1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SampleProfileLoader transformation. This pass 10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 12 // profile information in the given profile. 13 // 14 // This pass generates branch weight annotations on the IR: 15 // 16 // - prof: Represents branch weights. This annotation is added to branches 17 // to indicate the weights of each edge coming out of the branch. 18 // The weight of each edge is the weight of the target block for 19 // that edge. The weight of a block B is computed as the maximum 20 // number of samples found in B. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/IPO/SampleProfile.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/None.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringMap.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/ADT/Twine.h" 35 #include "llvm/Analysis/AssumptionCache.h" 36 #include "llvm/Analysis/InlineCost.h" 37 #include "llvm/Analysis/LoopInfo.h" 38 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 39 #include "llvm/Analysis/PostDominators.h" 40 #include "llvm/Analysis/ProfileSummaryInfo.h" 41 #include "llvm/Analysis/TargetTransformInfo.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/CallSite.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DiagnosticInfo.h" 48 #include "llvm/IR/Dominators.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/MDBuilder.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/PassManager.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/InitializePasses.h" 61 #include "llvm/Pass.h" 62 #include "llvm/ProfileData/InstrProf.h" 63 #include "llvm/ProfileData/SampleProf.h" 64 #include "llvm/ProfileData/SampleProfReader.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/GenericDomTree.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Transforms/IPO.h" 73 #include "llvm/Transforms/Instrumentation.h" 74 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 75 #include "llvm/Transforms/Utils/Cloning.h" 76 #include "llvm/Transforms/Utils/MisExpect.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <cstdint> 80 #include <functional> 81 #include <limits> 82 #include <map> 83 #include <memory> 84 #include <queue> 85 #include <string> 86 #include <system_error> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 using namespace sampleprof; 92 using ProfileCount = Function::ProfileCount; 93 #define DEBUG_TYPE "sample-profile" 94 95 // Command line option to specify the file to read samples from. This is 96 // mainly used for debugging. 97 static cl::opt<std::string> SampleProfileFile( 98 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 99 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 100 101 // The named file contains a set of transformations that may have been applied 102 // to the symbol names between the program from which the sample data was 103 // collected and the current program's symbols. 104 static cl::opt<std::string> SampleProfileRemappingFile( 105 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), 106 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); 107 108 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 109 "sample-profile-max-propagate-iterations", cl::init(100), 110 cl::desc("Maximum number of iterations to go through when propagating " 111 "sample block/edge weights through the CFG.")); 112 113 static cl::opt<unsigned> SampleProfileRecordCoverage( 114 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 115 cl::desc("Emit a warning if less than N% of records in the input profile " 116 "are matched to the IR.")); 117 118 static cl::opt<unsigned> SampleProfileSampleCoverage( 119 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 120 cl::desc("Emit a warning if less than N% of samples in the input profile " 121 "are matched to the IR.")); 122 123 static cl::opt<bool> NoWarnSampleUnused( 124 "no-warn-sample-unused", cl::init(false), cl::Hidden, 125 cl::desc("Use this option to turn off/on warnings about function with " 126 "samples but without debug information to use those samples. ")); 127 128 static cl::opt<bool> ProfileSampleAccurate( 129 "profile-sample-accurate", cl::Hidden, cl::init(false), 130 cl::desc("If the sample profile is accurate, we will mark all un-sampled " 131 "callsite and function as having 0 samples. Otherwise, treat " 132 "un-sampled callsites and functions conservatively as unknown. ")); 133 134 static cl::opt<bool> ProfileAccurateForSymsInList( 135 "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore, 136 cl::init(true), 137 cl::desc("For symbols in profile symbol list, regard their profiles to " 138 "be accurate. It may be overriden by profile-sample-accurate. ")); 139 140 namespace { 141 142 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 143 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 144 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 145 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 146 using BlockEdgeMap = 147 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 148 149 class SampleProfileLoader; 150 151 class SampleCoverageTracker { 152 public: 153 SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){}; 154 155 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 156 uint32_t Discriminator, uint64_t Samples); 157 unsigned computeCoverage(unsigned Used, unsigned Total) const; 158 unsigned countUsedRecords(const FunctionSamples *FS, 159 ProfileSummaryInfo *PSI) const; 160 unsigned countBodyRecords(const FunctionSamples *FS, 161 ProfileSummaryInfo *PSI) const; 162 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 163 uint64_t countBodySamples(const FunctionSamples *FS, 164 ProfileSummaryInfo *PSI) const; 165 166 void clear() { 167 SampleCoverage.clear(); 168 TotalUsedSamples = 0; 169 } 170 171 private: 172 using BodySampleCoverageMap = std::map<LineLocation, unsigned>; 173 using FunctionSamplesCoverageMap = 174 DenseMap<const FunctionSamples *, BodySampleCoverageMap>; 175 176 /// Coverage map for sampling records. 177 /// 178 /// This map keeps a record of sampling records that have been matched to 179 /// an IR instruction. This is used to detect some form of staleness in 180 /// profiles (see flag -sample-profile-check-coverage). 181 /// 182 /// Each entry in the map corresponds to a FunctionSamples instance. This is 183 /// another map that counts how many times the sample record at the 184 /// given location has been used. 185 FunctionSamplesCoverageMap SampleCoverage; 186 187 /// Number of samples used from the profile. 188 /// 189 /// When a sampling record is used for the first time, the samples from 190 /// that record are added to this accumulator. Coverage is later computed 191 /// based on the total number of samples available in this function and 192 /// its callsites. 193 /// 194 /// Note that this accumulator tracks samples used from a single function 195 /// and all the inlined callsites. Strictly, we should have a map of counters 196 /// keyed by FunctionSamples pointers, but these stats are cleared after 197 /// every function, so we just need to keep a single counter. 198 uint64_t TotalUsedSamples = 0; 199 200 SampleProfileLoader &SPLoader; 201 }; 202 203 class GUIDToFuncNameMapper { 204 public: 205 GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader, 206 DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap) 207 : CurrentReader(Reader), CurrentModule(M), 208 CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) { 209 if (CurrentReader.getFormat() != SPF_Compact_Binary) 210 return; 211 212 for (const auto &F : CurrentModule) { 213 StringRef OrigName = F.getName(); 214 CurrentGUIDToFuncNameMap.insert( 215 {Function::getGUID(OrigName), OrigName}); 216 217 // Local to global var promotion used by optimization like thinlto 218 // will rename the var and add suffix like ".llvm.xxx" to the 219 // original local name. In sample profile, the suffixes of function 220 // names are all stripped. Since it is possible that the mapper is 221 // built in post-thin-link phase and var promotion has been done, 222 // we need to add the substring of function name without the suffix 223 // into the GUIDToFuncNameMap. 224 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 225 if (CanonName != OrigName) 226 CurrentGUIDToFuncNameMap.insert( 227 {Function::getGUID(CanonName), CanonName}); 228 } 229 230 // Update GUIDToFuncNameMap for each function including inlinees. 231 SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap); 232 } 233 234 ~GUIDToFuncNameMapper() { 235 if (CurrentReader.getFormat() != SPF_Compact_Binary) 236 return; 237 238 CurrentGUIDToFuncNameMap.clear(); 239 240 // Reset GUIDToFuncNameMap for of each function as they're no 241 // longer valid at this point. 242 SetGUIDToFuncNameMapForAll(nullptr); 243 } 244 245 private: 246 void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) { 247 std::queue<FunctionSamples *> FSToUpdate; 248 for (auto &IFS : CurrentReader.getProfiles()) { 249 FSToUpdate.push(&IFS.second); 250 } 251 252 while (!FSToUpdate.empty()) { 253 FunctionSamples *FS = FSToUpdate.front(); 254 FSToUpdate.pop(); 255 FS->GUIDToFuncNameMap = Map; 256 for (const auto &ICS : FS->getCallsiteSamples()) { 257 const FunctionSamplesMap &FSMap = ICS.second; 258 for (auto &IFS : FSMap) { 259 FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second); 260 FSToUpdate.push(&FS); 261 } 262 } 263 } 264 } 265 266 SampleProfileReader &CurrentReader; 267 Module &CurrentModule; 268 DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap; 269 }; 270 271 /// Sample profile pass. 272 /// 273 /// This pass reads profile data from the file specified by 274 /// -sample-profile-file and annotates every affected function with the 275 /// profile information found in that file. 276 class SampleProfileLoader { 277 public: 278 SampleProfileLoader( 279 StringRef Name, StringRef RemapName, bool IsThinLTOPreLink, 280 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 281 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo) 282 : GetAC(std::move(GetAssumptionCache)), 283 GetTTI(std::move(GetTargetTransformInfo)), CoverageTracker(*this), 284 Filename(Name), RemappingFilename(RemapName), 285 IsThinLTOPreLink(IsThinLTOPreLink) {} 286 287 bool doInitialization(Module &M); 288 bool runOnModule(Module &M, ModuleAnalysisManager *AM, 289 ProfileSummaryInfo *_PSI); 290 291 void dump() { Reader->dump(); } 292 293 protected: 294 friend class SampleCoverageTracker; 295 296 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 297 unsigned getFunctionLoc(Function &F); 298 bool emitAnnotations(Function &F); 299 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 300 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 301 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 302 std::vector<const FunctionSamples *> 303 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 304 mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap; 305 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 306 bool inlineCallInstruction(Instruction *I); 307 bool inlineHotFunctions(Function &F, 308 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 309 void printEdgeWeight(raw_ostream &OS, Edge E); 310 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 311 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 312 bool computeBlockWeights(Function &F); 313 void findEquivalenceClasses(Function &F); 314 template <bool IsPostDom> 315 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 316 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 317 318 void propagateWeights(Function &F); 319 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 320 void buildEdges(Function &F); 321 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 322 void computeDominanceAndLoopInfo(Function &F); 323 void clearFunctionData(); 324 bool callsiteIsHot(const FunctionSamples *CallsiteFS, 325 ProfileSummaryInfo *PSI); 326 327 /// Map basic blocks to their computed weights. 328 /// 329 /// The weight of a basic block is defined to be the maximum 330 /// of all the instruction weights in that block. 331 BlockWeightMap BlockWeights; 332 333 /// Map edges to their computed weights. 334 /// 335 /// Edge weights are computed by propagating basic block weights in 336 /// SampleProfile::propagateWeights. 337 EdgeWeightMap EdgeWeights; 338 339 /// Set of visited blocks during propagation. 340 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 341 342 /// Set of visited edges during propagation. 343 SmallSet<Edge, 32> VisitedEdges; 344 345 /// Equivalence classes for block weights. 346 /// 347 /// Two blocks BB1 and BB2 are in the same equivalence class if they 348 /// dominate and post-dominate each other, and they are in the same loop 349 /// nest. When this happens, the two blocks are guaranteed to execute 350 /// the same number of times. 351 EquivalenceClassMap EquivalenceClass; 352 353 /// Map from function name to Function *. Used to find the function from 354 /// the function name. If the function name contains suffix, additional 355 /// entry is added to map from the stripped name to the function if there 356 /// is one-to-one mapping. 357 StringMap<Function *> SymbolMap; 358 359 /// Dominance, post-dominance and loop information. 360 std::unique_ptr<DominatorTree> DT; 361 std::unique_ptr<PostDominatorTree> PDT; 362 std::unique_ptr<LoopInfo> LI; 363 364 std::function<AssumptionCache &(Function &)> GetAC; 365 std::function<TargetTransformInfo &(Function &)> GetTTI; 366 367 /// Predecessors for each basic block in the CFG. 368 BlockEdgeMap Predecessors; 369 370 /// Successors for each basic block in the CFG. 371 BlockEdgeMap Successors; 372 373 SampleCoverageTracker CoverageTracker; 374 375 /// Profile reader object. 376 std::unique_ptr<SampleProfileReader> Reader; 377 378 /// Samples collected for the body of this function. 379 FunctionSamples *Samples = nullptr; 380 381 /// Name of the profile file to load. 382 std::string Filename; 383 384 /// Name of the profile remapping file to load. 385 std::string RemappingFilename; 386 387 /// Flag indicating whether the profile input loaded successfully. 388 bool ProfileIsValid = false; 389 390 /// Flag indicating if the pass is invoked in ThinLTO compile phase. 391 /// 392 /// In this phase, in annotation, we should not promote indirect calls. 393 /// Instead, we will mark GUIDs that needs to be annotated to the function. 394 bool IsThinLTOPreLink; 395 396 /// Profile Summary Info computed from sample profile. 397 ProfileSummaryInfo *PSI = nullptr; 398 399 /// Profle Symbol list tells whether a function name appears in the binary 400 /// used to generate the current profile. 401 std::unique_ptr<ProfileSymbolList> PSL; 402 403 /// Total number of samples collected in this profile. 404 /// 405 /// This is the sum of all the samples collected in all the functions executed 406 /// at runtime. 407 uint64_t TotalCollectedSamples = 0; 408 409 /// Optimization Remark Emitter used to emit diagnostic remarks. 410 OptimizationRemarkEmitter *ORE = nullptr; 411 412 // Information recorded when we declined to inline a call site 413 // because we have determined it is too cold is accumulated for 414 // each callee function. Initially this is just the entry count. 415 struct NotInlinedProfileInfo { 416 uint64_t entryCount; 417 }; 418 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo; 419 420 // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for 421 // all the function symbols defined or declared in current module. 422 DenseMap<uint64_t, StringRef> GUIDToFuncNameMap; 423 424 // All the Names used in FunctionSamples including outline function 425 // names, inline instance names and call target names. 426 StringSet<> NamesInProfile; 427 428 // For symbol in profile symbol list, whether to regard their profiles 429 // to be accurate. It is mainly decided by existance of profile symbol 430 // list and -profile-accurate-for-symsinlist flag, but it can be 431 // overriden by -profile-sample-accurate or profile-sample-accurate 432 // attribute. 433 bool ProfAccForSymsInList; 434 }; 435 436 class SampleProfileLoaderLegacyPass : public ModulePass { 437 public: 438 // Class identification, replacement for typeinfo 439 static char ID; 440 441 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, 442 bool IsThinLTOPreLink = false) 443 : ModulePass(ID), 444 SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink, 445 [&](Function &F) -> AssumptionCache & { 446 return ACT->getAssumptionCache(F); 447 }, 448 [&](Function &F) -> TargetTransformInfo & { 449 return TTIWP->getTTI(F); 450 }) { 451 initializeSampleProfileLoaderLegacyPassPass( 452 *PassRegistry::getPassRegistry()); 453 } 454 455 void dump() { SampleLoader.dump(); } 456 457 bool doInitialization(Module &M) override { 458 return SampleLoader.doInitialization(M); 459 } 460 461 StringRef getPassName() const override { return "Sample profile pass"; } 462 bool runOnModule(Module &M) override; 463 464 void getAnalysisUsage(AnalysisUsage &AU) const override { 465 AU.addRequired<AssumptionCacheTracker>(); 466 AU.addRequired<TargetTransformInfoWrapperPass>(); 467 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 468 } 469 470 private: 471 SampleProfileLoader SampleLoader; 472 AssumptionCacheTracker *ACT = nullptr; 473 TargetTransformInfoWrapperPass *TTIWP = nullptr; 474 }; 475 476 } // end anonymous namespace 477 478 /// Return true if the given callsite is hot wrt to hot cutoff threshold. 479 /// 480 /// Functions that were inlined in the original binary will be represented 481 /// in the inline stack in the sample profile. If the profile shows that 482 /// the original inline decision was "good" (i.e., the callsite is executed 483 /// frequently), then we will recreate the inline decision and apply the 484 /// profile from the inlined callsite. 485 /// 486 /// To decide whether an inlined callsite is hot, we compare the callsite 487 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is 488 /// regarded as hot if the count is above the cutoff value. 489 /// 490 /// When ProfileAccurateForSymsInList is enabled and profile symbol list 491 /// is present, functions in the profile symbol list but without profile will 492 /// be regarded as cold and much less inlining will happen in CGSCC inlining 493 /// pass, so we tend to lower the hot criteria here to allow more early 494 /// inlining to happen for warm callsites and it is helpful for performance. 495 bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS, 496 ProfileSummaryInfo *PSI) { 497 if (!CallsiteFS) 498 return false; // The callsite was not inlined in the original binary. 499 500 assert(PSI && "PSI is expected to be non null"); 501 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 502 if (ProfAccForSymsInList) 503 return !PSI->isColdCount(CallsiteTotalSamples); 504 else 505 return PSI->isHotCount(CallsiteTotalSamples); 506 } 507 508 /// Mark as used the sample record for the given function samples at 509 /// (LineOffset, Discriminator). 510 /// 511 /// \returns true if this is the first time we mark the given record. 512 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 513 uint32_t LineOffset, 514 uint32_t Discriminator, 515 uint64_t Samples) { 516 LineLocation Loc(LineOffset, Discriminator); 517 unsigned &Count = SampleCoverage[FS][Loc]; 518 bool FirstTime = (++Count == 1); 519 if (FirstTime) 520 TotalUsedSamples += Samples; 521 return FirstTime; 522 } 523 524 /// Return the number of sample records that were applied from this profile. 525 /// 526 /// This count does not include records from cold inlined callsites. 527 unsigned 528 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS, 529 ProfileSummaryInfo *PSI) const { 530 auto I = SampleCoverage.find(FS); 531 532 // The size of the coverage map for FS represents the number of records 533 // that were marked used at least once. 534 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 535 536 // If there are inlined callsites in this function, count the samples found 537 // in the respective bodies. However, do not bother counting callees with 0 538 // total samples, these are callees that were never invoked at runtime. 539 for (const auto &I : FS->getCallsiteSamples()) 540 for (const auto &J : I.second) { 541 const FunctionSamples *CalleeSamples = &J.second; 542 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 543 Count += countUsedRecords(CalleeSamples, PSI); 544 } 545 546 return Count; 547 } 548 549 /// Return the number of sample records in the body of this profile. 550 /// 551 /// This count does not include records from cold inlined callsites. 552 unsigned 553 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS, 554 ProfileSummaryInfo *PSI) const { 555 unsigned Count = FS->getBodySamples().size(); 556 557 // Only count records in hot callsites. 558 for (const auto &I : FS->getCallsiteSamples()) 559 for (const auto &J : I.second) { 560 const FunctionSamples *CalleeSamples = &J.second; 561 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 562 Count += countBodyRecords(CalleeSamples, PSI); 563 } 564 565 return Count; 566 } 567 568 /// Return the number of samples collected in the body of this profile. 569 /// 570 /// This count does not include samples from cold inlined callsites. 571 uint64_t 572 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS, 573 ProfileSummaryInfo *PSI) const { 574 uint64_t Total = 0; 575 for (const auto &I : FS->getBodySamples()) 576 Total += I.second.getSamples(); 577 578 // Only count samples in hot callsites. 579 for (const auto &I : FS->getCallsiteSamples()) 580 for (const auto &J : I.second) { 581 const FunctionSamples *CalleeSamples = &J.second; 582 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 583 Total += countBodySamples(CalleeSamples, PSI); 584 } 585 586 return Total; 587 } 588 589 /// Return the fraction of sample records used in this profile. 590 /// 591 /// The returned value is an unsigned integer in the range 0-100 indicating 592 /// the percentage of sample records that were used while applying this 593 /// profile to the associated function. 594 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 595 unsigned Total) const { 596 assert(Used <= Total && 597 "number of used records cannot exceed the total number of records"); 598 return Total > 0 ? Used * 100 / Total : 100; 599 } 600 601 /// Clear all the per-function data used to load samples and propagate weights. 602 void SampleProfileLoader::clearFunctionData() { 603 BlockWeights.clear(); 604 EdgeWeights.clear(); 605 VisitedBlocks.clear(); 606 VisitedEdges.clear(); 607 EquivalenceClass.clear(); 608 DT = nullptr; 609 PDT = nullptr; 610 LI = nullptr; 611 Predecessors.clear(); 612 Successors.clear(); 613 CoverageTracker.clear(); 614 } 615 616 #ifndef NDEBUG 617 /// Print the weight of edge \p E on stream \p OS. 618 /// 619 /// \param OS Stream to emit the output to. 620 /// \param E Edge to print. 621 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 622 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 623 << "]: " << EdgeWeights[E] << "\n"; 624 } 625 626 /// Print the equivalence class of block \p BB on stream \p OS. 627 /// 628 /// \param OS Stream to emit the output to. 629 /// \param BB Block to print. 630 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 631 const BasicBlock *BB) { 632 const BasicBlock *Equiv = EquivalenceClass[BB]; 633 OS << "equivalence[" << BB->getName() 634 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 635 } 636 637 /// Print the weight of block \p BB on stream \p OS. 638 /// 639 /// \param OS Stream to emit the output to. 640 /// \param BB Block to print. 641 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 642 const BasicBlock *BB) const { 643 const auto &I = BlockWeights.find(BB); 644 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 645 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 646 } 647 #endif 648 649 /// Get the weight for an instruction. 650 /// 651 /// The "weight" of an instruction \p Inst is the number of samples 652 /// collected on that instruction at runtime. To retrieve it, we 653 /// need to compute the line number of \p Inst relative to the start of its 654 /// function. We use HeaderLineno to compute the offset. We then 655 /// look up the samples collected for \p Inst using BodySamples. 656 /// 657 /// \param Inst Instruction to query. 658 /// 659 /// \returns the weight of \p Inst. 660 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 661 const DebugLoc &DLoc = Inst.getDebugLoc(); 662 if (!DLoc) 663 return std::error_code(); 664 665 const FunctionSamples *FS = findFunctionSamples(Inst); 666 if (!FS) 667 return std::error_code(); 668 669 // Ignore all intrinsics, phinodes and branch instructions. 670 // Branch and phinodes instruction usually contains debug info from sources outside of 671 // the residing basic block, thus we ignore them during annotation. 672 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst)) 673 return std::error_code(); 674 675 // If a direct call/invoke instruction is inlined in profile 676 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 677 // it means that the inlined callsite has no sample, thus the call 678 // instruction should have 0 count. 679 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && 680 !ImmutableCallSite(&Inst).isIndirectCall() && 681 findCalleeFunctionSamples(Inst)) 682 return 0; 683 684 const DILocation *DIL = DLoc; 685 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 686 uint32_t Discriminator = DIL->getBaseDiscriminator(); 687 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 688 if (R) { 689 bool FirstMark = 690 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 691 if (FirstMark) { 692 ORE->emit([&]() { 693 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 694 Remark << "Applied " << ore::NV("NumSamples", *R); 695 Remark << " samples from profile (offset: "; 696 Remark << ore::NV("LineOffset", LineOffset); 697 if (Discriminator) { 698 Remark << "."; 699 Remark << ore::NV("Discriminator", Discriminator); 700 } 701 Remark << ")"; 702 return Remark; 703 }); 704 } 705 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." 706 << DIL->getBaseDiscriminator() << ":" << Inst 707 << " (line offset: " << LineOffset << "." 708 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 709 << ")\n"); 710 } 711 return R; 712 } 713 714 /// Compute the weight of a basic block. 715 /// 716 /// The weight of basic block \p BB is the maximum weight of all the 717 /// instructions in BB. 718 /// 719 /// \param BB The basic block to query. 720 /// 721 /// \returns the weight for \p BB. 722 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 723 uint64_t Max = 0; 724 bool HasWeight = false; 725 for (auto &I : BB->getInstList()) { 726 const ErrorOr<uint64_t> &R = getInstWeight(I); 727 if (R) { 728 Max = std::max(Max, R.get()); 729 HasWeight = true; 730 } 731 } 732 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 733 } 734 735 /// Compute and store the weights of every basic block. 736 /// 737 /// This populates the BlockWeights map by computing 738 /// the weights of every basic block in the CFG. 739 /// 740 /// \param F The function to query. 741 bool SampleProfileLoader::computeBlockWeights(Function &F) { 742 bool Changed = false; 743 LLVM_DEBUG(dbgs() << "Block weights\n"); 744 for (const auto &BB : F) { 745 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 746 if (Weight) { 747 BlockWeights[&BB] = Weight.get(); 748 VisitedBlocks.insert(&BB); 749 Changed = true; 750 } 751 LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); 752 } 753 754 return Changed; 755 } 756 757 /// Get the FunctionSamples for a call instruction. 758 /// 759 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 760 /// instance in which that call instruction is calling to. It contains 761 /// all samples that resides in the inlined instance. We first find the 762 /// inlined instance in which the call instruction is from, then we 763 /// traverse its children to find the callsite with the matching 764 /// location. 765 /// 766 /// \param Inst Call/Invoke instruction to query. 767 /// 768 /// \returns The FunctionSamples pointer to the inlined instance. 769 const FunctionSamples * 770 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 771 const DILocation *DIL = Inst.getDebugLoc(); 772 if (!DIL) { 773 return nullptr; 774 } 775 776 StringRef CalleeName; 777 if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) 778 if (Function *Callee = CI->getCalledFunction()) 779 CalleeName = Callee->getName(); 780 781 const FunctionSamples *FS = findFunctionSamples(Inst); 782 if (FS == nullptr) 783 return nullptr; 784 785 return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL), 786 DIL->getBaseDiscriminator()), 787 CalleeName); 788 } 789 790 /// Returns a vector of FunctionSamples that are the indirect call targets 791 /// of \p Inst. The vector is sorted by the total number of samples. Stores 792 /// the total call count of the indirect call in \p Sum. 793 std::vector<const FunctionSamples *> 794 SampleProfileLoader::findIndirectCallFunctionSamples( 795 const Instruction &Inst, uint64_t &Sum) const { 796 const DILocation *DIL = Inst.getDebugLoc(); 797 std::vector<const FunctionSamples *> R; 798 799 if (!DIL) { 800 return R; 801 } 802 803 const FunctionSamples *FS = findFunctionSamples(Inst); 804 if (FS == nullptr) 805 return R; 806 807 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 808 uint32_t Discriminator = DIL->getBaseDiscriminator(); 809 810 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 811 Sum = 0; 812 if (T) 813 for (const auto &T_C : T.get()) 814 Sum += T_C.second; 815 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation( 816 FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) { 817 if (M->empty()) 818 return R; 819 for (const auto &NameFS : *M) { 820 Sum += NameFS.second.getEntrySamples(); 821 R.push_back(&NameFS.second); 822 } 823 llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) { 824 if (L->getEntrySamples() != R->getEntrySamples()) 825 return L->getEntrySamples() > R->getEntrySamples(); 826 return FunctionSamples::getGUID(L->getName()) < 827 FunctionSamples::getGUID(R->getName()); 828 }); 829 } 830 return R; 831 } 832 833 /// Get the FunctionSamples for an instruction. 834 /// 835 /// The FunctionSamples of an instruction \p Inst is the inlined instance 836 /// in which that instruction is coming from. We traverse the inline stack 837 /// of that instruction, and match it with the tree nodes in the profile. 838 /// 839 /// \param Inst Instruction to query. 840 /// 841 /// \returns the FunctionSamples pointer to the inlined instance. 842 const FunctionSamples * 843 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 844 const DILocation *DIL = Inst.getDebugLoc(); 845 if (!DIL) 846 return Samples; 847 848 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr); 849 if (it.second) 850 it.first->second = Samples->findFunctionSamples(DIL); 851 return it.first->second; 852 } 853 854 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) { 855 assert(isa<CallInst>(I) || isa<InvokeInst>(I)); 856 CallSite CS(I); 857 Function *CalledFunction = CS.getCalledFunction(); 858 assert(CalledFunction); 859 DebugLoc DLoc = I->getDebugLoc(); 860 BasicBlock *BB = I->getParent(); 861 InlineParams Params = getInlineParams(); 862 Params.ComputeFullInlineCost = true; 863 // Checks if there is anything in the reachable portion of the callee at 864 // this callsite that makes this inlining potentially illegal. Need to 865 // set ComputeFullInlineCost, otherwise getInlineCost may return early 866 // when cost exceeds threshold without checking all IRs in the callee. 867 // The acutal cost does not matter because we only checks isNever() to 868 // see if it is legal to inline the callsite. 869 InlineCost Cost = 870 getInlineCost(cast<CallBase>(*I), Params, GetTTI(*CalledFunction), GetAC, 871 None, nullptr, nullptr); 872 if (Cost.isNever()) { 873 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB) 874 << "incompatible inlining"); 875 return false; 876 } 877 InlineFunctionInfo IFI(nullptr, &GetAC); 878 if (InlineFunction(CS, IFI)) { 879 // The call to InlineFunction erases I, so we can't pass it here. 880 ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB) 881 << "inlined hot callee '" << ore::NV("Callee", CalledFunction) 882 << "' into '" << ore::NV("Caller", BB->getParent()) << "'"); 883 return true; 884 } 885 return false; 886 } 887 888 /// Iteratively inline hot callsites of a function. 889 /// 890 /// Iteratively traverse all callsites of the function \p F, and find if 891 /// the corresponding inlined instance exists and is hot in profile. If 892 /// it is hot enough, inline the callsites and adds new callsites of the 893 /// callee into the caller. If the call is an indirect call, first promote 894 /// it to direct call. Each indirect call is limited with a single target. 895 /// 896 /// \param F function to perform iterative inlining. 897 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 898 /// inlined in the profiled binary. 899 /// 900 /// \returns True if there is any inline happened. 901 bool SampleProfileLoader::inlineHotFunctions( 902 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 903 DenseSet<Instruction *> PromotedInsns; 904 905 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure 906 // Profile symbol list is ignored when profile-sample-accurate is on. 907 assert((!ProfAccForSymsInList || 908 (!ProfileSampleAccurate && 909 !F.hasFnAttribute("profile-sample-accurate"))) && 910 "ProfAccForSymsInList should be false when profile-sample-accurate " 911 "is enabled"); 912 913 DenseMap<Instruction *, const FunctionSamples *> localNotInlinedCallSites; 914 bool Changed = false; 915 while (true) { 916 bool LocalChanged = false; 917 SmallVector<Instruction *, 10> CIS; 918 for (auto &BB : F) { 919 bool Hot = false; 920 SmallVector<Instruction *, 10> Candidates; 921 for (auto &I : BB.getInstList()) { 922 const FunctionSamples *FS = nullptr; 923 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 924 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { 925 Candidates.push_back(&I); 926 if (FS->getEntrySamples() > 0) 927 localNotInlinedCallSites.try_emplace(&I, FS); 928 if (callsiteIsHot(FS, PSI)) 929 Hot = true; 930 } 931 } 932 if (Hot) { 933 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); 934 } 935 } 936 for (auto I : CIS) { 937 Function *CalledFunction = CallSite(I).getCalledFunction(); 938 // Do not inline recursive calls. 939 if (CalledFunction == &F) 940 continue; 941 if (CallSite(I).isIndirectCall()) { 942 if (PromotedInsns.count(I)) 943 continue; 944 uint64_t Sum; 945 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 946 if (IsThinLTOPreLink) { 947 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), 948 PSI->getOrCompHotCountThreshold()); 949 continue; 950 } 951 auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent()); 952 // If it is a recursive call, we do not inline it as it could bloat 953 // the code exponentially. There is way to better handle this, e.g. 954 // clone the caller first, and inline the cloned caller if it is 955 // recursive. As llvm does not inline recursive calls, we will 956 // simply ignore it instead of handling it explicitly. 957 if (CalleeFunctionName == F.getName()) 958 continue; 959 960 if (!callsiteIsHot(FS, PSI)) 961 continue; 962 963 const char *Reason = "Callee function not available"; 964 auto R = SymbolMap.find(CalleeFunctionName); 965 if (R != SymbolMap.end() && R->getValue() && 966 !R->getValue()->isDeclaration() && 967 R->getValue()->getSubprogram() && 968 isLegalToPromote(CallSite(I), R->getValue(), &Reason)) { 969 uint64_t C = FS->getEntrySamples(); 970 Instruction *DI = 971 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE); 972 Sum -= C; 973 PromotedInsns.insert(I); 974 // If profile mismatches, we should not attempt to inline DI. 975 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && 976 inlineCallInstruction(DI)) { 977 localNotInlinedCallSites.erase(I); 978 LocalChanged = true; 979 } 980 } else { 981 LLVM_DEBUG(dbgs() 982 << "\nFailed to promote indirect call to " 983 << CalleeFunctionName << " because " << Reason << "\n"); 984 } 985 } 986 } else if (CalledFunction && CalledFunction->getSubprogram() && 987 !CalledFunction->isDeclaration()) { 988 if (inlineCallInstruction(I)) { 989 localNotInlinedCallSites.erase(I); 990 LocalChanged = true; 991 } 992 } else if (IsThinLTOPreLink) { 993 findCalleeFunctionSamples(*I)->findInlinedFunctions( 994 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold()); 995 } 996 } 997 if (LocalChanged) { 998 Changed = true; 999 } else { 1000 break; 1001 } 1002 } 1003 1004 // Accumulate not inlined callsite information into notInlinedSamples 1005 for (const auto &Pair : localNotInlinedCallSites) { 1006 Instruction *I = Pair.getFirst(); 1007 Function *Callee = CallSite(I).getCalledFunction(); 1008 if (!Callee || Callee->isDeclaration()) 1009 continue; 1010 const FunctionSamples *FS = Pair.getSecond(); 1011 auto pair = 1012 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0}); 1013 pair.first->second.entryCount += FS->getEntrySamples(); 1014 } 1015 return Changed; 1016 } 1017 1018 /// Find equivalence classes for the given block. 1019 /// 1020 /// This finds all the blocks that are guaranteed to execute the same 1021 /// number of times as \p BB1. To do this, it traverses all the 1022 /// descendants of \p BB1 in the dominator or post-dominator tree. 1023 /// 1024 /// A block BB2 will be in the same equivalence class as \p BB1 if 1025 /// the following holds: 1026 /// 1027 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 1028 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 1029 /// dominate BB1 in the post-dominator tree. 1030 /// 1031 /// 2- Both BB2 and \p BB1 must be in the same loop. 1032 /// 1033 /// For every block BB2 that meets those two requirements, we set BB2's 1034 /// equivalence class to \p BB1. 1035 /// 1036 /// \param BB1 Block to check. 1037 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 1038 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 1039 /// with blocks from \p BB1's dominator tree, then 1040 /// this is the post-dominator tree, and vice versa. 1041 template <bool IsPostDom> 1042 void SampleProfileLoader::findEquivalencesFor( 1043 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 1044 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 1045 const BasicBlock *EC = EquivalenceClass[BB1]; 1046 uint64_t Weight = BlockWeights[EC]; 1047 for (const auto *BB2 : Descendants) { 1048 bool IsDomParent = DomTree->dominates(BB2, BB1); 1049 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 1050 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 1051 EquivalenceClass[BB2] = EC; 1052 // If BB2 is visited, then the entire EC should be marked as visited. 1053 if (VisitedBlocks.count(BB2)) { 1054 VisitedBlocks.insert(EC); 1055 } 1056 1057 // If BB2 is heavier than BB1, make BB2 have the same weight 1058 // as BB1. 1059 // 1060 // Note that we don't worry about the opposite situation here 1061 // (when BB2 is lighter than BB1). We will deal with this 1062 // during the propagation phase. Right now, we just want to 1063 // make sure that BB1 has the largest weight of all the 1064 // members of its equivalence set. 1065 Weight = std::max(Weight, BlockWeights[BB2]); 1066 } 1067 } 1068 if (EC == &EC->getParent()->getEntryBlock()) { 1069 BlockWeights[EC] = Samples->getHeadSamples() + 1; 1070 } else { 1071 BlockWeights[EC] = Weight; 1072 } 1073 } 1074 1075 /// Find equivalence classes. 1076 /// 1077 /// Since samples may be missing from blocks, we can fill in the gaps by setting 1078 /// the weights of all the blocks in the same equivalence class to the same 1079 /// weight. To compute the concept of equivalence, we use dominance and loop 1080 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 1081 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1082 /// 1083 /// \param F The function to query. 1084 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 1085 SmallVector<BasicBlock *, 8> DominatedBBs; 1086 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); 1087 // Find equivalence sets based on dominance and post-dominance information. 1088 for (auto &BB : F) { 1089 BasicBlock *BB1 = &BB; 1090 1091 // Compute BB1's equivalence class once. 1092 if (EquivalenceClass.count(BB1)) { 1093 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1094 continue; 1095 } 1096 1097 // By default, blocks are in their own equivalence class. 1098 EquivalenceClass[BB1] = BB1; 1099 1100 // Traverse all the blocks dominated by BB1. We are looking for 1101 // every basic block BB2 such that: 1102 // 1103 // 1- BB1 dominates BB2. 1104 // 2- BB2 post-dominates BB1. 1105 // 3- BB1 and BB2 are in the same loop nest. 1106 // 1107 // If all those conditions hold, it means that BB2 is executed 1108 // as many times as BB1, so they are placed in the same equivalence 1109 // class by making BB2's equivalence class be BB1. 1110 DominatedBBs.clear(); 1111 DT->getDescendants(BB1, DominatedBBs); 1112 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 1113 1114 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1115 } 1116 1117 // Assign weights to equivalence classes. 1118 // 1119 // All the basic blocks in the same equivalence class will execute 1120 // the same number of times. Since we know that the head block in 1121 // each equivalence class has the largest weight, assign that weight 1122 // to all the blocks in that equivalence class. 1123 LLVM_DEBUG( 1124 dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 1125 for (auto &BI : F) { 1126 const BasicBlock *BB = &BI; 1127 const BasicBlock *EquivBB = EquivalenceClass[BB]; 1128 if (BB != EquivBB) 1129 BlockWeights[BB] = BlockWeights[EquivBB]; 1130 LLVM_DEBUG(printBlockWeight(dbgs(), BB)); 1131 } 1132 } 1133 1134 /// Visit the given edge to decide if it has a valid weight. 1135 /// 1136 /// If \p E has not been visited before, we copy to \p UnknownEdge 1137 /// and increment the count of unknown edges. 1138 /// 1139 /// \param E Edge to visit. 1140 /// \param NumUnknownEdges Current number of unknown edges. 1141 /// \param UnknownEdge Set if E has not been visited before. 1142 /// 1143 /// \returns E's weight, if known. Otherwise, return 0. 1144 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 1145 Edge *UnknownEdge) { 1146 if (!VisitedEdges.count(E)) { 1147 (*NumUnknownEdges)++; 1148 *UnknownEdge = E; 1149 return 0; 1150 } 1151 1152 return EdgeWeights[E]; 1153 } 1154 1155 /// Propagate weights through incoming/outgoing edges. 1156 /// 1157 /// If the weight of a basic block is known, and there is only one edge 1158 /// with an unknown weight, we can calculate the weight of that edge. 1159 /// 1160 /// Similarly, if all the edges have a known count, we can calculate the 1161 /// count of the basic block, if needed. 1162 /// 1163 /// \param F Function to process. 1164 /// \param UpdateBlockCount Whether we should update basic block counts that 1165 /// has already been annotated. 1166 /// 1167 /// \returns True if new weights were assigned to edges or blocks. 1168 bool SampleProfileLoader::propagateThroughEdges(Function &F, 1169 bool UpdateBlockCount) { 1170 bool Changed = false; 1171 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); 1172 for (const auto &BI : F) { 1173 const BasicBlock *BB = &BI; 1174 const BasicBlock *EC = EquivalenceClass[BB]; 1175 1176 // Visit all the predecessor and successor edges to determine 1177 // which ones have a weight assigned already. Note that it doesn't 1178 // matter that we only keep track of a single unknown edge. The 1179 // only case we are interested in handling is when only a single 1180 // edge is unknown (see setEdgeOrBlockWeight). 1181 for (unsigned i = 0; i < 2; i++) { 1182 uint64_t TotalWeight = 0; 1183 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 1184 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 1185 1186 if (i == 0) { 1187 // First, visit all predecessor edges. 1188 NumTotalEdges = Predecessors[BB].size(); 1189 for (auto *Pred : Predecessors[BB]) { 1190 Edge E = std::make_pair(Pred, BB); 1191 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1192 if (E.first == E.second) 1193 SelfReferentialEdge = E; 1194 } 1195 if (NumTotalEdges == 1) { 1196 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 1197 } 1198 } else { 1199 // On the second round, visit all successor edges. 1200 NumTotalEdges = Successors[BB].size(); 1201 for (auto *Succ : Successors[BB]) { 1202 Edge E = std::make_pair(BB, Succ); 1203 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1204 } 1205 if (NumTotalEdges == 1) { 1206 SingleEdge = std::make_pair(BB, Successors[BB][0]); 1207 } 1208 } 1209 1210 // After visiting all the edges, there are three cases that we 1211 // can handle immediately: 1212 // 1213 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 1214 // In this case, we simply check that the sum of all the edges 1215 // is the same as BB's weight. If not, we change BB's weight 1216 // to match. Additionally, if BB had not been visited before, 1217 // we mark it visited. 1218 // 1219 // - Only one edge is unknown and BB has already been visited. 1220 // In this case, we can compute the weight of the edge by 1221 // subtracting the total block weight from all the known 1222 // edge weights. If the edges weight more than BB, then the 1223 // edge of the last remaining edge is set to zero. 1224 // 1225 // - There exists a self-referential edge and the weight of BB is 1226 // known. In this case, this edge can be based on BB's weight. 1227 // We add up all the other known edges and set the weight on 1228 // the self-referential edge as we did in the previous case. 1229 // 1230 // In any other case, we must continue iterating. Eventually, 1231 // all edges will get a weight, or iteration will stop when 1232 // it reaches SampleProfileMaxPropagateIterations. 1233 if (NumUnknownEdges <= 1) { 1234 uint64_t &BBWeight = BlockWeights[EC]; 1235 if (NumUnknownEdges == 0) { 1236 if (!VisitedBlocks.count(EC)) { 1237 // If we already know the weight of all edges, the weight of the 1238 // basic block can be computed. It should be no larger than the sum 1239 // of all edge weights. 1240 if (TotalWeight > BBWeight) { 1241 BBWeight = TotalWeight; 1242 Changed = true; 1243 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() 1244 << " known. Set weight for block: "; 1245 printBlockWeight(dbgs(), BB);); 1246 } 1247 } else if (NumTotalEdges == 1 && 1248 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1249 // If there is only one edge for the visited basic block, use the 1250 // block weight to adjust edge weight if edge weight is smaller. 1251 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1252 Changed = true; 1253 } 1254 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1255 // If there is a single unknown edge and the block has been 1256 // visited, then we can compute E's weight. 1257 if (BBWeight >= TotalWeight) 1258 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1259 else 1260 EdgeWeights[UnknownEdge] = 0; 1261 const BasicBlock *OtherEC; 1262 if (i == 0) 1263 OtherEC = EquivalenceClass[UnknownEdge.first]; 1264 else 1265 OtherEC = EquivalenceClass[UnknownEdge.second]; 1266 // Edge weights should never exceed the BB weights it connects. 1267 if (VisitedBlocks.count(OtherEC) && 1268 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1269 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1270 VisitedEdges.insert(UnknownEdge); 1271 Changed = true; 1272 LLVM_DEBUG(dbgs() << "Set weight for edge: "; 1273 printEdgeWeight(dbgs(), UnknownEdge)); 1274 } 1275 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1276 // If a block Weights 0, all its in/out edges should weight 0. 1277 if (i == 0) { 1278 for (auto *Pred : Predecessors[BB]) { 1279 Edge E = std::make_pair(Pred, BB); 1280 EdgeWeights[E] = 0; 1281 VisitedEdges.insert(E); 1282 } 1283 } else { 1284 for (auto *Succ : Successors[BB]) { 1285 Edge E = std::make_pair(BB, Succ); 1286 EdgeWeights[E] = 0; 1287 VisitedEdges.insert(E); 1288 } 1289 } 1290 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1291 uint64_t &BBWeight = BlockWeights[BB]; 1292 // We have a self-referential edge and the weight of BB is known. 1293 if (BBWeight >= TotalWeight) 1294 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1295 else 1296 EdgeWeights[SelfReferentialEdge] = 0; 1297 VisitedEdges.insert(SelfReferentialEdge); 1298 Changed = true; 1299 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; 1300 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1301 } 1302 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1303 BlockWeights[EC] = TotalWeight; 1304 VisitedBlocks.insert(EC); 1305 Changed = true; 1306 } 1307 } 1308 } 1309 1310 return Changed; 1311 } 1312 1313 /// Build in/out edge lists for each basic block in the CFG. 1314 /// 1315 /// We are interested in unique edges. If a block B1 has multiple 1316 /// edges to another block B2, we only add a single B1->B2 edge. 1317 void SampleProfileLoader::buildEdges(Function &F) { 1318 for (auto &BI : F) { 1319 BasicBlock *B1 = &BI; 1320 1321 // Add predecessors for B1. 1322 SmallPtrSet<BasicBlock *, 16> Visited; 1323 if (!Predecessors[B1].empty()) 1324 llvm_unreachable("Found a stale predecessors list in a basic block."); 1325 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1326 BasicBlock *B2 = *PI; 1327 if (Visited.insert(B2).second) 1328 Predecessors[B1].push_back(B2); 1329 } 1330 1331 // Add successors for B1. 1332 Visited.clear(); 1333 if (!Successors[B1].empty()) 1334 llvm_unreachable("Found a stale successors list in a basic block."); 1335 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1336 BasicBlock *B2 = *SI; 1337 if (Visited.insert(B2).second) 1338 Successors[B1].push_back(B2); 1339 } 1340 } 1341 } 1342 1343 /// Returns the sorted CallTargetMap \p M by count in descending order. 1344 static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets( 1345 const SampleRecord::CallTargetMap & M) { 1346 SmallVector<InstrProfValueData, 2> R; 1347 for (const auto &I : SampleRecord::SortCallTargets(M)) { 1348 R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second}); 1349 } 1350 return R; 1351 } 1352 1353 /// Propagate weights into edges 1354 /// 1355 /// The following rules are applied to every block BB in the CFG: 1356 /// 1357 /// - If BB has a single predecessor/successor, then the weight 1358 /// of that edge is the weight of the block. 1359 /// 1360 /// - If all incoming or outgoing edges are known except one, and the 1361 /// weight of the block is already known, the weight of the unknown 1362 /// edge will be the weight of the block minus the sum of all the known 1363 /// edges. If the sum of all the known edges is larger than BB's weight, 1364 /// we set the unknown edge weight to zero. 1365 /// 1366 /// - If there is a self-referential edge, and the weight of the block is 1367 /// known, the weight for that edge is set to the weight of the block 1368 /// minus the weight of the other incoming edges to that block (if 1369 /// known). 1370 void SampleProfileLoader::propagateWeights(Function &F) { 1371 bool Changed = true; 1372 unsigned I = 0; 1373 1374 // If BB weight is larger than its corresponding loop's header BB weight, 1375 // use the BB weight to replace the loop header BB weight. 1376 for (auto &BI : F) { 1377 BasicBlock *BB = &BI; 1378 Loop *L = LI->getLoopFor(BB); 1379 if (!L) { 1380 continue; 1381 } 1382 BasicBlock *Header = L->getHeader(); 1383 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1384 BlockWeights[Header] = BlockWeights[BB]; 1385 } 1386 } 1387 1388 // Before propagation starts, build, for each block, a list of 1389 // unique predecessors and successors. This is necessary to handle 1390 // identical edges in multiway branches. Since we visit all blocks and all 1391 // edges of the CFG, it is cleaner to build these lists once at the start 1392 // of the pass. 1393 buildEdges(F); 1394 1395 // Propagate until we converge or we go past the iteration limit. 1396 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1397 Changed = propagateThroughEdges(F, false); 1398 } 1399 1400 // The first propagation propagates BB counts from annotated BBs to unknown 1401 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1402 // to propagate edge weights. 1403 VisitedEdges.clear(); 1404 Changed = true; 1405 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1406 Changed = propagateThroughEdges(F, false); 1407 } 1408 1409 // The 3rd propagation pass allows adjust annotated BB weights that are 1410 // obviously wrong. 1411 Changed = true; 1412 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1413 Changed = propagateThroughEdges(F, true); 1414 } 1415 1416 // Generate MD_prof metadata for every branch instruction using the 1417 // edge weights computed during propagation. 1418 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1419 LLVMContext &Ctx = F.getContext(); 1420 MDBuilder MDB(Ctx); 1421 for (auto &BI : F) { 1422 BasicBlock *BB = &BI; 1423 1424 if (BlockWeights[BB]) { 1425 for (auto &I : BB->getInstList()) { 1426 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1427 continue; 1428 CallSite CS(&I); 1429 if (!CS.getCalledFunction()) { 1430 const DebugLoc &DLoc = I.getDebugLoc(); 1431 if (!DLoc) 1432 continue; 1433 const DILocation *DIL = DLoc; 1434 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 1435 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1436 1437 const FunctionSamples *FS = findFunctionSamples(I); 1438 if (!FS) 1439 continue; 1440 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1441 if (!T || T.get().empty()) 1442 continue; 1443 SmallVector<InstrProfValueData, 2> SortedCallTargets = 1444 GetSortedValueDataFromCallTargets(T.get()); 1445 uint64_t Sum; 1446 findIndirectCallFunctionSamples(I, Sum); 1447 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1448 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1449 SortedCallTargets.size()); 1450 } else if (!isa<IntrinsicInst>(&I)) { 1451 I.setMetadata(LLVMContext::MD_prof, 1452 MDB.createBranchWeights( 1453 {static_cast<uint32_t>(BlockWeights[BB])})); 1454 } 1455 } 1456 } 1457 Instruction *TI = BB->getTerminator(); 1458 if (TI->getNumSuccessors() == 1) 1459 continue; 1460 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1461 continue; 1462 1463 DebugLoc BranchLoc = TI->getDebugLoc(); 1464 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " 1465 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1466 : Twine("<UNKNOWN LOCATION>")) 1467 << ".\n"); 1468 SmallVector<uint32_t, 4> Weights; 1469 uint32_t MaxWeight = 0; 1470 Instruction *MaxDestInst; 1471 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1472 BasicBlock *Succ = TI->getSuccessor(I); 1473 Edge E = std::make_pair(BB, Succ); 1474 uint64_t Weight = EdgeWeights[E]; 1475 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1476 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1477 // if needed. Sample counts in profiles are 64-bit unsigned values, 1478 // but internally branch weights are expressed as 32-bit values. 1479 if (Weight > std::numeric_limits<uint32_t>::max()) { 1480 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1481 Weight = std::numeric_limits<uint32_t>::max(); 1482 } 1483 // Weight is added by one to avoid propagation errors introduced by 1484 // 0 weights. 1485 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1486 if (Weight != 0) { 1487 if (Weight > MaxWeight) { 1488 MaxWeight = Weight; 1489 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1490 } 1491 } 1492 } 1493 1494 misexpect::verifyMisExpect(TI, Weights, TI->getContext()); 1495 1496 uint64_t TempWeight; 1497 // Only set weights if there is at least one non-zero weight. 1498 // In any other case, let the analyzer set weights. 1499 // Do not set weights if the weights are present. In ThinLTO, the profile 1500 // annotation is done twice. If the first annotation already set the 1501 // weights, the second pass does not need to set it. 1502 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1503 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1504 TI->setMetadata(LLVMContext::MD_prof, 1505 MDB.createBranchWeights(Weights)); 1506 ORE->emit([&]() { 1507 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1508 << "most popular destination for conditional branches at " 1509 << ore::NV("CondBranchesLoc", BranchLoc); 1510 }); 1511 } else { 1512 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1513 } 1514 } 1515 } 1516 1517 /// Get the line number for the function header. 1518 /// 1519 /// This looks up function \p F in the current compilation unit and 1520 /// retrieves the line number where the function is defined. This is 1521 /// line 0 for all the samples read from the profile file. Every line 1522 /// number is relative to this line. 1523 /// 1524 /// \param F Function object to query. 1525 /// 1526 /// \returns the line number where \p F is defined. If it returns 0, 1527 /// it means that there is no debug information available for \p F. 1528 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1529 if (DISubprogram *S = F.getSubprogram()) 1530 return S->getLine(); 1531 1532 if (NoWarnSampleUnused) 1533 return 0; 1534 1535 // If the start of \p F is missing, emit a diagnostic to inform the user 1536 // about the missed opportunity. 1537 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1538 "No debug information found in function " + F.getName() + 1539 ": Function profile not used", 1540 DS_Warning)); 1541 return 0; 1542 } 1543 1544 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1545 DT.reset(new DominatorTree); 1546 DT->recalculate(F); 1547 1548 PDT.reset(new PostDominatorTree(F)); 1549 1550 LI.reset(new LoopInfo); 1551 LI->analyze(*DT); 1552 } 1553 1554 /// Generate branch weight metadata for all branches in \p F. 1555 /// 1556 /// Branch weights are computed out of instruction samples using a 1557 /// propagation heuristic. Propagation proceeds in 3 phases: 1558 /// 1559 /// 1- Assignment of block weights. All the basic blocks in the function 1560 /// are initial assigned the same weight as their most frequently 1561 /// executed instruction. 1562 /// 1563 /// 2- Creation of equivalence classes. Since samples may be missing from 1564 /// blocks, we can fill in the gaps by setting the weights of all the 1565 /// blocks in the same equivalence class to the same weight. To compute 1566 /// the concept of equivalence, we use dominance and loop information. 1567 /// Two blocks B1 and B2 are in the same equivalence class if B1 1568 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1569 /// 1570 /// 3- Propagation of block weights into edges. This uses a simple 1571 /// propagation heuristic. The following rules are applied to every 1572 /// block BB in the CFG: 1573 /// 1574 /// - If BB has a single predecessor/successor, then the weight 1575 /// of that edge is the weight of the block. 1576 /// 1577 /// - If all the edges are known except one, and the weight of the 1578 /// block is already known, the weight of the unknown edge will 1579 /// be the weight of the block minus the sum of all the known 1580 /// edges. If the sum of all the known edges is larger than BB's weight, 1581 /// we set the unknown edge weight to zero. 1582 /// 1583 /// - If there is a self-referential edge, and the weight of the block is 1584 /// known, the weight for that edge is set to the weight of the block 1585 /// minus the weight of the other incoming edges to that block (if 1586 /// known). 1587 /// 1588 /// Since this propagation is not guaranteed to finalize for every CFG, we 1589 /// only allow it to proceed for a limited number of iterations (controlled 1590 /// by -sample-profile-max-propagate-iterations). 1591 /// 1592 /// FIXME: Try to replace this propagation heuristic with a scheme 1593 /// that is guaranteed to finalize. A work-list approach similar to 1594 /// the standard value propagation algorithm used by SSA-CCP might 1595 /// work here. 1596 /// 1597 /// Once all the branch weights are computed, we emit the MD_prof 1598 /// metadata on BB using the computed values for each of its branches. 1599 /// 1600 /// \param F The function to query. 1601 /// 1602 /// \returns true if \p F was modified. Returns false, otherwise. 1603 bool SampleProfileLoader::emitAnnotations(Function &F) { 1604 bool Changed = false; 1605 1606 if (getFunctionLoc(F) == 0) 1607 return false; 1608 1609 LLVM_DEBUG(dbgs() << "Line number for the first instruction in " 1610 << F.getName() << ": " << getFunctionLoc(F) << "\n"); 1611 1612 DenseSet<GlobalValue::GUID> InlinedGUIDs; 1613 Changed |= inlineHotFunctions(F, InlinedGUIDs); 1614 1615 // Compute basic block weights. 1616 Changed |= computeBlockWeights(F); 1617 1618 if (Changed) { 1619 // Add an entry count to the function using the samples gathered at the 1620 // function entry. 1621 // Sets the GUIDs that are inlined in the profiled binary. This is used 1622 // for ThinLink to make correct liveness analysis, and also make the IR 1623 // match the profiled binary before annotation. 1624 F.setEntryCount( 1625 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), 1626 &InlinedGUIDs); 1627 1628 // Compute dominance and loop info needed for propagation. 1629 computeDominanceAndLoopInfo(F); 1630 1631 // Find equivalence classes. 1632 findEquivalenceClasses(F); 1633 1634 // Propagate weights to all edges. 1635 propagateWeights(F); 1636 } 1637 1638 // If coverage checking was requested, compute it now. 1639 if (SampleProfileRecordCoverage) { 1640 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); 1641 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); 1642 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1643 if (Coverage < SampleProfileRecordCoverage) { 1644 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1645 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1646 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1647 Twine(Coverage) + "%) were applied", 1648 DS_Warning)); 1649 } 1650 } 1651 1652 if (SampleProfileSampleCoverage) { 1653 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1654 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); 1655 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1656 if (Coverage < SampleProfileSampleCoverage) { 1657 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1658 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1659 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1660 Twine(Coverage) + "%) were applied", 1661 DS_Warning)); 1662 } 1663 } 1664 return Changed; 1665 } 1666 1667 char SampleProfileLoaderLegacyPass::ID = 0; 1668 1669 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1670 "Sample Profile loader", false, false) 1671 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1672 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1673 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1674 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1675 "Sample Profile loader", false, false) 1676 1677 bool SampleProfileLoader::doInitialization(Module &M) { 1678 auto &Ctx = M.getContext(); 1679 1680 std::unique_ptr<SampleProfileReaderItaniumRemapper> RemapReader; 1681 auto ReaderOrErr = 1682 SampleProfileReader::create(Filename, Ctx, RemappingFilename); 1683 if (std::error_code EC = ReaderOrErr.getError()) { 1684 std::string Msg = "Could not open profile: " + EC.message(); 1685 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1686 return false; 1687 } 1688 Reader = std::move(ReaderOrErr.get()); 1689 Reader->collectFuncsFrom(M); 1690 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1691 PSL = Reader->getProfileSymbolList(); 1692 1693 // While profile-sample-accurate is on, ignore symbol list. 1694 ProfAccForSymsInList = 1695 ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate; 1696 if (ProfAccForSymsInList) { 1697 NamesInProfile.clear(); 1698 if (auto NameTable = Reader->getNameTable()) 1699 NamesInProfile.insert(NameTable->begin(), NameTable->end()); 1700 } 1701 1702 return true; 1703 } 1704 1705 ModulePass *llvm::createSampleProfileLoaderPass() { 1706 return new SampleProfileLoaderLegacyPass(); 1707 } 1708 1709 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1710 return new SampleProfileLoaderLegacyPass(Name); 1711 } 1712 1713 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, 1714 ProfileSummaryInfo *_PSI) { 1715 GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap); 1716 if (!ProfileIsValid) 1717 return false; 1718 1719 PSI = _PSI; 1720 if (M.getProfileSummary(/* IsCS */ false) == nullptr) 1721 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()), 1722 ProfileSummary::PSK_Sample); 1723 1724 // Compute the total number of samples collected in this profile. 1725 for (const auto &I : Reader->getProfiles()) 1726 TotalCollectedSamples += I.second.getTotalSamples(); 1727 1728 // Populate the symbol map. 1729 for (const auto &N_F : M.getValueSymbolTable()) { 1730 StringRef OrigName = N_F.getKey(); 1731 Function *F = dyn_cast<Function>(N_F.getValue()); 1732 if (F == nullptr) 1733 continue; 1734 SymbolMap[OrigName] = F; 1735 auto pos = OrigName.find('.'); 1736 if (pos != StringRef::npos) { 1737 StringRef NewName = OrigName.substr(0, pos); 1738 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1739 // Failiing to insert means there is already an entry in SymbolMap, 1740 // thus there are multiple functions that are mapped to the same 1741 // stripped name. In this case of name conflicting, set the value 1742 // to nullptr to avoid confusion. 1743 if (!r.second) 1744 r.first->second = nullptr; 1745 } 1746 } 1747 1748 bool retval = false; 1749 for (auto &F : M) 1750 if (!F.isDeclaration()) { 1751 clearFunctionData(); 1752 retval |= runOnFunction(F, AM); 1753 } 1754 1755 // Account for cold calls not inlined.... 1756 for (const std::pair<Function *, NotInlinedProfileInfo> &pair : 1757 notInlinedCallInfo) 1758 updateProfileCallee(pair.first, pair.second.entryCount); 1759 1760 return retval; 1761 } 1762 1763 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1764 ACT = &getAnalysis<AssumptionCacheTracker>(); 1765 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 1766 ProfileSummaryInfo *PSI = 1767 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1768 return SampleLoader.runOnModule(M, nullptr, PSI); 1769 } 1770 1771 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 1772 1773 DILocation2SampleMap.clear(); 1774 // By default the entry count is initialized to -1, which will be treated 1775 // conservatively by getEntryCount as the same as unknown (None). This is 1776 // to avoid newly added code to be treated as cold. If we have samples 1777 // this will be overwritten in emitAnnotations. 1778 uint64_t initialEntryCount = -1; 1779 1780 ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL; 1781 if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) { 1782 // initialize all the function entry counts to 0. It means all the 1783 // functions without profile will be regarded as cold. 1784 initialEntryCount = 0; 1785 // profile-sample-accurate is a user assertion which has a higher precedence 1786 // than symbol list. When profile-sample-accurate is on, ignore symbol list. 1787 ProfAccForSymsInList = false; 1788 } 1789 1790 // PSL -- profile symbol list include all the symbols in sampled binary. 1791 // If ProfileAccurateForSymsInList is enabled, PSL is used to treat 1792 // old functions without samples being cold, without having to worry 1793 // about new and hot functions being mistakenly treated as cold. 1794 if (ProfAccForSymsInList) { 1795 // Initialize the entry count to 0 for functions in the list. 1796 if (PSL->contains(F.getName())) 1797 initialEntryCount = 0; 1798 1799 // Function in the symbol list but without sample will be regarded as 1800 // cold. To minimize the potential negative performance impact it could 1801 // have, we want to be a little conservative here saying if a function 1802 // shows up in the profile, no matter as outline function, inline instance 1803 // or call targets, treat the function as not being cold. This will handle 1804 // the cases such as most callsites of a function are inlined in sampled 1805 // binary but not inlined in current build (because of source code drift, 1806 // imprecise debug information, or the callsites are all cold individually 1807 // but not cold accumulatively...), so the outline function showing up as 1808 // cold in sampled binary will actually not be cold after current build. 1809 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 1810 if (NamesInProfile.count(CanonName)) 1811 initialEntryCount = -1; 1812 } 1813 1814 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real)); 1815 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 1816 if (AM) { 1817 auto &FAM = 1818 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 1819 .getManager(); 1820 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1821 } else { 1822 OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F); 1823 ORE = OwnedORE.get(); 1824 } 1825 Samples = Reader->getSamplesFor(F); 1826 if (Samples && !Samples->empty()) 1827 return emitAnnotations(F); 1828 return false; 1829 } 1830 1831 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1832 ModuleAnalysisManager &AM) { 1833 FunctionAnalysisManager &FAM = 1834 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1835 1836 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 1837 return FAM.getResult<AssumptionAnalysis>(F); 1838 }; 1839 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 1840 return FAM.getResult<TargetIRAnalysis>(F); 1841 }; 1842 1843 SampleProfileLoader SampleLoader( 1844 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 1845 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile 1846 : ProfileRemappingFileName, 1847 IsThinLTOPreLink, GetAssumptionCache, GetTTI); 1848 1849 SampleLoader.doInitialization(M); 1850 1851 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 1852 if (!SampleLoader.runOnModule(M, &AM, PSI)) 1853 return PreservedAnalyses::all(); 1854 1855 return PreservedAnalyses::none(); 1856 } 1857