagateThroughEdges(F, true);
1060   }
1061 
1062   // Generate MD_prof metadata for every branch instruction using the
1063   // edge weights computed during propagation.
1064   DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1065   LLVMContext &Ctx = F.getContext();
1066   MDBuilder MDB(Ctx);
1067   for (auto &BI : F) {
1068     BasicBlock *BB = &BI;
1069 
1070     if (BlockWeights[BB]) {
1071       for (auto &I : BB->getInstList()) {
1072         if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1073           if (!dyn_cast<IntrinsicInst>(&I)) {
1074             SmallVector<uint32_t, 1> Weights;
1075             Weights.push_back(BlockWeights[BB]);
1076             CI->setMetadata(LLVMContext::MD_prof,
1077                             MDB.createBranchWeights(Weights));
1078           }
1079         }
1080       }
1081     }
1082     TerminatorInst *TI = BB->getTerminator();
1083     if (TI->getNumSuccessors() == 1)
1084       continue;
1085     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1086       continue;
1087 
1088     DEBUG(dbgs() << "\nGetting weights for branch at line "
1089                  << TI->getDebugLoc().getLine() << ".\n");
1090     SmallVector<uint32_t, 4> Weights;
1091     uint32_t MaxWeight = 0;
1092     DebugLoc MaxDestLoc;
1093     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1094       BasicBlock *Succ = TI->getSuccessor(I);
1095       Edge E = std::make_pair(BB, Succ);
1096       uint64_t Weight = EdgeWeights[E];
1097       DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1098       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1099       // if needed. Sample counts in profiles are 64-bit unsigned values,
1100       // but internally branch weights are expressed as 32-bit values.
1101       if (Weight > std::numeric_limits<uint32_t>::max()) {
1102         DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1103         Weight = std::numeric_limits<uint32_t>::max();
1104       }
1105       // Weight is added by one to avoid propagation errors introduced by
1106       // 0 weights.
1107       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1108       if (Weight != 0) {
1109         if (Weight > MaxWeight) {
1110           MaxWeight = Weight;
1111           MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc();
1112         }
1113       }
1114     }
1115 
1116     // Only set weights if there is at least one non-zero weight.
1117     // In any other case, let the analyzer set weights.
1118     if (MaxWeight > 0) {
1119       DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1120       TI->setMetadata(llvm::LLVMContext::MD_prof,
1121                       MDB.createBranchWeights(Weights));
1122       DebugLoc BranchLoc = TI->getDebugLoc();
1123       emitOptimizationRemark(
1124           Ctx, DEBUG_TYPE, F, MaxDestLoc,
1125           Twine("most popular destination for conditional branches at ") +
1126               ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" +
1127                                    Twine(BranchLoc.getLine()) + ":" +
1128                                    Twine(BranchLoc.getCol()))
1129                            : Twine("<UNKNOWN LOCATION>")));
1130     } else {
1131       DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1132     }
1133   }
1134 }
1135 
1136 /// \brief Get the line number for the function header.
1137 ///
1138 /// This looks up function \p F in the current compilation unit and
1139 /// retrieves the line number where the function is defined. This is
1140 /// line 0 for all the samples read from the profile file. Every line
1141 /// number is relative to this line.
1142 ///
1143 /// \param F  Function object to query.
1144 ///
1145 /// \returns the line number where \p F is defined. If it returns 0,
1146 ///          it means that there is no debug information available for \p F.
1147 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1148   if (DISubprogram *S = F.getSubprogram())
1149     return S->getLine();
1150 
1151   // If the start of \p F is missing, emit a diagnostic to inform the user
1152   // about the missed opportunity.
1153   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1154       "No debug information found in function " + F.getName() +
1155           ": Function profile not used",
1156       DS_Warning));
1157   return 0;
1158 }
1159 
1160 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1161   DT.reset(new DominatorTree);
1162   DT->recalculate(F);
1163 
1164   PDT.reset(new DominatorTreeBase<BasicBlock>(true));
1165   PDT->recalculate(F);
1166 
1167   LI.reset(new LoopInfo);
1168   LI->analyze(*DT);
1169 }
1170 
1171 /// \brief Generate branch weight metadata for all branches in \p F.
1172 ///
1173 /// Branch weights are computed out of instruction samples using a
1174 /// propagation heuristic. Propagation proceeds in 3 phases:
1175 ///
1176 /// 1- Assignment of block weights. All the basic blocks in the function
1177 ///    are initial assigned the same weight as their most frequently
1178 ///    executed instruction.
1179 ///
1180 /// 2- Creation of equivalence classes. Since samples may be missing from
1181 ///    blocks, we can fill in the gaps by setting the weights of all the
1182 ///    blocks in the same equivalence class to the same weight. To compute
1183 ///    the concept of equivalence, we use dominance and loop information.
1184 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1185 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1186 ///
1187 /// 3- Propagation of block weights into edges. This uses a simple
1188 ///    propagation heuristic. The following rules are applied to every
1189 ///    block BB in the CFG:
1190 ///
1191 ///    - If BB has a single predecessor/successor, then the weight
1192 ///      of that edge is the weight of the block.
1193 ///
1194 ///    - If all the edges are known except one, and the weight of the
1195 ///      block is already known, the weight of the unknown edge will
1196 ///      be the weight of the block minus the sum of all the known
1197 ///      edges. If the sum of all the known edges is larger than BB's weight,
1198 ///      we set the unknown edge weight to zero.
1199 ///
1200 ///    - If there is a self-referential edge, and the weight of the block is
1201 ///      known, the weight for that edge is set to the weight of the block
1202 ///      minus the weight of the other incoming edges to that block (if
1203 ///      known).
1204 ///
1205 /// Since this propagation is not guaranteed to finalize for every CFG, we
1206 /// only allow it to proceed for a limited number of iterations (controlled
1207 /// by -sample-profile-max-propagate-iterations).
1208 ///
1209 /// FIXME: Try to replace this propagation heuristic with a scheme
1210 /// that is guaranteed to finalize. A work-list approach similar to
1211 /// the standard value propagation algorithm used by SSA-CCP might
1212 /// work here.
1213 ///
1214 /// Once all the branch weights are computed, we emit the MD_prof
1215 /// metadata on BB using the computed values for each of its branches.
1216 ///
1217 /// \param F The function to query.
1218 ///
1219 /// \returns true if \p F was modified. Returns false, otherwise.
1220 bool SampleProfileLoader::emitAnnotations(Function &F) {
1221   bool Changed = false;
1222 
1223   if (getFunctionLoc(F) == 0)
1224     return false;
1225 
1226   DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
1227                << ": " << getFunctionLoc(F) << "\n");
1228 
1229   Changed |= inlineHotFunctions(F);
1230 
1231   // Compute basic block weights.
1232   Changed |= computeBlockWeights(F);
1233 
1234   if (Changed) {
1235     // Compute dominance and loop info needed for propagation.
1236     computeDominanceAndLoopInfo(F);
1237 
1238     // Find equivalence classes.
1239     findEquivalenceClasses(F);
1240 
1241     // Propagate weights to all edges.
1242     propagateWeights(F);
1243   }
1244 
1245   // If coverage checking was requested, compute it now.
1246   if (SampleProfileRecordCoverage) {
1247     unsigned Used = CoverageTracker.countUsedRecords(Samples);
1248     unsigned Total = CoverageTracker.countBodyRecords(Samples);
1249     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1250     if (Coverage < SampleProfileRecordCoverage) {
1251       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1252           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1253           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1254               Twine(Coverage) + "%) were applied",
1255           DS_Warning));
1256     }
1257   }
1258 
1259   if (SampleProfileSampleCoverage) {
1260     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1261     uint64_t Total = CoverageTracker.countBodySamples(Samples);
1262     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1263     if (Coverage < SampleProfileSampleCoverage) {
1264       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1265           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1266           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1267               Twine(Coverage) + "%) were applied",
1268           DS_Warning));
1269     }
1270   }
1271   return Changed;
1272 }
1273 
1274 char SampleProfileLoaderLegacyPass::ID = 0;
1275 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1276                       "Sample Profile loader", false, false)
1277 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1278 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1279                     "Sample Profile loader", false, false)
1280 
1281 bool SampleProfileLoader::doInitialization(Module &M) {
1282   auto &Ctx = M.getContext();
1283   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1284   if (std::error_code EC = ReaderOrErr.getError()) {
1285     std::string Msg = "Could not open profile: " + EC.message();
1286     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1287     return false;
1288   }
1289   Reader = std::move(ReaderOrErr.get());
1290   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1291   return true;
1292 }
1293 
1294 ModulePass *llvm::createSampleProfileLoaderPass() {
1295   return new SampleProfileLoaderLegacyPass(SampleProfileFile);
1296 }
1297 
1298 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1299   return new SampleProfileLoaderLegacyPass(Name);
1300 }
1301 
1302 bool SampleProfileLoader::runOnModule(Module &M) {
1303   if (!ProfileIsValid)
1304     return false;
1305 
1306   // Compute the total number of samples collected in this profile.
1307   for (const auto &I : Reader->getProfiles())
1308     TotalCollectedSamples += I.second.getTotalSamples();
1309 
1310   bool retval = false;
1311   for (auto &F : M)
1312     if (!F.isDeclaration()) {
1313       clearFunctionData();
1314       retval |= runOnFunction(F);
1315     }
1316   if (M.getProfileSummary() == nullptr)
1317     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
1318   return retval;
1319 }
1320 
1321 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1322   // FIXME: pass in AssumptionCache correctly for the new pass manager.
1323   SampleLoader.setACT(&getAnalysis<AssumptionCacheTracker>());
1324   return SampleLoader.runOnModule(M);
1325 }
1326 
1327 bool SampleProfileLoader::runOnFunction(Function &F) {
1328   F.setEntryCount(0);
1329   Samples = Reader->getSamplesFor(F);
1330   if (!Samples->empty())
1331     return emitAnnotations(F);
1332   return false;
1333 }
1334 
1335 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1336                                                ModuleAnalysisManager &AM) {
1337 
1338   SampleProfileLoader SampleLoader(SampleProfileFile);
1339 
1340   SampleLoader.doInitialization(M);
1341 
1342   if (!SampleLoader.runOnModule(M))
1343     return PreservedAnalyses::all();
1344 
1345   return PreservedAnalyses::none();
1346 }
1347