1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/SampleProfile.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/PostDominators.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DebugInfo.h" 35 #include "llvm/IR/DiagnosticInfo.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/InstIterator.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/MDBuilder.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/Pass.h" 46 #include "llvm/ProfileData/SampleProfReader.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/ErrorOr.h" 50 #include "llvm/Support/Format.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Transforms/IPO.h" 53 #include "llvm/Transforms/Utils/Cloning.h" 54 #include <cctype> 55 56 using namespace llvm; 57 using namespace sampleprof; 58 59 #define DEBUG_TYPE "sample-profile" 60 61 // Command line option to specify the file to read samples from. This is 62 // mainly used for debugging. 63 static cl::opt<std::string> SampleProfileFile( 64 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 65 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 66 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 67 "sample-profile-max-propagate-iterations", cl::init(100), 68 cl::desc("Maximum number of iterations to go through when propagating " 69 "sample block/edge weights through the CFG.")); 70 static cl::opt<unsigned> SampleProfileRecordCoverage( 71 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 72 cl::desc("Emit a warning if less than N% of records in the input profile " 73 "are matched to the IR.")); 74 static cl::opt<unsigned> SampleProfileSampleCoverage( 75 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 76 cl::desc("Emit a warning if less than N% of samples in the input profile " 77 "are matched to the IR.")); 78 static cl::opt<double> SampleProfileHotThreshold( 79 "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"), 80 cl::desc("Inlined functions that account for more than N% of all samples " 81 "collected in the parent function, will be inlined again.")); 82 static cl::opt<double> SampleProfileGlobalHotThreshold( 83 "sample-profile-global-hot-threshold", cl::init(30), cl::value_desc("N"), 84 cl::desc("Top-level functions that account for more than N% of all samples " 85 "collected in the profile, will be marked as hot for the inliner " 86 "to consider.")); 87 static cl::opt<double> SampleProfileGlobalColdThreshold( 88 "sample-profile-global-cold-threshold", cl::init(0.5), cl::value_desc("N"), 89 cl::desc("Top-level functions that account for less than N% of all samples " 90 "collected in the profile, will be marked as cold for the inliner " 91 "to consider.")); 92 93 namespace { 94 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap; 95 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap; 96 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge; 97 typedef DenseMap<Edge, uint64_t> EdgeWeightMap; 98 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>> 99 BlockEdgeMap; 100 101 /// \brief Sample profile pass. 102 /// 103 /// This pass reads profile data from the file specified by 104 /// -sample-profile-file and annotates every affected function with the 105 /// profile information found in that file. 106 class SampleProfileLoader { 107 public: 108 SampleProfileLoader(StringRef Name = SampleProfileFile) 109 : DT(nullptr), PDT(nullptr), LI(nullptr), ACT(nullptr), Reader(), 110 Samples(nullptr), Filename(Name), ProfileIsValid(false), 111 TotalCollectedSamples(0) {} 112 113 bool doInitialization(Module &M); 114 bool runOnModule(Module &M); 115 void setACT(AssumptionCacheTracker *A) { ACT = A; } 116 117 void dump() { Reader->dump(); } 118 119 protected: 120 bool runOnFunction(Function &F); 121 unsigned getFunctionLoc(Function &F); 122 bool emitAnnotations(Function &F); 123 ErrorOr<uint64_t> getInstWeight(const Instruction &I) const; 124 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB) const; 125 const FunctionSamples *findCalleeFunctionSamples(const CallInst &I) const; 126 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 127 bool inlineHotFunctions(Function &F); 128 bool emitInlineHints(Function &F); 129 void printEdgeWeight(raw_ostream &OS, Edge E); 130 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 131 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 132 bool computeBlockWeights(Function &F); 133 void findEquivalenceClasses(Function &F); 134 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 135 DominatorTreeBase<BasicBlock> *DomTree); 136 void propagateWeights(Function &F); 137 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 138 void buildEdges(Function &F); 139 bool propagateThroughEdges(Function &F); 140 void computeDominanceAndLoopInfo(Function &F); 141 unsigned getOffset(unsigned L, unsigned H) const; 142 void clearFunctionData(); 143 144 /// \brief Map basic blocks to their computed weights. 145 /// 146 /// The weight of a basic block is defined to be the maximum 147 /// of all the instruction weights in that block. 148 BlockWeightMap BlockWeights; 149 150 /// \brief Map edges to their computed weights. 151 /// 152 /// Edge weights are computed by propagating basic block weights in 153 /// SampleProfile::propagateWeights. 154 EdgeWeightMap EdgeWeights; 155 156 /// \brief Set of visited blocks during propagation. 157 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 158 159 /// \brief Set of visited edges during propagation. 160 SmallSet<Edge, 32> VisitedEdges; 161 162 /// \brief Equivalence classes for block weights. 163 /// 164 /// Two blocks BB1 and BB2 are in the same equivalence class if they 165 /// dominate and post-dominate each other, and they are in the same loop 166 /// nest. When this happens, the two blocks are guaranteed to execute 167 /// the same number of times. 168 EquivalenceClassMap EquivalenceClass; 169 170 /// \brief Dominance, post-dominance and loop information. 171 std::unique_ptr<DominatorTree> DT; 172 std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT; 173 std::unique_ptr<LoopInfo> LI; 174 175 AssumptionCacheTracker *ACT; 176 177 /// \brief Predecessors for each basic block in the CFG. 178 BlockEdgeMap Predecessors; 179 180 /// \brief Successors for each basic block in the CFG. 181 BlockEdgeMap Successors; 182 183 /// \brief Profile reader object. 184 std::unique_ptr<SampleProfileReader> Reader; 185 186 /// \brief Samples collected for the body of this function. 187 FunctionSamples *Samples; 188 189 /// \brief Name of the profile file to load. 190 StringRef Filename; 191 192 /// \brief Flag indicating whether the profile input loaded successfully. 193 bool ProfileIsValid; 194 195 /// \brief Total number of samples collected in this profile. 196 /// 197 /// This is the sum of all the samples collected in all the functions executed 198 /// at runtime. 199 uint64_t TotalCollectedSamples; 200 }; 201 202 class SampleProfileLoaderLegacyPass : public ModulePass { 203 public: 204 // Class identification, replacement for typeinfo 205 static char ID; 206 207 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile) 208 : ModulePass(ID), SampleLoader(Name) { 209 initializeSampleProfileLoaderLegacyPassPass( 210 *PassRegistry::getPassRegistry()); 211 } 212 213 void dump() { SampleLoader.dump(); } 214 215 bool doInitialization(Module &M) override { 216 return SampleLoader.doInitialization(M); 217 } 218 const char *getPassName() const override { return "Sample profile pass"; } 219 bool runOnModule(Module &M) override; 220 221 void getAnalysisUsage(AnalysisUsage &AU) const override { 222 AU.addRequired<AssumptionCacheTracker>(); 223 } 224 private: 225 SampleProfileLoader SampleLoader; 226 }; 227 228 class SampleCoverageTracker { 229 public: 230 SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {} 231 232 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 233 uint32_t Discriminator, uint64_t Samples); 234 unsigned computeCoverage(unsigned Used, unsigned Total) const; 235 unsigned countUsedRecords(const FunctionSamples *FS) const; 236 unsigned countBodyRecords(const FunctionSamples *FS) const; 237 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 238 uint64_t countBodySamples(const FunctionSamples *FS) const; 239 void clear() { 240 SampleCoverage.clear(); 241 TotalUsedSamples = 0; 242 } 243 244 private: 245 typedef std::map<LineLocation, unsigned> BodySampleCoverageMap; 246 typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap> 247 FunctionSamplesCoverageMap; 248 249 /// Coverage map for sampling records. 250 /// 251 /// This map keeps a record of sampling records that have been matched to 252 /// an IR instruction. This is used to detect some form of staleness in 253 /// profiles (see flag -sample-profile-check-coverage). 254 /// 255 /// Each entry in the map corresponds to a FunctionSamples instance. This is 256 /// another map that counts how many times the sample record at the 257 /// given location has been used. 258 FunctionSamplesCoverageMap SampleCoverage; 259 260 /// Number of samples used from the profile. 261 /// 262 /// When a sampling record is used for the first time, the samples from 263 /// that record are added to this accumulator. Coverage is later computed 264 /// based on the total number of samples available in this function and 265 /// its callsites. 266 /// 267 /// Note that this accumulator tracks samples used from a single function 268 /// and all the inlined callsites. Strictly, we should have a map of counters 269 /// keyed by FunctionSamples pointers, but these stats are cleared after 270 /// every function, so we just need to keep a single counter. 271 uint64_t TotalUsedSamples; 272 }; 273 274 SampleCoverageTracker CoverageTracker; 275 276 /// Return true if the given callsite is hot wrt to its caller. 277 /// 278 /// Functions that were inlined in the original binary will be represented 279 /// in the inline stack in the sample profile. If the profile shows that 280 /// the original inline decision was "good" (i.e., the callsite is executed 281 /// frequently), then we will recreate the inline decision and apply the 282 /// profile from the inlined callsite. 283 /// 284 /// To decide whether an inlined callsite is hot, we compute the fraction 285 /// of samples used by the callsite with respect to the total number of samples 286 /// collected in the caller. 287 /// 288 /// If that fraction is larger than the default given by 289 /// SampleProfileHotThreshold, the callsite will be inlined again. 290 bool callsiteIsHot(const FunctionSamples *CallerFS, 291 const FunctionSamples *CallsiteFS) { 292 if (!CallsiteFS) 293 return false; // The callsite was not inlined in the original binary. 294 295 uint64_t ParentTotalSamples = CallerFS->getTotalSamples(); 296 if (ParentTotalSamples == 0) 297 return false; // Avoid division by zero. 298 299 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 300 if (CallsiteTotalSamples == 0) 301 return false; // Callsite is trivially cold. 302 303 double PercentSamples = 304 (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0; 305 return PercentSamples >= SampleProfileHotThreshold; 306 } 307 } 308 309 /// Mark as used the sample record for the given function samples at 310 /// (LineOffset, Discriminator). 311 /// 312 /// \returns true if this is the first time we mark the given record. 313 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 314 uint32_t LineOffset, 315 uint32_t Discriminator, 316 uint64_t Samples) { 317 LineLocation Loc(LineOffset, Discriminator); 318 unsigned &Count = SampleCoverage[FS][Loc]; 319 bool FirstTime = (++Count == 1); 320 if (FirstTime) 321 TotalUsedSamples += Samples; 322 return FirstTime; 323 } 324 325 /// Return the number of sample records that were applied from this profile. 326 /// 327 /// This count does not include records from cold inlined callsites. 328 unsigned 329 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const { 330 auto I = SampleCoverage.find(FS); 331 332 // The size of the coverage map for FS represents the number of records 333 // that were marked used at least once. 334 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 335 336 // If there are inlined callsites in this function, count the samples found 337 // in the respective bodies. However, do not bother counting callees with 0 338 // total samples, these are callees that were never invoked at runtime. 339 for (const auto &I : FS->getCallsiteSamples()) { 340 const FunctionSamples *CalleeSamples = &I.second; 341 if (callsiteIsHot(FS, CalleeSamples)) 342 Count += countUsedRecords(CalleeSamples); 343 } 344 345 return Count; 346 } 347 348 /// Return the number of sample records in the body of this profile. 349 /// 350 /// This count does not include records from cold inlined callsites. 351 unsigned 352 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const { 353 unsigned Count = FS->getBodySamples().size(); 354 355 // Only count records in hot callsites. 356 for (const auto &I : FS->getCallsiteSamples()) { 357 const FunctionSamples *CalleeSamples = &I.second; 358 if (callsiteIsHot(FS, CalleeSamples)) 359 Count += countBodyRecords(CalleeSamples); 360 } 361 362 return Count; 363 } 364 365 /// Return the number of samples collected in the body of this profile. 366 /// 367 /// This count does not include samples from cold inlined callsites. 368 uint64_t 369 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const { 370 uint64_t Total = 0; 371 for (const auto &I : FS->getBodySamples()) 372 Total += I.second.getSamples(); 373 374 // Only count samples in hot callsites. 375 for (const auto &I : FS->getCallsiteSamples()) { 376 const FunctionSamples *CalleeSamples = &I.second; 377 if (callsiteIsHot(FS, CalleeSamples)) 378 Total += countBodySamples(CalleeSamples); 379 } 380 381 return Total; 382 } 383 384 /// Return the fraction of sample records used in this profile. 385 /// 386 /// The returned value is an unsigned integer in the range 0-100 indicating 387 /// the percentage of sample records that were used while applying this 388 /// profile to the associated function. 389 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 390 unsigned Total) const { 391 assert(Used <= Total && 392 "number of used records cannot exceed the total number of records"); 393 return Total > 0 ? Used * 100 / Total : 100; 394 } 395 396 /// Clear all the per-function data used to load samples and propagate weights. 397 void SampleProfileLoader::clearFunctionData() { 398 BlockWeights.clear(); 399 EdgeWeights.clear(); 400 VisitedBlocks.clear(); 401 VisitedEdges.clear(); 402 EquivalenceClass.clear(); 403 DT = nullptr; 404 PDT = nullptr; 405 LI = nullptr; 406 Predecessors.clear(); 407 Successors.clear(); 408 CoverageTracker.clear(); 409 } 410 411 /// \brief Returns the offset of lineno \p L to head_lineno \p H 412 /// 413 /// \param L Lineno 414 /// \param H Header lineno of the function 415 /// 416 /// \returns offset to the header lineno. 16 bits are used to represent offset. 417 /// We assume that a single function will not exceed 65535 LOC. 418 unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const { 419 return (L - H) & 0xffff; 420 } 421 422 /// \brief Print the weight of edge \p E on stream \p OS. 423 /// 424 /// \param OS Stream to emit the output to. 425 /// \param E Edge to print. 426 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 427 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 428 << "]: " << EdgeWeights[E] << "\n"; 429 } 430 431 /// \brief Print the equivalence class of block \p BB on stream \p OS. 432 /// 433 /// \param OS Stream to emit the output to. 434 /// \param BB Block to print. 435 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 436 const BasicBlock *BB) { 437 const BasicBlock *Equiv = EquivalenceClass[BB]; 438 OS << "equivalence[" << BB->getName() 439 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 440 } 441 442 /// \brief Print the weight of block \p BB on stream \p OS. 443 /// 444 /// \param OS Stream to emit the output to. 445 /// \param BB Block to print. 446 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 447 const BasicBlock *BB) const { 448 const auto &I = BlockWeights.find(BB); 449 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 450 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 451 } 452 453 /// \brief Get the weight for an instruction. 454 /// 455 /// The "weight" of an instruction \p Inst is the number of samples 456 /// collected on that instruction at runtime. To retrieve it, we 457 /// need to compute the line number of \p Inst relative to the start of its 458 /// function. We use HeaderLineno to compute the offset. We then 459 /// look up the samples collected for \p Inst using BodySamples. 460 /// 461 /// \param Inst Instruction to query. 462 /// 463 /// \returns the weight of \p Inst. 464 ErrorOr<uint64_t> 465 SampleProfileLoader::getInstWeight(const Instruction &Inst) const { 466 const DebugLoc &DLoc = Inst.getDebugLoc(); 467 if (!DLoc) 468 return std::error_code(); 469 470 const FunctionSamples *FS = findFunctionSamples(Inst); 471 if (!FS) 472 return std::error_code(); 473 474 // Ignore all dbg_value intrinsics. 475 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst); 476 if (II && II->getIntrinsicID() == Intrinsic::dbg_value) 477 return std::error_code(); 478 479 const DILocation *DIL = DLoc; 480 unsigned Lineno = DLoc.getLine(); 481 unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine(); 482 483 uint32_t LineOffset = getOffset(Lineno, HeaderLineno); 484 uint32_t Discriminator = DIL->getDiscriminator(); 485 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 486 if (R) { 487 bool FirstMark = 488 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 489 if (FirstMark) { 490 const Function *F = Inst.getParent()->getParent(); 491 LLVMContext &Ctx = F->getContext(); 492 emitOptimizationRemark( 493 Ctx, DEBUG_TYPE, *F, DLoc, 494 Twine("Applied ") + Twine(*R) + " samples from profile (offset: " + 495 Twine(LineOffset) + 496 ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")"); 497 } 498 DEBUG(dbgs() << " " << Lineno << "." << DIL->getDiscriminator() << ":" 499 << Inst << " (line offset: " << Lineno - HeaderLineno << "." 500 << DIL->getDiscriminator() << " - weight: " << R.get() 501 << ")\n"); 502 } else { 503 // If a call instruction is inlined in profile, but not inlined here, 504 // it means that the inlined callsite has no sample, thus the call 505 // instruction should have 0 count. 506 const CallInst *CI = dyn_cast<CallInst>(&Inst); 507 if (CI && findCalleeFunctionSamples(*CI)) 508 R = 0; 509 } 510 return R; 511 } 512 513 /// \brief Compute the weight of a basic block. 514 /// 515 /// The weight of basic block \p BB is the maximum weight of all the 516 /// instructions in BB. 517 /// 518 /// \param BB The basic block to query. 519 /// 520 /// \returns the weight for \p BB. 521 ErrorOr<uint64_t> 522 SampleProfileLoader::getBlockWeight(const BasicBlock *BB) const { 523 DenseMap<uint64_t, uint64_t> CM; 524 for (auto &I : BB->getInstList()) { 525 const ErrorOr<uint64_t> &R = getInstWeight(I); 526 if (R) CM[R.get()]++; 527 } 528 if (CM.size() == 0) return std::error_code(); 529 uint64_t W = 0, C = 0; 530 for (const auto &C_W : CM) { 531 if (C_W.second == W) { 532 C = std::max(C, C_W.first); 533 } else if (C_W.second > W) { 534 C = C_W.first; 535 W = C_W.second; 536 } 537 } 538 return C; 539 } 540 541 /// \brief Compute and store the weights of every basic block. 542 /// 543 /// This populates the BlockWeights map by computing 544 /// the weights of every basic block in the CFG. 545 /// 546 /// \param F The function to query. 547 bool SampleProfileLoader::computeBlockWeights(Function &F) { 548 bool Changed = false; 549 DEBUG(dbgs() << "Block weights\n"); 550 for (const auto &BB : F) { 551 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 552 if (Weight) { 553 BlockWeights[&BB] = Weight.get(); 554 VisitedBlocks.insert(&BB); 555 Changed = true; 556 } 557 DEBUG(printBlockWeight(dbgs(), &BB)); 558 } 559 560 return Changed; 561 } 562 563 /// \brief Get the FunctionSamples for a call instruction. 564 /// 565 /// The FunctionSamples of a call instruction \p Inst is the inlined 566 /// instance in which that call instruction is calling to. It contains 567 /// all samples that resides in the inlined instance. We first find the 568 /// inlined instance in which the call instruction is from, then we 569 /// traverse its children to find the callsite with the matching 570 /// location and callee function name. 571 /// 572 /// \param Inst Call instruction to query. 573 /// 574 /// \returns The FunctionSamples pointer to the inlined instance. 575 const FunctionSamples * 576 SampleProfileLoader::findCalleeFunctionSamples(const CallInst &Inst) const { 577 const DILocation *DIL = Inst.getDebugLoc(); 578 if (!DIL) { 579 return nullptr; 580 } 581 DISubprogram *SP = DIL->getScope()->getSubprogram(); 582 if (!SP) 583 return nullptr; 584 585 const FunctionSamples *FS = findFunctionSamples(Inst); 586 if (FS == nullptr) 587 return nullptr; 588 589 return FS->findFunctionSamplesAt(LineLocation( 590 getOffset(DIL->getLine(), SP->getLine()), DIL->getDiscriminator())); 591 } 592 593 /// \brief Get the FunctionSamples for an instruction. 594 /// 595 /// The FunctionSamples of an instruction \p Inst is the inlined instance 596 /// in which that instruction is coming from. We traverse the inline stack 597 /// of that instruction, and match it with the tree nodes in the profile. 598 /// 599 /// \param Inst Instruction to query. 600 /// 601 /// \returns the FunctionSamples pointer to the inlined instance. 602 const FunctionSamples * 603 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 604 SmallVector<LineLocation, 10> S; 605 const DILocation *DIL = Inst.getDebugLoc(); 606 if (!DIL) { 607 return Samples; 608 } 609 for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) { 610 DISubprogram *SP = DIL->getScope()->getSubprogram(); 611 if (!SP) 612 return nullptr; 613 S.push_back(LineLocation(getOffset(DIL->getLine(), SP->getLine()), 614 DIL->getDiscriminator())); 615 } 616 if (S.size() == 0) 617 return Samples; 618 const FunctionSamples *FS = Samples; 619 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 620 FS = FS->findFunctionSamplesAt(S[i]); 621 } 622 return FS; 623 } 624 625 /// \brief Emit an inline hint if \p F is globally hot or cold. 626 /// 627 /// If \p F consumes a significant fraction of samples (indicated by 628 /// SampleProfileGlobalHotThreshold), apply the InlineHint attribute for the 629 /// inliner to consider the function hot. 630 /// 631 /// If \p F consumes a small fraction of samples (indicated by 632 /// SampleProfileGlobalColdThreshold), apply the Cold attribute for the inliner 633 /// to consider the function cold. 634 /// 635 /// FIXME - This setting of inline hints is sub-optimal. Instead of marking a 636 /// function globally hot or cold, we should be annotating individual callsites. 637 /// This is not currently possible, but work on the inliner will eventually 638 /// provide this ability. See http://reviews.llvm.org/D15003 for details and 639 /// discussion. 640 /// 641 /// \returns True if either attribute was applied to \p F. 642 bool SampleProfileLoader::emitInlineHints(Function &F) { 643 if (TotalCollectedSamples == 0) 644 return false; 645 646 uint64_t FunctionSamples = Samples->getTotalSamples(); 647 double SamplesPercent = 648 (double)FunctionSamples / (double)TotalCollectedSamples * 100.0; 649 650 // If the function collected more samples than the hot threshold, mark 651 // it globally hot. 652 if (SamplesPercent >= SampleProfileGlobalHotThreshold) { 653 F.addFnAttr(llvm::Attribute::InlineHint); 654 std::string Msg; 655 raw_string_ostream S(Msg); 656 S << "Applied inline hint to globally hot function '" << F.getName() 657 << "' with " << format("%.2f", SamplesPercent) 658 << "% of samples (threshold: " 659 << format("%.2f", SampleProfileGlobalHotThreshold.getValue()) << "%)"; 660 S.flush(); 661 emitOptimizationRemark(F.getContext(), DEBUG_TYPE, F, DebugLoc(), Msg); 662 return true; 663 } 664 665 // If the function collected fewer samples than the cold threshold, mark 666 // it globally cold. 667 if (SamplesPercent <= SampleProfileGlobalColdThreshold) { 668 F.addFnAttr(llvm::Attribute::Cold); 669 std::string Msg; 670 raw_string_ostream S(Msg); 671 S << "Applied cold hint to globally cold function '" << F.getName() 672 << "' with " << format("%.2f", SamplesPercent) 673 << "% of samples (threshold: " 674 << format("%.2f", SampleProfileGlobalColdThreshold.getValue()) << "%)"; 675 S.flush(); 676 emitOptimizationRemark(F.getContext(), DEBUG_TYPE, F, DebugLoc(), Msg); 677 return true; 678 } 679 680 return false; 681 } 682 683 /// \brief Iteratively inline hot callsites of a function. 684 /// 685 /// Iteratively traverse all callsites of the function \p F, and find if 686 /// the corresponding inlined instance exists and is hot in profile. If 687 /// it is hot enough, inline the callsites and adds new callsites of the 688 /// callee into the caller. 689 /// 690 /// TODO: investigate the possibility of not invoking InlineFunction directly. 691 /// 692 /// \param F function to perform iterative inlining. 693 /// 694 /// \returns True if there is any inline happened. 695 bool SampleProfileLoader::inlineHotFunctions(Function &F) { 696 bool Changed = false; 697 LLVMContext &Ctx = F.getContext(); 698 while (true) { 699 bool LocalChanged = false; 700 SmallVector<CallInst *, 10> CIS; 701 for (auto &BB : F) { 702 for (auto &I : BB.getInstList()) { 703 CallInst *CI = dyn_cast<CallInst>(&I); 704 if (CI && callsiteIsHot(Samples, findCalleeFunctionSamples(*CI))) 705 CIS.push_back(CI); 706 } 707 } 708 for (auto CI : CIS) { 709 InlineFunctionInfo IFI(nullptr, ACT); 710 Function *CalledFunction = CI->getCalledFunction(); 711 DebugLoc DLoc = CI->getDebugLoc(); 712 uint64_t NumSamples = findCalleeFunctionSamples(*CI)->getTotalSamples(); 713 if (InlineFunction(CI, IFI)) { 714 LocalChanged = true; 715 emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc, 716 Twine("inlined hot callee '") + 717 CalledFunction->getName() + "' with " + 718 Twine(NumSamples) + " samples into '" + 719 F.getName() + "'"); 720 } 721 } 722 if (LocalChanged) { 723 Changed = true; 724 } else { 725 break; 726 } 727 } 728 return Changed; 729 } 730 731 /// \brief Find equivalence classes for the given block. 732 /// 733 /// This finds all the blocks that are guaranteed to execute the same 734 /// number of times as \p BB1. To do this, it traverses all the 735 /// descendants of \p BB1 in the dominator or post-dominator tree. 736 /// 737 /// A block BB2 will be in the same equivalence class as \p BB1 if 738 /// the following holds: 739 /// 740 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 741 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 742 /// dominate BB1 in the post-dominator tree. 743 /// 744 /// 2- Both BB2 and \p BB1 must be in the same loop. 745 /// 746 /// For every block BB2 that meets those two requirements, we set BB2's 747 /// equivalence class to \p BB1. 748 /// 749 /// \param BB1 Block to check. 750 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 751 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 752 /// with blocks from \p BB1's dominator tree, then 753 /// this is the post-dominator tree, and vice versa. 754 void SampleProfileLoader::findEquivalencesFor( 755 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 756 DominatorTreeBase<BasicBlock> *DomTree) { 757 const BasicBlock *EC = EquivalenceClass[BB1]; 758 uint64_t Weight = BlockWeights[EC]; 759 for (const auto *BB2 : Descendants) { 760 bool IsDomParent = DomTree->dominates(BB2, BB1); 761 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 762 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 763 EquivalenceClass[BB2] = EC; 764 765 // If BB2 is heavier than BB1, make BB2 have the same weight 766 // as BB1. 767 // 768 // Note that we don't worry about the opposite situation here 769 // (when BB2 is lighter than BB1). We will deal with this 770 // during the propagation phase. Right now, we just want to 771 // make sure that BB1 has the largest weight of all the 772 // members of its equivalence set. 773 Weight = std::max(Weight, BlockWeights[BB2]); 774 } 775 } 776 BlockWeights[EC] = Weight; 777 } 778 779 /// \brief Find equivalence classes. 780 /// 781 /// Since samples may be missing from blocks, we can fill in the gaps by setting 782 /// the weights of all the blocks in the same equivalence class to the same 783 /// weight. To compute the concept of equivalence, we use dominance and loop 784 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 785 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 786 /// 787 /// \param F The function to query. 788 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 789 SmallVector<BasicBlock *, 8> DominatedBBs; 790 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 791 // Find equivalence sets based on dominance and post-dominance information. 792 for (auto &BB : F) { 793 BasicBlock *BB1 = &BB; 794 795 // Compute BB1's equivalence class once. 796 if (EquivalenceClass.count(BB1)) { 797 DEBUG(printBlockEquivalence(dbgs(), BB1)); 798 continue; 799 } 800 801 // By default, blocks are in their own equivalence class. 802 EquivalenceClass[BB1] = BB1; 803 804 // Traverse all the blocks dominated by BB1. We are looking for 805 // every basic block BB2 such that: 806 // 807 // 1- BB1 dominates BB2. 808 // 2- BB2 post-dominates BB1. 809 // 3- BB1 and BB2 are in the same loop nest. 810 // 811 // If all those conditions hold, it means that BB2 is executed 812 // as many times as BB1, so they are placed in the same equivalence 813 // class by making BB2's equivalence class be BB1. 814 DominatedBBs.clear(); 815 DT->getDescendants(BB1, DominatedBBs); 816 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 817 818 DEBUG(printBlockEquivalence(dbgs(), BB1)); 819 } 820 821 // Assign weights to equivalence classes. 822 // 823 // All the basic blocks in the same equivalence class will execute 824 // the same number of times. Since we know that the head block in 825 // each equivalence class has the largest weight, assign that weight 826 // to all the blocks in that equivalence class. 827 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 828 for (auto &BI : F) { 829 const BasicBlock *BB = &BI; 830 const BasicBlock *EquivBB = EquivalenceClass[BB]; 831 if (BB != EquivBB) 832 BlockWeights[BB] = BlockWeights[EquivBB]; 833 DEBUG(printBlockWeight(dbgs(), BB)); 834 } 835 } 836 837 /// \brief Visit the given edge to decide if it has a valid weight. 838 /// 839 /// If \p E has not been visited before, we copy to \p UnknownEdge 840 /// and increment the count of unknown edges. 841 /// 842 /// \param E Edge to visit. 843 /// \param NumUnknownEdges Current number of unknown edges. 844 /// \param UnknownEdge Set if E has not been visited before. 845 /// 846 /// \returns E's weight, if known. Otherwise, return 0. 847 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 848 Edge *UnknownEdge) { 849 if (!VisitedEdges.count(E)) { 850 (*NumUnknownEdges)++; 851 *UnknownEdge = E; 852 return 0; 853 } 854 855 return EdgeWeights[E]; 856 } 857 858 /// \brief Propagate weights through incoming/outgoing edges. 859 /// 860 /// If the weight of a basic block is known, and there is only one edge 861 /// with an unknown weight, we can calculate the weight of that edge. 862 /// 863 /// Similarly, if all the edges have a known count, we can calculate the 864 /// count of the basic block, if needed. 865 /// 866 /// \param F Function to process. 867 /// 868 /// \returns True if new weights were assigned to edges or blocks. 869 bool SampleProfileLoader::propagateThroughEdges(Function &F) { 870 bool Changed = false; 871 DEBUG(dbgs() << "\nPropagation through edges\n"); 872 for (const auto &BI : F) { 873 const BasicBlock *BB = &BI; 874 const BasicBlock *EC = EquivalenceClass[BB]; 875 876 // Visit all the predecessor and successor edges to determine 877 // which ones have a weight assigned already. Note that it doesn't 878 // matter that we only keep track of a single unknown edge. The 879 // only case we are interested in handling is when only a single 880 // edge is unknown (see setEdgeOrBlockWeight). 881 for (unsigned i = 0; i < 2; i++) { 882 uint64_t TotalWeight = 0; 883 unsigned NumUnknownEdges = 0; 884 Edge UnknownEdge, SelfReferentialEdge; 885 886 if (i == 0) { 887 // First, visit all predecessor edges. 888 for (auto *Pred : Predecessors[BB]) { 889 Edge E = std::make_pair(Pred, BB); 890 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 891 if (E.first == E.second) 892 SelfReferentialEdge = E; 893 } 894 } else { 895 // On the second round, visit all successor edges. 896 for (auto *Succ : Successors[BB]) { 897 Edge E = std::make_pair(BB, Succ); 898 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 899 } 900 } 901 902 // After visiting all the edges, there are three cases that we 903 // can handle immediately: 904 // 905 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 906 // In this case, we simply check that the sum of all the edges 907 // is the same as BB's weight. If not, we change BB's weight 908 // to match. Additionally, if BB had not been visited before, 909 // we mark it visited. 910 // 911 // - Only one edge is unknown and BB has already been visited. 912 // In this case, we can compute the weight of the edge by 913 // subtracting the total block weight from all the known 914 // edge weights. If the edges weight more than BB, then the 915 // edge of the last remaining edge is set to zero. 916 // 917 // - There exists a self-referential edge and the weight of BB is 918 // known. In this case, this edge can be based on BB's weight. 919 // We add up all the other known edges and set the weight on 920 // the self-referential edge as we did in the previous case. 921 // 922 // In any other case, we must continue iterating. Eventually, 923 // all edges will get a weight, or iteration will stop when 924 // it reaches SampleProfileMaxPropagateIterations. 925 if (NumUnknownEdges <= 1) { 926 uint64_t &BBWeight = BlockWeights[EC]; 927 if (NumUnknownEdges == 0) { 928 // If we already know the weight of all edges, the weight of the 929 // basic block can be computed. It should be no larger than the sum 930 // of all edge weights. 931 if (TotalWeight > BBWeight) { 932 BBWeight = TotalWeight; 933 Changed = true; 934 DEBUG(dbgs() << "All edge weights for " << BB->getName() 935 << " known. Set weight for block: "; 936 printBlockWeight(dbgs(), BB);); 937 } 938 if (VisitedBlocks.insert(EC).second) 939 Changed = true; 940 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 941 // If there is a single unknown edge and the block has been 942 // visited, then we can compute E's weight. 943 if (BBWeight >= TotalWeight) 944 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 945 else 946 EdgeWeights[UnknownEdge] = 0; 947 VisitedEdges.insert(UnknownEdge); 948 Changed = true; 949 DEBUG(dbgs() << "Set weight for edge: "; 950 printEdgeWeight(dbgs(), UnknownEdge)); 951 } 952 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 953 uint64_t &BBWeight = BlockWeights[BB]; 954 // We have a self-referential edge and the weight of BB is known. 955 if (BBWeight >= TotalWeight) 956 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 957 else 958 EdgeWeights[SelfReferentialEdge] = 0; 959 VisitedEdges.insert(SelfReferentialEdge); 960 Changed = true; 961 DEBUG(dbgs() << "Set self-referential edge weight to: "; 962 printEdgeWeight(dbgs(), SelfReferentialEdge)); 963 } 964 } 965 } 966 967 return Changed; 968 } 969 970 /// \brief Build in/out edge lists for each basic block in the CFG. 971 /// 972 /// We are interested in unique edges. If a block B1 has multiple 973 /// edges to another block B2, we only add a single B1->B2 edge. 974 void SampleProfileLoader::buildEdges(Function &F) { 975 for (auto &BI : F) { 976 BasicBlock *B1 = &BI; 977 978 // Add predecessors for B1. 979 SmallPtrSet<BasicBlock *, 16> Visited; 980 if (!Predecessors[B1].empty()) 981 llvm_unreachable("Found a stale predecessors list in a basic block."); 982 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 983 BasicBlock *B2 = *PI; 984 if (Visited.insert(B2).second) 985 Predecessors[B1].push_back(B2); 986 } 987 988 // Add successors for B1. 989 Visited.clear(); 990 if (!Successors[B1].empty()) 991 llvm_unreachable("Found a stale successors list in a basic block."); 992 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 993 BasicBlock *B2 = *SI; 994 if (Visited.insert(B2).second) 995 Successors[B1].push_back(B2); 996 } 997 } 998 } 999 1000 /// \brief Propagate weights into edges 1001 /// 1002 /// The following rules are applied to every block BB in the CFG: 1003 /// 1004 /// - If BB has a single predecessor/successor, then the weight 1005 /// of that edge is the weight of the block. 1006 /// 1007 /// - If all incoming or outgoing edges are known except one, and the 1008 /// weight of the block is already known, the weight of the unknown 1009 /// edge will be the weight of the block minus the sum of all the known 1010 /// edges. If the sum of all the known edges is larger than BB's weight, 1011 /// we set the unknown edge weight to zero. 1012 /// 1013 /// - If there is a self-referential edge, and the weight of the block is 1014 /// known, the weight for that edge is set to the weight of the block 1015 /// minus the weight of the other incoming edges to that block (if 1016 /// known). 1017 void SampleProfileLoader::propagateWeights(Function &F) { 1018 bool Changed = true; 1019 unsigned I = 0; 1020 1021 // Add an entry count to the function using the samples gathered 1022 // at the function entry. 1023 F.setEntryCount(Samples->getHeadSamples()); 1024 1025 // Before propagation starts, build, for each block, a list of 1026 // unique predecessors and successors. This is necessary to handle 1027 // identical edges in multiway branches. Since we visit all blocks and all 1028 // edges of the CFG, it is cleaner to build these lists once at the start 1029 // of the pass. 1030 buildEdges(F); 1031 1032 // Propagate until we converge or we go past the iteration limit. 1033 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1034 Changed = propagateThroughEdges(F); 1035 } 1036 1037 // Generate MD_prof metadata for every branch instruction using the 1038 // edge weights computed during propagation. 1039 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1040 LLVMContext &Ctx = F.getContext(); 1041 MDBuilder MDB(Ctx); 1042 for (auto &BI : F) { 1043 BasicBlock *BB = &BI; 1044 TerminatorInst *TI = BB->getTerminator(); 1045 if (TI->getNumSuccessors() == 1) 1046 continue; 1047 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1048 continue; 1049 1050 DEBUG(dbgs() << "\nGetting weights for branch at line " 1051 << TI->getDebugLoc().getLine() << ".\n"); 1052 SmallVector<uint32_t, 4> Weights; 1053 uint32_t MaxWeight = 0; 1054 DebugLoc MaxDestLoc; 1055 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1056 BasicBlock *Succ = TI->getSuccessor(I); 1057 Edge E = std::make_pair(BB, Succ); 1058 uint64_t Weight = EdgeWeights[E]; 1059 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1060 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1061 // if needed. Sample counts in profiles are 64-bit unsigned values, 1062 // but internally branch weights are expressed as 32-bit values. 1063 if (Weight > std::numeric_limits<uint32_t>::max()) { 1064 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1065 Weight = std::numeric_limits<uint32_t>::max(); 1066 } 1067 Weights.push_back(static_cast<uint32_t>(Weight)); 1068 if (Weight != 0) { 1069 if (Weight > MaxWeight) { 1070 MaxWeight = Weight; 1071 MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc(); 1072 } 1073 } 1074 } 1075 1076 // Only set weights if there is at least one non-zero weight. 1077 // In any other case, let the analyzer set weights. 1078 if (MaxWeight > 0) { 1079 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1080 TI->setMetadata(llvm::LLVMContext::MD_prof, 1081 MDB.createBranchWeights(Weights)); 1082 DebugLoc BranchLoc = TI->getDebugLoc(); 1083 emitOptimizationRemark( 1084 Ctx, DEBUG_TYPE, F, MaxDestLoc, 1085 Twine("most popular destination for conditional branches at ") + 1086 ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" + 1087 Twine(BranchLoc.getLine()) + ":" + 1088 Twine(BranchLoc.getCol())) 1089 : Twine("<UNKNOWN LOCATION>"))); 1090 } else { 1091 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1092 } 1093 } 1094 } 1095 1096 /// \brief Get the line number for the function header. 1097 /// 1098 /// This looks up function \p F in the current compilation unit and 1099 /// retrieves the line number where the function is defined. This is 1100 /// line 0 for all the samples read from the profile file. Every line 1101 /// number is relative to this line. 1102 /// 1103 /// \param F Function object to query. 1104 /// 1105 /// \returns the line number where \p F is defined. If it returns 0, 1106 /// it means that there is no debug information available for \p F. 1107 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1108 if (DISubprogram *S = F.getSubprogram()) 1109 return S->getLine(); 1110 1111 // If the start of \p F is missing, emit a diagnostic to inform the user 1112 // about the missed opportunity. 1113 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1114 "No debug information found in function " + F.getName() + 1115 ": Function profile not used", 1116 DS_Warning)); 1117 return 0; 1118 } 1119 1120 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1121 DT.reset(new DominatorTree); 1122 DT->recalculate(F); 1123 1124 PDT.reset(new DominatorTreeBase<BasicBlock>(true)); 1125 PDT->recalculate(F); 1126 1127 LI.reset(new LoopInfo); 1128 LI->analyze(*DT); 1129 } 1130 1131 /// \brief Generate branch weight metadata for all branches in \p F. 1132 /// 1133 /// Branch weights are computed out of instruction samples using a 1134 /// propagation heuristic. Propagation proceeds in 3 phases: 1135 /// 1136 /// 1- Assignment of block weights. All the basic blocks in the function 1137 /// are initial assigned the same weight as their most frequently 1138 /// executed instruction. 1139 /// 1140 /// 2- Creation of equivalence classes. Since samples may be missing from 1141 /// blocks, we can fill in the gaps by setting the weights of all the 1142 /// blocks in the same equivalence class to the same weight. To compute 1143 /// the concept of equivalence, we use dominance and loop information. 1144 /// Two blocks B1 and B2 are in the same equivalence class if B1 1145 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1146 /// 1147 /// 3- Propagation of block weights into edges. This uses a simple 1148 /// propagation heuristic. The following rules are applied to every 1149 /// block BB in the CFG: 1150 /// 1151 /// - If BB has a single predecessor/successor, then the weight 1152 /// of that edge is the weight of the block. 1153 /// 1154 /// - If all the edges are known except one, and the weight of the 1155 /// block is already known, the weight of the unknown edge will 1156 /// be the weight of the block minus the sum of all the known 1157 /// edges. If the sum of all the known edges is larger than BB's weight, 1158 /// we set the unknown edge weight to zero. 1159 /// 1160 /// - If there is a self-referential edge, and the weight of the block is 1161 /// known, the weight for that edge is set to the weight of the block 1162 /// minus the weight of the other incoming edges to that block (if 1163 /// known). 1164 /// 1165 /// Since this propagation is not guaranteed to finalize for every CFG, we 1166 /// only allow it to proceed for a limited number of iterations (controlled 1167 /// by -sample-profile-max-propagate-iterations). 1168 /// 1169 /// FIXME: Try to replace this propagation heuristic with a scheme 1170 /// that is guaranteed to finalize. A work-list approach similar to 1171 /// the standard value propagation algorithm used by SSA-CCP might 1172 /// work here. 1173 /// 1174 /// Once all the branch weights are computed, we emit the MD_prof 1175 /// metadata on BB using the computed values for each of its branches. 1176 /// 1177 /// \param F The function to query. 1178 /// 1179 /// \returns true if \p F was modified. Returns false, otherwise. 1180 bool SampleProfileLoader::emitAnnotations(Function &F) { 1181 bool Changed = false; 1182 1183 if (getFunctionLoc(F) == 0) 1184 return false; 1185 1186 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 1187 << ": " << getFunctionLoc(F) << "\n"); 1188 1189 Changed |= emitInlineHints(F); 1190 1191 Changed |= inlineHotFunctions(F); 1192 1193 // Compute basic block weights. 1194 Changed |= computeBlockWeights(F); 1195 1196 if (Changed) { 1197 // Compute dominance and loop info needed for propagation. 1198 computeDominanceAndLoopInfo(F); 1199 1200 // Find equivalence classes. 1201 findEquivalenceClasses(F); 1202 1203 // Propagate weights to all edges. 1204 propagateWeights(F); 1205 } 1206 1207 // If coverage checking was requested, compute it now. 1208 if (SampleProfileRecordCoverage) { 1209 unsigned Used = CoverageTracker.countUsedRecords(Samples); 1210 unsigned Total = CoverageTracker.countBodyRecords(Samples); 1211 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1212 if (Coverage < SampleProfileRecordCoverage) { 1213 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1214 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1215 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1216 Twine(Coverage) + "%) were applied", 1217 DS_Warning)); 1218 } 1219 } 1220 1221 if (SampleProfileSampleCoverage) { 1222 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1223 uint64_t Total = CoverageTracker.countBodySamples(Samples); 1224 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1225 if (Coverage < SampleProfileSampleCoverage) { 1226 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1227 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1228 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1229 Twine(Coverage) + "%) were applied", 1230 DS_Warning)); 1231 } 1232 } 1233 return Changed; 1234 } 1235 1236 char SampleProfileLoaderLegacyPass::ID = 0; 1237 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1238 "Sample Profile loader", false, false) 1239 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1240 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1241 "Sample Profile loader", false, false) 1242 1243 bool SampleProfileLoader::doInitialization(Module &M) { 1244 auto &Ctx = M.getContext(); 1245 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1246 if (std::error_code EC = ReaderOrErr.getError()) { 1247 std::string Msg = "Could not open profile: " + EC.message(); 1248 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1249 return false; 1250 } 1251 Reader = std::move(ReaderOrErr.get()); 1252 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1253 return true; 1254 } 1255 1256 ModulePass *llvm::createSampleProfileLoaderPass() { 1257 return new SampleProfileLoaderLegacyPass(SampleProfileFile); 1258 } 1259 1260 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1261 return new SampleProfileLoaderLegacyPass(Name); 1262 } 1263 1264 bool SampleProfileLoader::runOnModule(Module &M) { 1265 if (!ProfileIsValid) 1266 return false; 1267 1268 // Compute the total number of samples collected in this profile. 1269 for (const auto &I : Reader->getProfiles()) 1270 TotalCollectedSamples += I.second.getTotalSamples(); 1271 1272 bool retval = false; 1273 for (auto &F : M) 1274 if (!F.isDeclaration()) { 1275 clearFunctionData(); 1276 retval |= runOnFunction(F); 1277 } 1278 return retval; 1279 } 1280 1281 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1282 // FIXME: pass in AssumptionCache correctly for the new pass manager. 1283 SampleLoader.setACT(&getAnalysis<AssumptionCacheTracker>()); 1284 return SampleLoader.runOnModule(M); 1285 } 1286 1287 bool SampleProfileLoader::runOnFunction(Function &F) { 1288 F.setEntryCount(0); 1289 Samples = Reader->getSamplesFor(F); 1290 if (!Samples->empty()) 1291 return emitAnnotations(F); 1292 return false; 1293 } 1294 1295 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1296 AnalysisManager<Module> &AM) { 1297 1298 SampleProfileLoader SampleLoader(SampleProfileFile); 1299 1300 SampleLoader.doInitialization(M); 1301 1302 if (!SampleLoader.runOnModule(M)) 1303 return PreservedAnalyses::all(); 1304 1305 return PreservedAnalyses::none(); 1306 } 1307