1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SampleProfileLoader transformation. This pass 10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 12 // profile information in the given profile. 13 // 14 // This pass generates branch weight annotations on the IR: 15 // 16 // - prof: Represents branch weights. This annotation is added to branches 17 // to indicate the weights of each edge coming out of the branch. 18 // The weight of each edge is the weight of the target block for 19 // that edge. The weight of a block B is computed as the maximum 20 // number of samples found in B. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/IPO/SampleProfile.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/None.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringMap.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/ADT/Twine.h" 35 #include "llvm/Analysis/AssumptionCache.h" 36 #include "llvm/Analysis/InlineCost.h" 37 #include "llvm/Analysis/LoopInfo.h" 38 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 39 #include "llvm/Analysis/PostDominators.h" 40 #include "llvm/Analysis/ProfileSummaryInfo.h" 41 #include "llvm/Analysis/TargetTransformInfo.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/CallSite.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DiagnosticInfo.h" 48 #include "llvm/IR/Dominators.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/MDBuilder.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/PassManager.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/Pass.h" 61 #include "llvm/ProfileData/InstrProf.h" 62 #include "llvm/ProfileData/SampleProf.h" 63 #include "llvm/ProfileData/SampleProfReader.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/GenericDomTree.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Transforms/IPO.h" 72 #include "llvm/Transforms/Instrumentation.h" 73 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 74 #include "llvm/Transforms/Utils/Cloning.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstdint> 78 #include <functional> 79 #include <limits> 80 #include <map> 81 #include <memory> 82 #include <string> 83 #include <system_error> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 using namespace sampleprof; 89 using ProfileCount = Function::ProfileCount; 90 #define DEBUG_TYPE "sample-profile" 91 92 // Command line option to specify the file to read samples from. This is 93 // mainly used for debugging. 94 static cl::opt<std::string> SampleProfileFile( 95 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 96 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 97 98 // The named file contains a set of transformations that may have been applied 99 // to the symbol names between the program from which the sample data was 100 // collected and the current program's symbols. 101 static cl::opt<std::string> SampleProfileRemappingFile( 102 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), 103 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); 104 105 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 106 "sample-profile-max-propagate-iterations", cl::init(100), 107 cl::desc("Maximum number of iterations to go through when propagating " 108 "sample block/edge weights through the CFG.")); 109 110 static cl::opt<unsigned> SampleProfileRecordCoverage( 111 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 112 cl::desc("Emit a warning if less than N% of records in the input profile " 113 "are matched to the IR.")); 114 115 static cl::opt<unsigned> SampleProfileSampleCoverage( 116 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 117 cl::desc("Emit a warning if less than N% of samples in the input profile " 118 "are matched to the IR.")); 119 120 static cl::opt<bool> NoWarnSampleUnused( 121 "no-warn-sample-unused", cl::init(false), cl::Hidden, 122 cl::desc("Use this option to turn off/on warnings about function with " 123 "samples but without debug information to use those samples. ")); 124 125 static cl::opt<bool> ProfileSampleAccurate( 126 "profile-sample-accurate", cl::Hidden, cl::init(false), 127 cl::desc("If the sample profile is accurate, we will mark all un-sampled " 128 "callsite and function as having 0 samples. Otherwise, treat " 129 "un-sampled callsites and functions conservatively as unknown. ")); 130 131 namespace { 132 133 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 134 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 135 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 136 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 137 using BlockEdgeMap = 138 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 139 140 class SampleCoverageTracker { 141 public: 142 SampleCoverageTracker() = default; 143 144 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 145 uint32_t Discriminator, uint64_t Samples); 146 unsigned computeCoverage(unsigned Used, unsigned Total) const; 147 unsigned countUsedRecords(const FunctionSamples *FS, 148 ProfileSummaryInfo *PSI) const; 149 unsigned countBodyRecords(const FunctionSamples *FS, 150 ProfileSummaryInfo *PSI) const; 151 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 152 uint64_t countBodySamples(const FunctionSamples *FS, 153 ProfileSummaryInfo *PSI) const; 154 155 void clear() { 156 SampleCoverage.clear(); 157 TotalUsedSamples = 0; 158 } 159 160 private: 161 using BodySampleCoverageMap = std::map<LineLocation, unsigned>; 162 using FunctionSamplesCoverageMap = 163 DenseMap<const FunctionSamples *, BodySampleCoverageMap>; 164 165 /// Coverage map for sampling records. 166 /// 167 /// This map keeps a record of sampling records that have been matched to 168 /// an IR instruction. This is used to detect some form of staleness in 169 /// profiles (see flag -sample-profile-check-coverage). 170 /// 171 /// Each entry in the map corresponds to a FunctionSamples instance. This is 172 /// another map that counts how many times the sample record at the 173 /// given location has been used. 174 FunctionSamplesCoverageMap SampleCoverage; 175 176 /// Number of samples used from the profile. 177 /// 178 /// When a sampling record is used for the first time, the samples from 179 /// that record are added to this accumulator. Coverage is later computed 180 /// based on the total number of samples available in this function and 181 /// its callsites. 182 /// 183 /// Note that this accumulator tracks samples used from a single function 184 /// and all the inlined callsites. Strictly, we should have a map of counters 185 /// keyed by FunctionSamples pointers, but these stats are cleared after 186 /// every function, so we just need to keep a single counter. 187 uint64_t TotalUsedSamples = 0; 188 }; 189 190 /// Sample profile pass. 191 /// 192 /// This pass reads profile data from the file specified by 193 /// -sample-profile-file and annotates every affected function with the 194 /// profile information found in that file. 195 class SampleProfileLoader { 196 public: 197 SampleProfileLoader( 198 StringRef Name, StringRef RemapName, bool IsThinLTOPreLink, 199 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 200 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo) 201 : GetAC(std::move(GetAssumptionCache)), 202 GetTTI(std::move(GetTargetTransformInfo)), Filename(Name), 203 RemappingFilename(RemapName), IsThinLTOPreLink(IsThinLTOPreLink) {} 204 205 bool doInitialization(Module &M); 206 bool runOnModule(Module &M, ModuleAnalysisManager *AM, 207 ProfileSummaryInfo *_PSI); 208 209 void dump() { Reader->dump(); } 210 211 protected: 212 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 213 unsigned getFunctionLoc(Function &F); 214 bool emitAnnotations(Function &F); 215 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 216 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 217 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 218 std::vector<const FunctionSamples *> 219 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 220 mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap; 221 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 222 bool inlineCallInstruction(Instruction *I); 223 bool inlineHotFunctions(Function &F, 224 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 225 void printEdgeWeight(raw_ostream &OS, Edge E); 226 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 227 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 228 bool computeBlockWeights(Function &F); 229 void findEquivalenceClasses(Function &F); 230 template <bool IsPostDom> 231 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 232 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 233 234 void propagateWeights(Function &F); 235 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 236 void buildEdges(Function &F); 237 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 238 void computeDominanceAndLoopInfo(Function &F); 239 void clearFunctionData(); 240 241 /// Map basic blocks to their computed weights. 242 /// 243 /// The weight of a basic block is defined to be the maximum 244 /// of all the instruction weights in that block. 245 BlockWeightMap BlockWeights; 246 247 /// Map edges to their computed weights. 248 /// 249 /// Edge weights are computed by propagating basic block weights in 250 /// SampleProfile::propagateWeights. 251 EdgeWeightMap EdgeWeights; 252 253 /// Set of visited blocks during propagation. 254 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 255 256 /// Set of visited edges during propagation. 257 SmallSet<Edge, 32> VisitedEdges; 258 259 /// Equivalence classes for block weights. 260 /// 261 /// Two blocks BB1 and BB2 are in the same equivalence class if they 262 /// dominate and post-dominate each other, and they are in the same loop 263 /// nest. When this happens, the two blocks are guaranteed to execute 264 /// the same number of times. 265 EquivalenceClassMap EquivalenceClass; 266 267 /// Map from function name to Function *. Used to find the function from 268 /// the function name. If the function name contains suffix, additional 269 /// entry is added to map from the stripped name to the function if there 270 /// is one-to-one mapping. 271 StringMap<Function *> SymbolMap; 272 273 /// Dominance, post-dominance and loop information. 274 std::unique_ptr<DominatorTree> DT; 275 std::unique_ptr<PostDominatorTree> PDT; 276 std::unique_ptr<LoopInfo> LI; 277 278 std::function<AssumptionCache &(Function &)> GetAC; 279 std::function<TargetTransformInfo &(Function &)> GetTTI; 280 281 /// Predecessors for each basic block in the CFG. 282 BlockEdgeMap Predecessors; 283 284 /// Successors for each basic block in the CFG. 285 BlockEdgeMap Successors; 286 287 SampleCoverageTracker CoverageTracker; 288 289 /// Profile reader object. 290 std::unique_ptr<SampleProfileReader> Reader; 291 292 /// Samples collected for the body of this function. 293 FunctionSamples *Samples = nullptr; 294 295 /// Name of the profile file to load. 296 std::string Filename; 297 298 /// Name of the profile remapping file to load. 299 std::string RemappingFilename; 300 301 /// Flag indicating whether the profile input loaded successfully. 302 bool ProfileIsValid = false; 303 304 /// Flag indicating if the pass is invoked in ThinLTO compile phase. 305 /// 306 /// In this phase, in annotation, we should not promote indirect calls. 307 /// Instead, we will mark GUIDs that needs to be annotated to the function. 308 bool IsThinLTOPreLink; 309 310 /// Profile Summary Info computed from sample profile. 311 ProfileSummaryInfo *PSI = nullptr; 312 313 /// Total number of samples collected in this profile. 314 /// 315 /// This is the sum of all the samples collected in all the functions executed 316 /// at runtime. 317 uint64_t TotalCollectedSamples = 0; 318 319 /// Optimization Remark Emitter used to emit diagnostic remarks. 320 OptimizationRemarkEmitter *ORE = nullptr; 321 322 // Information recorded when we declined to inline a call site 323 // because we have determined it is too cold is accumulated for 324 // each callee function. Initially this is just the entry count. 325 struct NotInlinedProfileInfo { 326 uint64_t entryCount; 327 }; 328 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo; 329 }; 330 331 class SampleProfileLoaderLegacyPass : public ModulePass { 332 public: 333 // Class identification, replacement for typeinfo 334 static char ID; 335 336 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, 337 bool IsThinLTOPreLink = false) 338 : ModulePass(ID), 339 SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink, 340 [&](Function &F) -> AssumptionCache & { 341 return ACT->getAssumptionCache(F); 342 }, 343 [&](Function &F) -> TargetTransformInfo & { 344 return TTIWP->getTTI(F); 345 }) { 346 initializeSampleProfileLoaderLegacyPassPass( 347 *PassRegistry::getPassRegistry()); 348 } 349 350 void dump() { SampleLoader.dump(); } 351 352 bool doInitialization(Module &M) override { 353 return SampleLoader.doInitialization(M); 354 } 355 356 StringRef getPassName() const override { return "Sample profile pass"; } 357 bool runOnModule(Module &M) override; 358 359 void getAnalysisUsage(AnalysisUsage &AU) const override { 360 AU.addRequired<AssumptionCacheTracker>(); 361 AU.addRequired<TargetTransformInfoWrapperPass>(); 362 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 363 } 364 365 private: 366 SampleProfileLoader SampleLoader; 367 AssumptionCacheTracker *ACT = nullptr; 368 TargetTransformInfoWrapperPass *TTIWP = nullptr; 369 }; 370 371 } // end anonymous namespace 372 373 /// Return true if the given callsite is hot wrt to hot cutoff threshold. 374 /// 375 /// Functions that were inlined in the original binary will be represented 376 /// in the inline stack in the sample profile. If the profile shows that 377 /// the original inline decision was "good" (i.e., the callsite is executed 378 /// frequently), then we will recreate the inline decision and apply the 379 /// profile from the inlined callsite. 380 /// 381 /// To decide whether an inlined callsite is hot, we compare the callsite 382 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is 383 /// regarded as hot if the count is above the cutoff value. 384 static bool callsiteIsHot(const FunctionSamples *CallsiteFS, 385 ProfileSummaryInfo *PSI) { 386 if (!CallsiteFS) 387 return false; // The callsite was not inlined in the original binary. 388 389 assert(PSI && "PSI is expected to be non null"); 390 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 391 return PSI->isHotCount(CallsiteTotalSamples); 392 } 393 394 /// Mark as used the sample record for the given function samples at 395 /// (LineOffset, Discriminator). 396 /// 397 /// \returns true if this is the first time we mark the given record. 398 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 399 uint32_t LineOffset, 400 uint32_t Discriminator, 401 uint64_t Samples) { 402 LineLocation Loc(LineOffset, Discriminator); 403 unsigned &Count = SampleCoverage[FS][Loc]; 404 bool FirstTime = (++Count == 1); 405 if (FirstTime) 406 TotalUsedSamples += Samples; 407 return FirstTime; 408 } 409 410 /// Return the number of sample records that were applied from this profile. 411 /// 412 /// This count does not include records from cold inlined callsites. 413 unsigned 414 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS, 415 ProfileSummaryInfo *PSI) const { 416 auto I = SampleCoverage.find(FS); 417 418 // The size of the coverage map for FS represents the number of records 419 // that were marked used at least once. 420 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 421 422 // If there are inlined callsites in this function, count the samples found 423 // in the respective bodies. However, do not bother counting callees with 0 424 // total samples, these are callees that were never invoked at runtime. 425 for (const auto &I : FS->getCallsiteSamples()) 426 for (const auto &J : I.second) { 427 const FunctionSamples *CalleeSamples = &J.second; 428 if (callsiteIsHot(CalleeSamples, PSI)) 429 Count += countUsedRecords(CalleeSamples, PSI); 430 } 431 432 return Count; 433 } 434 435 /// Return the number of sample records in the body of this profile. 436 /// 437 /// This count does not include records from cold inlined callsites. 438 unsigned 439 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS, 440 ProfileSummaryInfo *PSI) const { 441 unsigned Count = FS->getBodySamples().size(); 442 443 // Only count records in hot callsites. 444 for (const auto &I : FS->getCallsiteSamples()) 445 for (const auto &J : I.second) { 446 const FunctionSamples *CalleeSamples = &J.second; 447 if (callsiteIsHot(CalleeSamples, PSI)) 448 Count += countBodyRecords(CalleeSamples, PSI); 449 } 450 451 return Count; 452 } 453 454 /// Return the number of samples collected in the body of this profile. 455 /// 456 /// This count does not include samples from cold inlined callsites. 457 uint64_t 458 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS, 459 ProfileSummaryInfo *PSI) const { 460 uint64_t Total = 0; 461 for (const auto &I : FS->getBodySamples()) 462 Total += I.second.getSamples(); 463 464 // Only count samples in hot callsites. 465 for (const auto &I : FS->getCallsiteSamples()) 466 for (const auto &J : I.second) { 467 const FunctionSamples *CalleeSamples = &J.second; 468 if (callsiteIsHot(CalleeSamples, PSI)) 469 Total += countBodySamples(CalleeSamples, PSI); 470 } 471 472 return Total; 473 } 474 475 /// Return the fraction of sample records used in this profile. 476 /// 477 /// The returned value is an unsigned integer in the range 0-100 indicating 478 /// the percentage of sample records that were used while applying this 479 /// profile to the associated function. 480 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 481 unsigned Total) const { 482 assert(Used <= Total && 483 "number of used records cannot exceed the total number of records"); 484 return Total > 0 ? Used * 100 / Total : 100; 485 } 486 487 /// Clear all the per-function data used to load samples and propagate weights. 488 void SampleProfileLoader::clearFunctionData() { 489 BlockWeights.clear(); 490 EdgeWeights.clear(); 491 VisitedBlocks.clear(); 492 VisitedEdges.clear(); 493 EquivalenceClass.clear(); 494 DT = nullptr; 495 PDT = nullptr; 496 LI = nullptr; 497 Predecessors.clear(); 498 Successors.clear(); 499 CoverageTracker.clear(); 500 } 501 502 #ifndef NDEBUG 503 /// Print the weight of edge \p E on stream \p OS. 504 /// 505 /// \param OS Stream to emit the output to. 506 /// \param E Edge to print. 507 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 508 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 509 << "]: " << EdgeWeights[E] << "\n"; 510 } 511 512 /// Print the equivalence class of block \p BB on stream \p OS. 513 /// 514 /// \param OS Stream to emit the output to. 515 /// \param BB Block to print. 516 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 517 const BasicBlock *BB) { 518 const BasicBlock *Equiv = EquivalenceClass[BB]; 519 OS << "equivalence[" << BB->getName() 520 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 521 } 522 523 /// Print the weight of block \p BB on stream \p OS. 524 /// 525 /// \param OS Stream to emit the output to. 526 /// \param BB Block to print. 527 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 528 const BasicBlock *BB) const { 529 const auto &I = BlockWeights.find(BB); 530 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 531 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 532 } 533 #endif 534 535 /// Get the weight for an instruction. 536 /// 537 /// The "weight" of an instruction \p Inst is the number of samples 538 /// collected on that instruction at runtime. To retrieve it, we 539 /// need to compute the line number of \p Inst relative to the start of its 540 /// function. We use HeaderLineno to compute the offset. We then 541 /// look up the samples collected for \p Inst using BodySamples. 542 /// 543 /// \param Inst Instruction to query. 544 /// 545 /// \returns the weight of \p Inst. 546 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 547 const DebugLoc &DLoc = Inst.getDebugLoc(); 548 if (!DLoc) 549 return std::error_code(); 550 551 const FunctionSamples *FS = findFunctionSamples(Inst); 552 if (!FS) 553 return std::error_code(); 554 555 // Ignore all intrinsics, phinodes and branch instructions. 556 // Branch and phinodes instruction usually contains debug info from sources outside of 557 // the residing basic block, thus we ignore them during annotation. 558 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst)) 559 return std::error_code(); 560 561 // If a direct call/invoke instruction is inlined in profile 562 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 563 // it means that the inlined callsite has no sample, thus the call 564 // instruction should have 0 count. 565 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && 566 !ImmutableCallSite(&Inst).isIndirectCall() && 567 findCalleeFunctionSamples(Inst)) 568 return 0; 569 570 const DILocation *DIL = DLoc; 571 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 572 uint32_t Discriminator = DIL->getBaseDiscriminator(); 573 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 574 if (R) { 575 bool FirstMark = 576 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 577 if (FirstMark) { 578 ORE->emit([&]() { 579 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 580 Remark << "Applied " << ore::NV("NumSamples", *R); 581 Remark << " samples from profile (offset: "; 582 Remark << ore::NV("LineOffset", LineOffset); 583 if (Discriminator) { 584 Remark << "."; 585 Remark << ore::NV("Discriminator", Discriminator); 586 } 587 Remark << ")"; 588 return Remark; 589 }); 590 } 591 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." 592 << DIL->getBaseDiscriminator() << ":" << Inst 593 << " (line offset: " << LineOffset << "." 594 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 595 << ")\n"); 596 } 597 return R; 598 } 599 600 /// Compute the weight of a basic block. 601 /// 602 /// The weight of basic block \p BB is the maximum weight of all the 603 /// instructions in BB. 604 /// 605 /// \param BB The basic block to query. 606 /// 607 /// \returns the weight for \p BB. 608 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 609 uint64_t Max = 0; 610 bool HasWeight = false; 611 for (auto &I : BB->getInstList()) { 612 const ErrorOr<uint64_t> &R = getInstWeight(I); 613 if (R) { 614 Max = std::max(Max, R.get()); 615 HasWeight = true; 616 } 617 } 618 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 619 } 620 621 /// Compute and store the weights of every basic block. 622 /// 623 /// This populates the BlockWeights map by computing 624 /// the weights of every basic block in the CFG. 625 /// 626 /// \param F The function to query. 627 bool SampleProfileLoader::computeBlockWeights(Function &F) { 628 bool Changed = false; 629 LLVM_DEBUG(dbgs() << "Block weights\n"); 630 for (const auto &BB : F) { 631 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 632 if (Weight) { 633 BlockWeights[&BB] = Weight.get(); 634 VisitedBlocks.insert(&BB); 635 Changed = true; 636 } 637 LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); 638 } 639 640 return Changed; 641 } 642 643 /// Get the FunctionSamples for a call instruction. 644 /// 645 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 646 /// instance in which that call instruction is calling to. It contains 647 /// all samples that resides in the inlined instance. We first find the 648 /// inlined instance in which the call instruction is from, then we 649 /// traverse its children to find the callsite with the matching 650 /// location. 651 /// 652 /// \param Inst Call/Invoke instruction to query. 653 /// 654 /// \returns The FunctionSamples pointer to the inlined instance. 655 const FunctionSamples * 656 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 657 const DILocation *DIL = Inst.getDebugLoc(); 658 if (!DIL) { 659 return nullptr; 660 } 661 662 StringRef CalleeName; 663 if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) 664 if (Function *Callee = CI->getCalledFunction()) 665 CalleeName = Callee->getName(); 666 667 const FunctionSamples *FS = findFunctionSamples(Inst); 668 if (FS == nullptr) 669 return nullptr; 670 671 return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL), 672 DIL->getBaseDiscriminator()), 673 CalleeName); 674 } 675 676 /// Returns a vector of FunctionSamples that are the indirect call targets 677 /// of \p Inst. The vector is sorted by the total number of samples. Stores 678 /// the total call count of the indirect call in \p Sum. 679 std::vector<const FunctionSamples *> 680 SampleProfileLoader::findIndirectCallFunctionSamples( 681 const Instruction &Inst, uint64_t &Sum) const { 682 const DILocation *DIL = Inst.getDebugLoc(); 683 std::vector<const FunctionSamples *> R; 684 685 if (!DIL) { 686 return R; 687 } 688 689 const FunctionSamples *FS = findFunctionSamples(Inst); 690 if (FS == nullptr) 691 return R; 692 693 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 694 uint32_t Discriminator = DIL->getBaseDiscriminator(); 695 696 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 697 Sum = 0; 698 if (T) 699 for (const auto &T_C : T.get()) 700 Sum += T_C.second; 701 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation( 702 FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) { 703 if (M->empty()) 704 return R; 705 for (const auto &NameFS : *M) { 706 Sum += NameFS.second.getEntrySamples(); 707 R.push_back(&NameFS.second); 708 } 709 llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) { 710 if (L->getEntrySamples() != R->getEntrySamples()) 711 return L->getEntrySamples() > R->getEntrySamples(); 712 return FunctionSamples::getGUID(L->getName()) < 713 FunctionSamples::getGUID(R->getName()); 714 }); 715 } 716 return R; 717 } 718 719 /// Get the FunctionSamples for an instruction. 720 /// 721 /// The FunctionSamples of an instruction \p Inst is the inlined instance 722 /// in which that instruction is coming from. We traverse the inline stack 723 /// of that instruction, and match it with the tree nodes in the profile. 724 /// 725 /// \param Inst Instruction to query. 726 /// 727 /// \returns the FunctionSamples pointer to the inlined instance. 728 const FunctionSamples * 729 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 730 const DILocation *DIL = Inst.getDebugLoc(); 731 if (!DIL) 732 return Samples; 733 734 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr); 735 if (it.second) 736 it.first->second = Samples->findFunctionSamples(DIL); 737 return it.first->second; 738 } 739 740 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) { 741 assert(isa<CallInst>(I) || isa<InvokeInst>(I)); 742 CallSite CS(I); 743 Function *CalledFunction = CS.getCalledFunction(); 744 assert(CalledFunction); 745 DebugLoc DLoc = I->getDebugLoc(); 746 BasicBlock *BB = I->getParent(); 747 InlineParams Params = getInlineParams(); 748 Params.ComputeFullInlineCost = true; 749 // Checks if there is anything in the reachable portion of the callee at 750 // this callsite that makes this inlining potentially illegal. Need to 751 // set ComputeFullInlineCost, otherwise getInlineCost may return early 752 // when cost exceeds threshold without checking all IRs in the callee. 753 // The acutal cost does not matter because we only checks isNever() to 754 // see if it is legal to inline the callsite. 755 InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC, 756 None, nullptr, nullptr); 757 if (Cost.isNever()) { 758 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB) 759 << "incompatible inlining"); 760 return false; 761 } 762 InlineFunctionInfo IFI(nullptr, &GetAC); 763 if (InlineFunction(CS, IFI)) { 764 // The call to InlineFunction erases I, so we can't pass it here. 765 ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB) 766 << "inlined hot callee '" << ore::NV("Callee", CalledFunction) 767 << "' into '" << ore::NV("Caller", BB->getParent()) << "'"); 768 return true; 769 } 770 return false; 771 } 772 773 /// Iteratively inline hot callsites of a function. 774 /// 775 /// Iteratively traverse all callsites of the function \p F, and find if 776 /// the corresponding inlined instance exists and is hot in profile. If 777 /// it is hot enough, inline the callsites and adds new callsites of the 778 /// callee into the caller. If the call is an indirect call, first promote 779 /// it to direct call. Each indirect call is limited with a single target. 780 /// 781 /// \param F function to perform iterative inlining. 782 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 783 /// inlined in the profiled binary. 784 /// 785 /// \returns True if there is any inline happened. 786 bool SampleProfileLoader::inlineHotFunctions( 787 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 788 DenseSet<Instruction *> PromotedInsns; 789 790 DenseMap<Instruction *, const FunctionSamples *> localNotInlinedCallSites; 791 bool Changed = false; 792 while (true) { 793 bool LocalChanged = false; 794 SmallVector<Instruction *, 10> CIS; 795 for (auto &BB : F) { 796 bool Hot = false; 797 SmallVector<Instruction *, 10> Candidates; 798 for (auto &I : BB.getInstList()) { 799 const FunctionSamples *FS = nullptr; 800 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 801 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { 802 Candidates.push_back(&I); 803 if (FS->getEntrySamples() > 0) 804 localNotInlinedCallSites.try_emplace(&I, FS); 805 if (callsiteIsHot(FS, PSI)) 806 Hot = true; 807 } 808 } 809 if (Hot) { 810 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); 811 } 812 } 813 for (auto I : CIS) { 814 Function *CalledFunction = CallSite(I).getCalledFunction(); 815 // Do not inline recursive calls. 816 if (CalledFunction == &F) 817 continue; 818 if (CallSite(I).isIndirectCall()) { 819 if (PromotedInsns.count(I)) 820 continue; 821 uint64_t Sum; 822 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 823 if (IsThinLTOPreLink) { 824 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), 825 PSI->getOrCompHotCountThreshold()); 826 continue; 827 } 828 auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent()); 829 // If it is a recursive call, we do not inline it as it could bloat 830 // the code exponentially. There is way to better handle this, e.g. 831 // clone the caller first, and inline the cloned caller if it is 832 // recursive. As llvm does not inline recursive calls, we will 833 // simply ignore it instead of handling it explicitly. 834 if (CalleeFunctionName == F.getName()) 835 continue; 836 837 const char *Reason = "Callee function not available"; 838 auto R = SymbolMap.find(CalleeFunctionName); 839 if (R != SymbolMap.end() && R->getValue() && 840 !R->getValue()->isDeclaration() && 841 R->getValue()->getSubprogram() && 842 isLegalToPromote(CallSite(I), R->getValue(), &Reason)) { 843 uint64_t C = FS->getEntrySamples(); 844 Instruction *DI = 845 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE); 846 Sum -= C; 847 PromotedInsns.insert(I); 848 // If profile mismatches, we should not attempt to inline DI. 849 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && 850 inlineCallInstruction(DI)) { 851 localNotInlinedCallSites.erase(I); 852 LocalChanged = true; 853 } 854 } else { 855 LLVM_DEBUG(dbgs() 856 << "\nFailed to promote indirect call to " 857 << CalleeFunctionName << " because " << Reason << "\n"); 858 } 859 } 860 } else if (CalledFunction && CalledFunction->getSubprogram() && 861 !CalledFunction->isDeclaration()) { 862 if (inlineCallInstruction(I)) { 863 localNotInlinedCallSites.erase(I); 864 LocalChanged = true; 865 } 866 } else if (IsThinLTOPreLink) { 867 findCalleeFunctionSamples(*I)->findInlinedFunctions( 868 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold()); 869 } 870 } 871 if (LocalChanged) { 872 Changed = true; 873 } else { 874 break; 875 } 876 } 877 878 // Accumulate not inlined callsite information into notInlinedSamples 879 for (const auto &Pair : localNotInlinedCallSites) { 880 Instruction *I = Pair.getFirst(); 881 Function *Callee = CallSite(I).getCalledFunction(); 882 if (!Callee || Callee->isDeclaration()) 883 continue; 884 const FunctionSamples *FS = Pair.getSecond(); 885 auto pair = 886 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0}); 887 pair.first->second.entryCount += FS->getEntrySamples(); 888 } 889 return Changed; 890 } 891 892 /// Find equivalence classes for the given block. 893 /// 894 /// This finds all the blocks that are guaranteed to execute the same 895 /// number of times as \p BB1. To do this, it traverses all the 896 /// descendants of \p BB1 in the dominator or post-dominator tree. 897 /// 898 /// A block BB2 will be in the same equivalence class as \p BB1 if 899 /// the following holds: 900 /// 901 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 902 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 903 /// dominate BB1 in the post-dominator tree. 904 /// 905 /// 2- Both BB2 and \p BB1 must be in the same loop. 906 /// 907 /// For every block BB2 that meets those two requirements, we set BB2's 908 /// equivalence class to \p BB1. 909 /// 910 /// \param BB1 Block to check. 911 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 912 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 913 /// with blocks from \p BB1's dominator tree, then 914 /// this is the post-dominator tree, and vice versa. 915 template <bool IsPostDom> 916 void SampleProfileLoader::findEquivalencesFor( 917 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 918 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 919 const BasicBlock *EC = EquivalenceClass[BB1]; 920 uint64_t Weight = BlockWeights[EC]; 921 for (const auto *BB2 : Descendants) { 922 bool IsDomParent = DomTree->dominates(BB2, BB1); 923 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 924 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 925 EquivalenceClass[BB2] = EC; 926 // If BB2 is visited, then the entire EC should be marked as visited. 927 if (VisitedBlocks.count(BB2)) { 928 VisitedBlocks.insert(EC); 929 } 930 931 // If BB2 is heavier than BB1, make BB2 have the same weight 932 // as BB1. 933 // 934 // Note that we don't worry about the opposite situation here 935 // (when BB2 is lighter than BB1). We will deal with this 936 // during the propagation phase. Right now, we just want to 937 // make sure that BB1 has the largest weight of all the 938 // members of its equivalence set. 939 Weight = std::max(Weight, BlockWeights[BB2]); 940 } 941 } 942 if (EC == &EC->getParent()->getEntryBlock()) { 943 BlockWeights[EC] = Samples->getHeadSamples() + 1; 944 } else { 945 BlockWeights[EC] = Weight; 946 } 947 } 948 949 /// Find equivalence classes. 950 /// 951 /// Since samples may be missing from blocks, we can fill in the gaps by setting 952 /// the weights of all the blocks in the same equivalence class to the same 953 /// weight. To compute the concept of equivalence, we use dominance and loop 954 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 955 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 956 /// 957 /// \param F The function to query. 958 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 959 SmallVector<BasicBlock *, 8> DominatedBBs; 960 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); 961 // Find equivalence sets based on dominance and post-dominance information. 962 for (auto &BB : F) { 963 BasicBlock *BB1 = &BB; 964 965 // Compute BB1's equivalence class once. 966 if (EquivalenceClass.count(BB1)) { 967 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 968 continue; 969 } 970 971 // By default, blocks are in their own equivalence class. 972 EquivalenceClass[BB1] = BB1; 973 974 // Traverse all the blocks dominated by BB1. We are looking for 975 // every basic block BB2 such that: 976 // 977 // 1- BB1 dominates BB2. 978 // 2- BB2 post-dominates BB1. 979 // 3- BB1 and BB2 are in the same loop nest. 980 // 981 // If all those conditions hold, it means that BB2 is executed 982 // as many times as BB1, so they are placed in the same equivalence 983 // class by making BB2's equivalence class be BB1. 984 DominatedBBs.clear(); 985 DT->getDescendants(BB1, DominatedBBs); 986 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 987 988 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 989 } 990 991 // Assign weights to equivalence classes. 992 // 993 // All the basic blocks in the same equivalence class will execute 994 // the same number of times. Since we know that the head block in 995 // each equivalence class has the largest weight, assign that weight 996 // to all the blocks in that equivalence class. 997 LLVM_DEBUG( 998 dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 999 for (auto &BI : F) { 1000 const BasicBlock *BB = &BI; 1001 const BasicBlock *EquivBB = EquivalenceClass[BB]; 1002 if (BB != EquivBB) 1003 BlockWeights[BB] = BlockWeights[EquivBB]; 1004 LLVM_DEBUG(printBlockWeight(dbgs(), BB)); 1005 } 1006 } 1007 1008 /// Visit the given edge to decide if it has a valid weight. 1009 /// 1010 /// If \p E has not been visited before, we copy to \p UnknownEdge 1011 /// and increment the count of unknown edges. 1012 /// 1013 /// \param E Edge to visit. 1014 /// \param NumUnknownEdges Current number of unknown edges. 1015 /// \param UnknownEdge Set if E has not been visited before. 1016 /// 1017 /// \returns E's weight, if known. Otherwise, return 0. 1018 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 1019 Edge *UnknownEdge) { 1020 if (!VisitedEdges.count(E)) { 1021 (*NumUnknownEdges)++; 1022 *UnknownEdge = E; 1023 return 0; 1024 } 1025 1026 return EdgeWeights[E]; 1027 } 1028 1029 /// Propagate weights through incoming/outgoing edges. 1030 /// 1031 /// If the weight of a basic block is known, and there is only one edge 1032 /// with an unknown weight, we can calculate the weight of that edge. 1033 /// 1034 /// Similarly, if all the edges have a known count, we can calculate the 1035 /// count of the basic block, if needed. 1036 /// 1037 /// \param F Function to process. 1038 /// \param UpdateBlockCount Whether we should update basic block counts that 1039 /// has already been annotated. 1040 /// 1041 /// \returns True if new weights were assigned to edges or blocks. 1042 bool SampleProfileLoader::propagateThroughEdges(Function &F, 1043 bool UpdateBlockCount) { 1044 bool Changed = false; 1045 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); 1046 for (const auto &BI : F) { 1047 const BasicBlock *BB = &BI; 1048 const BasicBlock *EC = EquivalenceClass[BB]; 1049 1050 // Visit all the predecessor and successor edges to determine 1051 // which ones have a weight assigned already. Note that it doesn't 1052 // matter that we only keep track of a single unknown edge. The 1053 // only case we are interested in handling is when only a single 1054 // edge is unknown (see setEdgeOrBlockWeight). 1055 for (unsigned i = 0; i < 2; i++) { 1056 uint64_t TotalWeight = 0; 1057 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 1058 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 1059 1060 if (i == 0) { 1061 // First, visit all predecessor edges. 1062 NumTotalEdges = Predecessors[BB].size(); 1063 for (auto *Pred : Predecessors[BB]) { 1064 Edge E = std::make_pair(Pred, BB); 1065 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1066 if (E.first == E.second) 1067 SelfReferentialEdge = E; 1068 } 1069 if (NumTotalEdges == 1) { 1070 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 1071 } 1072 } else { 1073 // On the second round, visit all successor edges. 1074 NumTotalEdges = Successors[BB].size(); 1075 for (auto *Succ : Successors[BB]) { 1076 Edge E = std::make_pair(BB, Succ); 1077 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1078 } 1079 if (NumTotalEdges == 1) { 1080 SingleEdge = std::make_pair(BB, Successors[BB][0]); 1081 } 1082 } 1083 1084 // After visiting all the edges, there are three cases that we 1085 // can handle immediately: 1086 // 1087 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 1088 // In this case, we simply check that the sum of all the edges 1089 // is the same as BB's weight. If not, we change BB's weight 1090 // to match. Additionally, if BB had not been visited before, 1091 // we mark it visited. 1092 // 1093 // - Only one edge is unknown and BB has already been visited. 1094 // In this case, we can compute the weight of the edge by 1095 // subtracting the total block weight from all the known 1096 // edge weights. If the edges weight more than BB, then the 1097 // edge of the last remaining edge is set to zero. 1098 // 1099 // - There exists a self-referential edge and the weight of BB is 1100 // known. In this case, this edge can be based on BB's weight. 1101 // We add up all the other known edges and set the weight on 1102 // the self-referential edge as we did in the previous case. 1103 // 1104 // In any other case, we must continue iterating. Eventually, 1105 // all edges will get a weight, or iteration will stop when 1106 // it reaches SampleProfileMaxPropagateIterations. 1107 if (NumUnknownEdges <= 1) { 1108 uint64_t &BBWeight = BlockWeights[EC]; 1109 if (NumUnknownEdges == 0) { 1110 if (!VisitedBlocks.count(EC)) { 1111 // If we already know the weight of all edges, the weight of the 1112 // basic block can be computed. It should be no larger than the sum 1113 // of all edge weights. 1114 if (TotalWeight > BBWeight) { 1115 BBWeight = TotalWeight; 1116 Changed = true; 1117 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() 1118 << " known. Set weight for block: "; 1119 printBlockWeight(dbgs(), BB);); 1120 } 1121 } else if (NumTotalEdges == 1 && 1122 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1123 // If there is only one edge for the visited basic block, use the 1124 // block weight to adjust edge weight if edge weight is smaller. 1125 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1126 Changed = true; 1127 } 1128 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1129 // If there is a single unknown edge and the block has been 1130 // visited, then we can compute E's weight. 1131 if (BBWeight >= TotalWeight) 1132 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1133 else 1134 EdgeWeights[UnknownEdge] = 0; 1135 const BasicBlock *OtherEC; 1136 if (i == 0) 1137 OtherEC = EquivalenceClass[UnknownEdge.first]; 1138 else 1139 OtherEC = EquivalenceClass[UnknownEdge.second]; 1140 // Edge weights should never exceed the BB weights it connects. 1141 if (VisitedBlocks.count(OtherEC) && 1142 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1143 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1144 VisitedEdges.insert(UnknownEdge); 1145 Changed = true; 1146 LLVM_DEBUG(dbgs() << "Set weight for edge: "; 1147 printEdgeWeight(dbgs(), UnknownEdge)); 1148 } 1149 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1150 // If a block Weights 0, all its in/out edges should weight 0. 1151 if (i == 0) { 1152 for (auto *Pred : Predecessors[BB]) { 1153 Edge E = std::make_pair(Pred, BB); 1154 EdgeWeights[E] = 0; 1155 VisitedEdges.insert(E); 1156 } 1157 } else { 1158 for (auto *Succ : Successors[BB]) { 1159 Edge E = std::make_pair(BB, Succ); 1160 EdgeWeights[E] = 0; 1161 VisitedEdges.insert(E); 1162 } 1163 } 1164 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1165 uint64_t &BBWeight = BlockWeights[BB]; 1166 // We have a self-referential edge and the weight of BB is known. 1167 if (BBWeight >= TotalWeight) 1168 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1169 else 1170 EdgeWeights[SelfReferentialEdge] = 0; 1171 VisitedEdges.insert(SelfReferentialEdge); 1172 Changed = true; 1173 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; 1174 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1175 } 1176 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1177 BlockWeights[EC] = TotalWeight; 1178 VisitedBlocks.insert(EC); 1179 Changed = true; 1180 } 1181 } 1182 } 1183 1184 return Changed; 1185 } 1186 1187 /// Build in/out edge lists for each basic block in the CFG. 1188 /// 1189 /// We are interested in unique edges. If a block B1 has multiple 1190 /// edges to another block B2, we only add a single B1->B2 edge. 1191 void SampleProfileLoader::buildEdges(Function &F) { 1192 for (auto &BI : F) { 1193 BasicBlock *B1 = &BI; 1194 1195 // Add predecessors for B1. 1196 SmallPtrSet<BasicBlock *, 16> Visited; 1197 if (!Predecessors[B1].empty()) 1198 llvm_unreachable("Found a stale predecessors list in a basic block."); 1199 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1200 BasicBlock *B2 = *PI; 1201 if (Visited.insert(B2).second) 1202 Predecessors[B1].push_back(B2); 1203 } 1204 1205 // Add successors for B1. 1206 Visited.clear(); 1207 if (!Successors[B1].empty()) 1208 llvm_unreachable("Found a stale successors list in a basic block."); 1209 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1210 BasicBlock *B2 = *SI; 1211 if (Visited.insert(B2).second) 1212 Successors[B1].push_back(B2); 1213 } 1214 } 1215 } 1216 1217 /// Returns the sorted CallTargetMap \p M by count in descending order. 1218 static SmallVector<InstrProfValueData, 2> SortCallTargets( 1219 const SampleRecord::CallTargetMap &M) { 1220 SmallVector<InstrProfValueData, 2> R; 1221 for (auto I = M.begin(); I != M.end(); ++I) 1222 R.push_back({FunctionSamples::getGUID(I->getKey()), I->getValue()}); 1223 llvm::sort(R, [](const InstrProfValueData &L, const InstrProfValueData &R) { 1224 if (L.Count == R.Count) 1225 return L.Value > R.Value; 1226 else 1227 return L.Count > R.Count; 1228 }); 1229 return R; 1230 } 1231 1232 /// Propagate weights into edges 1233 /// 1234 /// The following rules are applied to every block BB in the CFG: 1235 /// 1236 /// - If BB has a single predecessor/successor, then the weight 1237 /// of that edge is the weight of the block. 1238 /// 1239 /// - If all incoming or outgoing edges are known except one, and the 1240 /// weight of the block is already known, the weight of the unknown 1241 /// edge will be the weight of the block minus the sum of all the known 1242 /// edges. If the sum of all the known edges is larger than BB's weight, 1243 /// we set the unknown edge weight to zero. 1244 /// 1245 /// - If there is a self-referential edge, and the weight of the block is 1246 /// known, the weight for that edge is set to the weight of the block 1247 /// minus the weight of the other incoming edges to that block (if 1248 /// known). 1249 void SampleProfileLoader::propagateWeights(Function &F) { 1250 bool Changed = true; 1251 unsigned I = 0; 1252 1253 // If BB weight is larger than its corresponding loop's header BB weight, 1254 // use the BB weight to replace the loop header BB weight. 1255 for (auto &BI : F) { 1256 BasicBlock *BB = &BI; 1257 Loop *L = LI->getLoopFor(BB); 1258 if (!L) { 1259 continue; 1260 } 1261 BasicBlock *Header = L->getHeader(); 1262 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1263 BlockWeights[Header] = BlockWeights[BB]; 1264 } 1265 } 1266 1267 // Before propagation starts, build, for each block, a list of 1268 // unique predecessors and successors. This is necessary to handle 1269 // identical edges in multiway branches. Since we visit all blocks and all 1270 // edges of the CFG, it is cleaner to build these lists once at the start 1271 // of the pass. 1272 buildEdges(F); 1273 1274 // Propagate until we converge or we go past the iteration limit. 1275 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1276 Changed = propagateThroughEdges(F, false); 1277 } 1278 1279 // The first propagation propagates BB counts from annotated BBs to unknown 1280 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1281 // to propagate edge weights. 1282 VisitedEdges.clear(); 1283 Changed = true; 1284 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1285 Changed = propagateThroughEdges(F, false); 1286 } 1287 1288 // The 3rd propagation pass allows adjust annotated BB weights that are 1289 // obviously wrong. 1290 Changed = true; 1291 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1292 Changed = propagateThroughEdges(F, true); 1293 } 1294 1295 // Generate MD_prof metadata for every branch instruction using the 1296 // edge weights computed during propagation. 1297 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1298 LLVMContext &Ctx = F.getContext(); 1299 MDBuilder MDB(Ctx); 1300 for (auto &BI : F) { 1301 BasicBlock *BB = &BI; 1302 1303 if (BlockWeights[BB]) { 1304 for (auto &I : BB->getInstList()) { 1305 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1306 continue; 1307 CallSite CS(&I); 1308 if (!CS.getCalledFunction()) { 1309 const DebugLoc &DLoc = I.getDebugLoc(); 1310 if (!DLoc) 1311 continue; 1312 const DILocation *DIL = DLoc; 1313 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 1314 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1315 1316 const FunctionSamples *FS = findFunctionSamples(I); 1317 if (!FS) 1318 continue; 1319 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1320 if (!T || T.get().empty()) 1321 continue; 1322 SmallVector<InstrProfValueData, 2> SortedCallTargets = 1323 SortCallTargets(T.get()); 1324 uint64_t Sum; 1325 findIndirectCallFunctionSamples(I, Sum); 1326 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1327 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1328 SortedCallTargets.size()); 1329 } else if (!dyn_cast<IntrinsicInst>(&I)) { 1330 I.setMetadata(LLVMContext::MD_prof, 1331 MDB.createBranchWeights( 1332 {static_cast<uint32_t>(BlockWeights[BB])})); 1333 } 1334 } 1335 } 1336 Instruction *TI = BB->getTerminator(); 1337 if (TI->getNumSuccessors() == 1) 1338 continue; 1339 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1340 continue; 1341 1342 DebugLoc BranchLoc = TI->getDebugLoc(); 1343 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " 1344 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1345 : Twine("<UNKNOWN LOCATION>")) 1346 << ".\n"); 1347 SmallVector<uint32_t, 4> Weights; 1348 uint32_t MaxWeight = 0; 1349 Instruction *MaxDestInst; 1350 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1351 BasicBlock *Succ = TI->getSuccessor(I); 1352 Edge E = std::make_pair(BB, Succ); 1353 uint64_t Weight = EdgeWeights[E]; 1354 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1355 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1356 // if needed. Sample counts in profiles are 64-bit unsigned values, 1357 // but internally branch weights are expressed as 32-bit values. 1358 if (Weight > std::numeric_limits<uint32_t>::max()) { 1359 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1360 Weight = std::numeric_limits<uint32_t>::max(); 1361 } 1362 // Weight is added by one to avoid propagation errors introduced by 1363 // 0 weights. 1364 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1365 if (Weight != 0) { 1366 if (Weight > MaxWeight) { 1367 MaxWeight = Weight; 1368 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1369 } 1370 } 1371 } 1372 1373 uint64_t TempWeight; 1374 // Only set weights if there is at least one non-zero weight. 1375 // In any other case, let the analyzer set weights. 1376 // Do not set weights if the weights are present. In ThinLTO, the profile 1377 // annotation is done twice. If the first annotation already set the 1378 // weights, the second pass does not need to set it. 1379 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1380 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1381 TI->setMetadata(LLVMContext::MD_prof, 1382 MDB.createBranchWeights(Weights)); 1383 ORE->emit([&]() { 1384 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1385 << "most popular destination for conditional branches at " 1386 << ore::NV("CondBranchesLoc", BranchLoc); 1387 }); 1388 } else { 1389 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1390 } 1391 } 1392 } 1393 1394 /// Get the line number for the function header. 1395 /// 1396 /// This looks up function \p F in the current compilation unit and 1397 /// retrieves the line number where the function is defined. This is 1398 /// line 0 for all the samples read from the profile file. Every line 1399 /// number is relative to this line. 1400 /// 1401 /// \param F Function object to query. 1402 /// 1403 /// \returns the line number where \p F is defined. If it returns 0, 1404 /// it means that there is no debug information available for \p F. 1405 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1406 if (DISubprogram *S = F.getSubprogram()) 1407 return S->getLine(); 1408 1409 if (NoWarnSampleUnused) 1410 return 0; 1411 1412 // If the start of \p F is missing, emit a diagnostic to inform the user 1413 // about the missed opportunity. 1414 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1415 "No debug information found in function " + F.getName() + 1416 ": Function profile not used", 1417 DS_Warning)); 1418 return 0; 1419 } 1420 1421 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1422 DT.reset(new DominatorTree); 1423 DT->recalculate(F); 1424 1425 PDT.reset(new PostDominatorTree(F)); 1426 1427 LI.reset(new LoopInfo); 1428 LI->analyze(*DT); 1429 } 1430 1431 /// Generate branch weight metadata for all branches in \p F. 1432 /// 1433 /// Branch weights are computed out of instruction samples using a 1434 /// propagation heuristic. Propagation proceeds in 3 phases: 1435 /// 1436 /// 1- Assignment of block weights. All the basic blocks in the function 1437 /// are initial assigned the same weight as their most frequently 1438 /// executed instruction. 1439 /// 1440 /// 2- Creation of equivalence classes. Since samples may be missing from 1441 /// blocks, we can fill in the gaps by setting the weights of all the 1442 /// blocks in the same equivalence class to the same weight. To compute 1443 /// the concept of equivalence, we use dominance and loop information. 1444 /// Two blocks B1 and B2 are in the same equivalence class if B1 1445 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1446 /// 1447 /// 3- Propagation of block weights into edges. This uses a simple 1448 /// propagation heuristic. The following rules are applied to every 1449 /// block BB in the CFG: 1450 /// 1451 /// - If BB has a single predecessor/successor, then the weight 1452 /// of that edge is the weight of the block. 1453 /// 1454 /// - If all the edges are known except one, and the weight of the 1455 /// block is already known, the weight of the unknown edge will 1456 /// be the weight of the block minus the sum of all the known 1457 /// edges. If the sum of all the known edges is larger than BB's weight, 1458 /// we set the unknown edge weight to zero. 1459 /// 1460 /// - If there is a self-referential edge, and the weight of the block is 1461 /// known, the weight for that edge is set to the weight of the block 1462 /// minus the weight of the other incoming edges to that block (if 1463 /// known). 1464 /// 1465 /// Since this propagation is not guaranteed to finalize for every CFG, we 1466 /// only allow it to proceed for a limited number of iterations (controlled 1467 /// by -sample-profile-max-propagate-iterations). 1468 /// 1469 /// FIXME: Try to replace this propagation heuristic with a scheme 1470 /// that is guaranteed to finalize. A work-list approach similar to 1471 /// the standard value propagation algorithm used by SSA-CCP might 1472 /// work here. 1473 /// 1474 /// Once all the branch weights are computed, we emit the MD_prof 1475 /// metadata on BB using the computed values for each of its branches. 1476 /// 1477 /// \param F The function to query. 1478 /// 1479 /// \returns true if \p F was modified. Returns false, otherwise. 1480 bool SampleProfileLoader::emitAnnotations(Function &F) { 1481 bool Changed = false; 1482 1483 if (getFunctionLoc(F) == 0) 1484 return false; 1485 1486 LLVM_DEBUG(dbgs() << "Line number for the first instruction in " 1487 << F.getName() << ": " << getFunctionLoc(F) << "\n"); 1488 1489 DenseSet<GlobalValue::GUID> InlinedGUIDs; 1490 Changed |= inlineHotFunctions(F, InlinedGUIDs); 1491 1492 // Compute basic block weights. 1493 Changed |= computeBlockWeights(F); 1494 1495 if (Changed) { 1496 // Add an entry count to the function using the samples gathered at the 1497 // function entry. 1498 // Sets the GUIDs that are inlined in the profiled binary. This is used 1499 // for ThinLink to make correct liveness analysis, and also make the IR 1500 // match the profiled binary before annotation. 1501 F.setEntryCount( 1502 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), 1503 &InlinedGUIDs); 1504 1505 // Compute dominance and loop info needed for propagation. 1506 computeDominanceAndLoopInfo(F); 1507 1508 // Find equivalence classes. 1509 findEquivalenceClasses(F); 1510 1511 // Propagate weights to all edges. 1512 propagateWeights(F); 1513 } 1514 1515 // If coverage checking was requested, compute it now. 1516 if (SampleProfileRecordCoverage) { 1517 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); 1518 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); 1519 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1520 if (Coverage < SampleProfileRecordCoverage) { 1521 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1522 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1523 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1524 Twine(Coverage) + "%) were applied", 1525 DS_Warning)); 1526 } 1527 } 1528 1529 if (SampleProfileSampleCoverage) { 1530 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1531 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); 1532 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1533 if (Coverage < SampleProfileSampleCoverage) { 1534 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1535 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1536 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1537 Twine(Coverage) + "%) were applied", 1538 DS_Warning)); 1539 } 1540 } 1541 return Changed; 1542 } 1543 1544 char SampleProfileLoaderLegacyPass::ID = 0; 1545 1546 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1547 "Sample Profile loader", false, false) 1548 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1549 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1550 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1551 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1552 "Sample Profile loader", false, false) 1553 1554 bool SampleProfileLoader::doInitialization(Module &M) { 1555 auto &Ctx = M.getContext(); 1556 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1557 if (std::error_code EC = ReaderOrErr.getError()) { 1558 std::string Msg = "Could not open profile: " + EC.message(); 1559 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1560 return false; 1561 } 1562 Reader = std::move(ReaderOrErr.get()); 1563 Reader->collectFuncsToUse(M); 1564 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1565 1566 if (!RemappingFilename.empty()) { 1567 // Apply profile remappings to the loaded profile data if requested. 1568 // For now, we only support remapping symbols encoded using the Itanium 1569 // C++ ABI's name mangling scheme. 1570 ReaderOrErr = SampleProfileReaderItaniumRemapper::create( 1571 RemappingFilename, Ctx, std::move(Reader)); 1572 if (std::error_code EC = ReaderOrErr.getError()) { 1573 std::string Msg = "Could not open profile remapping file: " + EC.message(); 1574 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1575 return false; 1576 } 1577 Reader = std::move(ReaderOrErr.get()); 1578 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1579 } 1580 return true; 1581 } 1582 1583 ModulePass *llvm::createSampleProfileLoaderPass() { 1584 return new SampleProfileLoaderLegacyPass(); 1585 } 1586 1587 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1588 return new SampleProfileLoaderLegacyPass(Name); 1589 } 1590 1591 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, 1592 ProfileSummaryInfo *_PSI) { 1593 FunctionSamples::GUIDToFuncNameMapper Mapper(M); 1594 if (!ProfileIsValid) 1595 return false; 1596 1597 PSI = _PSI; 1598 if (M.getProfileSummary(/* IsCS */ false) == nullptr) 1599 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()), 1600 ProfileSummary::PSK_Sample); 1601 1602 // Compute the total number of samples collected in this profile. 1603 for (const auto &I : Reader->getProfiles()) 1604 TotalCollectedSamples += I.second.getTotalSamples(); 1605 1606 // Populate the symbol map. 1607 for (const auto &N_F : M.getValueSymbolTable()) { 1608 StringRef OrigName = N_F.getKey(); 1609 Function *F = dyn_cast<Function>(N_F.getValue()); 1610 if (F == nullptr) 1611 continue; 1612 SymbolMap[OrigName] = F; 1613 auto pos = OrigName.find('.'); 1614 if (pos != StringRef::npos) { 1615 StringRef NewName = OrigName.substr(0, pos); 1616 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1617 // Failiing to insert means there is already an entry in SymbolMap, 1618 // thus there are multiple functions that are mapped to the same 1619 // stripped name. In this case of name conflicting, set the value 1620 // to nullptr to avoid confusion. 1621 if (!r.second) 1622 r.first->second = nullptr; 1623 } 1624 } 1625 1626 bool retval = false; 1627 for (auto &F : M) 1628 if (!F.isDeclaration()) { 1629 clearFunctionData(); 1630 retval |= runOnFunction(F, AM); 1631 } 1632 1633 // Account for cold calls not inlined.... 1634 for (const std::pair<Function *, NotInlinedProfileInfo> &pair : 1635 notInlinedCallInfo) 1636 updateProfileCallee(pair.first, pair.second.entryCount); 1637 1638 return retval; 1639 } 1640 1641 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1642 ACT = &getAnalysis<AssumptionCacheTracker>(); 1643 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 1644 ProfileSummaryInfo *PSI = 1645 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1646 return SampleLoader.runOnModule(M, nullptr, PSI); 1647 } 1648 1649 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 1650 1651 DILocation2SampleMap.clear(); 1652 // By default the entry count is initialized to -1, which will be treated 1653 // conservatively by getEntryCount as the same as unknown (None). This is 1654 // to avoid newly added code to be treated as cold. If we have samples 1655 // this will be overwritten in emitAnnotations. 1656 // If ProfileSampleAccurate is true or F has profile-sample-accurate 1657 // attribute, initialize the entry count to 0 so callsites or functions 1658 // unsampled will be treated as cold. 1659 uint64_t initialEntryCount = 1660 (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) 1661 ? 0 1662 : -1; 1663 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real)); 1664 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 1665 if (AM) { 1666 auto &FAM = 1667 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 1668 .getManager(); 1669 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1670 } else { 1671 OwnedORE = make_unique<OptimizationRemarkEmitter>(&F); 1672 ORE = OwnedORE.get(); 1673 } 1674 Samples = Reader->getSamplesFor(F); 1675 if (Samples && !Samples->empty()) 1676 return emitAnnotations(F); 1677 return false; 1678 } 1679 1680 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1681 ModuleAnalysisManager &AM) { 1682 FunctionAnalysisManager &FAM = 1683 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1684 1685 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 1686 return FAM.getResult<AssumptionAnalysis>(F); 1687 }; 1688 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 1689 return FAM.getResult<TargetIRAnalysis>(F); 1690 }; 1691 1692 SampleProfileLoader SampleLoader( 1693 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 1694 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile 1695 : ProfileRemappingFileName, 1696 IsThinLTOPreLink, GetAssumptionCache, GetTTI); 1697 1698 SampleLoader.doInitialization(M); 1699 1700 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 1701 if (!SampleLoader.runOnModule(M, &AM, PSI)) 1702 return PreservedAnalyses::all(); 1703 1704 return PreservedAnalyses::none(); 1705 } 1706