1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SampleProfileLoader transformation. This pass 10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 12 // profile information in the given profile. 13 // 14 // This pass generates branch weight annotations on the IR: 15 // 16 // - prof: Represents branch weights. This annotation is added to branches 17 // to indicate the weights of each edge coming out of the branch. 18 // The weight of each edge is the weight of the target block for 19 // that edge. The weight of a block B is computed as the maximum 20 // number of samples found in B. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/IPO/SampleProfile.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/None.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringMap.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/ADT/Twine.h" 35 #include "llvm/Analysis/AssumptionCache.h" 36 #include "llvm/Analysis/InlineCost.h" 37 #include "llvm/Analysis/LoopInfo.h" 38 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 39 #include "llvm/Analysis/PostDominators.h" 40 #include "llvm/Analysis/ProfileSummaryInfo.h" 41 #include "llvm/Analysis/TargetTransformInfo.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/CallSite.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DiagnosticInfo.h" 48 #include "llvm/IR/Dominators.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/MDBuilder.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/PassManager.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/Pass.h" 61 #include "llvm/ProfileData/InstrProf.h" 62 #include "llvm/ProfileData/SampleProf.h" 63 #include "llvm/ProfileData/SampleProfReader.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/GenericDomTree.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Transforms/IPO.h" 72 #include "llvm/Transforms/Instrumentation.h" 73 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 74 #include "llvm/Transforms/Utils/Cloning.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstdint> 78 #include <functional> 79 #include <limits> 80 #include <map> 81 #include <memory> 82 #include <queue> 83 #include <string> 84 #include <system_error> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 using namespace sampleprof; 90 using ProfileCount = Function::ProfileCount; 91 #define DEBUG_TYPE "sample-profile" 92 93 // Command line option to specify the file to read samples from. This is 94 // mainly used for debugging. 95 static cl::opt<std::string> SampleProfileFile( 96 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 97 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 98 99 // The named file contains a set of transformations that may have been applied 100 // to the symbol names between the program from which the sample data was 101 // collected and the current program's symbols. 102 static cl::opt<std::string> SampleProfileRemappingFile( 103 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), 104 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); 105 106 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 107 "sample-profile-max-propagate-iterations", cl::init(100), 108 cl::desc("Maximum number of iterations to go through when propagating " 109 "sample block/edge weights through the CFG.")); 110 111 static cl::opt<unsigned> SampleProfileRecordCoverage( 112 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 113 cl::desc("Emit a warning if less than N% of records in the input profile " 114 "are matched to the IR.")); 115 116 static cl::opt<unsigned> SampleProfileSampleCoverage( 117 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 118 cl::desc("Emit a warning if less than N% of samples in the input profile " 119 "are matched to the IR.")); 120 121 static cl::opt<bool> NoWarnSampleUnused( 122 "no-warn-sample-unused", cl::init(false), cl::Hidden, 123 cl::desc("Use this option to turn off/on warnings about function with " 124 "samples but without debug information to use those samples. ")); 125 126 static cl::opt<bool> ProfileSampleAccurate( 127 "profile-sample-accurate", cl::Hidden, cl::init(false), 128 cl::desc("If the sample profile is accurate, we will mark all un-sampled " 129 "callsite and function as having 0 samples. Otherwise, treat " 130 "un-sampled callsites and functions conservatively as unknown. ")); 131 132 namespace { 133 134 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 135 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 136 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 137 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 138 using BlockEdgeMap = 139 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 140 141 class SampleCoverageTracker { 142 public: 143 SampleCoverageTracker() = default; 144 145 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 146 uint32_t Discriminator, uint64_t Samples); 147 unsigned computeCoverage(unsigned Used, unsigned Total) const; 148 unsigned countUsedRecords(const FunctionSamples *FS, 149 ProfileSummaryInfo *PSI) const; 150 unsigned countBodyRecords(const FunctionSamples *FS, 151 ProfileSummaryInfo *PSI) const; 152 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 153 uint64_t countBodySamples(const FunctionSamples *FS, 154 ProfileSummaryInfo *PSI) const; 155 156 void clear() { 157 SampleCoverage.clear(); 158 TotalUsedSamples = 0; 159 } 160 161 private: 162 using BodySampleCoverageMap = std::map<LineLocation, unsigned>; 163 using FunctionSamplesCoverageMap = 164 DenseMap<const FunctionSamples *, BodySampleCoverageMap>; 165 166 /// Coverage map for sampling records. 167 /// 168 /// This map keeps a record of sampling records that have been matched to 169 /// an IR instruction. This is used to detect some form of staleness in 170 /// profiles (see flag -sample-profile-check-coverage). 171 /// 172 /// Each entry in the map corresponds to a FunctionSamples instance. This is 173 /// another map that counts how many times the sample record at the 174 /// given location has been used. 175 FunctionSamplesCoverageMap SampleCoverage; 176 177 /// Number of samples used from the profile. 178 /// 179 /// When a sampling record is used for the first time, the samples from 180 /// that record are added to this accumulator. Coverage is later computed 181 /// based on the total number of samples available in this function and 182 /// its callsites. 183 /// 184 /// Note that this accumulator tracks samples used from a single function 185 /// and all the inlined callsites. Strictly, we should have a map of counters 186 /// keyed by FunctionSamples pointers, but these stats are cleared after 187 /// every function, so we just need to keep a single counter. 188 uint64_t TotalUsedSamples = 0; 189 }; 190 191 class GUIDToFuncNameMapper { 192 public: 193 GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader, 194 DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap) 195 : CurrentReader(Reader), CurrentModule(M), 196 CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) { 197 if (CurrentReader.getFormat() != SPF_Compact_Binary) 198 return; 199 200 for (const auto &F : CurrentModule) { 201 StringRef OrigName = F.getName(); 202 CurrentGUIDToFuncNameMap.insert( 203 {Function::getGUID(OrigName), OrigName}); 204 205 // Local to global var promotion used by optimization like thinlto 206 // will rename the var and add suffix like ".llvm.xxx" to the 207 // original local name. In sample profile, the suffixes of function 208 // names are all stripped. Since it is possible that the mapper is 209 // built in post-thin-link phase and var promotion has been done, 210 // we need to add the substring of function name without the suffix 211 // into the GUIDToFuncNameMap. 212 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 213 if (CanonName != OrigName) 214 CurrentGUIDToFuncNameMap.insert( 215 {Function::getGUID(CanonName), CanonName}); 216 } 217 218 // Update GUIDToFuncNameMap for each function including inlinees. 219 SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap); 220 } 221 222 ~GUIDToFuncNameMapper() { 223 if (CurrentReader.getFormat() != SPF_Compact_Binary) 224 return; 225 226 CurrentGUIDToFuncNameMap.clear(); 227 228 // Reset GUIDToFuncNameMap for of each function as they're no 229 // longer valid at this point. 230 SetGUIDToFuncNameMapForAll(nullptr); 231 } 232 233 private: 234 void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) { 235 std::queue<FunctionSamples *> FSToUpdate; 236 for (auto &IFS : CurrentReader.getProfiles()) { 237 FSToUpdate.push(&IFS.second); 238 } 239 240 while (!FSToUpdate.empty()) { 241 FunctionSamples *FS = FSToUpdate.front(); 242 FSToUpdate.pop(); 243 FS->GUIDToFuncNameMap = Map; 244 for (const auto &ICS : FS->getCallsiteSamples()) { 245 const FunctionSamplesMap &FSMap = ICS.second; 246 for (auto &IFS : FSMap) { 247 FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second); 248 FSToUpdate.push(&FS); 249 } 250 } 251 } 252 } 253 254 SampleProfileReader &CurrentReader; 255 Module &CurrentModule; 256 DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap; 257 }; 258 259 /// Sample profile pass. 260 /// 261 /// This pass reads profile data from the file specified by 262 /// -sample-profile-file and annotates every affected function with the 263 /// profile information found in that file. 264 class SampleProfileLoader { 265 public: 266 SampleProfileLoader( 267 StringRef Name, StringRef RemapName, bool IsThinLTOPreLink, 268 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 269 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo) 270 : GetAC(std::move(GetAssumptionCache)), 271 GetTTI(std::move(GetTargetTransformInfo)), Filename(Name), 272 RemappingFilename(RemapName), IsThinLTOPreLink(IsThinLTOPreLink) {} 273 274 bool doInitialization(Module &M); 275 bool runOnModule(Module &M, ModuleAnalysisManager *AM, 276 ProfileSummaryInfo *_PSI); 277 278 void dump() { Reader->dump(); } 279 280 protected: 281 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 282 unsigned getFunctionLoc(Function &F); 283 bool emitAnnotations(Function &F); 284 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 285 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 286 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 287 std::vector<const FunctionSamples *> 288 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 289 mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap; 290 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 291 bool inlineCallInstruction(Instruction *I); 292 bool inlineHotFunctions(Function &F, 293 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 294 void printEdgeWeight(raw_ostream &OS, Edge E); 295 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 296 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 297 bool computeBlockWeights(Function &F); 298 void findEquivalenceClasses(Function &F); 299 template <bool IsPostDom> 300 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 301 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 302 303 void propagateWeights(Function &F); 304 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 305 void buildEdges(Function &F); 306 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 307 void computeDominanceAndLoopInfo(Function &F); 308 void clearFunctionData(); 309 310 /// Map basic blocks to their computed weights. 311 /// 312 /// The weight of a basic block is defined to be the maximum 313 /// of all the instruction weights in that block. 314 BlockWeightMap BlockWeights; 315 316 /// Map edges to their computed weights. 317 /// 318 /// Edge weights are computed by propagating basic block weights in 319 /// SampleProfile::propagateWeights. 320 EdgeWeightMap EdgeWeights; 321 322 /// Set of visited blocks during propagation. 323 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 324 325 /// Set of visited edges during propagation. 326 SmallSet<Edge, 32> VisitedEdges; 327 328 /// Equivalence classes for block weights. 329 /// 330 /// Two blocks BB1 and BB2 are in the same equivalence class if they 331 /// dominate and post-dominate each other, and they are in the same loop 332 /// nest. When this happens, the two blocks are guaranteed to execute 333 /// the same number of times. 334 EquivalenceClassMap EquivalenceClass; 335 336 /// Map from function name to Function *. Used to find the function from 337 /// the function name. If the function name contains suffix, additional 338 /// entry is added to map from the stripped name to the function if there 339 /// is one-to-one mapping. 340 StringMap<Function *> SymbolMap; 341 342 /// Dominance, post-dominance and loop information. 343 std::unique_ptr<DominatorTree> DT; 344 std::unique_ptr<PostDominatorTree> PDT; 345 std::unique_ptr<LoopInfo> LI; 346 347 std::function<AssumptionCache &(Function &)> GetAC; 348 std::function<TargetTransformInfo &(Function &)> GetTTI; 349 350 /// Predecessors for each basic block in the CFG. 351 BlockEdgeMap Predecessors; 352 353 /// Successors for each basic block in the CFG. 354 BlockEdgeMap Successors; 355 356 SampleCoverageTracker CoverageTracker; 357 358 /// Profile reader object. 359 std::unique_ptr<SampleProfileReader> Reader; 360 361 /// Samples collected for the body of this function. 362 FunctionSamples *Samples = nullptr; 363 364 /// Name of the profile file to load. 365 std::string Filename; 366 367 /// Name of the profile remapping file to load. 368 std::string RemappingFilename; 369 370 /// Flag indicating whether the profile input loaded successfully. 371 bool ProfileIsValid = false; 372 373 /// Flag indicating if the pass is invoked in ThinLTO compile phase. 374 /// 375 /// In this phase, in annotation, we should not promote indirect calls. 376 /// Instead, we will mark GUIDs that needs to be annotated to the function. 377 bool IsThinLTOPreLink; 378 379 /// Profile Summary Info computed from sample profile. 380 ProfileSummaryInfo *PSI = nullptr; 381 382 /// Total number of samples collected in this profile. 383 /// 384 /// This is the sum of all the samples collected in all the functions executed 385 /// at runtime. 386 uint64_t TotalCollectedSamples = 0; 387 388 /// Optimization Remark Emitter used to emit diagnostic remarks. 389 OptimizationRemarkEmitter *ORE = nullptr; 390 391 // Information recorded when we declined to inline a call site 392 // because we have determined it is too cold is accumulated for 393 // each callee function. Initially this is just the entry count. 394 struct NotInlinedProfileInfo { 395 uint64_t entryCount; 396 }; 397 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo; 398 399 // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for 400 // all the function symbols defined or declared in current module. 401 DenseMap<uint64_t, StringRef> GUIDToFuncNameMap; 402 }; 403 404 class SampleProfileLoaderLegacyPass : public ModulePass { 405 public: 406 // Class identification, replacement for typeinfo 407 static char ID; 408 409 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, 410 bool IsThinLTOPreLink = false) 411 : ModulePass(ID), 412 SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink, 413 [&](Function &F) -> AssumptionCache & { 414 return ACT->getAssumptionCache(F); 415 }, 416 [&](Function &F) -> TargetTransformInfo & { 417 return TTIWP->getTTI(F); 418 }) { 419 initializeSampleProfileLoaderLegacyPassPass( 420 *PassRegistry::getPassRegistry()); 421 } 422 423 void dump() { SampleLoader.dump(); } 424 425 bool doInitialization(Module &M) override { 426 return SampleLoader.doInitialization(M); 427 } 428 429 StringRef getPassName() const override { return "Sample profile pass"; } 430 bool runOnModule(Module &M) override; 431 432 void getAnalysisUsage(AnalysisUsage &AU) const override { 433 AU.addRequired<AssumptionCacheTracker>(); 434 AU.addRequired<TargetTransformInfoWrapperPass>(); 435 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 436 } 437 438 private: 439 SampleProfileLoader SampleLoader; 440 AssumptionCacheTracker *ACT = nullptr; 441 TargetTransformInfoWrapperPass *TTIWP = nullptr; 442 }; 443 444 } // end anonymous namespace 445 446 /// Return true if the given callsite is hot wrt to hot cutoff threshold. 447 /// 448 /// Functions that were inlined in the original binary will be represented 449 /// in the inline stack in the sample profile. If the profile shows that 450 /// the original inline decision was "good" (i.e., the callsite is executed 451 /// frequently), then we will recreate the inline decision and apply the 452 /// profile from the inlined callsite. 453 /// 454 /// To decide whether an inlined callsite is hot, we compare the callsite 455 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is 456 /// regarded as hot if the count is above the cutoff value. 457 static bool callsiteIsHot(const FunctionSamples *CallsiteFS, 458 ProfileSummaryInfo *PSI) { 459 if (!CallsiteFS) 460 return false; // The callsite was not inlined in the original binary. 461 462 assert(PSI && "PSI is expected to be non null"); 463 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 464 return PSI->isHotCount(CallsiteTotalSamples); 465 } 466 467 /// Mark as used the sample record for the given function samples at 468 /// (LineOffset, Discriminator). 469 /// 470 /// \returns true if this is the first time we mark the given record. 471 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 472 uint32_t LineOffset, 473 uint32_t Discriminator, 474 uint64_t Samples) { 475 LineLocation Loc(LineOffset, Discriminator); 476 unsigned &Count = SampleCoverage[FS][Loc]; 477 bool FirstTime = (++Count == 1); 478 if (FirstTime) 479 TotalUsedSamples += Samples; 480 return FirstTime; 481 } 482 483 /// Return the number of sample records that were applied from this profile. 484 /// 485 /// This count does not include records from cold inlined callsites. 486 unsigned 487 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS, 488 ProfileSummaryInfo *PSI) const { 489 auto I = SampleCoverage.find(FS); 490 491 // The size of the coverage map for FS represents the number of records 492 // that were marked used at least once. 493 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 494 495 // If there are inlined callsites in this function, count the samples found 496 // in the respective bodies. However, do not bother counting callees with 0 497 // total samples, these are callees that were never invoked at runtime. 498 for (const auto &I : FS->getCallsiteSamples()) 499 for (const auto &J : I.second) { 500 const FunctionSamples *CalleeSamples = &J.second; 501 if (callsiteIsHot(CalleeSamples, PSI)) 502 Count += countUsedRecords(CalleeSamples, PSI); 503 } 504 505 return Count; 506 } 507 508 /// Return the number of sample records in the body of this profile. 509 /// 510 /// This count does not include records from cold inlined callsites. 511 unsigned 512 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS, 513 ProfileSummaryInfo *PSI) const { 514 unsigned Count = FS->getBodySamples().size(); 515 516 // Only count records in hot callsites. 517 for (const auto &I : FS->getCallsiteSamples()) 518 for (const auto &J : I.second) { 519 const FunctionSamples *CalleeSamples = &J.second; 520 if (callsiteIsHot(CalleeSamples, PSI)) 521 Count += countBodyRecords(CalleeSamples, PSI); 522 } 523 524 return Count; 525 } 526 527 /// Return the number of samples collected in the body of this profile. 528 /// 529 /// This count does not include samples from cold inlined callsites. 530 uint64_t 531 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS, 532 ProfileSummaryInfo *PSI) const { 533 uint64_t Total = 0; 534 for (const auto &I : FS->getBodySamples()) 535 Total += I.second.getSamples(); 536 537 // Only count samples in hot callsites. 538 for (const auto &I : FS->getCallsiteSamples()) 539 for (const auto &J : I.second) { 540 const FunctionSamples *CalleeSamples = &J.second; 541 if (callsiteIsHot(CalleeSamples, PSI)) 542 Total += countBodySamples(CalleeSamples, PSI); 543 } 544 545 return Total; 546 } 547 548 /// Return the fraction of sample records used in this profile. 549 /// 550 /// The returned value is an unsigned integer in the range 0-100 indicating 551 /// the percentage of sample records that were used while applying this 552 /// profile to the associated function. 553 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 554 unsigned Total) const { 555 assert(Used <= Total && 556 "number of used records cannot exceed the total number of records"); 557 return Total > 0 ? Used * 100 / Total : 100; 558 } 559 560 /// Clear all the per-function data used to load samples and propagate weights. 561 void SampleProfileLoader::clearFunctionData() { 562 BlockWeights.clear(); 563 EdgeWeights.clear(); 564 VisitedBlocks.clear(); 565 VisitedEdges.clear(); 566 EquivalenceClass.clear(); 567 DT = nullptr; 568 PDT = nullptr; 569 LI = nullptr; 570 Predecessors.clear(); 571 Successors.clear(); 572 CoverageTracker.clear(); 573 } 574 575 #ifndef NDEBUG 576 /// Print the weight of edge \p E on stream \p OS. 577 /// 578 /// \param OS Stream to emit the output to. 579 /// \param E Edge to print. 580 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 581 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 582 << "]: " << EdgeWeights[E] << "\n"; 583 } 584 585 /// Print the equivalence class of block \p BB on stream \p OS. 586 /// 587 /// \param OS Stream to emit the output to. 588 /// \param BB Block to print. 589 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 590 const BasicBlock *BB) { 591 const BasicBlock *Equiv = EquivalenceClass[BB]; 592 OS << "equivalence[" << BB->getName() 593 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 594 } 595 596 /// Print the weight of block \p BB on stream \p OS. 597 /// 598 /// \param OS Stream to emit the output to. 599 /// \param BB Block to print. 600 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 601 const BasicBlock *BB) const { 602 const auto &I = BlockWeights.find(BB); 603 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 604 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 605 } 606 #endif 607 608 /// Get the weight for an instruction. 609 /// 610 /// The "weight" of an instruction \p Inst is the number of samples 611 /// collected on that instruction at runtime. To retrieve it, we 612 /// need to compute the line number of \p Inst relative to the start of its 613 /// function. We use HeaderLineno to compute the offset. We then 614 /// look up the samples collected for \p Inst using BodySamples. 615 /// 616 /// \param Inst Instruction to query. 617 /// 618 /// \returns the weight of \p Inst. 619 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 620 const DebugLoc &DLoc = Inst.getDebugLoc(); 621 if (!DLoc) 622 return std::error_code(); 623 624 const FunctionSamples *FS = findFunctionSamples(Inst); 625 if (!FS) 626 return std::error_code(); 627 628 // Ignore all intrinsics, phinodes and branch instructions. 629 // Branch and phinodes instruction usually contains debug info from sources outside of 630 // the residing basic block, thus we ignore them during annotation. 631 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst)) 632 return std::error_code(); 633 634 // If a direct call/invoke instruction is inlined in profile 635 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 636 // it means that the inlined callsite has no sample, thus the call 637 // instruction should have 0 count. 638 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && 639 !ImmutableCallSite(&Inst).isIndirectCall() && 640 findCalleeFunctionSamples(Inst)) 641 return 0; 642 643 const DILocation *DIL = DLoc; 644 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 645 uint32_t Discriminator = DIL->getBaseDiscriminator(); 646 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 647 if (R) { 648 bool FirstMark = 649 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 650 if (FirstMark) { 651 ORE->emit([&]() { 652 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 653 Remark << "Applied " << ore::NV("NumSamples", *R); 654 Remark << " samples from profile (offset: "; 655 Remark << ore::NV("LineOffset", LineOffset); 656 if (Discriminator) { 657 Remark << "."; 658 Remark << ore::NV("Discriminator", Discriminator); 659 } 660 Remark << ")"; 661 return Remark; 662 }); 663 } 664 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." 665 << DIL->getBaseDiscriminator() << ":" << Inst 666 << " (line offset: " << LineOffset << "." 667 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 668 << ")\n"); 669 } 670 return R; 671 } 672 673 /// Compute the weight of a basic block. 674 /// 675 /// The weight of basic block \p BB is the maximum weight of all the 676 /// instructions in BB. 677 /// 678 /// \param BB The basic block to query. 679 /// 680 /// \returns the weight for \p BB. 681 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 682 uint64_t Max = 0; 683 bool HasWeight = false; 684 for (auto &I : BB->getInstList()) { 685 const ErrorOr<uint64_t> &R = getInstWeight(I); 686 if (R) { 687 Max = std::max(Max, R.get()); 688 HasWeight = true; 689 } 690 } 691 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 692 } 693 694 /// Compute and store the weights of every basic block. 695 /// 696 /// This populates the BlockWeights map by computing 697 /// the weights of every basic block in the CFG. 698 /// 699 /// \param F The function to query. 700 bool SampleProfileLoader::computeBlockWeights(Function &F) { 701 bool Changed = false; 702 LLVM_DEBUG(dbgs() << "Block weights\n"); 703 for (const auto &BB : F) { 704 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 705 if (Weight) { 706 BlockWeights[&BB] = Weight.get(); 707 VisitedBlocks.insert(&BB); 708 Changed = true; 709 } 710 LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); 711 } 712 713 return Changed; 714 } 715 716 /// Get the FunctionSamples for a call instruction. 717 /// 718 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 719 /// instance in which that call instruction is calling to. It contains 720 /// all samples that resides in the inlined instance. We first find the 721 /// inlined instance in which the call instruction is from, then we 722 /// traverse its children to find the callsite with the matching 723 /// location. 724 /// 725 /// \param Inst Call/Invoke instruction to query. 726 /// 727 /// \returns The FunctionSamples pointer to the inlined instance. 728 const FunctionSamples * 729 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 730 const DILocation *DIL = Inst.getDebugLoc(); 731 if (!DIL) { 732 return nullptr; 733 } 734 735 StringRef CalleeName; 736 if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) 737 if (Function *Callee = CI->getCalledFunction()) 738 CalleeName = Callee->getName(); 739 740 const FunctionSamples *FS = findFunctionSamples(Inst); 741 if (FS == nullptr) 742 return nullptr; 743 744 return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL), 745 DIL->getBaseDiscriminator()), 746 CalleeName); 747 } 748 749 /// Returns a vector of FunctionSamples that are the indirect call targets 750 /// of \p Inst. The vector is sorted by the total number of samples. Stores 751 /// the total call count of the indirect call in \p Sum. 752 std::vector<const FunctionSamples *> 753 SampleProfileLoader::findIndirectCallFunctionSamples( 754 const Instruction &Inst, uint64_t &Sum) const { 755 const DILocation *DIL = Inst.getDebugLoc(); 756 std::vector<const FunctionSamples *> R; 757 758 if (!DIL) { 759 return R; 760 } 761 762 const FunctionSamples *FS = findFunctionSamples(Inst); 763 if (FS == nullptr) 764 return R; 765 766 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 767 uint32_t Discriminator = DIL->getBaseDiscriminator(); 768 769 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 770 Sum = 0; 771 if (T) 772 for (const auto &T_C : T.get()) 773 Sum += T_C.second; 774 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation( 775 FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) { 776 if (M->empty()) 777 return R; 778 for (const auto &NameFS : *M) { 779 Sum += NameFS.second.getEntrySamples(); 780 R.push_back(&NameFS.second); 781 } 782 llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) { 783 if (L->getEntrySamples() != R->getEntrySamples()) 784 return L->getEntrySamples() > R->getEntrySamples(); 785 return FunctionSamples::getGUID(L->getName()) < 786 FunctionSamples::getGUID(R->getName()); 787 }); 788 } 789 return R; 790 } 791 792 /// Get the FunctionSamples for an instruction. 793 /// 794 /// The FunctionSamples of an instruction \p Inst is the inlined instance 795 /// in which that instruction is coming from. We traverse the inline stack 796 /// of that instruction, and match it with the tree nodes in the profile. 797 /// 798 /// \param Inst Instruction to query. 799 /// 800 /// \returns the FunctionSamples pointer to the inlined instance. 801 const FunctionSamples * 802 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 803 const DILocation *DIL = Inst.getDebugLoc(); 804 if (!DIL) 805 return Samples; 806 807 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr); 808 if (it.second) 809 it.first->second = Samples->findFunctionSamples(DIL); 810 return it.first->second; 811 } 812 813 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) { 814 assert(isa<CallInst>(I) || isa<InvokeInst>(I)); 815 CallSite CS(I); 816 Function *CalledFunction = CS.getCalledFunction(); 817 assert(CalledFunction); 818 DebugLoc DLoc = I->getDebugLoc(); 819 BasicBlock *BB = I->getParent(); 820 InlineParams Params = getInlineParams(); 821 Params.ComputeFullInlineCost = true; 822 // Checks if there is anything in the reachable portion of the callee at 823 // this callsite that makes this inlining potentially illegal. Need to 824 // set ComputeFullInlineCost, otherwise getInlineCost may return early 825 // when cost exceeds threshold without checking all IRs in the callee. 826 // The acutal cost does not matter because we only checks isNever() to 827 // see if it is legal to inline the callsite. 828 InlineCost Cost = 829 getInlineCost(cast<CallBase>(*I), Params, GetTTI(*CalledFunction), GetAC, 830 None, nullptr, nullptr); 831 if (Cost.isNever()) { 832 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB) 833 << "incompatible inlining"); 834 return false; 835 } 836 InlineFunctionInfo IFI(nullptr, &GetAC); 837 if (InlineFunction(CS, IFI)) { 838 // The call to InlineFunction erases I, so we can't pass it here. 839 ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB) 840 << "inlined hot callee '" << ore::NV("Callee", CalledFunction) 841 << "' into '" << ore::NV("Caller", BB->getParent()) << "'"); 842 return true; 843 } 844 return false; 845 } 846 847 /// Iteratively inline hot callsites of a function. 848 /// 849 /// Iteratively traverse all callsites of the function \p F, and find if 850 /// the corresponding inlined instance exists and is hot in profile. If 851 /// it is hot enough, inline the callsites and adds new callsites of the 852 /// callee into the caller. If the call is an indirect call, first promote 853 /// it to direct call. Each indirect call is limited with a single target. 854 /// 855 /// \param F function to perform iterative inlining. 856 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 857 /// inlined in the profiled binary. 858 /// 859 /// \returns True if there is any inline happened. 860 bool SampleProfileLoader::inlineHotFunctions( 861 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 862 DenseSet<Instruction *> PromotedInsns; 863 864 DenseMap<Instruction *, const FunctionSamples *> localNotInlinedCallSites; 865 bool Changed = false; 866 while (true) { 867 bool LocalChanged = false; 868 SmallVector<Instruction *, 10> CIS; 869 for (auto &BB : F) { 870 bool Hot = false; 871 SmallVector<Instruction *, 10> Candidates; 872 for (auto &I : BB.getInstList()) { 873 const FunctionSamples *FS = nullptr; 874 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 875 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { 876 Candidates.push_back(&I); 877 if (FS->getEntrySamples() > 0) 878 localNotInlinedCallSites.try_emplace(&I, FS); 879 if (callsiteIsHot(FS, PSI)) 880 Hot = true; 881 } 882 } 883 if (Hot) { 884 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); 885 } 886 } 887 for (auto I : CIS) { 888 Function *CalledFunction = CallSite(I).getCalledFunction(); 889 // Do not inline recursive calls. 890 if (CalledFunction == &F) 891 continue; 892 if (CallSite(I).isIndirectCall()) { 893 if (PromotedInsns.count(I)) 894 continue; 895 uint64_t Sum; 896 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 897 if (IsThinLTOPreLink) { 898 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), 899 PSI->getOrCompHotCountThreshold()); 900 continue; 901 } 902 auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent()); 903 // If it is a recursive call, we do not inline it as it could bloat 904 // the code exponentially. There is way to better handle this, e.g. 905 // clone the caller first, and inline the cloned caller if it is 906 // recursive. As llvm does not inline recursive calls, we will 907 // simply ignore it instead of handling it explicitly. 908 if (CalleeFunctionName == F.getName()) 909 continue; 910 911 if (!callsiteIsHot(FS, PSI)) 912 continue; 913 914 const char *Reason = "Callee function not available"; 915 auto R = SymbolMap.find(CalleeFunctionName); 916 if (R != SymbolMap.end() && R->getValue() && 917 !R->getValue()->isDeclaration() && 918 R->getValue()->getSubprogram() && 919 isLegalToPromote(CallSite(I), R->getValue(), &Reason)) { 920 uint64_t C = FS->getEntrySamples(); 921 Instruction *DI = 922 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE); 923 Sum -= C; 924 PromotedInsns.insert(I); 925 // If profile mismatches, we should not attempt to inline DI. 926 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && 927 inlineCallInstruction(DI)) { 928 localNotInlinedCallSites.erase(I); 929 LocalChanged = true; 930 } 931 } else { 932 LLVM_DEBUG(dbgs() 933 << "\nFailed to promote indirect call to " 934 << CalleeFunctionName << " because " << Reason << "\n"); 935 } 936 } 937 } else if (CalledFunction && CalledFunction->getSubprogram() && 938 !CalledFunction->isDeclaration()) { 939 if (inlineCallInstruction(I)) { 940 localNotInlinedCallSites.erase(I); 941 LocalChanged = true; 942 } 943 } else if (IsThinLTOPreLink) { 944 findCalleeFunctionSamples(*I)->findInlinedFunctions( 945 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold()); 946 } 947 } 948 if (LocalChanged) { 949 Changed = true; 950 } else { 951 break; 952 } 953 } 954 955 // Accumulate not inlined callsite information into notInlinedSamples 956 for (const auto &Pair : localNotInlinedCallSites) { 957 Instruction *I = Pair.getFirst(); 958 Function *Callee = CallSite(I).getCalledFunction(); 959 if (!Callee || Callee->isDeclaration()) 960 continue; 961 const FunctionSamples *FS = Pair.getSecond(); 962 auto pair = 963 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0}); 964 pair.first->second.entryCount += FS->getEntrySamples(); 965 } 966 return Changed; 967 } 968 969 /// Find equivalence classes for the given block. 970 /// 971 /// This finds all the blocks that are guaranteed to execute the same 972 /// number of times as \p BB1. To do this, it traverses all the 973 /// descendants of \p BB1 in the dominator or post-dominator tree. 974 /// 975 /// A block BB2 will be in the same equivalence class as \p BB1 if 976 /// the following holds: 977 /// 978 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 979 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 980 /// dominate BB1 in the post-dominator tree. 981 /// 982 /// 2- Both BB2 and \p BB1 must be in the same loop. 983 /// 984 /// For every block BB2 that meets those two requirements, we set BB2's 985 /// equivalence class to \p BB1. 986 /// 987 /// \param BB1 Block to check. 988 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 989 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 990 /// with blocks from \p BB1's dominator tree, then 991 /// this is the post-dominator tree, and vice versa. 992 template <bool IsPostDom> 993 void SampleProfileLoader::findEquivalencesFor( 994 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 995 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 996 const BasicBlock *EC = EquivalenceClass[BB1]; 997 uint64_t Weight = BlockWeights[EC]; 998 for (const auto *BB2 : Descendants) { 999 bool IsDomParent = DomTree->dominates(BB2, BB1); 1000 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 1001 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 1002 EquivalenceClass[BB2] = EC; 1003 // If BB2 is visited, then the entire EC should be marked as visited. 1004 if (VisitedBlocks.count(BB2)) { 1005 VisitedBlocks.insert(EC); 1006 } 1007 1008 // If BB2 is heavier than BB1, make BB2 have the same weight 1009 // as BB1. 1010 // 1011 // Note that we don't worry about the opposite situation here 1012 // (when BB2 is lighter than BB1). We will deal with this 1013 // during the propagation phase. Right now, we just want to 1014 // make sure that BB1 has the largest weight of all the 1015 // members of its equivalence set. 1016 Weight = std::max(Weight, BlockWeights[BB2]); 1017 } 1018 } 1019 if (EC == &EC->getParent()->getEntryBlock()) { 1020 BlockWeights[EC] = Samples->getHeadSamples() + 1; 1021 } else { 1022 BlockWeights[EC] = Weight; 1023 } 1024 } 1025 1026 /// Find equivalence classes. 1027 /// 1028 /// Since samples may be missing from blocks, we can fill in the gaps by setting 1029 /// the weights of all the blocks in the same equivalence class to the same 1030 /// weight. To compute the concept of equivalence, we use dominance and loop 1031 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 1032 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1033 /// 1034 /// \param F The function to query. 1035 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 1036 SmallVector<BasicBlock *, 8> DominatedBBs; 1037 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); 1038 // Find equivalence sets based on dominance and post-dominance information. 1039 for (auto &BB : F) { 1040 BasicBlock *BB1 = &BB; 1041 1042 // Compute BB1's equivalence class once. 1043 if (EquivalenceClass.count(BB1)) { 1044 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1045 continue; 1046 } 1047 1048 // By default, blocks are in their own equivalence class. 1049 EquivalenceClass[BB1] = BB1; 1050 1051 // Traverse all the blocks dominated by BB1. We are looking for 1052 // every basic block BB2 such that: 1053 // 1054 // 1- BB1 dominates BB2. 1055 // 2- BB2 post-dominates BB1. 1056 // 3- BB1 and BB2 are in the same loop nest. 1057 // 1058 // If all those conditions hold, it means that BB2 is executed 1059 // as many times as BB1, so they are placed in the same equivalence 1060 // class by making BB2's equivalence class be BB1. 1061 DominatedBBs.clear(); 1062 DT->getDescendants(BB1, DominatedBBs); 1063 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 1064 1065 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1066 } 1067 1068 // Assign weights to equivalence classes. 1069 // 1070 // All the basic blocks in the same equivalence class will execute 1071 // the same number of times. Since we know that the head block in 1072 // each equivalence class has the largest weight, assign that weight 1073 // to all the blocks in that equivalence class. 1074 LLVM_DEBUG( 1075 dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 1076 for (auto &BI : F) { 1077 const BasicBlock *BB = &BI; 1078 const BasicBlock *EquivBB = EquivalenceClass[BB]; 1079 if (BB != EquivBB) 1080 BlockWeights[BB] = BlockWeights[EquivBB]; 1081 LLVM_DEBUG(printBlockWeight(dbgs(), BB)); 1082 } 1083 } 1084 1085 /// Visit the given edge to decide if it has a valid weight. 1086 /// 1087 /// If \p E has not been visited before, we copy to \p UnknownEdge 1088 /// and increment the count of unknown edges. 1089 /// 1090 /// \param E Edge to visit. 1091 /// \param NumUnknownEdges Current number of unknown edges. 1092 /// \param UnknownEdge Set if E has not been visited before. 1093 /// 1094 /// \returns E's weight, if known. Otherwise, return 0. 1095 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 1096 Edge *UnknownEdge) { 1097 if (!VisitedEdges.count(E)) { 1098 (*NumUnknownEdges)++; 1099 *UnknownEdge = E; 1100 return 0; 1101 } 1102 1103 return EdgeWeights[E]; 1104 } 1105 1106 /// Propagate weights through incoming/outgoing edges. 1107 /// 1108 /// If the weight of a basic block is known, and there is only one edge 1109 /// with an unknown weight, we can calculate the weight of that edge. 1110 /// 1111 /// Similarly, if all the edges have a known count, we can calculate the 1112 /// count of the basic block, if needed. 1113 /// 1114 /// \param F Function to process. 1115 /// \param UpdateBlockCount Whether we should update basic block counts that 1116 /// has already been annotated. 1117 /// 1118 /// \returns True if new weights were assigned to edges or blocks. 1119 bool SampleProfileLoader::propagateThroughEdges(Function &F, 1120 bool UpdateBlockCount) { 1121 bool Changed = false; 1122 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); 1123 for (const auto &BI : F) { 1124 const BasicBlock *BB = &BI; 1125 const BasicBlock *EC = EquivalenceClass[BB]; 1126 1127 // Visit all the predecessor and successor edges to determine 1128 // which ones have a weight assigned already. Note that it doesn't 1129 // matter that we only keep track of a single unknown edge. The 1130 // only case we are interested in handling is when only a single 1131 // edge is unknown (see setEdgeOrBlockWeight). 1132 for (unsigned i = 0; i < 2; i++) { 1133 uint64_t TotalWeight = 0; 1134 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 1135 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 1136 1137 if (i == 0) { 1138 // First, visit all predecessor edges. 1139 NumTotalEdges = Predecessors[BB].size(); 1140 for (auto *Pred : Predecessors[BB]) { 1141 Edge E = std::make_pair(Pred, BB); 1142 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1143 if (E.first == E.second) 1144 SelfReferentialEdge = E; 1145 } 1146 if (NumTotalEdges == 1) { 1147 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 1148 } 1149 } else { 1150 // On the second round, visit all successor edges. 1151 NumTotalEdges = Successors[BB].size(); 1152 for (auto *Succ : Successors[BB]) { 1153 Edge E = std::make_pair(BB, Succ); 1154 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1155 } 1156 if (NumTotalEdges == 1) { 1157 SingleEdge = std::make_pair(BB, Successors[BB][0]); 1158 } 1159 } 1160 1161 // After visiting all the edges, there are three cases that we 1162 // can handle immediately: 1163 // 1164 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 1165 // In this case, we simply check that the sum of all the edges 1166 // is the same as BB's weight. If not, we change BB's weight 1167 // to match. Additionally, if BB had not been visited before, 1168 // we mark it visited. 1169 // 1170 // - Only one edge is unknown and BB has already been visited. 1171 // In this case, we can compute the weight of the edge by 1172 // subtracting the total block weight from all the known 1173 // edge weights. If the edges weight more than BB, then the 1174 // edge of the last remaining edge is set to zero. 1175 // 1176 // - There exists a self-referential edge and the weight of BB is 1177 // known. In this case, this edge can be based on BB's weight. 1178 // We add up all the other known edges and set the weight on 1179 // the self-referential edge as we did in the previous case. 1180 // 1181 // In any other case, we must continue iterating. Eventually, 1182 // all edges will get a weight, or iteration will stop when 1183 // it reaches SampleProfileMaxPropagateIterations. 1184 if (NumUnknownEdges <= 1) { 1185 uint64_t &BBWeight = BlockWeights[EC]; 1186 if (NumUnknownEdges == 0) { 1187 if (!VisitedBlocks.count(EC)) { 1188 // If we already know the weight of all edges, the weight of the 1189 // basic block can be computed. It should be no larger than the sum 1190 // of all edge weights. 1191 if (TotalWeight > BBWeight) { 1192 BBWeight = TotalWeight; 1193 Changed = true; 1194 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() 1195 << " known. Set weight for block: "; 1196 printBlockWeight(dbgs(), BB);); 1197 } 1198 } else if (NumTotalEdges == 1 && 1199 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1200 // If there is only one edge for the visited basic block, use the 1201 // block weight to adjust edge weight if edge weight is smaller. 1202 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1203 Changed = true; 1204 } 1205 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1206 // If there is a single unknown edge and the block has been 1207 // visited, then we can compute E's weight. 1208 if (BBWeight >= TotalWeight) 1209 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1210 else 1211 EdgeWeights[UnknownEdge] = 0; 1212 const BasicBlock *OtherEC; 1213 if (i == 0) 1214 OtherEC = EquivalenceClass[UnknownEdge.first]; 1215 else 1216 OtherEC = EquivalenceClass[UnknownEdge.second]; 1217 // Edge weights should never exceed the BB weights it connects. 1218 if (VisitedBlocks.count(OtherEC) && 1219 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1220 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1221 VisitedEdges.insert(UnknownEdge); 1222 Changed = true; 1223 LLVM_DEBUG(dbgs() << "Set weight for edge: "; 1224 printEdgeWeight(dbgs(), UnknownEdge)); 1225 } 1226 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1227 // If a block Weights 0, all its in/out edges should weight 0. 1228 if (i == 0) { 1229 for (auto *Pred : Predecessors[BB]) { 1230 Edge E = std::make_pair(Pred, BB); 1231 EdgeWeights[E] = 0; 1232 VisitedEdges.insert(E); 1233 } 1234 } else { 1235 for (auto *Succ : Successors[BB]) { 1236 Edge E = std::make_pair(BB, Succ); 1237 EdgeWeights[E] = 0; 1238 VisitedEdges.insert(E); 1239 } 1240 } 1241 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1242 uint64_t &BBWeight = BlockWeights[BB]; 1243 // We have a self-referential edge and the weight of BB is known. 1244 if (BBWeight >= TotalWeight) 1245 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1246 else 1247 EdgeWeights[SelfReferentialEdge] = 0; 1248 VisitedEdges.insert(SelfReferentialEdge); 1249 Changed = true; 1250 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; 1251 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1252 } 1253 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1254 BlockWeights[EC] = TotalWeight; 1255 VisitedBlocks.insert(EC); 1256 Changed = true; 1257 } 1258 } 1259 } 1260 1261 return Changed; 1262 } 1263 1264 /// Build in/out edge lists for each basic block in the CFG. 1265 /// 1266 /// We are interested in unique edges. If a block B1 has multiple 1267 /// edges to another block B2, we only add a single B1->B2 edge. 1268 void SampleProfileLoader::buildEdges(Function &F) { 1269 for (auto &BI : F) { 1270 BasicBlock *B1 = &BI; 1271 1272 // Add predecessors for B1. 1273 SmallPtrSet<BasicBlock *, 16> Visited; 1274 if (!Predecessors[B1].empty()) 1275 llvm_unreachable("Found a stale predecessors list in a basic block."); 1276 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1277 BasicBlock *B2 = *PI; 1278 if (Visited.insert(B2).second) 1279 Predecessors[B1].push_back(B2); 1280 } 1281 1282 // Add successors for B1. 1283 Visited.clear(); 1284 if (!Successors[B1].empty()) 1285 llvm_unreachable("Found a stale successors list in a basic block."); 1286 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1287 BasicBlock *B2 = *SI; 1288 if (Visited.insert(B2).second) 1289 Successors[B1].push_back(B2); 1290 } 1291 } 1292 } 1293 1294 /// Returns the sorted CallTargetMap \p M by count in descending order. 1295 static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets( 1296 const SampleRecord::CallTargetMap & M) { 1297 SmallVector<InstrProfValueData, 2> R; 1298 for (const auto &I : SampleRecord::SortCallTargets(M)) { 1299 R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second}); 1300 } 1301 return R; 1302 } 1303 1304 /// Propagate weights into edges 1305 /// 1306 /// The following rules are applied to every block BB in the CFG: 1307 /// 1308 /// - If BB has a single predecessor/successor, then the weight 1309 /// of that edge is the weight of the block. 1310 /// 1311 /// - If all incoming or outgoing edges are known except one, and the 1312 /// weight of the block is already known, the weight of the unknown 1313 /// edge will be the weight of the block minus the sum of all the known 1314 /// edges. If the sum of all the known edges is larger than BB's weight, 1315 /// we set the unknown edge weight to zero. 1316 /// 1317 /// - If there is a self-referential edge, and the weight of the block is 1318 /// known, the weight for that edge is set to the weight of the block 1319 /// minus the weight of the other incoming edges to that block (if 1320 /// known). 1321 void SampleProfileLoader::propagateWeights(Function &F) { 1322 bool Changed = true; 1323 unsigned I = 0; 1324 1325 // If BB weight is larger than its corresponding loop's header BB weight, 1326 // use the BB weight to replace the loop header BB weight. 1327 for (auto &BI : F) { 1328 BasicBlock *BB = &BI; 1329 Loop *L = LI->getLoopFor(BB); 1330 if (!L) { 1331 continue; 1332 } 1333 BasicBlock *Header = L->getHeader(); 1334 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1335 BlockWeights[Header] = BlockWeights[BB]; 1336 } 1337 } 1338 1339 // Before propagation starts, build, for each block, a list of 1340 // unique predecessors and successors. This is necessary to handle 1341 // identical edges in multiway branches. Since we visit all blocks and all 1342 // edges of the CFG, it is cleaner to build these lists once at the start 1343 // of the pass. 1344 buildEdges(F); 1345 1346 // Propagate until we converge or we go past the iteration limit. 1347 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1348 Changed = propagateThroughEdges(F, false); 1349 } 1350 1351 // The first propagation propagates BB counts from annotated BBs to unknown 1352 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1353 // to propagate edge weights. 1354 VisitedEdges.clear(); 1355 Changed = true; 1356 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1357 Changed = propagateThroughEdges(F, false); 1358 } 1359 1360 // The 3rd propagation pass allows adjust annotated BB weights that are 1361 // obviously wrong. 1362 Changed = true; 1363 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1364 Changed = propagateThroughEdges(F, true); 1365 } 1366 1367 // Generate MD_prof metadata for every branch instruction using the 1368 // edge weights computed during propagation. 1369 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1370 LLVMContext &Ctx = F.getContext(); 1371 MDBuilder MDB(Ctx); 1372 for (auto &BI : F) { 1373 BasicBlock *BB = &BI; 1374 1375 if (BlockWeights[BB]) { 1376 for (auto &I : BB->getInstList()) { 1377 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1378 continue; 1379 CallSite CS(&I); 1380 if (!CS.getCalledFunction()) { 1381 const DebugLoc &DLoc = I.getDebugLoc(); 1382 if (!DLoc) 1383 continue; 1384 const DILocation *DIL = DLoc; 1385 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 1386 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1387 1388 const FunctionSamples *FS = findFunctionSamples(I); 1389 if (!FS) 1390 continue; 1391 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1392 if (!T || T.get().empty()) 1393 continue; 1394 SmallVector<InstrProfValueData, 2> SortedCallTargets = 1395 GetSortedValueDataFromCallTargets(T.get()); 1396 uint64_t Sum; 1397 findIndirectCallFunctionSamples(I, Sum); 1398 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1399 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1400 SortedCallTargets.size()); 1401 } else if (!isa<IntrinsicInst>(&I)) { 1402 I.setMetadata(LLVMContext::MD_prof, 1403 MDB.createBranchWeights( 1404 {static_cast<uint32_t>(BlockWeights[BB])})); 1405 } 1406 } 1407 } 1408 Instruction *TI = BB->getTerminator(); 1409 if (TI->getNumSuccessors() == 1) 1410 continue; 1411 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1412 continue; 1413 1414 DebugLoc BranchLoc = TI->getDebugLoc(); 1415 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " 1416 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1417 : Twine("<UNKNOWN LOCATION>")) 1418 << ".\n"); 1419 SmallVector<uint32_t, 4> Weights; 1420 uint32_t MaxWeight = 0; 1421 Instruction *MaxDestInst; 1422 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1423 BasicBlock *Succ = TI->getSuccessor(I); 1424 Edge E = std::make_pair(BB, Succ); 1425 uint64_t Weight = EdgeWeights[E]; 1426 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1427 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1428 // if needed. Sample counts in profiles are 64-bit unsigned values, 1429 // but internally branch weights are expressed as 32-bit values. 1430 if (Weight > std::numeric_limits<uint32_t>::max()) { 1431 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1432 Weight = std::numeric_limits<uint32_t>::max(); 1433 } 1434 // Weight is added by one to avoid propagation errors introduced by 1435 // 0 weights. 1436 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1437 if (Weight != 0) { 1438 if (Weight > MaxWeight) { 1439 MaxWeight = Weight; 1440 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1441 } 1442 } 1443 } 1444 1445 uint64_t TempWeight; 1446 // Only set weights if there is at least one non-zero weight. 1447 // In any other case, let the analyzer set weights. 1448 // Do not set weights if the weights are present. In ThinLTO, the profile 1449 // annotation is done twice. If the first annotation already set the 1450 // weights, the second pass does not need to set it. 1451 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1452 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1453 TI->setMetadata(LLVMContext::MD_prof, 1454 MDB.createBranchWeights(Weights)); 1455 ORE->emit([&]() { 1456 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1457 << "most popular destination for conditional branches at " 1458 << ore::NV("CondBranchesLoc", BranchLoc); 1459 }); 1460 } else { 1461 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1462 } 1463 } 1464 } 1465 1466 /// Get the line number for the function header. 1467 /// 1468 /// This looks up function \p F in the current compilation unit and 1469 /// retrieves the line number where the function is defined. This is 1470 /// line 0 for all the samples read from the profile file. Every line 1471 /// number is relative to this line. 1472 /// 1473 /// \param F Function object to query. 1474 /// 1475 /// \returns the line number where \p F is defined. If it returns 0, 1476 /// it means that there is no debug information available for \p F. 1477 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1478 if (DISubprogram *S = F.getSubprogram()) 1479 return S->getLine(); 1480 1481 if (NoWarnSampleUnused) 1482 return 0; 1483 1484 // If the start of \p F is missing, emit a diagnostic to inform the user 1485 // about the missed opportunity. 1486 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1487 "No debug information found in function " + F.getName() + 1488 ": Function profile not used", 1489 DS_Warning)); 1490 return 0; 1491 } 1492 1493 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1494 DT.reset(new DominatorTree); 1495 DT->recalculate(F); 1496 1497 PDT.reset(new PostDominatorTree(F)); 1498 1499 LI.reset(new LoopInfo); 1500 LI->analyze(*DT); 1501 } 1502 1503 /// Generate branch weight metadata for all branches in \p F. 1504 /// 1505 /// Branch weights are computed out of instruction samples using a 1506 /// propagation heuristic. Propagation proceeds in 3 phases: 1507 /// 1508 /// 1- Assignment of block weights. All the basic blocks in the function 1509 /// are initial assigned the same weight as their most frequently 1510 /// executed instruction. 1511 /// 1512 /// 2- Creation of equivalence classes. Since samples may be missing from 1513 /// blocks, we can fill in the gaps by setting the weights of all the 1514 /// blocks in the same equivalence class to the same weight. To compute 1515 /// the concept of equivalence, we use dominance and loop information. 1516 /// Two blocks B1 and B2 are in the same equivalence class if B1 1517 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1518 /// 1519 /// 3- Propagation of block weights into edges. This uses a simple 1520 /// propagation heuristic. The following rules are applied to every 1521 /// block BB in the CFG: 1522 /// 1523 /// - If BB has a single predecessor/successor, then the weight 1524 /// of that edge is the weight of the block. 1525 /// 1526 /// - If all the edges are known except one, and the weight of the 1527 /// block is already known, the weight of the unknown edge will 1528 /// be the weight of the block minus the sum of all the known 1529 /// edges. If the sum of all the known edges is larger than BB's weight, 1530 /// we set the unknown edge weight to zero. 1531 /// 1532 /// - If there is a self-referential edge, and the weight of the block is 1533 /// known, the weight for that edge is set to the weight of the block 1534 /// minus the weight of the other incoming edges to that block (if 1535 /// known). 1536 /// 1537 /// Since this propagation is not guaranteed to finalize for every CFG, we 1538 /// only allow it to proceed for a limited number of iterations (controlled 1539 /// by -sample-profile-max-propagate-iterations). 1540 /// 1541 /// FIXME: Try to replace this propagation heuristic with a scheme 1542 /// that is guaranteed to finalize. A work-list approach similar to 1543 /// the standard value propagation algorithm used by SSA-CCP might 1544 /// work here. 1545 /// 1546 /// Once all the branch weights are computed, we emit the MD_prof 1547 /// metadata on BB using the computed values for each of its branches. 1548 /// 1549 /// \param F The function to query. 1550 /// 1551 /// \returns true if \p F was modified. Returns false, otherwise. 1552 bool SampleProfileLoader::emitAnnotations(Function &F) { 1553 bool Changed = false; 1554 1555 if (getFunctionLoc(F) == 0) 1556 return false; 1557 1558 LLVM_DEBUG(dbgs() << "Line number for the first instruction in " 1559 << F.getName() << ": " << getFunctionLoc(F) << "\n"); 1560 1561 DenseSet<GlobalValue::GUID> InlinedGUIDs; 1562 Changed |= inlineHotFunctions(F, InlinedGUIDs); 1563 1564 // Compute basic block weights. 1565 Changed |= computeBlockWeights(F); 1566 1567 if (Changed) { 1568 // Add an entry count to the function using the samples gathered at the 1569 // function entry. 1570 // Sets the GUIDs that are inlined in the profiled binary. This is used 1571 // for ThinLink to make correct liveness analysis, and also make the IR 1572 // match the profiled binary before annotation. 1573 F.setEntryCount( 1574 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), 1575 &InlinedGUIDs); 1576 1577 // Compute dominance and loop info needed for propagation. 1578 computeDominanceAndLoopInfo(F); 1579 1580 // Find equivalence classes. 1581 findEquivalenceClasses(F); 1582 1583 // Propagate weights to all edges. 1584 propagateWeights(F); 1585 } 1586 1587 // If coverage checking was requested, compute it now. 1588 if (SampleProfileRecordCoverage) { 1589 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); 1590 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); 1591 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1592 if (Coverage < SampleProfileRecordCoverage) { 1593 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1594 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1595 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1596 Twine(Coverage) + "%) were applied", 1597 DS_Warning)); 1598 } 1599 } 1600 1601 if (SampleProfileSampleCoverage) { 1602 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1603 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); 1604 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1605 if (Coverage < SampleProfileSampleCoverage) { 1606 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1607 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1608 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1609 Twine(Coverage) + "%) were applied", 1610 DS_Warning)); 1611 } 1612 } 1613 return Changed; 1614 } 1615 1616 char SampleProfileLoaderLegacyPass::ID = 0; 1617 1618 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1619 "Sample Profile loader", false, false) 1620 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1621 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1622 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1623 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1624 "Sample Profile loader", false, false) 1625 1626 bool SampleProfileLoader::doInitialization(Module &M) { 1627 auto &Ctx = M.getContext(); 1628 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1629 if (std::error_code EC = ReaderOrErr.getError()) { 1630 std::string Msg = "Could not open profile: " + EC.message(); 1631 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1632 return false; 1633 } 1634 Reader = std::move(ReaderOrErr.get()); 1635 Reader->collectFuncsToUse(M); 1636 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1637 1638 if (!RemappingFilename.empty()) { 1639 // Apply profile remappings to the loaded profile data if requested. 1640 // For now, we only support remapping symbols encoded using the Itanium 1641 // C++ ABI's name mangling scheme. 1642 ReaderOrErr = SampleProfileReaderItaniumRemapper::create( 1643 RemappingFilename, Ctx, std::move(Reader)); 1644 if (std::error_code EC = ReaderOrErr.getError()) { 1645 std::string Msg = "Could not open profile remapping file: " + EC.message(); 1646 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1647 return false; 1648 } 1649 Reader = std::move(ReaderOrErr.get()); 1650 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1651 } 1652 return true; 1653 } 1654 1655 ModulePass *llvm::createSampleProfileLoaderPass() { 1656 return new SampleProfileLoaderLegacyPass(); 1657 } 1658 1659 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1660 return new SampleProfileLoaderLegacyPass(Name); 1661 } 1662 1663 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, 1664 ProfileSummaryInfo *_PSI) { 1665 GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap); 1666 if (!ProfileIsValid) 1667 return false; 1668 1669 PSI = _PSI; 1670 if (M.getProfileSummary(/* IsCS */ false) == nullptr) 1671 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()), 1672 ProfileSummary::PSK_Sample); 1673 1674 // Compute the total number of samples collected in this profile. 1675 for (const auto &I : Reader->getProfiles()) 1676 TotalCollectedSamples += I.second.getTotalSamples(); 1677 1678 // Populate the symbol map. 1679 for (const auto &N_F : M.getValueSymbolTable()) { 1680 StringRef OrigName = N_F.getKey(); 1681 Function *F = dyn_cast<Function>(N_F.getValue()); 1682 if (F == nullptr) 1683 continue; 1684 SymbolMap[OrigName] = F; 1685 auto pos = OrigName.find('.'); 1686 if (pos != StringRef::npos) { 1687 StringRef NewName = OrigName.substr(0, pos); 1688 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1689 // Failiing to insert means there is already an entry in SymbolMap, 1690 // thus there are multiple functions that are mapped to the same 1691 // stripped name. In this case of name conflicting, set the value 1692 // to nullptr to avoid confusion. 1693 if (!r.second) 1694 r.first->second = nullptr; 1695 } 1696 } 1697 1698 bool retval = false; 1699 for (auto &F : M) 1700 if (!F.isDeclaration()) { 1701 clearFunctionData(); 1702 retval |= runOnFunction(F, AM); 1703 } 1704 1705 // Account for cold calls not inlined.... 1706 for (const std::pair<Function *, NotInlinedProfileInfo> &pair : 1707 notInlinedCallInfo) 1708 updateProfileCallee(pair.first, pair.second.entryCount); 1709 1710 return retval; 1711 } 1712 1713 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1714 ACT = &getAnalysis<AssumptionCacheTracker>(); 1715 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 1716 ProfileSummaryInfo *PSI = 1717 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1718 return SampleLoader.runOnModule(M, nullptr, PSI); 1719 } 1720 1721 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 1722 1723 DILocation2SampleMap.clear(); 1724 // By default the entry count is initialized to -1, which will be treated 1725 // conservatively by getEntryCount as the same as unknown (None). This is 1726 // to avoid newly added code to be treated as cold. If we have samples 1727 // this will be overwritten in emitAnnotations. 1728 // If ProfileSampleAccurate is true or F has profile-sample-accurate 1729 // attribute, initialize the entry count to 0 so callsites or functions 1730 // unsampled will be treated as cold. 1731 uint64_t initialEntryCount = 1732 (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) 1733 ? 0 1734 : -1; 1735 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real)); 1736 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 1737 if (AM) { 1738 auto &FAM = 1739 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 1740 .getManager(); 1741 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1742 } else { 1743 OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F); 1744 ORE = OwnedORE.get(); 1745 } 1746 Samples = Reader->getSamplesFor(F); 1747 if (Samples && !Samples->empty()) 1748 return emitAnnotations(F); 1749 return false; 1750 } 1751 1752 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1753 ModuleAnalysisManager &AM) { 1754 FunctionAnalysisManager &FAM = 1755 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1756 1757 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 1758 return FAM.getResult<AssumptionAnalysis>(F); 1759 }; 1760 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 1761 return FAM.getResult<TargetIRAnalysis>(F); 1762 }; 1763 1764 SampleProfileLoader SampleLoader( 1765 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 1766 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile 1767 : ProfileRemappingFileName, 1768 IsThinLTOPreLink, GetAssumptionCache, GetTTI); 1769 1770 SampleLoader.doInitialization(M); 1771 1772 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 1773 if (!SampleLoader.runOnModule(M, &AM, PSI)) 1774 return PreservedAnalyses::all(); 1775 1776 return PreservedAnalyses::none(); 1777 } 1778