1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SampleProfileLoader transformation. This pass 10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 12 // profile information in the given profile. 13 // 14 // This pass generates branch weight annotations on the IR: 15 // 16 // - prof: Represents branch weights. This annotation is added to branches 17 // to indicate the weights of each edge coming out of the branch. 18 // The weight of each edge is the weight of the target block for 19 // that edge. The weight of a block B is computed as the maximum 20 // number of samples found in B. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/IPO/SampleProfile.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/None.h" 29 #include "llvm/ADT/SCCIterator.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/StringMap.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/Twine.h" 37 #include "llvm/Analysis/AssumptionCache.h" 38 #include "llvm/Analysis/CallGraph.h" 39 #include "llvm/Analysis/CallGraphSCCPass.h" 40 #include "llvm/Analysis/InlineAdvisor.h" 41 #include "llvm/Analysis/InlineCost.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/PostDominators.h" 45 #include "llvm/Analysis/ProfileSummaryInfo.h" 46 #include "llvm/Analysis/ReplayInlineAdvisor.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/IR/BasicBlock.h" 50 #include "llvm/IR/CFG.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/DiagnosticInfo.h" 54 #include "llvm/IR/Dominators.h" 55 #include "llvm/IR/Function.h" 56 #include "llvm/IR/GlobalValue.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/MDBuilder.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/PassManager.h" 65 #include "llvm/IR/ValueSymbolTable.h" 66 #include "llvm/InitializePasses.h" 67 #include "llvm/Pass.h" 68 #include "llvm/ProfileData/InstrProf.h" 69 #include "llvm/ProfileData/SampleProf.h" 70 #include "llvm/ProfileData/SampleProfReader.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/ErrorOr.h" 76 #include "llvm/Support/GenericDomTree.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/IPO.h" 79 #include "llvm/Transforms/IPO/SampleContextTracker.h" 80 #include "llvm/Transforms/IPO/SampleProfileProbe.h" 81 #include "llvm/Transforms/Instrumentation.h" 82 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 83 #include "llvm/Transforms/Utils/Cloning.h" 84 #include <algorithm> 85 #include <cassert> 86 #include <cstdint> 87 #include <functional> 88 #include <limits> 89 #include <map> 90 #include <memory> 91 #include <queue> 92 #include <string> 93 #include <system_error> 94 #include <utility> 95 #include <vector> 96 97 using namespace llvm; 98 using namespace sampleprof; 99 using ProfileCount = Function::ProfileCount; 100 #define DEBUG_TYPE "sample-profile" 101 #define CSINLINE_DEBUG DEBUG_TYPE "-inline" 102 103 STATISTIC(NumCSInlined, 104 "Number of functions inlined with context sensitive profile"); 105 STATISTIC(NumCSNotInlined, 106 "Number of functions not inlined with context sensitive profile"); 107 STATISTIC(NumMismatchedProfile, 108 "Number of functions with CFG mismatched profile"); 109 STATISTIC(NumMatchedProfile, "Number of functions with CFG matched profile"); 110 111 // Command line option to specify the file to read samples from. This is 112 // mainly used for debugging. 113 static cl::opt<std::string> SampleProfileFile( 114 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 115 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 116 117 // The named file contains a set of transformations that may have been applied 118 // to the symbol names between the program from which the sample data was 119 // collected and the current program's symbols. 120 static cl::opt<std::string> SampleProfileRemappingFile( 121 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), 122 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); 123 124 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 125 "sample-profile-max-propagate-iterations", cl::init(100), 126 cl::desc("Maximum number of iterations to go through when propagating " 127 "sample block/edge weights through the CFG.")); 128 129 static cl::opt<unsigned> SampleProfileRecordCoverage( 130 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 131 cl::desc("Emit a warning if less than N% of records in the input profile " 132 "are matched to the IR.")); 133 134 static cl::opt<unsigned> SampleProfileSampleCoverage( 135 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 136 cl::desc("Emit a warning if less than N% of samples in the input profile " 137 "are matched to the IR.")); 138 139 static cl::opt<bool> NoWarnSampleUnused( 140 "no-warn-sample-unused", cl::init(false), cl::Hidden, 141 cl::desc("Use this option to turn off/on warnings about function with " 142 "samples but without debug information to use those samples. ")); 143 144 static cl::opt<bool> ProfileSampleAccurate( 145 "profile-sample-accurate", cl::Hidden, cl::init(false), 146 cl::desc("If the sample profile is accurate, we will mark all un-sampled " 147 "callsite and function as having 0 samples. Otherwise, treat " 148 "un-sampled callsites and functions conservatively as unknown. ")); 149 150 static cl::opt<bool> ProfileAccurateForSymsInList( 151 "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore, 152 cl::init(true), 153 cl::desc("For symbols in profile symbol list, regard their profiles to " 154 "be accurate. It may be overriden by profile-sample-accurate. ")); 155 156 static cl::opt<bool> ProfileMergeInlinee( 157 "sample-profile-merge-inlinee", cl::Hidden, cl::init(true), 158 cl::desc("Merge past inlinee's profile to outline version if sample " 159 "profile loader decided not to inline a call site. It will " 160 "only be enabled when top-down order of profile loading is " 161 "enabled. ")); 162 163 static cl::opt<bool> ProfileTopDownLoad( 164 "sample-profile-top-down-load", cl::Hidden, cl::init(true), 165 cl::desc("Do profile annotation and inlining for functions in top-down " 166 "order of call graph during sample profile loading. It only " 167 "works for new pass manager. ")); 168 169 static cl::opt<bool> ProfileSizeInline( 170 "sample-profile-inline-size", cl::Hidden, cl::init(false), 171 cl::desc("Inline cold call sites in profile loader if it's beneficial " 172 "for code size.")); 173 174 static cl::opt<int> SampleColdCallSiteThreshold( 175 "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45), 176 cl::desc("Threshold for inlining cold callsites")); 177 178 static cl::opt<std::string> ProfileInlineReplayFile( 179 "sample-profile-inline-replay", cl::init(""), cl::value_desc("filename"), 180 cl::desc( 181 "Optimization remarks file containing inline remarks to be replayed " 182 "by inlining from sample profile loader."), 183 cl::Hidden); 184 185 namespace { 186 187 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 188 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 189 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 190 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 191 using BlockEdgeMap = 192 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 193 194 class SampleProfileLoader; 195 196 class SampleCoverageTracker { 197 public: 198 SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){}; 199 200 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 201 uint32_t Discriminator, uint64_t Samples); 202 unsigned computeCoverage(unsigned Used, unsigned Total) const; 203 unsigned countUsedRecords(const FunctionSamples *FS, 204 ProfileSummaryInfo *PSI) const; 205 unsigned countBodyRecords(const FunctionSamples *FS, 206 ProfileSummaryInfo *PSI) const; 207 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 208 uint64_t countBodySamples(const FunctionSamples *FS, 209 ProfileSummaryInfo *PSI) const; 210 211 void clear() { 212 SampleCoverage.clear(); 213 TotalUsedSamples = 0; 214 } 215 216 private: 217 using BodySampleCoverageMap = std::map<LineLocation, unsigned>; 218 using FunctionSamplesCoverageMap = 219 DenseMap<const FunctionSamples *, BodySampleCoverageMap>; 220 221 /// Coverage map for sampling records. 222 /// 223 /// This map keeps a record of sampling records that have been matched to 224 /// an IR instruction. This is used to detect some form of staleness in 225 /// profiles (see flag -sample-profile-check-coverage). 226 /// 227 /// Each entry in the map corresponds to a FunctionSamples instance. This is 228 /// another map that counts how many times the sample record at the 229 /// given location has been used. 230 FunctionSamplesCoverageMap SampleCoverage; 231 232 /// Number of samples used from the profile. 233 /// 234 /// When a sampling record is used for the first time, the samples from 235 /// that record are added to this accumulator. Coverage is later computed 236 /// based on the total number of samples available in this function and 237 /// its callsites. 238 /// 239 /// Note that this accumulator tracks samples used from a single function 240 /// and all the inlined callsites. Strictly, we should have a map of counters 241 /// keyed by FunctionSamples pointers, but these stats are cleared after 242 /// every function, so we just need to keep a single counter. 243 uint64_t TotalUsedSamples = 0; 244 245 SampleProfileLoader &SPLoader; 246 }; 247 248 class GUIDToFuncNameMapper { 249 public: 250 GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader, 251 DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap) 252 : CurrentReader(Reader), CurrentModule(M), 253 CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) { 254 if (!CurrentReader.useMD5()) 255 return; 256 257 for (const auto &F : CurrentModule) { 258 StringRef OrigName = F.getName(); 259 CurrentGUIDToFuncNameMap.insert( 260 {Function::getGUID(OrigName), OrigName}); 261 262 // Local to global var promotion used by optimization like thinlto 263 // will rename the var and add suffix like ".llvm.xxx" to the 264 // original local name. In sample profile, the suffixes of function 265 // names are all stripped. Since it is possible that the mapper is 266 // built in post-thin-link phase and var promotion has been done, 267 // we need to add the substring of function name without the suffix 268 // into the GUIDToFuncNameMap. 269 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 270 if (CanonName != OrigName) 271 CurrentGUIDToFuncNameMap.insert( 272 {Function::getGUID(CanonName), CanonName}); 273 } 274 275 // Update GUIDToFuncNameMap for each function including inlinees. 276 SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap); 277 } 278 279 ~GUIDToFuncNameMapper() { 280 if (!CurrentReader.useMD5()) 281 return; 282 283 CurrentGUIDToFuncNameMap.clear(); 284 285 // Reset GUIDToFuncNameMap for of each function as they're no 286 // longer valid at this point. 287 SetGUIDToFuncNameMapForAll(nullptr); 288 } 289 290 private: 291 void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) { 292 std::queue<FunctionSamples *> FSToUpdate; 293 for (auto &IFS : CurrentReader.getProfiles()) { 294 FSToUpdate.push(&IFS.second); 295 } 296 297 while (!FSToUpdate.empty()) { 298 FunctionSamples *FS = FSToUpdate.front(); 299 FSToUpdate.pop(); 300 FS->GUIDToFuncNameMap = Map; 301 for (const auto &ICS : FS->getCallsiteSamples()) { 302 const FunctionSamplesMap &FSMap = ICS.second; 303 for (auto &IFS : FSMap) { 304 FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second); 305 FSToUpdate.push(&FS); 306 } 307 } 308 } 309 } 310 311 SampleProfileReader &CurrentReader; 312 Module &CurrentModule; 313 DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap; 314 }; 315 316 /// Sample profile pass. 317 /// 318 /// This pass reads profile data from the file specified by 319 /// -sample-profile-file and annotates every affected function with the 320 /// profile information found in that file. 321 class SampleProfileLoader { 322 public: 323 SampleProfileLoader( 324 StringRef Name, StringRef RemapName, bool IsThinLTOPreLink, 325 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 326 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo, 327 std::function<const TargetLibraryInfo &(Function &)> GetTLI) 328 : GetAC(std::move(GetAssumptionCache)), 329 GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)), 330 CoverageTracker(*this), Filename(std::string(Name)), 331 RemappingFilename(std::string(RemapName)), 332 IsThinLTOPreLink(IsThinLTOPreLink) {} 333 334 bool doInitialization(Module &M, FunctionAnalysisManager *FAM = nullptr); 335 bool runOnModule(Module &M, ModuleAnalysisManager *AM, 336 ProfileSummaryInfo *_PSI, CallGraph *CG); 337 338 void dump() { Reader->dump(); } 339 340 protected: 341 friend class SampleCoverageTracker; 342 343 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 344 unsigned getFunctionLoc(Function &F); 345 bool emitAnnotations(Function &F); 346 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 347 ErrorOr<uint64_t> getProbeWeight(const Instruction &I); 348 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 349 const FunctionSamples *findCalleeFunctionSamples(const CallBase &I) const; 350 std::vector<const FunctionSamples *> 351 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 352 mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap; 353 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 354 bool inlineCallInstruction(CallBase &CB); 355 bool inlineHotFunctions(Function &F, 356 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 357 // Inline cold/small functions in addition to hot ones 358 bool shouldInlineColdCallee(CallBase &CallInst); 359 void emitOptimizationRemarksForInlineCandidates( 360 const SmallVectorImpl<CallBase *> &Candidates, const Function &F, 361 bool Hot); 362 void printEdgeWeight(raw_ostream &OS, Edge E); 363 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 364 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 365 bool computeBlockWeights(Function &F); 366 void findEquivalenceClasses(Function &F); 367 template <bool IsPostDom> 368 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 369 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 370 371 void propagateWeights(Function &F); 372 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 373 void buildEdges(Function &F); 374 std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG); 375 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 376 void computeDominanceAndLoopInfo(Function &F); 377 void clearFunctionData(); 378 bool callsiteIsHot(const FunctionSamples *CallsiteFS, 379 ProfileSummaryInfo *PSI); 380 381 /// Map basic blocks to their computed weights. 382 /// 383 /// The weight of a basic block is defined to be the maximum 384 /// of all the instruction weights in that block. 385 BlockWeightMap BlockWeights; 386 387 /// Map edges to their computed weights. 388 /// 389 /// Edge weights are computed by propagating basic block weights in 390 /// SampleProfile::propagateWeights. 391 EdgeWeightMap EdgeWeights; 392 393 /// Set of visited blocks during propagation. 394 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 395 396 /// Set of visited edges during propagation. 397 SmallSet<Edge, 32> VisitedEdges; 398 399 /// Equivalence classes for block weights. 400 /// 401 /// Two blocks BB1 and BB2 are in the same equivalence class if they 402 /// dominate and post-dominate each other, and they are in the same loop 403 /// nest. When this happens, the two blocks are guaranteed to execute 404 /// the same number of times. 405 EquivalenceClassMap EquivalenceClass; 406 407 /// Map from function name to Function *. Used to find the function from 408 /// the function name. If the function name contains suffix, additional 409 /// entry is added to map from the stripped name to the function if there 410 /// is one-to-one mapping. 411 StringMap<Function *> SymbolMap; 412 413 /// Dominance, post-dominance and loop information. 414 std::unique_ptr<DominatorTree> DT; 415 std::unique_ptr<PostDominatorTree> PDT; 416 std::unique_ptr<LoopInfo> LI; 417 418 std::function<AssumptionCache &(Function &)> GetAC; 419 std::function<TargetTransformInfo &(Function &)> GetTTI; 420 std::function<const TargetLibraryInfo &(Function &)> GetTLI; 421 422 /// Predecessors for each basic block in the CFG. 423 BlockEdgeMap Predecessors; 424 425 /// Successors for each basic block in the CFG. 426 BlockEdgeMap Successors; 427 428 SampleCoverageTracker CoverageTracker; 429 430 /// Profile reader object. 431 std::unique_ptr<SampleProfileReader> Reader; 432 433 /// Profile tracker for different context. 434 std::unique_ptr<SampleContextTracker> ContextTracker; 435 436 /// Samples collected for the body of this function. 437 FunctionSamples *Samples = nullptr; 438 439 /// Name of the profile file to load. 440 std::string Filename; 441 442 /// Name of the profile remapping file to load. 443 std::string RemappingFilename; 444 445 /// Flag indicating whether the profile input loaded successfully. 446 bool ProfileIsValid = false; 447 448 /// Flag indicating whether input profile is context-sensitive 449 bool ProfileIsCS = false; 450 451 /// Flag indicating if the pass is invoked in ThinLTO compile phase. 452 /// 453 /// In this phase, in annotation, we should not promote indirect calls. 454 /// Instead, we will mark GUIDs that needs to be annotated to the function. 455 bool IsThinLTOPreLink; 456 457 /// Profile Summary Info computed from sample profile. 458 ProfileSummaryInfo *PSI = nullptr; 459 460 /// Profle Symbol list tells whether a function name appears in the binary 461 /// used to generate the current profile. 462 std::unique_ptr<ProfileSymbolList> PSL; 463 464 /// Total number of samples collected in this profile. 465 /// 466 /// This is the sum of all the samples collected in all the functions executed 467 /// at runtime. 468 uint64_t TotalCollectedSamples = 0; 469 470 /// Optimization Remark Emitter used to emit diagnostic remarks. 471 OptimizationRemarkEmitter *ORE = nullptr; 472 473 // Information recorded when we declined to inline a call site 474 // because we have determined it is too cold is accumulated for 475 // each callee function. Initially this is just the entry count. 476 struct NotInlinedProfileInfo { 477 uint64_t entryCount; 478 }; 479 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo; 480 481 // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for 482 // all the function symbols defined or declared in current module. 483 DenseMap<uint64_t, StringRef> GUIDToFuncNameMap; 484 485 // All the Names used in FunctionSamples including outline function 486 // names, inline instance names and call target names. 487 StringSet<> NamesInProfile; 488 489 // For symbol in profile symbol list, whether to regard their profiles 490 // to be accurate. It is mainly decided by existance of profile symbol 491 // list and -profile-accurate-for-symsinlist flag, but it can be 492 // overriden by -profile-sample-accurate or profile-sample-accurate 493 // attribute. 494 bool ProfAccForSymsInList; 495 496 // External inline advisor used to replay inline decision from remarks. 497 std::unique_ptr<ReplayInlineAdvisor> ExternalInlineAdvisor; 498 499 // A pseudo probe helper to correlate the imported sample counts. 500 std::unique_ptr<PseudoProbeManager> ProbeManager; 501 }; 502 503 class SampleProfileLoaderLegacyPass : public ModulePass { 504 public: 505 // Class identification, replacement for typeinfo 506 static char ID; 507 508 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, 509 bool IsThinLTOPreLink = false) 510 : ModulePass(ID), SampleLoader( 511 Name, SampleProfileRemappingFile, IsThinLTOPreLink, 512 [&](Function &F) -> AssumptionCache & { 513 return ACT->getAssumptionCache(F); 514 }, 515 [&](Function &F) -> TargetTransformInfo & { 516 return TTIWP->getTTI(F); 517 }, 518 [&](Function &F) -> TargetLibraryInfo & { 519 return TLIWP->getTLI(F); 520 }) { 521 initializeSampleProfileLoaderLegacyPassPass( 522 *PassRegistry::getPassRegistry()); 523 } 524 525 void dump() { SampleLoader.dump(); } 526 527 bool doInitialization(Module &M) override { 528 return SampleLoader.doInitialization(M); 529 } 530 531 StringRef getPassName() const override { return "Sample profile pass"; } 532 bool runOnModule(Module &M) override; 533 534 void getAnalysisUsage(AnalysisUsage &AU) const override { 535 AU.addRequired<AssumptionCacheTracker>(); 536 AU.addRequired<TargetTransformInfoWrapperPass>(); 537 AU.addRequired<TargetLibraryInfoWrapperPass>(); 538 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 539 } 540 541 private: 542 SampleProfileLoader SampleLoader; 543 AssumptionCacheTracker *ACT = nullptr; 544 TargetTransformInfoWrapperPass *TTIWP = nullptr; 545 TargetLibraryInfoWrapperPass *TLIWP = nullptr; 546 }; 547 548 } // end anonymous namespace 549 550 /// Return true if the given callsite is hot wrt to hot cutoff threshold. 551 /// 552 /// Functions that were inlined in the original binary will be represented 553 /// in the inline stack in the sample profile. If the profile shows that 554 /// the original inline decision was "good" (i.e., the callsite is executed 555 /// frequently), then we will recreate the inline decision and apply the 556 /// profile from the inlined callsite. 557 /// 558 /// To decide whether an inlined callsite is hot, we compare the callsite 559 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is 560 /// regarded as hot if the count is above the cutoff value. 561 /// 562 /// When ProfileAccurateForSymsInList is enabled and profile symbol list 563 /// is present, functions in the profile symbol list but without profile will 564 /// be regarded as cold and much less inlining will happen in CGSCC inlining 565 /// pass, so we tend to lower the hot criteria here to allow more early 566 /// inlining to happen for warm callsites and it is helpful for performance. 567 bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS, 568 ProfileSummaryInfo *PSI) { 569 if (!CallsiteFS) 570 return false; // The callsite was not inlined in the original binary. 571 572 assert(PSI && "PSI is expected to be non null"); 573 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 574 if (ProfAccForSymsInList) 575 return !PSI->isColdCount(CallsiteTotalSamples); 576 else 577 return PSI->isHotCount(CallsiteTotalSamples); 578 } 579 580 /// Mark as used the sample record for the given function samples at 581 /// (LineOffset, Discriminator). 582 /// 583 /// \returns true if this is the first time we mark the given record. 584 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 585 uint32_t LineOffset, 586 uint32_t Discriminator, 587 uint64_t Samples) { 588 LineLocation Loc(LineOffset, Discriminator); 589 unsigned &Count = SampleCoverage[FS][Loc]; 590 bool FirstTime = (++Count == 1); 591 if (FirstTime) 592 TotalUsedSamples += Samples; 593 return FirstTime; 594 } 595 596 /// Return the number of sample records that were applied from this profile. 597 /// 598 /// This count does not include records from cold inlined callsites. 599 unsigned 600 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS, 601 ProfileSummaryInfo *PSI) const { 602 auto I = SampleCoverage.find(FS); 603 604 // The size of the coverage map for FS represents the number of records 605 // that were marked used at least once. 606 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 607 608 // If there are inlined callsites in this function, count the samples found 609 // in the respective bodies. However, do not bother counting callees with 0 610 // total samples, these are callees that were never invoked at runtime. 611 for (const auto &I : FS->getCallsiteSamples()) 612 for (const auto &J : I.second) { 613 const FunctionSamples *CalleeSamples = &J.second; 614 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 615 Count += countUsedRecords(CalleeSamples, PSI); 616 } 617 618 return Count; 619 } 620 621 /// Return the number of sample records in the body of this profile. 622 /// 623 /// This count does not include records from cold inlined callsites. 624 unsigned 625 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS, 626 ProfileSummaryInfo *PSI) const { 627 unsigned Count = FS->getBodySamples().size(); 628 629 // Only count records in hot callsites. 630 for (const auto &I : FS->getCallsiteSamples()) 631 for (const auto &J : I.second) { 632 const FunctionSamples *CalleeSamples = &J.second; 633 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 634 Count += countBodyRecords(CalleeSamples, PSI); 635 } 636 637 return Count; 638 } 639 640 /// Return the number of samples collected in the body of this profile. 641 /// 642 /// This count does not include samples from cold inlined callsites. 643 uint64_t 644 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS, 645 ProfileSummaryInfo *PSI) const { 646 uint64_t Total = 0; 647 for (const auto &I : FS->getBodySamples()) 648 Total += I.second.getSamples(); 649 650 // Only count samples in hot callsites. 651 for (const auto &I : FS->getCallsiteSamples()) 652 for (const auto &J : I.second) { 653 const FunctionSamples *CalleeSamples = &J.second; 654 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 655 Total += countBodySamples(CalleeSamples, PSI); 656 } 657 658 return Total; 659 } 660 661 /// Return the fraction of sample records used in this profile. 662 /// 663 /// The returned value is an unsigned integer in the range 0-100 indicating 664 /// the percentage of sample records that were used while applying this 665 /// profile to the associated function. 666 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 667 unsigned Total) const { 668 assert(Used <= Total && 669 "number of used records cannot exceed the total number of records"); 670 return Total > 0 ? Used * 100 / Total : 100; 671 } 672 673 /// Clear all the per-function data used to load samples and propagate weights. 674 void SampleProfileLoader::clearFunctionData() { 675 BlockWeights.clear(); 676 EdgeWeights.clear(); 677 VisitedBlocks.clear(); 678 VisitedEdges.clear(); 679 EquivalenceClass.clear(); 680 DT = nullptr; 681 PDT = nullptr; 682 LI = nullptr; 683 Predecessors.clear(); 684 Successors.clear(); 685 CoverageTracker.clear(); 686 } 687 688 #ifndef NDEBUG 689 /// Print the weight of edge \p E on stream \p OS. 690 /// 691 /// \param OS Stream to emit the output to. 692 /// \param E Edge to print. 693 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 694 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 695 << "]: " << EdgeWeights[E] << "\n"; 696 } 697 698 /// Print the equivalence class of block \p BB on stream \p OS. 699 /// 700 /// \param OS Stream to emit the output to. 701 /// \param BB Block to print. 702 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 703 const BasicBlock *BB) { 704 const BasicBlock *Equiv = EquivalenceClass[BB]; 705 OS << "equivalence[" << BB->getName() 706 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 707 } 708 709 /// Print the weight of block \p BB on stream \p OS. 710 /// 711 /// \param OS Stream to emit the output to. 712 /// \param BB Block to print. 713 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 714 const BasicBlock *BB) const { 715 const auto &I = BlockWeights.find(BB); 716 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 717 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 718 } 719 #endif 720 721 /// Get the weight for an instruction. 722 /// 723 /// The "weight" of an instruction \p Inst is the number of samples 724 /// collected on that instruction at runtime. To retrieve it, we 725 /// need to compute the line number of \p Inst relative to the start of its 726 /// function. We use HeaderLineno to compute the offset. We then 727 /// look up the samples collected for \p Inst using BodySamples. 728 /// 729 /// \param Inst Instruction to query. 730 /// 731 /// \returns the weight of \p Inst. 732 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 733 if (FunctionSamples::ProfileIsProbeBased) 734 return getProbeWeight(Inst); 735 736 const DebugLoc &DLoc = Inst.getDebugLoc(); 737 if (!DLoc) 738 return std::error_code(); 739 740 const FunctionSamples *FS = findFunctionSamples(Inst); 741 if (!FS) 742 return std::error_code(); 743 744 // Ignore all intrinsics, phinodes and branch instructions. 745 // Branch and phinodes instruction usually contains debug info from sources outside of 746 // the residing basic block, thus we ignore them during annotation. 747 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst)) 748 return std::error_code(); 749 750 // If a direct call/invoke instruction is inlined in profile 751 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 752 // it means that the inlined callsite has no sample, thus the call 753 // instruction should have 0 count. 754 if (!ProfileIsCS) 755 if (const auto *CB = dyn_cast<CallBase>(&Inst)) 756 if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB)) 757 return 0; 758 759 const DILocation *DIL = DLoc; 760 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 761 uint32_t Discriminator = DIL->getBaseDiscriminator(); 762 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 763 if (R) { 764 bool FirstMark = 765 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 766 if (FirstMark) { 767 ORE->emit([&]() { 768 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 769 Remark << "Applied " << ore::NV("NumSamples", *R); 770 Remark << " samples from profile (offset: "; 771 Remark << ore::NV("LineOffset", LineOffset); 772 if (Discriminator) { 773 Remark << "."; 774 Remark << ore::NV("Discriminator", Discriminator); 775 } 776 Remark << ")"; 777 return Remark; 778 }); 779 } 780 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." 781 << DIL->getBaseDiscriminator() << ":" << Inst 782 << " (line offset: " << LineOffset << "." 783 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 784 << ")\n"); 785 } 786 return R; 787 } 788 789 ErrorOr<uint64_t> SampleProfileLoader::getProbeWeight(const Instruction &Inst) { 790 assert(FunctionSamples::ProfileIsProbeBased && 791 "Profile is not pseudo probe based"); 792 Optional<PseudoProbe> Probe = extractProbe(Inst); 793 if (!Probe) 794 return std::error_code(); 795 796 const FunctionSamples *FS = findFunctionSamples(Inst); 797 if (!FS) 798 return std::error_code(); 799 800 // If a direct call/invoke instruction is inlined in profile 801 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 802 // it means that the inlined callsite has no sample, thus the call 803 // instruction should have 0 count. 804 if (const auto *CB = dyn_cast<CallBase>(&Inst)) 805 if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB)) 806 return 0; 807 808 const ErrorOr<uint64_t> &R = FS->findSamplesAt(Probe->Id, 0); 809 if (R) { 810 uint64_t Samples = R.get(); 811 bool FirstMark = CoverageTracker.markSamplesUsed(FS, Probe->Id, 0, Samples); 812 if (FirstMark) { 813 ORE->emit([&]() { 814 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 815 Remark << "Applied " << ore::NV("NumSamples", Samples); 816 Remark << " samples from profile (ProbeId="; 817 Remark << ore::NV("ProbeId", Probe->Id); 818 Remark << ")"; 819 return Remark; 820 }); 821 } 822 823 LLVM_DEBUG(dbgs() << " " << Probe->Id << ":" << Inst 824 << " - weight: " << R.get() << ")\n"); 825 return Samples; 826 } 827 return R; 828 } 829 830 /// Compute the weight of a basic block. 831 /// 832 /// The weight of basic block \p BB is the maximum weight of all the 833 /// instructions in BB. 834 /// 835 /// \param BB The basic block to query. 836 /// 837 /// \returns the weight for \p BB. 838 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 839 uint64_t Max = 0; 840 bool HasWeight = false; 841 for (auto &I : BB->getInstList()) { 842 const ErrorOr<uint64_t> &R = getInstWeight(I); 843 if (R) { 844 Max = std::max(Max, R.get()); 845 HasWeight = true; 846 } 847 } 848 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 849 } 850 851 /// Compute and store the weights of every basic block. 852 /// 853 /// This populates the BlockWeights map by computing 854 /// the weights of every basic block in the CFG. 855 /// 856 /// \param F The function to query. 857 bool SampleProfileLoader::computeBlockWeights(Function &F) { 858 bool Changed = false; 859 LLVM_DEBUG(dbgs() << "Block weights\n"); 860 for (const auto &BB : F) { 861 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 862 if (Weight) { 863 BlockWeights[&BB] = Weight.get(); 864 VisitedBlocks.insert(&BB); 865 Changed = true; 866 } 867 LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); 868 } 869 870 return Changed; 871 } 872 873 /// Get the FunctionSamples for a call instruction. 874 /// 875 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 876 /// instance in which that call instruction is calling to. It contains 877 /// all samples that resides in the inlined instance. We first find the 878 /// inlined instance in which the call instruction is from, then we 879 /// traverse its children to find the callsite with the matching 880 /// location. 881 /// 882 /// \param Inst Call/Invoke instruction to query. 883 /// 884 /// \returns The FunctionSamples pointer to the inlined instance. 885 const FunctionSamples * 886 SampleProfileLoader::findCalleeFunctionSamples(const CallBase &Inst) const { 887 const DILocation *DIL = Inst.getDebugLoc(); 888 if (!DIL) { 889 return nullptr; 890 } 891 892 StringRef CalleeName; 893 if (Function *Callee = Inst.getCalledFunction()) 894 CalleeName = FunctionSamples::getCanonicalFnName(*Callee); 895 896 if (ProfileIsCS) 897 return ContextTracker->getCalleeContextSamplesFor(Inst, CalleeName); 898 899 const FunctionSamples *FS = findFunctionSamples(Inst); 900 if (FS == nullptr) 901 return nullptr; 902 903 return FS->findFunctionSamplesAt(FunctionSamples::getCallSiteIdentifier(DIL), 904 CalleeName, Reader->getRemapper()); 905 } 906 907 /// Returns a vector of FunctionSamples that are the indirect call targets 908 /// of \p Inst. The vector is sorted by the total number of samples. Stores 909 /// the total call count of the indirect call in \p Sum. 910 std::vector<const FunctionSamples *> 911 SampleProfileLoader::findIndirectCallFunctionSamples( 912 const Instruction &Inst, uint64_t &Sum) const { 913 const DILocation *DIL = Inst.getDebugLoc(); 914 std::vector<const FunctionSamples *> R; 915 916 if (!DIL) { 917 return R; 918 } 919 920 const FunctionSamples *FS = findFunctionSamples(Inst); 921 if (FS == nullptr) 922 return R; 923 924 auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL); 925 auto T = FS->findCallTargetMapAt(CallSite); 926 Sum = 0; 927 if (T) 928 for (const auto &T_C : T.get()) 929 Sum += T_C.second; 930 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(CallSite)) { 931 if (M->empty()) 932 return R; 933 for (const auto &NameFS : *M) { 934 Sum += NameFS.second.getEntrySamples(); 935 R.push_back(&NameFS.second); 936 } 937 llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) { 938 if (L->getEntrySamples() != R->getEntrySamples()) 939 return L->getEntrySamples() > R->getEntrySamples(); 940 return FunctionSamples::getGUID(L->getName()) < 941 FunctionSamples::getGUID(R->getName()); 942 }); 943 } 944 return R; 945 } 946 947 /// Get the FunctionSamples for an instruction. 948 /// 949 /// The FunctionSamples of an instruction \p Inst is the inlined instance 950 /// in which that instruction is coming from. We traverse the inline stack 951 /// of that instruction, and match it with the tree nodes in the profile. 952 /// 953 /// \param Inst Instruction to query. 954 /// 955 /// \returns the FunctionSamples pointer to the inlined instance. 956 const FunctionSamples * 957 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 958 if (FunctionSamples::ProfileIsProbeBased) { 959 Optional<PseudoProbe> Probe = extractProbe(Inst); 960 if (!Probe) 961 return nullptr; 962 } 963 964 const DILocation *DIL = Inst.getDebugLoc(); 965 if (!DIL) 966 return Samples; 967 968 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr); 969 if (it.second) { 970 if (ProfileIsCS) 971 it.first->second = ContextTracker->getContextSamplesFor(DIL); 972 else 973 it.first->second = 974 Samples->findFunctionSamples(DIL, Reader->getRemapper()); 975 } 976 return it.first->second; 977 } 978 979 bool SampleProfileLoader::inlineCallInstruction(CallBase &CB) { 980 if (ExternalInlineAdvisor) { 981 auto Advice = ExternalInlineAdvisor->getAdvice(CB); 982 if (!Advice->isInliningRecommended()) { 983 Advice->recordUnattemptedInlining(); 984 return false; 985 } 986 // Dummy record, we don't use it for replay. 987 Advice->recordInlining(); 988 } 989 990 Function *CalledFunction = CB.getCalledFunction(); 991 assert(CalledFunction); 992 DebugLoc DLoc = CB.getDebugLoc(); 993 BasicBlock *BB = CB.getParent(); 994 InlineParams Params = getInlineParams(); 995 Params.ComputeFullInlineCost = true; 996 // Checks if there is anything in the reachable portion of the callee at 997 // this callsite that makes this inlining potentially illegal. Need to 998 // set ComputeFullInlineCost, otherwise getInlineCost may return early 999 // when cost exceeds threshold without checking all IRs in the callee. 1000 // The acutal cost does not matter because we only checks isNever() to 1001 // see if it is legal to inline the callsite. 1002 InlineCost Cost = 1003 getInlineCost(CB, Params, GetTTI(*CalledFunction), GetAC, GetTLI); 1004 if (Cost.isNever()) { 1005 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB) 1006 << "incompatible inlining"); 1007 return false; 1008 } 1009 InlineFunctionInfo IFI(nullptr, GetAC); 1010 if (InlineFunction(CB, IFI).isSuccess()) { 1011 // The call to InlineFunction erases I, so we can't pass it here. 1012 emitInlinedInto(*ORE, DLoc, BB, *CalledFunction, *BB->getParent(), Cost, 1013 true, CSINLINE_DEBUG); 1014 return true; 1015 } 1016 return false; 1017 } 1018 1019 bool SampleProfileLoader::shouldInlineColdCallee(CallBase &CallInst) { 1020 if (!ProfileSizeInline) 1021 return false; 1022 1023 Function *Callee = CallInst.getCalledFunction(); 1024 if (Callee == nullptr) 1025 return false; 1026 1027 InlineCost Cost = getInlineCost(CallInst, getInlineParams(), GetTTI(*Callee), 1028 GetAC, GetTLI); 1029 1030 if (Cost.isNever()) 1031 return false; 1032 1033 if (Cost.isAlways()) 1034 return true; 1035 1036 return Cost.getCost() <= SampleColdCallSiteThreshold; 1037 } 1038 1039 void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates( 1040 const SmallVectorImpl<CallBase *> &Candidates, const Function &F, 1041 bool Hot) { 1042 for (auto I : Candidates) { 1043 Function *CalledFunction = I->getCalledFunction(); 1044 if (CalledFunction) { 1045 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt", 1046 I->getDebugLoc(), I->getParent()) 1047 << "previous inlining reattempted for " 1048 << (Hot ? "hotness: '" : "size: '") 1049 << ore::NV("Callee", CalledFunction) << "' into '" 1050 << ore::NV("Caller", &F) << "'"); 1051 } 1052 } 1053 } 1054 1055 /// Iteratively inline hot callsites of a function. 1056 /// 1057 /// Iteratively traverse all callsites of the function \p F, and find if 1058 /// the corresponding inlined instance exists and is hot in profile. If 1059 /// it is hot enough, inline the callsites and adds new callsites of the 1060 /// callee into the caller. If the call is an indirect call, first promote 1061 /// it to direct call. Each indirect call is limited with a single target. 1062 /// 1063 /// \param F function to perform iterative inlining. 1064 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 1065 /// inlined in the profiled binary. 1066 /// 1067 /// \returns True if there is any inline happened. 1068 bool SampleProfileLoader::inlineHotFunctions( 1069 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 1070 DenseSet<Instruction *> PromotedInsns; 1071 1072 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure 1073 // Profile symbol list is ignored when profile-sample-accurate is on. 1074 assert((!ProfAccForSymsInList || 1075 (!ProfileSampleAccurate && 1076 !F.hasFnAttribute("profile-sample-accurate"))) && 1077 "ProfAccForSymsInList should be false when profile-sample-accurate " 1078 "is enabled"); 1079 1080 DenseMap<CallBase *, const FunctionSamples *> localNotInlinedCallSites; 1081 bool Changed = false; 1082 while (true) { 1083 bool LocalChanged = false; 1084 SmallVector<CallBase *, 10> CIS; 1085 for (auto &BB : F) { 1086 bool Hot = false; 1087 SmallVector<CallBase *, 10> AllCandidates; 1088 SmallVector<CallBase *, 10> ColdCandidates; 1089 for (auto &I : BB.getInstList()) { 1090 const FunctionSamples *FS = nullptr; 1091 if (auto *CB = dyn_cast<CallBase>(&I)) { 1092 if (!isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(*CB))) { 1093 assert((!FunctionSamples::UseMD5 || FS->GUIDToFuncNameMap) && 1094 "GUIDToFuncNameMap has to be populated"); 1095 AllCandidates.push_back(CB); 1096 if (FS->getEntrySamples() > 0 || ProfileIsCS) 1097 localNotInlinedCallSites.try_emplace(CB, FS); 1098 if (callsiteIsHot(FS, PSI)) 1099 Hot = true; 1100 else if (shouldInlineColdCallee(*CB)) 1101 ColdCandidates.push_back(CB); 1102 } 1103 } 1104 } 1105 if (Hot || ExternalInlineAdvisor) { 1106 CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end()); 1107 emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true); 1108 } else { 1109 CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end()); 1110 emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false); 1111 } 1112 } 1113 for (CallBase *I : CIS) { 1114 Function *CalledFunction = I->getCalledFunction(); 1115 // Do not inline recursive calls. 1116 if (CalledFunction == &F) 1117 continue; 1118 if (I->isIndirectCall()) { 1119 if (PromotedInsns.count(I)) 1120 continue; 1121 uint64_t Sum; 1122 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 1123 if (IsThinLTOPreLink) { 1124 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), 1125 PSI->getOrCompHotCountThreshold()); 1126 continue; 1127 } 1128 if (!callsiteIsHot(FS, PSI)) 1129 continue; 1130 1131 const char *Reason = "Callee function not available"; 1132 // R->getValue() != &F is to prevent promoting a recursive call. 1133 // If it is a recursive call, we do not inline it as it could bloat 1134 // the code exponentially. There is way to better handle this, e.g. 1135 // clone the caller first, and inline the cloned caller if it is 1136 // recursive. As llvm does not inline recursive calls, we will 1137 // simply ignore it instead of handling it explicitly. 1138 auto CalleeFunctionName = FS->getFuncName(); 1139 auto R = SymbolMap.find(CalleeFunctionName); 1140 if (R != SymbolMap.end() && R->getValue() && 1141 !R->getValue()->isDeclaration() && 1142 R->getValue()->getSubprogram() && 1143 R->getValue()->hasFnAttribute("use-sample-profile") && 1144 R->getValue() != &F && 1145 isLegalToPromote(*I, R->getValue(), &Reason)) { 1146 uint64_t C = FS->getEntrySamples(); 1147 auto &DI = 1148 pgo::promoteIndirectCall(*I, R->getValue(), C, Sum, false, ORE); 1149 Sum -= C; 1150 PromotedInsns.insert(I); 1151 // If profile mismatches, we should not attempt to inline DI. 1152 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && 1153 inlineCallInstruction(cast<CallBase>(DI))) { 1154 if (ProfileIsCS) 1155 ContextTracker->markContextSamplesInlined(FS); 1156 localNotInlinedCallSites.erase(I); 1157 LocalChanged = true; 1158 ++NumCSInlined; 1159 } 1160 } else { 1161 LLVM_DEBUG(dbgs() 1162 << "\nFailed to promote indirect call to " 1163 << CalleeFunctionName << " because " << Reason << "\n"); 1164 } 1165 } 1166 } else if (CalledFunction && CalledFunction->getSubprogram() && 1167 !CalledFunction->isDeclaration()) { 1168 if (inlineCallInstruction(*I)) { 1169 if (ProfileIsCS) 1170 ContextTracker->markContextSamplesInlined( 1171 localNotInlinedCallSites[I]); 1172 localNotInlinedCallSites.erase(I); 1173 LocalChanged = true; 1174 ++NumCSInlined; 1175 } 1176 } else if (IsThinLTOPreLink) { 1177 findCalleeFunctionSamples(*I)->findInlinedFunctions( 1178 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold()); 1179 } 1180 } 1181 if (LocalChanged) { 1182 Changed = true; 1183 } else { 1184 break; 1185 } 1186 } 1187 1188 // Accumulate not inlined callsite information into notInlinedSamples 1189 for (const auto &Pair : localNotInlinedCallSites) { 1190 CallBase *I = Pair.getFirst(); 1191 Function *Callee = I->getCalledFunction(); 1192 if (!Callee || Callee->isDeclaration()) 1193 continue; 1194 1195 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline", 1196 I->getDebugLoc(), I->getParent()) 1197 << "previous inlining not repeated: '" 1198 << ore::NV("Callee", Callee) << "' into '" 1199 << ore::NV("Caller", &F) << "'"); 1200 1201 ++NumCSNotInlined; 1202 const FunctionSamples *FS = Pair.getSecond(); 1203 if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) { 1204 continue; 1205 } 1206 1207 if (ProfileMergeInlinee) { 1208 // A function call can be replicated by optimizations like callsite 1209 // splitting or jump threading and the replicates end up sharing the 1210 // sample nested callee profile instead of slicing the original inlinee's 1211 // profile. We want to do merge exactly once by filtering out callee 1212 // profiles with a non-zero head sample count. 1213 if (FS->getHeadSamples() == 0) { 1214 // Use entry samples as head samples during the merge, as inlinees 1215 // don't have head samples. 1216 const_cast<FunctionSamples *>(FS)->addHeadSamples( 1217 FS->getEntrySamples()); 1218 1219 // Note that we have to do the merge right after processing function. 1220 // This allows OutlineFS's profile to be used for annotation during 1221 // top-down processing of functions' annotation. 1222 FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee); 1223 OutlineFS->merge(*FS); 1224 } 1225 } else { 1226 auto pair = 1227 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0}); 1228 pair.first->second.entryCount += FS->getEntrySamples(); 1229 } 1230 } 1231 return Changed; 1232 } 1233 1234 /// Find equivalence classes for the given block. 1235 /// 1236 /// This finds all the blocks that are guaranteed to execute the same 1237 /// number of times as \p BB1. To do this, it traverses all the 1238 /// descendants of \p BB1 in the dominator or post-dominator tree. 1239 /// 1240 /// A block BB2 will be in the same equivalence class as \p BB1 if 1241 /// the following holds: 1242 /// 1243 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 1244 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 1245 /// dominate BB1 in the post-dominator tree. 1246 /// 1247 /// 2- Both BB2 and \p BB1 must be in the same loop. 1248 /// 1249 /// For every block BB2 that meets those two requirements, we set BB2's 1250 /// equivalence class to \p BB1. 1251 /// 1252 /// \param BB1 Block to check. 1253 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 1254 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 1255 /// with blocks from \p BB1's dominator tree, then 1256 /// this is the post-dominator tree, and vice versa. 1257 template <bool IsPostDom> 1258 void SampleProfileLoader::findEquivalencesFor( 1259 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 1260 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 1261 const BasicBlock *EC = EquivalenceClass[BB1]; 1262 uint64_t Weight = BlockWeights[EC]; 1263 for (const auto *BB2 : Descendants) { 1264 bool IsDomParent = DomTree->dominates(BB2, BB1); 1265 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 1266 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 1267 EquivalenceClass[BB2] = EC; 1268 // If BB2 is visited, then the entire EC should be marked as visited. 1269 if (VisitedBlocks.count(BB2)) { 1270 VisitedBlocks.insert(EC); 1271 } 1272 1273 // If BB2 is heavier than BB1, make BB2 have the same weight 1274 // as BB1. 1275 // 1276 // Note that we don't worry about the opposite situation here 1277 // (when BB2 is lighter than BB1). We will deal with this 1278 // during the propagation phase. Right now, we just want to 1279 // make sure that BB1 has the largest weight of all the 1280 // members of its equivalence set. 1281 Weight = std::max(Weight, BlockWeights[BB2]); 1282 } 1283 } 1284 if (EC == &EC->getParent()->getEntryBlock()) { 1285 BlockWeights[EC] = Samples->getHeadSamples() + 1; 1286 } else { 1287 BlockWeights[EC] = Weight; 1288 } 1289 } 1290 1291 /// Find equivalence classes. 1292 /// 1293 /// Since samples may be missing from blocks, we can fill in the gaps by setting 1294 /// the weights of all the blocks in the same equivalence class to the same 1295 /// weight. To compute the concept of equivalence, we use dominance and loop 1296 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 1297 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1298 /// 1299 /// \param F The function to query. 1300 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 1301 SmallVector<BasicBlock *, 8> DominatedBBs; 1302 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); 1303 // Find equivalence sets based on dominance and post-dominance information. 1304 for (auto &BB : F) { 1305 BasicBlock *BB1 = &BB; 1306 1307 // Compute BB1's equivalence class once. 1308 if (EquivalenceClass.count(BB1)) { 1309 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1310 continue; 1311 } 1312 1313 // By default, blocks are in their own equivalence class. 1314 EquivalenceClass[BB1] = BB1; 1315 1316 // Traverse all the blocks dominated by BB1. We are looking for 1317 // every basic block BB2 such that: 1318 // 1319 // 1- BB1 dominates BB2. 1320 // 2- BB2 post-dominates BB1. 1321 // 3- BB1 and BB2 are in the same loop nest. 1322 // 1323 // If all those conditions hold, it means that BB2 is executed 1324 // as many times as BB1, so they are placed in the same equivalence 1325 // class by making BB2's equivalence class be BB1. 1326 DominatedBBs.clear(); 1327 DT->getDescendants(BB1, DominatedBBs); 1328 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 1329 1330 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1331 } 1332 1333 // Assign weights to equivalence classes. 1334 // 1335 // All the basic blocks in the same equivalence class will execute 1336 // the same number of times. Since we know that the head block in 1337 // each equivalence class has the largest weight, assign that weight 1338 // to all the blocks in that equivalence class. 1339 LLVM_DEBUG( 1340 dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 1341 for (auto &BI : F) { 1342 const BasicBlock *BB = &BI; 1343 const BasicBlock *EquivBB = EquivalenceClass[BB]; 1344 if (BB != EquivBB) 1345 BlockWeights[BB] = BlockWeights[EquivBB]; 1346 LLVM_DEBUG(printBlockWeight(dbgs(), BB)); 1347 } 1348 } 1349 1350 /// Visit the given edge to decide if it has a valid weight. 1351 /// 1352 /// If \p E has not been visited before, we copy to \p UnknownEdge 1353 /// and increment the count of unknown edges. 1354 /// 1355 /// \param E Edge to visit. 1356 /// \param NumUnknownEdges Current number of unknown edges. 1357 /// \param UnknownEdge Set if E has not been visited before. 1358 /// 1359 /// \returns E's weight, if known. Otherwise, return 0. 1360 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 1361 Edge *UnknownEdge) { 1362 if (!VisitedEdges.count(E)) { 1363 (*NumUnknownEdges)++; 1364 *UnknownEdge = E; 1365 return 0; 1366 } 1367 1368 return EdgeWeights[E]; 1369 } 1370 1371 /// Propagate weights through incoming/outgoing edges. 1372 /// 1373 /// If the weight of a basic block is known, and there is only one edge 1374 /// with an unknown weight, we can calculate the weight of that edge. 1375 /// 1376 /// Similarly, if all the edges have a known count, we can calculate the 1377 /// count of the basic block, if needed. 1378 /// 1379 /// \param F Function to process. 1380 /// \param UpdateBlockCount Whether we should update basic block counts that 1381 /// has already been annotated. 1382 /// 1383 /// \returns True if new weights were assigned to edges or blocks. 1384 bool SampleProfileLoader::propagateThroughEdges(Function &F, 1385 bool UpdateBlockCount) { 1386 bool Changed = false; 1387 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); 1388 for (const auto &BI : F) { 1389 const BasicBlock *BB = &BI; 1390 const BasicBlock *EC = EquivalenceClass[BB]; 1391 1392 // Visit all the predecessor and successor edges to determine 1393 // which ones have a weight assigned already. Note that it doesn't 1394 // matter that we only keep track of a single unknown edge. The 1395 // only case we are interested in handling is when only a single 1396 // edge is unknown (see setEdgeOrBlockWeight). 1397 for (unsigned i = 0; i < 2; i++) { 1398 uint64_t TotalWeight = 0; 1399 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 1400 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 1401 1402 if (i == 0) { 1403 // First, visit all predecessor edges. 1404 NumTotalEdges = Predecessors[BB].size(); 1405 for (auto *Pred : Predecessors[BB]) { 1406 Edge E = std::make_pair(Pred, BB); 1407 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1408 if (E.first == E.second) 1409 SelfReferentialEdge = E; 1410 } 1411 if (NumTotalEdges == 1) { 1412 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 1413 } 1414 } else { 1415 // On the second round, visit all successor edges. 1416 NumTotalEdges = Successors[BB].size(); 1417 for (auto *Succ : Successors[BB]) { 1418 Edge E = std::make_pair(BB, Succ); 1419 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1420 } 1421 if (NumTotalEdges == 1) { 1422 SingleEdge = std::make_pair(BB, Successors[BB][0]); 1423 } 1424 } 1425 1426 // After visiting all the edges, there are three cases that we 1427 // can handle immediately: 1428 // 1429 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 1430 // In this case, we simply check that the sum of all the edges 1431 // is the same as BB's weight. If not, we change BB's weight 1432 // to match. Additionally, if BB had not been visited before, 1433 // we mark it visited. 1434 // 1435 // - Only one edge is unknown and BB has already been visited. 1436 // In this case, we can compute the weight of the edge by 1437 // subtracting the total block weight from all the known 1438 // edge weights. If the edges weight more than BB, then the 1439 // edge of the last remaining edge is set to zero. 1440 // 1441 // - There exists a self-referential edge and the weight of BB is 1442 // known. In this case, this edge can be based on BB's weight. 1443 // We add up all the other known edges and set the weight on 1444 // the self-referential edge as we did in the previous case. 1445 // 1446 // In any other case, we must continue iterating. Eventually, 1447 // all edges will get a weight, or iteration will stop when 1448 // it reaches SampleProfileMaxPropagateIterations. 1449 if (NumUnknownEdges <= 1) { 1450 uint64_t &BBWeight = BlockWeights[EC]; 1451 if (NumUnknownEdges == 0) { 1452 if (!VisitedBlocks.count(EC)) { 1453 // If we already know the weight of all edges, the weight of the 1454 // basic block can be computed. It should be no larger than the sum 1455 // of all edge weights. 1456 if (TotalWeight > BBWeight) { 1457 BBWeight = TotalWeight; 1458 Changed = true; 1459 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() 1460 << " known. Set weight for block: "; 1461 printBlockWeight(dbgs(), BB);); 1462 } 1463 } else if (NumTotalEdges == 1 && 1464 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1465 // If there is only one edge for the visited basic block, use the 1466 // block weight to adjust edge weight if edge weight is smaller. 1467 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1468 Changed = true; 1469 } 1470 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1471 // If there is a single unknown edge and the block has been 1472 // visited, then we can compute E's weight. 1473 if (BBWeight >= TotalWeight) 1474 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1475 else 1476 EdgeWeights[UnknownEdge] = 0; 1477 const BasicBlock *OtherEC; 1478 if (i == 0) 1479 OtherEC = EquivalenceClass[UnknownEdge.first]; 1480 else 1481 OtherEC = EquivalenceClass[UnknownEdge.second]; 1482 // Edge weights should never exceed the BB weights it connects. 1483 if (VisitedBlocks.count(OtherEC) && 1484 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1485 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1486 VisitedEdges.insert(UnknownEdge); 1487 Changed = true; 1488 LLVM_DEBUG(dbgs() << "Set weight for edge: "; 1489 printEdgeWeight(dbgs(), UnknownEdge)); 1490 } 1491 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1492 // If a block Weights 0, all its in/out edges should weight 0. 1493 if (i == 0) { 1494 for (auto *Pred : Predecessors[BB]) { 1495 Edge E = std::make_pair(Pred, BB); 1496 EdgeWeights[E] = 0; 1497 VisitedEdges.insert(E); 1498 } 1499 } else { 1500 for (auto *Succ : Successors[BB]) { 1501 Edge E = std::make_pair(BB, Succ); 1502 EdgeWeights[E] = 0; 1503 VisitedEdges.insert(E); 1504 } 1505 } 1506 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1507 uint64_t &BBWeight = BlockWeights[BB]; 1508 // We have a self-referential edge and the weight of BB is known. 1509 if (BBWeight >= TotalWeight) 1510 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1511 else 1512 EdgeWeights[SelfReferentialEdge] = 0; 1513 VisitedEdges.insert(SelfReferentialEdge); 1514 Changed = true; 1515 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; 1516 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1517 } 1518 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1519 BlockWeights[EC] = TotalWeight; 1520 VisitedBlocks.insert(EC); 1521 Changed = true; 1522 } 1523 } 1524 } 1525 1526 return Changed; 1527 } 1528 1529 /// Build in/out edge lists for each basic block in the CFG. 1530 /// 1531 /// We are interested in unique edges. If a block B1 has multiple 1532 /// edges to another block B2, we only add a single B1->B2 edge. 1533 void SampleProfileLoader::buildEdges(Function &F) { 1534 for (auto &BI : F) { 1535 BasicBlock *B1 = &BI; 1536 1537 // Add predecessors for B1. 1538 SmallPtrSet<BasicBlock *, 16> Visited; 1539 if (!Predecessors[B1].empty()) 1540 llvm_unreachable("Found a stale predecessors list in a basic block."); 1541 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1542 BasicBlock *B2 = *PI; 1543 if (Visited.insert(B2).second) 1544 Predecessors[B1].push_back(B2); 1545 } 1546 1547 // Add successors for B1. 1548 Visited.clear(); 1549 if (!Successors[B1].empty()) 1550 llvm_unreachable("Found a stale successors list in a basic block."); 1551 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1552 BasicBlock *B2 = *SI; 1553 if (Visited.insert(B2).second) 1554 Successors[B1].push_back(B2); 1555 } 1556 } 1557 } 1558 1559 /// Returns the sorted CallTargetMap \p M by count in descending order. 1560 static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets( 1561 const SampleRecord::CallTargetMap & M) { 1562 SmallVector<InstrProfValueData, 2> R; 1563 for (const auto &I : SampleRecord::SortCallTargets(M)) { 1564 R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second}); 1565 } 1566 return R; 1567 } 1568 1569 /// Propagate weights into edges 1570 /// 1571 /// The following rules are applied to every block BB in the CFG: 1572 /// 1573 /// - If BB has a single predecessor/successor, then the weight 1574 /// of that edge is the weight of the block. 1575 /// 1576 /// - If all incoming or outgoing edges are known except one, and the 1577 /// weight of the block is already known, the weight of the unknown 1578 /// edge will be the weight of the block minus the sum of all the known 1579 /// edges. If the sum of all the known edges is larger than BB's weight, 1580 /// we set the unknown edge weight to zero. 1581 /// 1582 /// - If there is a self-referential edge, and the weight of the block is 1583 /// known, the weight for that edge is set to the weight of the block 1584 /// minus the weight of the other incoming edges to that block (if 1585 /// known). 1586 void SampleProfileLoader::propagateWeights(Function &F) { 1587 bool Changed = true; 1588 unsigned I = 0; 1589 1590 // If BB weight is larger than its corresponding loop's header BB weight, 1591 // use the BB weight to replace the loop header BB weight. 1592 for (auto &BI : F) { 1593 BasicBlock *BB = &BI; 1594 Loop *L = LI->getLoopFor(BB); 1595 if (!L) { 1596 continue; 1597 } 1598 BasicBlock *Header = L->getHeader(); 1599 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1600 BlockWeights[Header] = BlockWeights[BB]; 1601 } 1602 } 1603 1604 // Before propagation starts, build, for each block, a list of 1605 // unique predecessors and successors. This is necessary to handle 1606 // identical edges in multiway branches. Since we visit all blocks and all 1607 // edges of the CFG, it is cleaner to build these lists once at the start 1608 // of the pass. 1609 buildEdges(F); 1610 1611 // Propagate until we converge or we go past the iteration limit. 1612 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1613 Changed = propagateThroughEdges(F, false); 1614 } 1615 1616 // The first propagation propagates BB counts from annotated BBs to unknown 1617 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1618 // to propagate edge weights. 1619 VisitedEdges.clear(); 1620 Changed = true; 1621 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1622 Changed = propagateThroughEdges(F, false); 1623 } 1624 1625 // The 3rd propagation pass allows adjust annotated BB weights that are 1626 // obviously wrong. 1627 Changed = true; 1628 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1629 Changed = propagateThroughEdges(F, true); 1630 } 1631 1632 // Generate MD_prof metadata for every branch instruction using the 1633 // edge weights computed during propagation. 1634 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1635 LLVMContext &Ctx = F.getContext(); 1636 MDBuilder MDB(Ctx); 1637 for (auto &BI : F) { 1638 BasicBlock *BB = &BI; 1639 1640 if (BlockWeights[BB]) { 1641 for (auto &I : BB->getInstList()) { 1642 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1643 continue; 1644 if (!cast<CallBase>(I).getCalledFunction()) { 1645 const DebugLoc &DLoc = I.getDebugLoc(); 1646 if (!DLoc) 1647 continue; 1648 const DILocation *DIL = DLoc; 1649 const FunctionSamples *FS = findFunctionSamples(I); 1650 if (!FS) 1651 continue; 1652 auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL); 1653 auto T = FS->findCallTargetMapAt(CallSite); 1654 if (!T || T.get().empty()) 1655 continue; 1656 SmallVector<InstrProfValueData, 2> SortedCallTargets = 1657 GetSortedValueDataFromCallTargets(T.get()); 1658 uint64_t Sum; 1659 findIndirectCallFunctionSamples(I, Sum); 1660 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1661 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1662 SortedCallTargets.size()); 1663 } else if (!isa<IntrinsicInst>(&I)) { 1664 I.setMetadata(LLVMContext::MD_prof, 1665 MDB.createBranchWeights( 1666 {static_cast<uint32_t>(BlockWeights[BB])})); 1667 } 1668 } 1669 } 1670 Instruction *TI = BB->getTerminator(); 1671 if (TI->getNumSuccessors() == 1) 1672 continue; 1673 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1674 continue; 1675 1676 DebugLoc BranchLoc = TI->getDebugLoc(); 1677 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " 1678 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1679 : Twine("<UNKNOWN LOCATION>")) 1680 << ".\n"); 1681 SmallVector<uint32_t, 4> Weights; 1682 uint32_t MaxWeight = 0; 1683 Instruction *MaxDestInst; 1684 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1685 BasicBlock *Succ = TI->getSuccessor(I); 1686 Edge E = std::make_pair(BB, Succ); 1687 uint64_t Weight = EdgeWeights[E]; 1688 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1689 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1690 // if needed. Sample counts in profiles are 64-bit unsigned values, 1691 // but internally branch weights are expressed as 32-bit values. 1692 if (Weight > std::numeric_limits<uint32_t>::max()) { 1693 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1694 Weight = std::numeric_limits<uint32_t>::max(); 1695 } 1696 // Weight is added by one to avoid propagation errors introduced by 1697 // 0 weights. 1698 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1699 if (Weight != 0) { 1700 if (Weight > MaxWeight) { 1701 MaxWeight = Weight; 1702 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1703 } 1704 } 1705 } 1706 1707 uint64_t TempWeight; 1708 // Only set weights if there is at least one non-zero weight. 1709 // In any other case, let the analyzer set weights. 1710 // Do not set weights if the weights are present. In ThinLTO, the profile 1711 // annotation is done twice. If the first annotation already set the 1712 // weights, the second pass does not need to set it. 1713 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1714 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1715 TI->setMetadata(LLVMContext::MD_prof, 1716 MDB.createBranchWeights(Weights)); 1717 ORE->emit([&]() { 1718 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1719 << "most popular destination for conditional branches at " 1720 << ore::NV("CondBranchesLoc", BranchLoc); 1721 }); 1722 } else { 1723 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1724 } 1725 } 1726 } 1727 1728 /// Get the line number for the function header. 1729 /// 1730 /// This looks up function \p F in the current compilation unit and 1731 /// retrieves the line number where the function is defined. This is 1732 /// line 0 for all the samples read from the profile file. Every line 1733 /// number is relative to this line. 1734 /// 1735 /// \param F Function object to query. 1736 /// 1737 /// \returns the line number where \p F is defined. If it returns 0, 1738 /// it means that there is no debug information available for \p F. 1739 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1740 if (DISubprogram *S = F.getSubprogram()) 1741 return S->getLine(); 1742 1743 if (NoWarnSampleUnused) 1744 return 0; 1745 1746 // If the start of \p F is missing, emit a diagnostic to inform the user 1747 // about the missed opportunity. 1748 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1749 "No debug information found in function " + F.getName() + 1750 ": Function profile not used", 1751 DS_Warning)); 1752 return 0; 1753 } 1754 1755 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1756 DT.reset(new DominatorTree); 1757 DT->recalculate(F); 1758 1759 PDT.reset(new PostDominatorTree(F)); 1760 1761 LI.reset(new LoopInfo); 1762 LI->analyze(*DT); 1763 } 1764 1765 /// Generate branch weight metadata for all branches in \p F. 1766 /// 1767 /// Branch weights are computed out of instruction samples using a 1768 /// propagation heuristic. Propagation proceeds in 3 phases: 1769 /// 1770 /// 1- Assignment of block weights. All the basic blocks in the function 1771 /// are initial assigned the same weight as their most frequently 1772 /// executed instruction. 1773 /// 1774 /// 2- Creation of equivalence classes. Since samples may be missing from 1775 /// blocks, we can fill in the gaps by setting the weights of all the 1776 /// blocks in the same equivalence class to the same weight. To compute 1777 /// the concept of equivalence, we use dominance and loop information. 1778 /// Two blocks B1 and B2 are in the same equivalence class if B1 1779 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1780 /// 1781 /// 3- Propagation of block weights into edges. This uses a simple 1782 /// propagation heuristic. The following rules are applied to every 1783 /// block BB in the CFG: 1784 /// 1785 /// - If BB has a single predecessor/successor, then the weight 1786 /// of that edge is the weight of the block. 1787 /// 1788 /// - If all the edges are known except one, and the weight of the 1789 /// block is already known, the weight of the unknown edge will 1790 /// be the weight of the block minus the sum of all the known 1791 /// edges. If the sum of all the known edges is larger than BB's weight, 1792 /// we set the unknown edge weight to zero. 1793 /// 1794 /// - If there is a self-referential edge, and the weight of the block is 1795 /// known, the weight for that edge is set to the weight of the block 1796 /// minus the weight of the other incoming edges to that block (if 1797 /// known). 1798 /// 1799 /// Since this propagation is not guaranteed to finalize for every CFG, we 1800 /// only allow it to proceed for a limited number of iterations (controlled 1801 /// by -sample-profile-max-propagate-iterations). 1802 /// 1803 /// FIXME: Try to replace this propagation heuristic with a scheme 1804 /// that is guaranteed to finalize. A work-list approach similar to 1805 /// the standard value propagation algorithm used by SSA-CCP might 1806 /// work here. 1807 /// 1808 /// Once all the branch weights are computed, we emit the MD_prof 1809 /// metadata on BB using the computed values for each of its branches. 1810 /// 1811 /// \param F The function to query. 1812 /// 1813 /// \returns true if \p F was modified. Returns false, otherwise. 1814 bool SampleProfileLoader::emitAnnotations(Function &F) { 1815 bool Changed = false; 1816 1817 if (FunctionSamples::ProfileIsProbeBased) { 1818 if (!ProbeManager->profileIsValid(F, *Samples)) { 1819 LLVM_DEBUG( 1820 dbgs() << "Profile is invalid due to CFG mismatch for Function " 1821 << F.getName()); 1822 ++NumMismatchedProfile; 1823 return false; 1824 } 1825 ++NumMatchedProfile; 1826 } else { 1827 if (getFunctionLoc(F) == 0) 1828 return false; 1829 1830 LLVM_DEBUG(dbgs() << "Line number for the first instruction in " 1831 << F.getName() << ": " << getFunctionLoc(F) << "\n"); 1832 } 1833 1834 DenseSet<GlobalValue::GUID> InlinedGUIDs; 1835 Changed |= inlineHotFunctions(F, InlinedGUIDs); 1836 1837 // Compute basic block weights. 1838 Changed |= computeBlockWeights(F); 1839 1840 if (Changed) { 1841 // Add an entry count to the function using the samples gathered at the 1842 // function entry. 1843 // Sets the GUIDs that are inlined in the profiled binary. This is used 1844 // for ThinLink to make correct liveness analysis, and also make the IR 1845 // match the profiled binary before annotation. 1846 F.setEntryCount( 1847 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), 1848 &InlinedGUIDs); 1849 1850 // Compute dominance and loop info needed for propagation. 1851 computeDominanceAndLoopInfo(F); 1852 1853 // Find equivalence classes. 1854 findEquivalenceClasses(F); 1855 1856 // Propagate weights to all edges. 1857 propagateWeights(F); 1858 } 1859 1860 // If coverage checking was requested, compute it now. 1861 if (SampleProfileRecordCoverage) { 1862 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); 1863 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); 1864 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1865 if (Coverage < SampleProfileRecordCoverage) { 1866 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1867 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1868 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1869 Twine(Coverage) + "%) were applied", 1870 DS_Warning)); 1871 } 1872 } 1873 1874 if (SampleProfileSampleCoverage) { 1875 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1876 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); 1877 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1878 if (Coverage < SampleProfileSampleCoverage) { 1879 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1880 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1881 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1882 Twine(Coverage) + "%) were applied", 1883 DS_Warning)); 1884 } 1885 } 1886 return Changed; 1887 } 1888 1889 char SampleProfileLoaderLegacyPass::ID = 0; 1890 1891 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1892 "Sample Profile loader", false, false) 1893 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1894 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1895 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1896 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1897 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1898 "Sample Profile loader", false, false) 1899 1900 std::vector<Function *> 1901 SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) { 1902 std::vector<Function *> FunctionOrderList; 1903 FunctionOrderList.reserve(M.size()); 1904 1905 if (!ProfileTopDownLoad || CG == nullptr) { 1906 if (ProfileMergeInlinee) { 1907 // Disable ProfileMergeInlinee if profile is not loaded in top down order, 1908 // because the profile for a function may be used for the profile 1909 // annotation of its outline copy before the profile merging of its 1910 // non-inlined inline instances, and that is not the way how 1911 // ProfileMergeInlinee is supposed to work. 1912 ProfileMergeInlinee = false; 1913 } 1914 1915 for (Function &F : M) 1916 if (!F.isDeclaration() && F.hasFnAttribute("use-sample-profile")) 1917 FunctionOrderList.push_back(&F); 1918 return FunctionOrderList; 1919 } 1920 1921 assert(&CG->getModule() == &M); 1922 scc_iterator<CallGraph *> CGI = scc_begin(CG); 1923 while (!CGI.isAtEnd()) { 1924 for (CallGraphNode *node : *CGI) { 1925 auto F = node->getFunction(); 1926 if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile")) 1927 FunctionOrderList.push_back(F); 1928 } 1929 ++CGI; 1930 } 1931 1932 std::reverse(FunctionOrderList.begin(), FunctionOrderList.end()); 1933 return FunctionOrderList; 1934 } 1935 1936 bool SampleProfileLoader::doInitialization(Module &M, 1937 FunctionAnalysisManager *FAM) { 1938 auto &Ctx = M.getContext(); 1939 1940 auto ReaderOrErr = 1941 SampleProfileReader::create(Filename, Ctx, RemappingFilename); 1942 if (std::error_code EC = ReaderOrErr.getError()) { 1943 std::string Msg = "Could not open profile: " + EC.message(); 1944 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1945 return false; 1946 } 1947 Reader = std::move(ReaderOrErr.get()); 1948 Reader->collectFuncsFrom(M); 1949 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1950 PSL = Reader->getProfileSymbolList(); 1951 1952 // While profile-sample-accurate is on, ignore symbol list. 1953 ProfAccForSymsInList = 1954 ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate; 1955 if (ProfAccForSymsInList) { 1956 NamesInProfile.clear(); 1957 if (auto NameTable = Reader->getNameTable()) 1958 NamesInProfile.insert(NameTable->begin(), NameTable->end()); 1959 } 1960 1961 if (FAM && !ProfileInlineReplayFile.empty()) { 1962 ExternalInlineAdvisor = std::make_unique<ReplayInlineAdvisor>( 1963 *FAM, Ctx, ProfileInlineReplayFile); 1964 if (!ExternalInlineAdvisor->areReplayRemarksLoaded()) 1965 ExternalInlineAdvisor.reset(); 1966 } 1967 1968 // Apply tweaks if context-sensitive profile is available. 1969 if (Reader->profileIsCS()) { 1970 ProfileIsCS = true; 1971 FunctionSamples::ProfileIsCS = true; 1972 1973 // Tracker for profiles under different context 1974 ContextTracker = 1975 std::make_unique<SampleContextTracker>(Reader->getProfiles()); 1976 } 1977 1978 // Load pseudo probe descriptors for probe-based function samples. 1979 if (Reader->profileIsProbeBased()) { 1980 ProbeManager = std::make_unique<PseudoProbeManager>(M); 1981 if (!ProbeManager->moduleIsProbed(M)) { 1982 const char *Msg = 1983 "Pseudo-probe-based profile requires SampleProfileProbePass"; 1984 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1985 return false; 1986 } 1987 } 1988 1989 return true; 1990 } 1991 1992 ModulePass *llvm::createSampleProfileLoaderPass() { 1993 return new SampleProfileLoaderLegacyPass(); 1994 } 1995 1996 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1997 return new SampleProfileLoaderLegacyPass(Name); 1998 } 1999 2000 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, 2001 ProfileSummaryInfo *_PSI, CallGraph *CG) { 2002 if (!ProfileIsValid) 2003 return false; 2004 GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap); 2005 2006 PSI = _PSI; 2007 if (M.getProfileSummary(/* IsCS */ false) == nullptr) { 2008 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()), 2009 ProfileSummary::PSK_Sample); 2010 PSI->refresh(); 2011 } 2012 // Compute the total number of samples collected in this profile. 2013 for (const auto &I : Reader->getProfiles()) 2014 TotalCollectedSamples += I.second.getTotalSamples(); 2015 2016 auto Remapper = Reader->getRemapper(); 2017 // Populate the symbol map. 2018 for (const auto &N_F : M.getValueSymbolTable()) { 2019 StringRef OrigName = N_F.getKey(); 2020 Function *F = dyn_cast<Function>(N_F.getValue()); 2021 if (F == nullptr) 2022 continue; 2023 SymbolMap[OrigName] = F; 2024 auto pos = OrigName.find('.'); 2025 if (pos != StringRef::npos) { 2026 StringRef NewName = OrigName.substr(0, pos); 2027 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 2028 // Failiing to insert means there is already an entry in SymbolMap, 2029 // thus there are multiple functions that are mapped to the same 2030 // stripped name. In this case of name conflicting, set the value 2031 // to nullptr to avoid confusion. 2032 if (!r.second) 2033 r.first->second = nullptr; 2034 OrigName = NewName; 2035 } 2036 // Insert the remapped names into SymbolMap. 2037 if (Remapper) { 2038 if (auto MapName = Remapper->lookUpNameInProfile(OrigName)) { 2039 if (*MapName == OrigName) 2040 continue; 2041 SymbolMap.insert(std::make_pair(*MapName, F)); 2042 } 2043 } 2044 } 2045 2046 bool retval = false; 2047 for (auto F : buildFunctionOrder(M, CG)) { 2048 assert(!F->isDeclaration()); 2049 clearFunctionData(); 2050 retval |= runOnFunction(*F, AM); 2051 } 2052 2053 // Account for cold calls not inlined.... 2054 if (!ProfileIsCS) 2055 for (const std::pair<Function *, NotInlinedProfileInfo> &pair : 2056 notInlinedCallInfo) 2057 updateProfileCallee(pair.first, pair.second.entryCount); 2058 2059 return retval; 2060 } 2061 2062 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 2063 ACT = &getAnalysis<AssumptionCacheTracker>(); 2064 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 2065 TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>(); 2066 ProfileSummaryInfo *PSI = 2067 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2068 return SampleLoader.runOnModule(M, nullptr, PSI, nullptr); 2069 } 2070 2071 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 2072 DILocation2SampleMap.clear(); 2073 // By default the entry count is initialized to -1, which will be treated 2074 // conservatively by getEntryCount as the same as unknown (None). This is 2075 // to avoid newly added code to be treated as cold. If we have samples 2076 // this will be overwritten in emitAnnotations. 2077 uint64_t initialEntryCount = -1; 2078 2079 ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL; 2080 if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) { 2081 // initialize all the function entry counts to 0. It means all the 2082 // functions without profile will be regarded as cold. 2083 initialEntryCount = 0; 2084 // profile-sample-accurate is a user assertion which has a higher precedence 2085 // than symbol list. When profile-sample-accurate is on, ignore symbol list. 2086 ProfAccForSymsInList = false; 2087 } 2088 2089 // PSL -- profile symbol list include all the symbols in sampled binary. 2090 // If ProfileAccurateForSymsInList is enabled, PSL is used to treat 2091 // old functions without samples being cold, without having to worry 2092 // about new and hot functions being mistakenly treated as cold. 2093 if (ProfAccForSymsInList) { 2094 // Initialize the entry count to 0 for functions in the list. 2095 if (PSL->contains(F.getName())) 2096 initialEntryCount = 0; 2097 2098 // Function in the symbol list but without sample will be regarded as 2099 // cold. To minimize the potential negative performance impact it could 2100 // have, we want to be a little conservative here saying if a function 2101 // shows up in the profile, no matter as outline function, inline instance 2102 // or call targets, treat the function as not being cold. This will handle 2103 // the cases such as most callsites of a function are inlined in sampled 2104 // binary but not inlined in current build (because of source code drift, 2105 // imprecise debug information, or the callsites are all cold individually 2106 // but not cold accumulatively...), so the outline function showing up as 2107 // cold in sampled binary will actually not be cold after current build. 2108 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 2109 if (NamesInProfile.count(CanonName)) 2110 initialEntryCount = -1; 2111 } 2112 2113 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real)); 2114 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 2115 if (AM) { 2116 auto &FAM = 2117 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 2118 .getManager(); 2119 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 2120 } else { 2121 OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F); 2122 ORE = OwnedORE.get(); 2123 } 2124 2125 if (ProfileIsCS) 2126 Samples = ContextTracker->getBaseSamplesFor(F); 2127 else 2128 Samples = Reader->getSamplesFor(F); 2129 2130 if (Samples && !Samples->empty()) 2131 return emitAnnotations(F); 2132 return false; 2133 } 2134 2135 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 2136 ModuleAnalysisManager &AM) { 2137 FunctionAnalysisManager &FAM = 2138 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2139 2140 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 2141 return FAM.getResult<AssumptionAnalysis>(F); 2142 }; 2143 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 2144 return FAM.getResult<TargetIRAnalysis>(F); 2145 }; 2146 auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & { 2147 return FAM.getResult<TargetLibraryAnalysis>(F); 2148 }; 2149 2150 SampleProfileLoader SampleLoader( 2151 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 2152 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile 2153 : ProfileRemappingFileName, 2154 IsThinLTOPreLink, GetAssumptionCache, GetTTI, GetTLI); 2155 2156 if (!SampleLoader.doInitialization(M, &FAM)) 2157 return PreservedAnalyses::all(); 2158 2159 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 2160 CallGraph &CG = AM.getResult<CallGraphAnalysis>(M); 2161 if (!SampleLoader.runOnModule(M, &AM, PSI, &CG)) 2162 return PreservedAnalyses::all(); 2163 2164 return PreservedAnalyses::none(); 2165 } 2166