1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/PostDominators.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/InstIterator.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Metadata.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/Pass.h" 43 #include "llvm/ProfileData/SampleProfReader.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorOr.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Transforms/IPO.h" 49 #include "llvm/Transforms/Utils/Cloning.h" 50 #include <cctype> 51 52 using namespace llvm; 53 using namespace sampleprof; 54 55 #define DEBUG_TYPE "sample-profile" 56 57 // Command line option to specify the file to read samples from. This is 58 // mainly used for debugging. 59 static cl::opt<std::string> SampleProfileFile( 60 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 61 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 62 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 63 "sample-profile-max-propagate-iterations", cl::init(100), 64 cl::desc("Maximum number of iterations to go through when propagating " 65 "sample block/edge weights through the CFG.")); 66 67 namespace { 68 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap; 69 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap; 70 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge; 71 typedef DenseMap<Edge, uint64_t> EdgeWeightMap; 72 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>> 73 BlockEdgeMap; 74 75 /// \brief Sample profile pass. 76 /// 77 /// This pass reads profile data from the file specified by 78 /// -sample-profile-file and annotates every affected function with the 79 /// profile information found in that file. 80 class SampleProfileLoader : public ModulePass { 81 public: 82 // Class identification, replacement for typeinfo 83 static char ID; 84 85 SampleProfileLoader(StringRef Name = SampleProfileFile) 86 : ModulePass(ID), DT(nullptr), PDT(nullptr), LI(nullptr), Reader(), 87 Samples(nullptr), Filename(Name), ProfileIsValid(false) { 88 initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry()); 89 } 90 91 bool doInitialization(Module &M) override; 92 93 void dump() { Reader->dump(); } 94 95 const char *getPassName() const override { return "Sample profile pass"; } 96 97 bool runOnModule(Module &M) override; 98 99 void getAnalysisUsage(AnalysisUsage &AU) const override { 100 AU.setPreservesCFG(); 101 } 102 103 protected: 104 bool runOnFunction(Function &F); 105 unsigned getFunctionLoc(Function &F); 106 bool emitAnnotations(Function &F); 107 ErrorOr<uint64_t> getInstWeight(const Instruction &I) const; 108 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB) const; 109 const FunctionSamples *findCalleeFunctionSamples(const CallInst &I) const; 110 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 111 bool inlineHotFunctions(Function &F); 112 void printEdgeWeight(raw_ostream &OS, Edge E); 113 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 114 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 115 bool computeBlockWeights(Function &F); 116 void findEquivalenceClasses(Function &F); 117 void findEquivalencesFor(BasicBlock *BB1, 118 SmallVector<BasicBlock *, 8> Descendants, 119 DominatorTreeBase<BasicBlock> *DomTree); 120 void propagateWeights(Function &F); 121 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 122 void buildEdges(Function &F); 123 bool propagateThroughEdges(Function &F); 124 void computeDominanceAndLoopInfo(Function &F); 125 unsigned getOffset(unsigned L, unsigned H) const; 126 void clearFunctionData(); 127 128 /// \brief Map basic blocks to their computed weights. 129 /// 130 /// The weight of a basic block is defined to be the maximum 131 /// of all the instruction weights in that block. 132 BlockWeightMap BlockWeights; 133 134 /// \brief Map edges to their computed weights. 135 /// 136 /// Edge weights are computed by propagating basic block weights in 137 /// SampleProfile::propagateWeights. 138 EdgeWeightMap EdgeWeights; 139 140 /// \brief Set of visited blocks during propagation. 141 SmallPtrSet<const BasicBlock *, 128> VisitedBlocks; 142 143 /// \brief Set of visited edges during propagation. 144 SmallSet<Edge, 128> VisitedEdges; 145 146 /// \brief Equivalence classes for block weights. 147 /// 148 /// Two blocks BB1 and BB2 are in the same equivalence class if they 149 /// dominate and post-dominate each other, and they are in the same loop 150 /// nest. When this happens, the two blocks are guaranteed to execute 151 /// the same number of times. 152 EquivalenceClassMap EquivalenceClass; 153 154 /// \brief Dominance, post-dominance and loop information. 155 std::unique_ptr<DominatorTree> DT; 156 std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT; 157 std::unique_ptr<LoopInfo> LI; 158 159 /// \brief Predecessors for each basic block in the CFG. 160 BlockEdgeMap Predecessors; 161 162 /// \brief Successors for each basic block in the CFG. 163 BlockEdgeMap Successors; 164 165 /// \brief Profile reader object. 166 std::unique_ptr<SampleProfileReader> Reader; 167 168 /// \brief Samples collected for the body of this function. 169 FunctionSamples *Samples; 170 171 /// \brief Name of the profile file to load. 172 StringRef Filename; 173 174 /// \brief Flag indicating whether the profile input loaded successfully. 175 bool ProfileIsValid; 176 }; 177 } 178 179 /// Clear all the per-function data used to load samples and propagate weights. 180 void SampleProfileLoader::clearFunctionData() { 181 BlockWeights.clear(); 182 EdgeWeights.clear(); 183 VisitedBlocks.clear(); 184 VisitedEdges.clear(); 185 EquivalenceClass.clear(); 186 DT = nullptr; 187 PDT = nullptr; 188 LI = nullptr; 189 Predecessors.clear(); 190 Successors.clear(); 191 } 192 193 /// \brief Returns the offset of lineno \p L to head_lineno \p H 194 /// 195 /// \param L Lineno 196 /// \param H Header lineno of the function 197 /// 198 /// \returns offset to the header lineno. 16 bits are used to represent offset. 199 /// We assume that a single function will not exceed 65535 LOC. 200 unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const { 201 return (L - H) & 0xffff; 202 } 203 204 /// \brief Print the weight of edge \p E on stream \p OS. 205 /// 206 /// \param OS Stream to emit the output to. 207 /// \param E Edge to print. 208 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 209 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 210 << "]: " << EdgeWeights[E] << "\n"; 211 } 212 213 /// \brief Print the equivalence class of block \p BB on stream \p OS. 214 /// 215 /// \param OS Stream to emit the output to. 216 /// \param BB Block to print. 217 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 218 const BasicBlock *BB) { 219 const BasicBlock *Equiv = EquivalenceClass[BB]; 220 OS << "equivalence[" << BB->getName() 221 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 222 } 223 224 /// \brief Print the weight of block \p BB on stream \p OS. 225 /// 226 /// \param OS Stream to emit the output to. 227 /// \param BB Block to print. 228 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 229 const BasicBlock *BB) const { 230 const auto &I = BlockWeights.find(BB); 231 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 232 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 233 } 234 235 /// \brief Get the weight for an instruction. 236 /// 237 /// The "weight" of an instruction \p Inst is the number of samples 238 /// collected on that instruction at runtime. To retrieve it, we 239 /// need to compute the line number of \p Inst relative to the start of its 240 /// function. We use HeaderLineno to compute the offset. We then 241 /// look up the samples collected for \p Inst using BodySamples. 242 /// 243 /// \param Inst Instruction to query. 244 /// 245 /// \returns the weight of \p Inst. 246 ErrorOr<uint64_t> 247 SampleProfileLoader::getInstWeight(const Instruction &Inst) const { 248 DebugLoc DLoc = Inst.getDebugLoc(); 249 if (!DLoc) 250 return std::error_code(); 251 252 const FunctionSamples *FS = findFunctionSamples(Inst); 253 if (!FS) 254 return std::error_code(); 255 256 const DILocation *DIL = DLoc; 257 unsigned Lineno = DLoc.getLine(); 258 unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine(); 259 260 ErrorOr<uint64_t> R = FS->findSamplesAt(getOffset(Lineno, HeaderLineno), 261 DIL->getDiscriminator()); 262 if (R) 263 DEBUG(dbgs() << " " << Lineno << "." << DIL->getDiscriminator() << ":" 264 << Inst << " (line offset: " << Lineno - HeaderLineno << "." 265 << DIL->getDiscriminator() << " - weight: " << R.get() 266 << ")\n"); 267 return R; 268 } 269 270 /// \brief Compute the weight of a basic block. 271 /// 272 /// The weight of basic block \p BB is the maximum weight of all the 273 /// instructions in BB. 274 /// 275 /// \param BB The basic block to query. 276 /// 277 /// \returns the weight for \p BB. 278 ErrorOr<uint64_t> 279 SampleProfileLoader::getBlockWeight(const BasicBlock *BB) const { 280 bool Found = false; 281 uint64_t Weight = 0; 282 for (auto &I : BB->getInstList()) { 283 const ErrorOr<uint64_t> &R = getInstWeight(I); 284 if (R && R.get() >= Weight) { 285 Weight = R.get(); 286 Found = true; 287 } 288 } 289 if (Found) 290 return Weight; 291 else 292 return std::error_code(); 293 } 294 295 /// \brief Compute and store the weights of every basic block. 296 /// 297 /// This populates the BlockWeights map by computing 298 /// the weights of every basic block in the CFG. 299 /// 300 /// \param F The function to query. 301 bool SampleProfileLoader::computeBlockWeights(Function &F) { 302 bool Changed = false; 303 DEBUG(dbgs() << "Block weights\n"); 304 for (const auto &BB : F) { 305 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 306 if (Weight) { 307 BlockWeights[&BB] = Weight.get(); 308 VisitedBlocks.insert(&BB); 309 Changed = true; 310 } 311 DEBUG(printBlockWeight(dbgs(), &BB)); 312 } 313 314 return Changed; 315 } 316 317 /// \brief Get the FunctionSamples for a call instruction. 318 /// 319 /// The FunctionSamples of a call instruction \p Inst is the inlined 320 /// instance in which that call instruction is calling to. It contains 321 /// all samples that resides in the inlined instance. We first find the 322 /// inlined instance in which the call instruction is from, then we 323 /// traverse its children to find the callsite with the matching 324 /// location and callee function name. 325 /// 326 /// \param Inst Call instruction to query. 327 /// 328 /// \returns The FunctionSamples pointer to the inlined instance. 329 const FunctionSamples * 330 SampleProfileLoader::findCalleeFunctionSamples(const CallInst &Inst) const { 331 const DILocation *DIL = Inst.getDebugLoc(); 332 if (!DIL) { 333 return nullptr; 334 } 335 DISubprogram *SP = DIL->getScope()->getSubprogram(); 336 if (!SP) 337 return nullptr; 338 339 Function *CalleeFunc = Inst.getCalledFunction(); 340 if (!CalleeFunc) { 341 return nullptr; 342 } 343 344 StringRef CalleeName = CalleeFunc->getName(); 345 const FunctionSamples *FS = findFunctionSamples(Inst); 346 if (FS == nullptr) 347 return nullptr; 348 349 return FS->findFunctionSamplesAt( 350 CallsiteLocation(getOffset(DIL->getLine(), SP->getLine()), 351 DIL->getDiscriminator(), CalleeName)); 352 } 353 354 /// \brief Get the FunctionSamples for an instruction. 355 /// 356 /// The FunctionSamples of an instruction \p Inst is the inlined instance 357 /// in which that instruction is coming from. We traverse the inline stack 358 /// of that instruction, and match it with the tree nodes in the profile. 359 /// 360 /// \param Inst Instruction to query. 361 /// 362 /// \returns the FunctionSamples pointer to the inlined instance. 363 const FunctionSamples * 364 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 365 SmallVector<CallsiteLocation, 10> S; 366 const DILocation *DIL = Inst.getDebugLoc(); 367 if (!DIL) { 368 return Samples; 369 } 370 StringRef CalleeName; 371 for (const DILocation *DIL = Inst.getDebugLoc(); DIL; 372 DIL = DIL->getInlinedAt()) { 373 DISubprogram *SP = DIL->getScope()->getSubprogram(); 374 if (!SP) 375 return nullptr; 376 if (!CalleeName.empty()) { 377 S.push_back(CallsiteLocation(getOffset(DIL->getLine(), SP->getLine()), 378 DIL->getDiscriminator(), CalleeName)); 379 } 380 CalleeName = SP->getLinkageName(); 381 } 382 if (S.size() == 0) 383 return Samples; 384 const FunctionSamples *FS = Samples; 385 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 386 FS = FS->findFunctionSamplesAt(S[i]); 387 } 388 return FS; 389 } 390 391 /// \brief Iteratively inline hot callsites of a function. 392 /// 393 /// Iteratively traverse all callsites of the function \p F, and find if 394 /// the corresponding inlined instance exists and is hot in profile. If 395 /// it is hot enough, inline the callsites and adds new callsites of the 396 /// callee into the caller. 397 /// 398 /// TODO: investigate the possibility of not invoking InlineFunction directly. 399 /// 400 /// \param F function to perform iterative inlining. 401 /// 402 /// \returns True if there is any inline happened. 403 bool SampleProfileLoader::inlineHotFunctions(Function &F) { 404 bool Changed = false; 405 LLVMContext &Ctx = F.getContext(); 406 while (true) { 407 bool LocalChanged = false; 408 SmallVector<CallInst *, 10> CIS; 409 for (auto &BB : F) { 410 for (auto &I : BB.getInstList()) { 411 CallInst *CI = dyn_cast<CallInst>(&I); 412 if (CI) { 413 const FunctionSamples *FS = findCalleeFunctionSamples(*CI); 414 if (FS && FS->getTotalSamples() > 0) { 415 CIS.push_back(CI); 416 } 417 } 418 } 419 } 420 for (auto CI : CIS) { 421 InlineFunctionInfo IFI; 422 Function *CalledFunction = CI->getCalledFunction(); 423 DebugLoc DLoc = CI->getDebugLoc(); 424 uint64_t NumSamples = findCalleeFunctionSamples(*CI)->getTotalSamples(); 425 if (InlineFunction(CI, IFI)) { 426 LocalChanged = true; 427 emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc, 428 Twine("inlined hot callee '") + 429 CalledFunction->getName() + "' with " + 430 Twine(NumSamples) + " samples into '" + 431 F.getName() + "'"); 432 } 433 } 434 if (LocalChanged) { 435 Changed = true; 436 } else { 437 break; 438 } 439 } 440 return Changed; 441 } 442 443 /// \brief Find equivalence classes for the given block. 444 /// 445 /// This finds all the blocks that are guaranteed to execute the same 446 /// number of times as \p BB1. To do this, it traverses all the 447 /// descendants of \p BB1 in the dominator or post-dominator tree. 448 /// 449 /// A block BB2 will be in the same equivalence class as \p BB1 if 450 /// the following holds: 451 /// 452 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 453 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 454 /// dominate BB1 in the post-dominator tree. 455 /// 456 /// 2- Both BB2 and \p BB1 must be in the same loop. 457 /// 458 /// For every block BB2 that meets those two requirements, we set BB2's 459 /// equivalence class to \p BB1. 460 /// 461 /// \param BB1 Block to check. 462 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 463 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 464 /// with blocks from \p BB1's dominator tree, then 465 /// this is the post-dominator tree, and vice versa. 466 void SampleProfileLoader::findEquivalencesFor( 467 BasicBlock *BB1, SmallVector<BasicBlock *, 8> Descendants, 468 DominatorTreeBase<BasicBlock> *DomTree) { 469 const BasicBlock *EC = EquivalenceClass[BB1]; 470 uint64_t Weight = BlockWeights[EC]; 471 for (const auto *BB2 : Descendants) { 472 bool IsDomParent = DomTree->dominates(BB2, BB1); 473 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 474 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 475 EquivalenceClass[BB2] = EC; 476 477 // If BB2 is heavier than BB1, make BB2 have the same weight 478 // as BB1. 479 // 480 // Note that we don't worry about the opposite situation here 481 // (when BB2 is lighter than BB1). We will deal with this 482 // during the propagation phase. Right now, we just want to 483 // make sure that BB1 has the largest weight of all the 484 // members of its equivalence set. 485 Weight = std::max(Weight, BlockWeights[BB2]); 486 } 487 } 488 BlockWeights[EC] = Weight; 489 } 490 491 /// \brief Find equivalence classes. 492 /// 493 /// Since samples may be missing from blocks, we can fill in the gaps by setting 494 /// the weights of all the blocks in the same equivalence class to the same 495 /// weight. To compute the concept of equivalence, we use dominance and loop 496 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 497 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 498 /// 499 /// \param F The function to query. 500 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 501 SmallVector<BasicBlock *, 8> DominatedBBs; 502 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 503 // Find equivalence sets based on dominance and post-dominance information. 504 for (auto &BB : F) { 505 BasicBlock *BB1 = &BB; 506 507 // Compute BB1's equivalence class once. 508 if (EquivalenceClass.count(BB1)) { 509 DEBUG(printBlockEquivalence(dbgs(), BB1)); 510 continue; 511 } 512 513 // By default, blocks are in their own equivalence class. 514 EquivalenceClass[BB1] = BB1; 515 516 // Traverse all the blocks dominated by BB1. We are looking for 517 // every basic block BB2 such that: 518 // 519 // 1- BB1 dominates BB2. 520 // 2- BB2 post-dominates BB1. 521 // 3- BB1 and BB2 are in the same loop nest. 522 // 523 // If all those conditions hold, it means that BB2 is executed 524 // as many times as BB1, so they are placed in the same equivalence 525 // class by making BB2's equivalence class be BB1. 526 DominatedBBs.clear(); 527 DT->getDescendants(BB1, DominatedBBs); 528 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 529 530 DEBUG(printBlockEquivalence(dbgs(), BB1)); 531 } 532 533 // Assign weights to equivalence classes. 534 // 535 // All the basic blocks in the same equivalence class will execute 536 // the same number of times. Since we know that the head block in 537 // each equivalence class has the largest weight, assign that weight 538 // to all the blocks in that equivalence class. 539 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 540 for (auto &BI : F) { 541 const BasicBlock *BB = &BI; 542 const BasicBlock *EquivBB = EquivalenceClass[BB]; 543 if (BB != EquivBB) 544 BlockWeights[BB] = BlockWeights[EquivBB]; 545 DEBUG(printBlockWeight(dbgs(), BB)); 546 } 547 } 548 549 /// \brief Visit the given edge to decide if it has a valid weight. 550 /// 551 /// If \p E has not been visited before, we copy to \p UnknownEdge 552 /// and increment the count of unknown edges. 553 /// 554 /// \param E Edge to visit. 555 /// \param NumUnknownEdges Current number of unknown edges. 556 /// \param UnknownEdge Set if E has not been visited before. 557 /// 558 /// \returns E's weight, if known. Otherwise, return 0. 559 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 560 Edge *UnknownEdge) { 561 if (!VisitedEdges.count(E)) { 562 (*NumUnknownEdges)++; 563 *UnknownEdge = E; 564 return 0; 565 } 566 567 return EdgeWeights[E]; 568 } 569 570 /// \brief Propagate weights through incoming/outgoing edges. 571 /// 572 /// If the weight of a basic block is known, and there is only one edge 573 /// with an unknown weight, we can calculate the weight of that edge. 574 /// 575 /// Similarly, if all the edges have a known count, we can calculate the 576 /// count of the basic block, if needed. 577 /// 578 /// \param F Function to process. 579 /// 580 /// \returns True if new weights were assigned to edges or blocks. 581 bool SampleProfileLoader::propagateThroughEdges(Function &F) { 582 bool Changed = false; 583 DEBUG(dbgs() << "\nPropagation through edges\n"); 584 for (const auto &BI : F) { 585 const BasicBlock *BB = &BI; 586 const BasicBlock *EC = EquivalenceClass[BB]; 587 588 // Visit all the predecessor and successor edges to determine 589 // which ones have a weight assigned already. Note that it doesn't 590 // matter that we only keep track of a single unknown edge. The 591 // only case we are interested in handling is when only a single 592 // edge is unknown (see setEdgeOrBlockWeight). 593 for (unsigned i = 0; i < 2; i++) { 594 uint64_t TotalWeight = 0; 595 unsigned NumUnknownEdges = 0; 596 Edge UnknownEdge, SelfReferentialEdge; 597 598 if (i == 0) { 599 // First, visit all predecessor edges. 600 for (auto *Pred : Predecessors[BB]) { 601 Edge E = std::make_pair(Pred, BB); 602 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 603 if (E.first == E.second) 604 SelfReferentialEdge = E; 605 } 606 } else { 607 // On the second round, visit all successor edges. 608 for (auto *Succ : Successors[BB]) { 609 Edge E = std::make_pair(BB, Succ); 610 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 611 } 612 } 613 614 // After visiting all the edges, there are three cases that we 615 // can handle immediately: 616 // 617 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 618 // In this case, we simply check that the sum of all the edges 619 // is the same as BB's weight. If not, we change BB's weight 620 // to match. Additionally, if BB had not been visited before, 621 // we mark it visited. 622 // 623 // - Only one edge is unknown and BB has already been visited. 624 // In this case, we can compute the weight of the edge by 625 // subtracting the total block weight from all the known 626 // edge weights. If the edges weight more than BB, then the 627 // edge of the last remaining edge is set to zero. 628 // 629 // - There exists a self-referential edge and the weight of BB is 630 // known. In this case, this edge can be based on BB's weight. 631 // We add up all the other known edges and set the weight on 632 // the self-referential edge as we did in the previous case. 633 // 634 // In any other case, we must continue iterating. Eventually, 635 // all edges will get a weight, or iteration will stop when 636 // it reaches SampleProfileMaxPropagateIterations. 637 if (NumUnknownEdges <= 1) { 638 uint64_t &BBWeight = BlockWeights[EC]; 639 if (NumUnknownEdges == 0) { 640 // If we already know the weight of all edges, the weight of the 641 // basic block can be computed. It should be no larger than the sum 642 // of all edge weights. 643 if (TotalWeight > BBWeight) { 644 BBWeight = TotalWeight; 645 Changed = true; 646 DEBUG(dbgs() << "All edge weights for " << BB->getName() 647 << " known. Set weight for block: "; 648 printBlockWeight(dbgs(), BB);); 649 } 650 if (VisitedBlocks.insert(EC).second) 651 Changed = true; 652 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 653 // If there is a single unknown edge and the block has been 654 // visited, then we can compute E's weight. 655 if (BBWeight >= TotalWeight) 656 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 657 else 658 EdgeWeights[UnknownEdge] = 0; 659 VisitedEdges.insert(UnknownEdge); 660 Changed = true; 661 DEBUG(dbgs() << "Set weight for edge: "; 662 printEdgeWeight(dbgs(), UnknownEdge)); 663 } 664 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 665 uint64_t &BBWeight = BlockWeights[BB]; 666 // We have a self-referential edge and the weight of BB is known. 667 if (BBWeight >= TotalWeight) 668 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 669 else 670 EdgeWeights[SelfReferentialEdge] = 0; 671 VisitedEdges.insert(SelfReferentialEdge); 672 Changed = true; 673 DEBUG(dbgs() << "Set self-referential edge weight to: "; 674 printEdgeWeight(dbgs(), SelfReferentialEdge)); 675 } 676 } 677 } 678 679 return Changed; 680 } 681 682 /// \brief Build in/out edge lists for each basic block in the CFG. 683 /// 684 /// We are interested in unique edges. If a block B1 has multiple 685 /// edges to another block B2, we only add a single B1->B2 edge. 686 void SampleProfileLoader::buildEdges(Function &F) { 687 for (auto &BI : F) { 688 BasicBlock *B1 = &BI; 689 690 // Add predecessors for B1. 691 SmallPtrSet<BasicBlock *, 16> Visited; 692 if (!Predecessors[B1].empty()) 693 llvm_unreachable("Found a stale predecessors list in a basic block."); 694 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 695 BasicBlock *B2 = *PI; 696 if (Visited.insert(B2).second) 697 Predecessors[B1].push_back(B2); 698 } 699 700 // Add successors for B1. 701 Visited.clear(); 702 if (!Successors[B1].empty()) 703 llvm_unreachable("Found a stale successors list in a basic block."); 704 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 705 BasicBlock *B2 = *SI; 706 if (Visited.insert(B2).second) 707 Successors[B1].push_back(B2); 708 } 709 } 710 } 711 712 /// \brief Propagate weights into edges 713 /// 714 /// The following rules are applied to every block BB in the CFG: 715 /// 716 /// - If BB has a single predecessor/successor, then the weight 717 /// of that edge is the weight of the block. 718 /// 719 /// - If all incoming or outgoing edges are known except one, and the 720 /// weight of the block is already known, the weight of the unknown 721 /// edge will be the weight of the block minus the sum of all the known 722 /// edges. If the sum of all the known edges is larger than BB's weight, 723 /// we set the unknown edge weight to zero. 724 /// 725 /// - If there is a self-referential edge, and the weight of the block is 726 /// known, the weight for that edge is set to the weight of the block 727 /// minus the weight of the other incoming edges to that block (if 728 /// known). 729 void SampleProfileLoader::propagateWeights(Function &F) { 730 bool Changed = true; 731 unsigned I = 0; 732 733 // Add an entry count to the function using the samples gathered 734 // at the function entry. 735 F.setEntryCount(Samples->getHeadSamples()); 736 737 // Before propagation starts, build, for each block, a list of 738 // unique predecessors and successors. This is necessary to handle 739 // identical edges in multiway branches. Since we visit all blocks and all 740 // edges of the CFG, it is cleaner to build these lists once at the start 741 // of the pass. 742 buildEdges(F); 743 744 // Propagate until we converge or we go past the iteration limit. 745 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 746 Changed = propagateThroughEdges(F); 747 } 748 749 // Generate MD_prof metadata for every branch instruction using the 750 // edge weights computed during propagation. 751 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 752 LLVMContext &Ctx = F.getContext(); 753 MDBuilder MDB(Ctx); 754 for (auto &BI : F) { 755 BasicBlock *BB = &BI; 756 TerminatorInst *TI = BB->getTerminator(); 757 if (TI->getNumSuccessors() == 1) 758 continue; 759 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 760 continue; 761 762 DEBUG(dbgs() << "\nGetting weights for branch at line " 763 << TI->getDebugLoc().getLine() << ".\n"); 764 SmallVector<uint32_t, 4> Weights; 765 uint32_t MaxWeight = 0; 766 DebugLoc MaxDestLoc; 767 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 768 BasicBlock *Succ = TI->getSuccessor(I); 769 Edge E = std::make_pair(BB, Succ); 770 uint64_t Weight = EdgeWeights[E]; 771 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 772 // Use uint32_t saturated arithmetic to adjust the incoming weights, 773 // if needed. Sample counts in profiles are 64-bit unsigned values, 774 // but internally branch weights are expressed as 32-bit values. 775 if (Weight > std::numeric_limits<uint32_t>::max()) { 776 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 777 Weight = std::numeric_limits<uint32_t>::max(); 778 } 779 Weights.push_back(static_cast<uint32_t>(Weight)); 780 if (Weight != 0) { 781 if (Weight > MaxWeight) { 782 MaxWeight = Weight; 783 MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc(); 784 } 785 } 786 } 787 788 // Only set weights if there is at least one non-zero weight. 789 // In any other case, let the analyzer set weights. 790 if (MaxWeight > 0) { 791 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 792 TI->setMetadata(llvm::LLVMContext::MD_prof, 793 MDB.createBranchWeights(Weights)); 794 DebugLoc BranchLoc = TI->getDebugLoc(); 795 emitOptimizationRemark( 796 Ctx, DEBUG_TYPE, F, MaxDestLoc, 797 Twine("most popular destination for conditional branches at ") + 798 ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" + 799 Twine(BranchLoc.getLine()) + ":" + 800 Twine(BranchLoc.getCol())) 801 : Twine("<UNKNOWN LOCATION>"))); 802 } else { 803 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 804 } 805 } 806 } 807 808 /// \brief Get the line number for the function header. 809 /// 810 /// This looks up function \p F in the current compilation unit and 811 /// retrieves the line number where the function is defined. This is 812 /// line 0 for all the samples read from the profile file. Every line 813 /// number is relative to this line. 814 /// 815 /// \param F Function object to query. 816 /// 817 /// \returns the line number where \p F is defined. If it returns 0, 818 /// it means that there is no debug information available for \p F. 819 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 820 if (DISubprogram *S = getDISubprogram(&F)) 821 return S->getLine(); 822 823 // If the start of \p F is missing, emit a diagnostic to inform the user 824 // about the missed opportunity. 825 F.getContext().diagnose(DiagnosticInfoSampleProfile( 826 "No debug information found in function " + F.getName() + 827 ": Function profile not used", 828 DS_Warning)); 829 return 0; 830 } 831 832 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 833 DT.reset(new DominatorTree); 834 DT->recalculate(F); 835 836 PDT.reset(new DominatorTreeBase<BasicBlock>(true)); 837 PDT->recalculate(F); 838 839 LI.reset(new LoopInfo); 840 LI->analyze(*DT); 841 } 842 843 /// \brief Generate branch weight metadata for all branches in \p F. 844 /// 845 /// Branch weights are computed out of instruction samples using a 846 /// propagation heuristic. Propagation proceeds in 3 phases: 847 /// 848 /// 1- Assignment of block weights. All the basic blocks in the function 849 /// are initial assigned the same weight as their most frequently 850 /// executed instruction. 851 /// 852 /// 2- Creation of equivalence classes. Since samples may be missing from 853 /// blocks, we can fill in the gaps by setting the weights of all the 854 /// blocks in the same equivalence class to the same weight. To compute 855 /// the concept of equivalence, we use dominance and loop information. 856 /// Two blocks B1 and B2 are in the same equivalence class if B1 857 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 858 /// 859 /// 3- Propagation of block weights into edges. This uses a simple 860 /// propagation heuristic. The following rules are applied to every 861 /// block BB in the CFG: 862 /// 863 /// - If BB has a single predecessor/successor, then the weight 864 /// of that edge is the weight of the block. 865 /// 866 /// - If all the edges are known except one, and the weight of the 867 /// block is already known, the weight of the unknown edge will 868 /// be the weight of the block minus the sum of all the known 869 /// edges. If the sum of all the known edges is larger than BB's weight, 870 /// we set the unknown edge weight to zero. 871 /// 872 /// - If there is a self-referential edge, and the weight of the block is 873 /// known, the weight for that edge is set to the weight of the block 874 /// minus the weight of the other incoming edges to that block (if 875 /// known). 876 /// 877 /// Since this propagation is not guaranteed to finalize for every CFG, we 878 /// only allow it to proceed for a limited number of iterations (controlled 879 /// by -sample-profile-max-propagate-iterations). 880 /// 881 /// FIXME: Try to replace this propagation heuristic with a scheme 882 /// that is guaranteed to finalize. A work-list approach similar to 883 /// the standard value propagation algorithm used by SSA-CCP might 884 /// work here. 885 /// 886 /// Once all the branch weights are computed, we emit the MD_prof 887 /// metadata on BB using the computed values for each of its branches. 888 /// 889 /// \param F The function to query. 890 /// 891 /// \returns true if \p F was modified. Returns false, otherwise. 892 bool SampleProfileLoader::emitAnnotations(Function &F) { 893 bool Changed = false; 894 895 if (getFunctionLoc(F) == 0) 896 return false; 897 898 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 899 << ": " << getFunctionLoc(F) << "\n"); 900 901 Changed |= inlineHotFunctions(F); 902 903 // Compute basic block weights. 904 Changed |= computeBlockWeights(F); 905 906 if (Changed) { 907 // Compute dominance and loop info needed for propagation. 908 computeDominanceAndLoopInfo(F); 909 910 // Find equivalence classes. 911 findEquivalenceClasses(F); 912 913 // Propagate weights to all edges. 914 propagateWeights(F); 915 } 916 917 return Changed; 918 } 919 920 char SampleProfileLoader::ID = 0; 921 INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile", 922 "Sample Profile loader", false, false) 923 INITIALIZE_PASS_DEPENDENCY(AddDiscriminators) 924 INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile", 925 "Sample Profile loader", false, false) 926 927 bool SampleProfileLoader::doInitialization(Module &M) { 928 auto &Ctx = M.getContext(); 929 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 930 if (std::error_code EC = ReaderOrErr.getError()) { 931 std::string Msg = "Could not open profile: " + EC.message(); 932 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename.data(), Msg)); 933 return false; 934 } 935 Reader = std::move(ReaderOrErr.get()); 936 ProfileIsValid = (Reader->read() == sampleprof_error::success); 937 return true; 938 } 939 940 ModulePass *llvm::createSampleProfileLoaderPass() { 941 return new SampleProfileLoader(SampleProfileFile); 942 } 943 944 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 945 return new SampleProfileLoader(Name); 946 } 947 948 bool SampleProfileLoader::runOnModule(Module &M) { 949 if (!ProfileIsValid) 950 return false; 951 952 bool retval = false; 953 for (auto &F : M) 954 if (!F.isDeclaration()) { 955 clearFunctionData(); 956 retval |= runOnFunction(F); 957 } 958 return retval; 959 } 960 961 bool SampleProfileLoader::runOnFunction(Function &F) { 962 Samples = Reader->getSamplesFor(F); 963 if (!Samples->empty()) 964 return emitAnnotations(F); 965 return false; 966 } 967