1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/SampleProfile.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/PostDominators.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DebugInfo.h" 35 #include "llvm/IR/DiagnosticInfo.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/InstIterator.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/MDBuilder.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/Pass.h" 46 #include "llvm/ProfileData/SampleProfReader.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/ErrorOr.h" 50 #include "llvm/Support/Format.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Transforms/IPO.h" 53 #include "llvm/Transforms/Utils/Cloning.h" 54 #include <cctype> 55 56 using namespace llvm; 57 using namespace sampleprof; 58 59 #define DEBUG_TYPE "sample-profile" 60 61 // Command line option to specify the file to read samples from. This is 62 // mainly used for debugging. 63 static cl::opt<std::string> SampleProfileFile( 64 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 65 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 66 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 67 "sample-profile-max-propagate-iterations", cl::init(100), 68 cl::desc("Maximum number of iterations to go through when propagating " 69 "sample block/edge weights through the CFG.")); 70 static cl::opt<unsigned> SampleProfileRecordCoverage( 71 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 72 cl::desc("Emit a warning if less than N% of records in the input profile " 73 "are matched to the IR.")); 74 static cl::opt<unsigned> SampleProfileSampleCoverage( 75 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 76 cl::desc("Emit a warning if less than N% of samples in the input profile " 77 "are matched to the IR.")); 78 static cl::opt<double> SampleProfileHotThreshold( 79 "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"), 80 cl::desc("Inlined functions that account for more than N% of all samples " 81 "collected in the parent function, will be inlined again.")); 82 83 namespace { 84 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap; 85 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap; 86 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge; 87 typedef DenseMap<Edge, uint64_t> EdgeWeightMap; 88 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>> 89 BlockEdgeMap; 90 91 class SampleCoverageTracker { 92 public: 93 SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {} 94 95 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 96 uint32_t Discriminator, uint64_t Samples); 97 unsigned computeCoverage(unsigned Used, unsigned Total) const; 98 unsigned countUsedRecords(const FunctionSamples *FS) const; 99 unsigned countBodyRecords(const FunctionSamples *FS) const; 100 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 101 uint64_t countBodySamples(const FunctionSamples *FS) const; 102 void clear() { 103 SampleCoverage.clear(); 104 TotalUsedSamples = 0; 105 } 106 107 private: 108 typedef std::map<LineLocation, unsigned> BodySampleCoverageMap; 109 typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap> 110 FunctionSamplesCoverageMap; 111 112 /// Coverage map for sampling records. 113 /// 114 /// This map keeps a record of sampling records that have been matched to 115 /// an IR instruction. This is used to detect some form of staleness in 116 /// profiles (see flag -sample-profile-check-coverage). 117 /// 118 /// Each entry in the map corresponds to a FunctionSamples instance. This is 119 /// another map that counts how many times the sample record at the 120 /// given location has been used. 121 FunctionSamplesCoverageMap SampleCoverage; 122 123 /// Number of samples used from the profile. 124 /// 125 /// When a sampling record is used for the first time, the samples from 126 /// that record are added to this accumulator. Coverage is later computed 127 /// based on the total number of samples available in this function and 128 /// its callsites. 129 /// 130 /// Note that this accumulator tracks samples used from a single function 131 /// and all the inlined callsites. Strictly, we should have a map of counters 132 /// keyed by FunctionSamples pointers, but these stats are cleared after 133 /// every function, so we just need to keep a single counter. 134 uint64_t TotalUsedSamples; 135 }; 136 137 /// \brief Sample profile pass. 138 /// 139 /// This pass reads profile data from the file specified by 140 /// -sample-profile-file and annotates every affected function with the 141 /// profile information found in that file. 142 class SampleProfileLoader { 143 public: 144 SampleProfileLoader(StringRef Name = SampleProfileFile) 145 : DT(nullptr), PDT(nullptr), LI(nullptr), ACT(nullptr), Reader(), 146 Samples(nullptr), Filename(Name), ProfileIsValid(false), 147 TotalCollectedSamples(0) {} 148 149 bool doInitialization(Module &M); 150 bool runOnModule(Module &M); 151 void setACT(AssumptionCacheTracker *A) { ACT = A; } 152 153 void dump() { Reader->dump(); } 154 155 protected: 156 bool runOnFunction(Function &F); 157 unsigned getFunctionLoc(Function &F); 158 bool emitAnnotations(Function &F); 159 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 160 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 161 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 162 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 163 bool inlineHotFunctions(Function &F); 164 void printEdgeWeight(raw_ostream &OS, Edge E); 165 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 166 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 167 bool computeBlockWeights(Function &F); 168 void findEquivalenceClasses(Function &F); 169 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 170 DominatorTreeBase<BasicBlock> *DomTree); 171 void propagateWeights(Function &F); 172 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 173 void buildEdges(Function &F); 174 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 175 void computeDominanceAndLoopInfo(Function &F); 176 unsigned getOffset(unsigned L, unsigned H) const; 177 void clearFunctionData(); 178 179 /// \brief Map basic blocks to their computed weights. 180 /// 181 /// The weight of a basic block is defined to be the maximum 182 /// of all the instruction weights in that block. 183 BlockWeightMap BlockWeights; 184 185 /// \brief Map edges to their computed weights. 186 /// 187 /// Edge weights are computed by propagating basic block weights in 188 /// SampleProfile::propagateWeights. 189 EdgeWeightMap EdgeWeights; 190 191 /// \brief Set of visited blocks during propagation. 192 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 193 194 /// \brief Set of visited edges during propagation. 195 SmallSet<Edge, 32> VisitedEdges; 196 197 /// \brief Equivalence classes for block weights. 198 /// 199 /// Two blocks BB1 and BB2 are in the same equivalence class if they 200 /// dominate and post-dominate each other, and they are in the same loop 201 /// nest. When this happens, the two blocks are guaranteed to execute 202 /// the same number of times. 203 EquivalenceClassMap EquivalenceClass; 204 205 /// \brief Dominance, post-dominance and loop information. 206 std::unique_ptr<DominatorTree> DT; 207 std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT; 208 std::unique_ptr<LoopInfo> LI; 209 210 AssumptionCacheTracker *ACT; 211 212 /// \brief Predecessors for each basic block in the CFG. 213 BlockEdgeMap Predecessors; 214 215 /// \brief Successors for each basic block in the CFG. 216 BlockEdgeMap Successors; 217 218 SampleCoverageTracker CoverageTracker; 219 220 /// \brief Profile reader object. 221 std::unique_ptr<SampleProfileReader> Reader; 222 223 /// \brief Samples collected for the body of this function. 224 FunctionSamples *Samples; 225 226 /// \brief Name of the profile file to load. 227 std::string Filename; 228 229 /// \brief Flag indicating whether the profile input loaded successfully. 230 bool ProfileIsValid; 231 232 /// \brief Total number of samples collected in this profile. 233 /// 234 /// This is the sum of all the samples collected in all the functions executed 235 /// at runtime. 236 uint64_t TotalCollectedSamples; 237 }; 238 239 class SampleProfileLoaderLegacyPass : public ModulePass { 240 public: 241 // Class identification, replacement for typeinfo 242 static char ID; 243 244 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile) 245 : ModulePass(ID), SampleLoader(Name) { 246 initializeSampleProfileLoaderLegacyPassPass( 247 *PassRegistry::getPassRegistry()); 248 } 249 250 void dump() { SampleLoader.dump(); } 251 252 bool doInitialization(Module &M) override { 253 return SampleLoader.doInitialization(M); 254 } 255 StringRef getPassName() const override { return "Sample profile pass"; } 256 bool runOnModule(Module &M) override; 257 258 void getAnalysisUsage(AnalysisUsage &AU) const override { 259 AU.addRequired<AssumptionCacheTracker>(); 260 } 261 262 private: 263 SampleProfileLoader SampleLoader; 264 }; 265 266 /// Return true if the given callsite is hot wrt to its caller. 267 /// 268 /// Functions that were inlined in the original binary will be represented 269 /// in the inline stack in the sample profile. If the profile shows that 270 /// the original inline decision was "good" (i.e., the callsite is executed 271 /// frequently), then we will recreate the inline decision and apply the 272 /// profile from the inlined callsite. 273 /// 274 /// To decide whether an inlined callsite is hot, we compute the fraction 275 /// of samples used by the callsite with respect to the total number of samples 276 /// collected in the caller. 277 /// 278 /// If that fraction is larger than the default given by 279 /// SampleProfileHotThreshold, the callsite will be inlined again. 280 bool callsiteIsHot(const FunctionSamples *CallerFS, 281 const FunctionSamples *CallsiteFS) { 282 if (!CallsiteFS) 283 return false; // The callsite was not inlined in the original binary. 284 285 uint64_t ParentTotalSamples = CallerFS->getTotalSamples(); 286 if (ParentTotalSamples == 0) 287 return false; // Avoid division by zero. 288 289 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 290 if (CallsiteTotalSamples == 0) 291 return false; // Callsite is trivially cold. 292 293 double PercentSamples = 294 (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0; 295 return PercentSamples >= SampleProfileHotThreshold; 296 } 297 } 298 299 /// Mark as used the sample record for the given function samples at 300 /// (LineOffset, Discriminator). 301 /// 302 /// \returns true if this is the first time we mark the given record. 303 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 304 uint32_t LineOffset, 305 uint32_t Discriminator, 306 uint64_t Samples) { 307 LineLocation Loc(LineOffset, Discriminator); 308 unsigned &Count = SampleCoverage[FS][Loc]; 309 bool FirstTime = (++Count == 1); 310 if (FirstTime) 311 TotalUsedSamples += Samples; 312 return FirstTime; 313 } 314 315 /// Return the number of sample records that were applied from this profile. 316 /// 317 /// This count does not include records from cold inlined callsites. 318 unsigned 319 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const { 320 auto I = SampleCoverage.find(FS); 321 322 // The size of the coverage map for FS represents the number of records 323 // that were marked used at least once. 324 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 325 326 // If there are inlined callsites in this function, count the samples found 327 // in the respective bodies. However, do not bother counting callees with 0 328 // total samples, these are callees that were never invoked at runtime. 329 for (const auto &I : FS->getCallsiteSamples()) { 330 const FunctionSamples *CalleeSamples = &I.second; 331 if (callsiteIsHot(FS, CalleeSamples)) 332 Count += countUsedRecords(CalleeSamples); 333 } 334 335 return Count; 336 } 337 338 /// Return the number of sample records in the body of this profile. 339 /// 340 /// This count does not include records from cold inlined callsites. 341 unsigned 342 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const { 343 unsigned Count = FS->getBodySamples().size(); 344 345 // Only count records in hot callsites. 346 for (const auto &I : FS->getCallsiteSamples()) { 347 const FunctionSamples *CalleeSamples = &I.second; 348 if (callsiteIsHot(FS, CalleeSamples)) 349 Count += countBodyRecords(CalleeSamples); 350 } 351 352 return Count; 353 } 354 355 /// Return the number of samples collected in the body of this profile. 356 /// 357 /// This count does not include samples from cold inlined callsites. 358 uint64_t 359 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const { 360 uint64_t Total = 0; 361 for (const auto &I : FS->getBodySamples()) 362 Total += I.second.getSamples(); 363 364 // Only count samples in hot callsites. 365 for (const auto &I : FS->getCallsiteSamples()) { 366 const FunctionSamples *CalleeSamples = &I.second; 367 if (callsiteIsHot(FS, CalleeSamples)) 368 Total += countBodySamples(CalleeSamples); 369 } 370 371 return Total; 372 } 373 374 /// Return the fraction of sample records used in this profile. 375 /// 376 /// The returned value is an unsigned integer in the range 0-100 indicating 377 /// the percentage of sample records that were used while applying this 378 /// profile to the associated function. 379 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 380 unsigned Total) const { 381 assert(Used <= Total && 382 "number of used records cannot exceed the total number of records"); 383 return Total > 0 ? Used * 100 / Total : 100; 384 } 385 386 /// Clear all the per-function data used to load samples and propagate weights. 387 void SampleProfileLoader::clearFunctionData() { 388 BlockWeights.clear(); 389 EdgeWeights.clear(); 390 VisitedBlocks.clear(); 391 VisitedEdges.clear(); 392 EquivalenceClass.clear(); 393 DT = nullptr; 394 PDT = nullptr; 395 LI = nullptr; 396 Predecessors.clear(); 397 Successors.clear(); 398 CoverageTracker.clear(); 399 } 400 401 /// \brief Returns the offset of lineno \p L to head_lineno \p H 402 /// 403 /// \param L Lineno 404 /// \param H Header lineno of the function 405 /// 406 /// \returns offset to the header lineno. 16 bits are used to represent offset. 407 /// We assume that a single function will not exceed 65535 LOC. 408 unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const { 409 return (L - H) & 0xffff; 410 } 411 412 /// \brief Print the weight of edge \p E on stream \p OS. 413 /// 414 /// \param OS Stream to emit the output to. 415 /// \param E Edge to print. 416 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 417 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 418 << "]: " << EdgeWeights[E] << "\n"; 419 } 420 421 /// \brief Print the equivalence class of block \p BB on stream \p OS. 422 /// 423 /// \param OS Stream to emit the output to. 424 /// \param BB Block to print. 425 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 426 const BasicBlock *BB) { 427 const BasicBlock *Equiv = EquivalenceClass[BB]; 428 OS << "equivalence[" << BB->getName() 429 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 430 } 431 432 /// \brief Print the weight of block \p BB on stream \p OS. 433 /// 434 /// \param OS Stream to emit the output to. 435 /// \param BB Block to print. 436 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 437 const BasicBlock *BB) const { 438 const auto &I = BlockWeights.find(BB); 439 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 440 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 441 } 442 443 /// \brief Get the weight for an instruction. 444 /// 445 /// The "weight" of an instruction \p Inst is the number of samples 446 /// collected on that instruction at runtime. To retrieve it, we 447 /// need to compute the line number of \p Inst relative to the start of its 448 /// function. We use HeaderLineno to compute the offset. We then 449 /// look up the samples collected for \p Inst using BodySamples. 450 /// 451 /// \param Inst Instruction to query. 452 /// 453 /// \returns the weight of \p Inst. 454 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 455 const DebugLoc &DLoc = Inst.getDebugLoc(); 456 if (!DLoc) 457 return std::error_code(); 458 459 const FunctionSamples *FS = findFunctionSamples(Inst); 460 if (!FS) 461 return std::error_code(); 462 463 // Ignore all intrinsics and branch instructions. 464 // Branch instruction usually contains debug info from sources outside of 465 // the residing basic block, thus we ignore them during annotation. 466 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst)) 467 return std::error_code(); 468 469 // If a call/invoke instruction is inlined in profile, but not inlined here, 470 // it means that the inlined callsite has no sample, thus the call 471 // instruction should have 0 count. 472 bool IsCall = isa<CallInst>(Inst) || isa<InvokeInst>(Inst); 473 if (IsCall && findCalleeFunctionSamples(Inst)) 474 return 0; 475 476 const DILocation *DIL = DLoc; 477 unsigned Lineno = DLoc.getLine(); 478 unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine(); 479 480 uint32_t LineOffset = getOffset(Lineno, HeaderLineno); 481 uint32_t Discriminator = DIL->getDiscriminator(); 482 ErrorOr<uint64_t> R = IsCall 483 ? FS->findCallSamplesAt(LineOffset, Discriminator) 484 : FS->findSamplesAt(LineOffset, Discriminator); 485 if (R) { 486 bool FirstMark = 487 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 488 if (FirstMark) { 489 const Function *F = Inst.getParent()->getParent(); 490 LLVMContext &Ctx = F->getContext(); 491 emitOptimizationRemark( 492 Ctx, DEBUG_TYPE, *F, DLoc, 493 Twine("Applied ") + Twine(*R) + 494 " samples from profile (offset: " + Twine(LineOffset) + 495 ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")"); 496 } 497 DEBUG(dbgs() << " " << Lineno << "." << DIL->getDiscriminator() << ":" 498 << Inst << " (line offset: " << Lineno - HeaderLineno << "." 499 << DIL->getDiscriminator() << " - weight: " << R.get() 500 << ")\n"); 501 } 502 return R; 503 } 504 505 /// \brief Compute the weight of a basic block. 506 /// 507 /// The weight of basic block \p BB is the maximum weight of all the 508 /// instructions in BB. 509 /// 510 /// \param BB The basic block to query. 511 /// 512 /// \returns the weight for \p BB. 513 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 514 uint64_t Max = 0; 515 bool HasWeight = false; 516 for (auto &I : BB->getInstList()) { 517 const ErrorOr<uint64_t> &R = getInstWeight(I); 518 if (R) { 519 Max = std::max(Max, R.get()); 520 HasWeight = true; 521 } 522 } 523 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 524 } 525 526 /// \brief Compute and store the weights of every basic block. 527 /// 528 /// This populates the BlockWeights map by computing 529 /// the weights of every basic block in the CFG. 530 /// 531 /// \param F The function to query. 532 bool SampleProfileLoader::computeBlockWeights(Function &F) { 533 bool Changed = false; 534 DEBUG(dbgs() << "Block weights\n"); 535 for (const auto &BB : F) { 536 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 537 if (Weight) { 538 BlockWeights[&BB] = Weight.get(); 539 VisitedBlocks.insert(&BB); 540 Changed = true; 541 } 542 DEBUG(printBlockWeight(dbgs(), &BB)); 543 } 544 545 return Changed; 546 } 547 548 /// \brief Get the FunctionSamples for a call instruction. 549 /// 550 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 551 /// instance in which that call instruction is calling to. It contains 552 /// all samples that resides in the inlined instance. We first find the 553 /// inlined instance in which the call instruction is from, then we 554 /// traverse its children to find the callsite with the matching 555 /// location. 556 /// 557 /// \param Inst Call/Invoke instruction to query. 558 /// 559 /// \returns The FunctionSamples pointer to the inlined instance. 560 const FunctionSamples * 561 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 562 const DILocation *DIL = Inst.getDebugLoc(); 563 if (!DIL) { 564 return nullptr; 565 } 566 DISubprogram *SP = DIL->getScope()->getSubprogram(); 567 if (!SP) 568 return nullptr; 569 570 const FunctionSamples *FS = findFunctionSamples(Inst); 571 if (FS == nullptr) 572 return nullptr; 573 574 return FS->findFunctionSamplesAt(LineLocation( 575 getOffset(DIL->getLine(), SP->getLine()), DIL->getDiscriminator())); 576 } 577 578 /// \brief Get the FunctionSamples for an instruction. 579 /// 580 /// The FunctionSamples of an instruction \p Inst is the inlined instance 581 /// in which that instruction is coming from. We traverse the inline stack 582 /// of that instruction, and match it with the tree nodes in the profile. 583 /// 584 /// \param Inst Instruction to query. 585 /// 586 /// \returns the FunctionSamples pointer to the inlined instance. 587 const FunctionSamples * 588 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 589 SmallVector<LineLocation, 10> S; 590 const DILocation *DIL = Inst.getDebugLoc(); 591 if (!DIL) { 592 return Samples; 593 } 594 for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) { 595 DISubprogram *SP = DIL->getScope()->getSubprogram(); 596 if (!SP) 597 return nullptr; 598 S.push_back(LineLocation(getOffset(DIL->getLine(), SP->getLine()), 599 DIL->getDiscriminator())); 600 } 601 if (S.size() == 0) 602 return Samples; 603 const FunctionSamples *FS = Samples; 604 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 605 FS = FS->findFunctionSamplesAt(S[i]); 606 } 607 return FS; 608 } 609 610 /// \brief Iteratively inline hot callsites of a function. 611 /// 612 /// Iteratively traverse all callsites of the function \p F, and find if 613 /// the corresponding inlined instance exists and is hot in profile. If 614 /// it is hot enough, inline the callsites and adds new callsites of the 615 /// callee into the caller. 616 /// 617 /// TODO: investigate the possibility of not invoking InlineFunction directly. 618 /// 619 /// \param F function to perform iterative inlining. 620 /// 621 /// \returns True if there is any inline happened. 622 bool SampleProfileLoader::inlineHotFunctions(Function &F) { 623 bool Changed = false; 624 LLVMContext &Ctx = F.getContext(); 625 std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&]( 626 Function &F) -> AssumptionCache & { return ACT->getAssumptionCache(F); }; 627 while (true) { 628 bool LocalChanged = false; 629 SmallVector<Instruction *, 10> CIS; 630 for (auto &BB : F) { 631 bool Hot = false; 632 SmallVector<Instruction *, 10> Candidates; 633 for (auto &I : BB.getInstList()) { 634 const FunctionSamples *FS = nullptr; 635 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 636 (FS = findCalleeFunctionSamples(I))) { 637 Candidates.push_back(&I); 638 if (callsiteIsHot(Samples, FS)) 639 Hot = true; 640 } 641 } 642 if (Hot) { 643 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); 644 } 645 } 646 for (auto I : CIS) { 647 InlineFunctionInfo IFI(nullptr, ACT ? &GetAssumptionCache : nullptr); 648 CallSite CS(I); 649 Function *CalledFunction = CS.getCalledFunction(); 650 if (!CalledFunction || !CalledFunction->getSubprogram()) 651 continue; 652 DebugLoc DLoc = I->getDebugLoc(); 653 uint64_t NumSamples = findCalleeFunctionSamples(*I)->getTotalSamples(); 654 if (InlineFunction(CS, IFI)) { 655 LocalChanged = true; 656 emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc, 657 Twine("inlined hot callee '") + 658 CalledFunction->getName() + "' with " + 659 Twine(NumSamples) + " samples into '" + 660 F.getName() + "'"); 661 } 662 } 663 if (LocalChanged) { 664 Changed = true; 665 } else { 666 break; 667 } 668 } 669 return Changed; 670 } 671 672 /// \brief Find equivalence classes for the given block. 673 /// 674 /// This finds all the blocks that are guaranteed to execute the same 675 /// number of times as \p BB1. To do this, it traverses all the 676 /// descendants of \p BB1 in the dominator or post-dominator tree. 677 /// 678 /// A block BB2 will be in the same equivalence class as \p BB1 if 679 /// the following holds: 680 /// 681 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 682 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 683 /// dominate BB1 in the post-dominator tree. 684 /// 685 /// 2- Both BB2 and \p BB1 must be in the same loop. 686 /// 687 /// For every block BB2 that meets those two requirements, we set BB2's 688 /// equivalence class to \p BB1. 689 /// 690 /// \param BB1 Block to check. 691 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 692 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 693 /// with blocks from \p BB1's dominator tree, then 694 /// this is the post-dominator tree, and vice versa. 695 void SampleProfileLoader::findEquivalencesFor( 696 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 697 DominatorTreeBase<BasicBlock> *DomTree) { 698 const BasicBlock *EC = EquivalenceClass[BB1]; 699 uint64_t Weight = BlockWeights[EC]; 700 for (const auto *BB2 : Descendants) { 701 bool IsDomParent = DomTree->dominates(BB2, BB1); 702 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 703 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 704 EquivalenceClass[BB2] = EC; 705 // If BB2 is visited, then the entire EC should be marked as visited. 706 if (VisitedBlocks.count(BB2)) { 707 VisitedBlocks.insert(EC); 708 } 709 710 // If BB2 is heavier than BB1, make BB2 have the same weight 711 // as BB1. 712 // 713 // Note that we don't worry about the opposite situation here 714 // (when BB2 is lighter than BB1). We will deal with this 715 // during the propagation phase. Right now, we just want to 716 // make sure that BB1 has the largest weight of all the 717 // members of its equivalence set. 718 Weight = std::max(Weight, BlockWeights[BB2]); 719 } 720 } 721 if (EC == &EC->getParent()->getEntryBlock()) { 722 BlockWeights[EC] = Samples->getHeadSamples() + 1; 723 } else { 724 BlockWeights[EC] = Weight; 725 } 726 } 727 728 /// \brief Find equivalence classes. 729 /// 730 /// Since samples may be missing from blocks, we can fill in the gaps by setting 731 /// the weights of all the blocks in the same equivalence class to the same 732 /// weight. To compute the concept of equivalence, we use dominance and loop 733 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 734 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 735 /// 736 /// \param F The function to query. 737 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 738 SmallVector<BasicBlock *, 8> DominatedBBs; 739 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 740 // Find equivalence sets based on dominance and post-dominance information. 741 for (auto &BB : F) { 742 BasicBlock *BB1 = &BB; 743 744 // Compute BB1's equivalence class once. 745 if (EquivalenceClass.count(BB1)) { 746 DEBUG(printBlockEquivalence(dbgs(), BB1)); 747 continue; 748 } 749 750 // By default, blocks are in their own equivalence class. 751 EquivalenceClass[BB1] = BB1; 752 753 // Traverse all the blocks dominated by BB1. We are looking for 754 // every basic block BB2 such that: 755 // 756 // 1- BB1 dominates BB2. 757 // 2- BB2 post-dominates BB1. 758 // 3- BB1 and BB2 are in the same loop nest. 759 // 760 // If all those conditions hold, it means that BB2 is executed 761 // as many times as BB1, so they are placed in the same equivalence 762 // class by making BB2's equivalence class be BB1. 763 DominatedBBs.clear(); 764 DT->getDescendants(BB1, DominatedBBs); 765 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 766 767 DEBUG(printBlockEquivalence(dbgs(), BB1)); 768 } 769 770 // Assign weights to equivalence classes. 771 // 772 // All the basic blocks in the same equivalence class will execute 773 // the same number of times. Since we know that the head block in 774 // each equivalence class has the largest weight, assign that weight 775 // to all the blocks in that equivalence class. 776 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 777 for (auto &BI : F) { 778 const BasicBlock *BB = &BI; 779 const BasicBlock *EquivBB = EquivalenceClass[BB]; 780 if (BB != EquivBB) 781 BlockWeights[BB] = BlockWeights[EquivBB]; 782 DEBUG(printBlockWeight(dbgs(), BB)); 783 } 784 } 785 786 /// \brief Visit the given edge to decide if it has a valid weight. 787 /// 788 /// If \p E has not been visited before, we copy to \p UnknownEdge 789 /// and increment the count of unknown edges. 790 /// 791 /// \param E Edge to visit. 792 /// \param NumUnknownEdges Current number of unknown edges. 793 /// \param UnknownEdge Set if E has not been visited before. 794 /// 795 /// \returns E's weight, if known. Otherwise, return 0. 796 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 797 Edge *UnknownEdge) { 798 if (!VisitedEdges.count(E)) { 799 (*NumUnknownEdges)++; 800 *UnknownEdge = E; 801 return 0; 802 } 803 804 return EdgeWeights[E]; 805 } 806 807 /// \brief Propagate weights through incoming/outgoing edges. 808 /// 809 /// If the weight of a basic block is known, and there is only one edge 810 /// with an unknown weight, we can calculate the weight of that edge. 811 /// 812 /// Similarly, if all the edges have a known count, we can calculate the 813 /// count of the basic block, if needed. 814 /// 815 /// \param F Function to process. 816 /// \param UpdateBlockCount Whether we should update basic block counts that 817 /// has already been annotated. 818 /// 819 /// \returns True if new weights were assigned to edges or blocks. 820 bool SampleProfileLoader::propagateThroughEdges(Function &F, 821 bool UpdateBlockCount) { 822 bool Changed = false; 823 DEBUG(dbgs() << "\nPropagation through edges\n"); 824 for (const auto &BI : F) { 825 const BasicBlock *BB = &BI; 826 const BasicBlock *EC = EquivalenceClass[BB]; 827 828 // Visit all the predecessor and successor edges to determine 829 // which ones have a weight assigned already. Note that it doesn't 830 // matter that we only keep track of a single unknown edge. The 831 // only case we are interested in handling is when only a single 832 // edge is unknown (see setEdgeOrBlockWeight). 833 for (unsigned i = 0; i < 2; i++) { 834 uint64_t TotalWeight = 0; 835 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 836 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 837 838 if (i == 0) { 839 // First, visit all predecessor edges. 840 NumTotalEdges = Predecessors[BB].size(); 841 for (auto *Pred : Predecessors[BB]) { 842 Edge E = std::make_pair(Pred, BB); 843 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 844 if (E.first == E.second) 845 SelfReferentialEdge = E; 846 } 847 if (NumTotalEdges == 1) { 848 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 849 } 850 } else { 851 // On the second round, visit all successor edges. 852 NumTotalEdges = Successors[BB].size(); 853 for (auto *Succ : Successors[BB]) { 854 Edge E = std::make_pair(BB, Succ); 855 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 856 } 857 if (NumTotalEdges == 1) { 858 SingleEdge = std::make_pair(BB, Successors[BB][0]); 859 } 860 } 861 862 // After visiting all the edges, there are three cases that we 863 // can handle immediately: 864 // 865 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 866 // In this case, we simply check that the sum of all the edges 867 // is the same as BB's weight. If not, we change BB's weight 868 // to match. Additionally, if BB had not been visited before, 869 // we mark it visited. 870 // 871 // - Only one edge is unknown and BB has already been visited. 872 // In this case, we can compute the weight of the edge by 873 // subtracting the total block weight from all the known 874 // edge weights. If the edges weight more than BB, then the 875 // edge of the last remaining edge is set to zero. 876 // 877 // - There exists a self-referential edge and the weight of BB is 878 // known. In this case, this edge can be based on BB's weight. 879 // We add up all the other known edges and set the weight on 880 // the self-referential edge as we did in the previous case. 881 // 882 // In any other case, we must continue iterating. Eventually, 883 // all edges will get a weight, or iteration will stop when 884 // it reaches SampleProfileMaxPropagateIterations. 885 if (NumUnknownEdges <= 1) { 886 uint64_t &BBWeight = BlockWeights[EC]; 887 if (NumUnknownEdges == 0) { 888 if (!VisitedBlocks.count(EC)) { 889 // If we already know the weight of all edges, the weight of the 890 // basic block can be computed. It should be no larger than the sum 891 // of all edge weights. 892 if (TotalWeight > BBWeight) { 893 BBWeight = TotalWeight; 894 Changed = true; 895 DEBUG(dbgs() << "All edge weights for " << BB->getName() 896 << " known. Set weight for block: "; 897 printBlockWeight(dbgs(), BB);); 898 } 899 } else if (NumTotalEdges == 1 && 900 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 901 // If there is only one edge for the visited basic block, use the 902 // block weight to adjust edge weight if edge weight is smaller. 903 EdgeWeights[SingleEdge] = BlockWeights[EC]; 904 Changed = true; 905 } 906 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 907 // If there is a single unknown edge and the block has been 908 // visited, then we can compute E's weight. 909 if (BBWeight >= TotalWeight) 910 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 911 else 912 EdgeWeights[UnknownEdge] = 0; 913 const BasicBlock *OtherEC; 914 if (i == 0) 915 OtherEC = EquivalenceClass[UnknownEdge.first]; 916 else 917 OtherEC = EquivalenceClass[UnknownEdge.second]; 918 // Edge weights should never exceed the BB weights it connects. 919 if (VisitedBlocks.count(OtherEC) && 920 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 921 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 922 VisitedEdges.insert(UnknownEdge); 923 Changed = true; 924 DEBUG(dbgs() << "Set weight for edge: "; 925 printEdgeWeight(dbgs(), UnknownEdge)); 926 } 927 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 928 // If a block Weights 0, all its in/out edges should weight 0. 929 if (i == 0) { 930 for (auto *Pred : Predecessors[BB]) { 931 Edge E = std::make_pair(Pred, BB); 932 EdgeWeights[E] = 0; 933 VisitedEdges.insert(E); 934 } 935 } else { 936 for (auto *Succ : Successors[BB]) { 937 Edge E = std::make_pair(BB, Succ); 938 EdgeWeights[E] = 0; 939 VisitedEdges.insert(E); 940 } 941 } 942 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 943 uint64_t &BBWeight = BlockWeights[BB]; 944 // We have a self-referential edge and the weight of BB is known. 945 if (BBWeight >= TotalWeight) 946 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 947 else 948 EdgeWeights[SelfReferentialEdge] = 0; 949 VisitedEdges.insert(SelfReferentialEdge); 950 Changed = true; 951 DEBUG(dbgs() << "Set self-referential edge weight to: "; 952 printEdgeWeight(dbgs(), SelfReferentialEdge)); 953 } 954 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 955 BlockWeights[EC] = TotalWeight; 956 VisitedBlocks.insert(EC); 957 Changed = true; 958 } 959 } 960 } 961 962 return Changed; 963 } 964 965 /// \brief Build in/out edge lists for each basic block in the CFG. 966 /// 967 /// We are interested in unique edges. If a block B1 has multiple 968 /// edges to another block B2, we only add a single B1->B2 edge. 969 void SampleProfileLoader::buildEdges(Function &F) { 970 for (auto &BI : F) { 971 BasicBlock *B1 = &BI; 972 973 // Add predecessors for B1. 974 SmallPtrSet<BasicBlock *, 16> Visited; 975 if (!Predecessors[B1].empty()) 976 llvm_unreachable("Found a stale predecessors list in a basic block."); 977 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 978 BasicBlock *B2 = *PI; 979 if (Visited.insert(B2).second) 980 Predecessors[B1].push_back(B2); 981 } 982 983 // Add successors for B1. 984 Visited.clear(); 985 if (!Successors[B1].empty()) 986 llvm_unreachable("Found a stale successors list in a basic block."); 987 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 988 BasicBlock *B2 = *SI; 989 if (Visited.insert(B2).second) 990 Successors[B1].push_back(B2); 991 } 992 } 993 } 994 995 /// \brief Propagate weights into edges 996 /// 997 /// The following rules are applied to every block BB in the CFG: 998 /// 999 /// - If BB has a single predecessor/successor, then the weight 1000 /// of that edge is the weight of the block. 1001 /// 1002 /// - If all incoming or outgoing edges are known except one, and the 1003 /// weight of the block is already known, the weight of the unknown 1004 /// edge will be the weight of the block minus the sum of all the known 1005 /// edges. If the sum of all the known edges is larger than BB's weight, 1006 /// we set the unknown edge weight to zero. 1007 /// 1008 /// - If there is a self-referential edge, and the weight of the block is 1009 /// known, the weight for that edge is set to the weight of the block 1010 /// minus the weight of the other incoming edges to that block (if 1011 /// known). 1012 void SampleProfileLoader::propagateWeights(Function &F) { 1013 bool Changed = true; 1014 unsigned I = 0; 1015 1016 // Add an entry count to the function using the samples gathered 1017 // at the function entry. 1018 F.setEntryCount(Samples->getHeadSamples() + 1); 1019 1020 // If BB weight is larger than its corresponding loop's header BB weight, 1021 // use the BB weight to replace the loop header BB weight. 1022 for (auto &BI : F) { 1023 BasicBlock *BB = &BI; 1024 Loop *L = LI->getLoopFor(BB); 1025 if (!L) { 1026 continue; 1027 } 1028 BasicBlock *Header = L->getHeader(); 1029 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1030 BlockWeights[Header] = BlockWeights[BB]; 1031 } 1032 } 1033 1034 // Before propagation starts, build, for each block, a list of 1035 // unique predecessors and successors. This is necessary to handle 1036 // identical edges in multiway branches. Since we visit all blocks and all 1037 // edges of the CFG, it is cleaner to build these lists once at the start 1038 // of the pass. 1039 buildEdges(F); 1040 1041 // Propagate until we converge or we go past the iteration limit. 1042 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1043 Changed = propagateThroughEdges(F, false); 1044 } 1045 1046 // The first propagation propagates BB counts from annotated BBs to unknown 1047 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1048 // to propagate edge weights. 1049 VisitedEdges.clear(); 1050 Changed = true; 1051 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1052 Changed = propagateThroughEdges(F, false); 1053 } 1054 1055 // The 3rd propagation pass allows adjust annotated BB weights that are 1056 // obviously wrong. 1057 Changed = true; 1058 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1059 Changed = propagateThroughEdges(F, true); 1060 } 1061 1062 // Generate MD_prof metadata for every branch instruction using the 1063 // edge weights computed during propagation. 1064 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1065 LLVMContext &Ctx = F.getContext(); 1066 MDBuilder MDB(Ctx); 1067 for (auto &BI : F) { 1068 BasicBlock *BB = &BI; 1069 1070 if (BlockWeights[BB]) { 1071 for (auto &I : BB->getInstList()) { 1072 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1073 if (!dyn_cast<IntrinsicInst>(&I)) { 1074 SmallVector<uint32_t, 1> Weights; 1075 Weights.push_back(BlockWeights[BB]); 1076 CI->setMetadata(LLVMContext::MD_prof, 1077 MDB.createBranchWeights(Weights)); 1078 } 1079 } 1080 } 1081 } 1082 TerminatorInst *TI = BB->getTerminator(); 1083 if (TI->getNumSuccessors() == 1) 1084 continue; 1085 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1086 continue; 1087 1088 DEBUG(dbgs() << "\nGetting weights for branch at line " 1089 << TI->getDebugLoc().getLine() << ".\n"); 1090 SmallVector<uint32_t, 4> Weights; 1091 uint32_t MaxWeight = 0; 1092 DebugLoc MaxDestLoc; 1093 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1094 BasicBlock *Succ = TI->getSuccessor(I); 1095 Edge E = std::make_pair(BB, Succ); 1096 uint64_t Weight = EdgeWeights[E]; 1097 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1098 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1099 // if needed. Sample counts in profiles are 64-bit unsigned values, 1100 // but internally branch weights are expressed as 32-bit values. 1101 if (Weight > std::numeric_limits<uint32_t>::max()) { 1102 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1103 Weight = std::numeric_limits<uint32_t>::max(); 1104 } 1105 // Weight is added by one to avoid propagation errors introduced by 1106 // 0 weights. 1107 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1108 if (Weight != 0) { 1109 if (Weight > MaxWeight) { 1110 MaxWeight = Weight; 1111 MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc(); 1112 } 1113 } 1114 } 1115 1116 // Only set weights if there is at least one non-zero weight. 1117 // In any other case, let the analyzer set weights. 1118 if (MaxWeight > 0) { 1119 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1120 TI->setMetadata(llvm::LLVMContext::MD_prof, 1121 MDB.createBranchWeights(Weights)); 1122 DebugLoc BranchLoc = TI->getDebugLoc(); 1123 emitOptimizationRemark( 1124 Ctx, DEBUG_TYPE, F, MaxDestLoc, 1125 Twine("most popular destination for conditional branches at ") + 1126 ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" + 1127 Twine(BranchLoc.getLine()) + ":" + 1128 Twine(BranchLoc.getCol())) 1129 : Twine("<UNKNOWN LOCATION>"))); 1130 } else { 1131 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1132 } 1133 } 1134 } 1135 1136 /// \brief Get the line number for the function header. 1137 /// 1138 /// This looks up function \p F in the current compilation unit and 1139 /// retrieves the line number where the function is defined. This is 1140 /// line 0 for all the samples read from the profile file. Every line 1141 /// number is relative to this line. 1142 /// 1143 /// \param F Function object to query. 1144 /// 1145 /// \returns the line number where \p F is defined. If it returns 0, 1146 /// it means that there is no debug information available for \p F. 1147 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1148 if (DISubprogram *S = F.getSubprogram()) 1149 return S->getLine(); 1150 1151 // If the start of \p F is missing, emit a diagnostic to inform the user 1152 // about the missed opportunity. 1153 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1154 "No debug information found in function " + F.getName() + 1155 ": Function profile not used", 1156 DS_Warning)); 1157 return 0; 1158 } 1159 1160 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1161 DT.reset(new DominatorTree); 1162 DT->recalculate(F); 1163 1164 PDT.reset(new DominatorTreeBase<BasicBlock>(true)); 1165 PDT->recalculate(F); 1166 1167 LI.reset(new LoopInfo); 1168 LI->analyze(*DT); 1169 } 1170 1171 /// \brief Generate branch weight metadata for all branches in \p F. 1172 /// 1173 /// Branch weights are computed out of instruction samples using a 1174 /// propagation heuristic. Propagation proceeds in 3 phases: 1175 /// 1176 /// 1- Assignment of block weights. All the basic blocks in the function 1177 /// are initial assigned the same weight as their most frequently 1178 /// executed instruction. 1179 /// 1180 /// 2- Creation of equivalence classes. Since samples may be missing from 1181 /// blocks, we can fill in the gaps by setting the weights of all the 1182 /// blocks in the same equivalence class to the same weight. To compute 1183 /// the concept of equivalence, we use dominance and loop information. 1184 /// Two blocks B1 and B2 are in the same equivalence class if B1 1185 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1186 /// 1187 /// 3- Propagation of block weights into edges. This uses a simple 1188 /// propagation heuristic. The following rules are applied to every 1189 /// block BB in the CFG: 1190 /// 1191 /// - If BB has a single predecessor/successor, then the weight 1192 /// of that edge is the weight of the block. 1193 /// 1194 /// - If all the edges are known except one, and the weight of the 1195 /// block is already known, the weight of the unknown edge will 1196 /// be the weight of the block minus the sum of all the known 1197 /// edges. If the sum of all the known edges is larger than BB's weight, 1198 /// we set the unknown edge weight to zero. 1199 /// 1200 /// - If there is a self-referential edge, and the weight of the block is 1201 /// known, the weight for that edge is set to the weight of the block 1202 /// minus the weight of the other incoming edges to that block (if 1203 /// known). 1204 /// 1205 /// Since this propagation is not guaranteed to finalize for every CFG, we 1206 /// only allow it to proceed for a limited number of iterations (controlled 1207 /// by -sample-profile-max-propagate-iterations). 1208 /// 1209 /// FIXME: Try to replace this propagation heuristic with a scheme 1210 /// that is guaranteed to finalize. A work-list approach similar to 1211 /// the standard value propagation algorithm used by SSA-CCP might 1212 /// work here. 1213 /// 1214 /// Once all the branch weights are computed, we emit the MD_prof 1215 /// metadata on BB using the computed values for each of its branches. 1216 /// 1217 /// \param F The function to query. 1218 /// 1219 /// \returns true if \p F was modified. Returns false, otherwise. 1220 bool SampleProfileLoader::emitAnnotations(Function &F) { 1221 bool Changed = false; 1222 1223 if (getFunctionLoc(F) == 0) 1224 return false; 1225 1226 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 1227 << ": " << getFunctionLoc(F) << "\n"); 1228 1229 Changed |= inlineHotFunctions(F); 1230 1231 // Compute basic block weights. 1232 Changed |= computeBlockWeights(F); 1233 1234 if (Changed) { 1235 // Compute dominance and loop info needed for propagation. 1236 computeDominanceAndLoopInfo(F); 1237 1238 // Find equivalence classes. 1239 findEquivalenceClasses(F); 1240 1241 // Propagate weights to all edges. 1242 propagateWeights(F); 1243 } 1244 1245 // If coverage checking was requested, compute it now. 1246 if (SampleProfileRecordCoverage) { 1247 unsigned Used = CoverageTracker.countUsedRecords(Samples); 1248 unsigned Total = CoverageTracker.countBodyRecords(Samples); 1249 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1250 if (Coverage < SampleProfileRecordCoverage) { 1251 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1252 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1253 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1254 Twine(Coverage) + "%) were applied", 1255 DS_Warning)); 1256 } 1257 } 1258 1259 if (SampleProfileSampleCoverage) { 1260 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1261 uint64_t Total = CoverageTracker.countBodySamples(Samples); 1262 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1263 if (Coverage < SampleProfileSampleCoverage) { 1264 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1265 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1266 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1267 Twine(Coverage) + "%) were applied", 1268 DS_Warning)); 1269 } 1270 } 1271 return Changed; 1272 } 1273 1274 char SampleProfileLoaderLegacyPass::ID = 0; 1275 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1276 "Sample Profile loader", false, false) 1277 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1278 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1279 "Sample Profile loader", false, false) 1280 1281 bool SampleProfileLoader::doInitialization(Module &M) { 1282 auto &Ctx = M.getContext(); 1283 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1284 if (std::error_code EC = ReaderOrErr.getError()) { 1285 std::string Msg = "Could not open profile: " + EC.message(); 1286 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1287 return false; 1288 } 1289 Reader = std::move(ReaderOrErr.get()); 1290 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1291 return true; 1292 } 1293 1294 ModulePass *llvm::createSampleProfileLoaderPass() { 1295 return new SampleProfileLoaderLegacyPass(SampleProfileFile); 1296 } 1297 1298 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1299 return new SampleProfileLoaderLegacyPass(Name); 1300 } 1301 1302 bool SampleProfileLoader::runOnModule(Module &M) { 1303 if (!ProfileIsValid) 1304 return false; 1305 1306 // Compute the total number of samples collected in this profile. 1307 for (const auto &I : Reader->getProfiles()) 1308 TotalCollectedSamples += I.second.getTotalSamples(); 1309 1310 bool retval = false; 1311 for (auto &F : M) 1312 if (!F.isDeclaration()) { 1313 clearFunctionData(); 1314 retval |= runOnFunction(F); 1315 } 1316 if (M.getProfileSummary() == nullptr) 1317 M.setProfileSummary(Reader->getSummary().getMD(M.getContext())); 1318 return retval; 1319 } 1320 1321 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1322 // FIXME: pass in AssumptionCache correctly for the new pass manager. 1323 SampleLoader.setACT(&getAnalysis<AssumptionCacheTracker>()); 1324 return SampleLoader.runOnModule(M); 1325 } 1326 1327 bool SampleProfileLoader::runOnFunction(Function &F) { 1328 F.setEntryCount(0); 1329 Samples = Reader->getSamplesFor(F); 1330 if (!Samples->empty()) 1331 return emitAnnotations(F); 1332 return false; 1333 } 1334 1335 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1336 ModuleAnalysisManager &AM) { 1337 1338 SampleProfileLoader SampleLoader(SampleProfileFile); 1339 1340 SampleLoader.doInitialization(M); 1341 1342 if (!SampleLoader.runOnModule(M)) 1343 return PreservedAnalyses::all(); 1344 1345 return PreservedAnalyses::none(); 1346 } 1347