1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SampleProfileLoader transformation. This pass 10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 12 // profile information in the given profile. 13 // 14 // This pass generates branch weight annotations on the IR: 15 // 16 // - prof: Represents branch weights. This annotation is added to branches 17 // to indicate the weights of each edge coming out of the branch. 18 // The weight of each edge is the weight of the target block for 19 // that edge. The weight of a block B is computed as the maximum 20 // number of samples found in B. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/IPO/SampleProfile.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/None.h" 29 #include "llvm/ADT/SCCIterator.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/StringMap.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/Twine.h" 37 #include "llvm/Analysis/AssumptionCache.h" 38 #include "llvm/Analysis/CallGraph.h" 39 #include "llvm/Analysis/CallGraphSCCPass.h" 40 #include "llvm/Analysis/InlineAdvisor.h" 41 #include "llvm/Analysis/InlineCost.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/PostDominators.h" 45 #include "llvm/Analysis/ProfileSummaryInfo.h" 46 #include "llvm/Analysis/ReplayInlineAdvisor.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/IR/BasicBlock.h" 50 #include "llvm/IR/CFG.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/DiagnosticInfo.h" 54 #include "llvm/IR/Dominators.h" 55 #include "llvm/IR/Function.h" 56 #include "llvm/IR/GlobalValue.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/MDBuilder.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/PassManager.h" 65 #include "llvm/IR/ValueSymbolTable.h" 66 #include "llvm/InitializePasses.h" 67 #include "llvm/Pass.h" 68 #include "llvm/ProfileData/InstrProf.h" 69 #include "llvm/ProfileData/SampleProf.h" 70 #include "llvm/ProfileData/SampleProfReader.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/ErrorOr.h" 76 #include "llvm/Support/GenericDomTree.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/IPO.h" 79 #include "llvm/Transforms/Instrumentation.h" 80 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 81 #include "llvm/Transforms/Utils/Cloning.h" 82 #include "llvm/Transforms/Utils/MisExpect.h" 83 #include <algorithm> 84 #include <cassert> 85 #include <cstdint> 86 #include <functional> 87 #include <limits> 88 #include <map> 89 #include <memory> 90 #include <queue> 91 #include <string> 92 #include <system_error> 93 #include <utility> 94 #include <vector> 95 96 using namespace llvm; 97 using namespace sampleprof; 98 using ProfileCount = Function::ProfileCount; 99 #define DEBUG_TYPE "sample-profile" 100 #define CSINLINE_DEBUG DEBUG_TYPE "-inline" 101 102 STATISTIC(NumCSInlined, 103 "Number of functions inlined with context sensitive profile"); 104 STATISTIC(NumCSNotInlined, 105 "Number of functions not inlined with context sensitive profile"); 106 107 // Command line option to specify the file to read samples from. This is 108 // mainly used for debugging. 109 static cl::opt<std::string> SampleProfileFile( 110 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 111 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 112 113 // The named file contains a set of transformations that may have been applied 114 // to the symbol names between the program from which the sample data was 115 // collected and the current program's symbols. 116 static cl::opt<std::string> SampleProfileRemappingFile( 117 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), 118 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); 119 120 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 121 "sample-profile-max-propagate-iterations", cl::init(100), 122 cl::desc("Maximum number of iterations to go through when propagating " 123 "sample block/edge weights through the CFG.")); 124 125 static cl::opt<unsigned> SampleProfileRecordCoverage( 126 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 127 cl::desc("Emit a warning if less than N% of records in the input profile " 128 "are matched to the IR.")); 129 130 static cl::opt<unsigned> SampleProfileSampleCoverage( 131 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 132 cl::desc("Emit a warning if less than N% of samples in the input profile " 133 "are matched to the IR.")); 134 135 static cl::opt<bool> NoWarnSampleUnused( 136 "no-warn-sample-unused", cl::init(false), cl::Hidden, 137 cl::desc("Use this option to turn off/on warnings about function with " 138 "samples but without debug information to use those samples. ")); 139 140 static cl::opt<bool> ProfileSampleAccurate( 141 "profile-sample-accurate", cl::Hidden, cl::init(false), 142 cl::desc("If the sample profile is accurate, we will mark all un-sampled " 143 "callsite and function as having 0 samples. Otherwise, treat " 144 "un-sampled callsites and functions conservatively as unknown. ")); 145 146 static cl::opt<bool> ProfileAccurateForSymsInList( 147 "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore, 148 cl::init(true), 149 cl::desc("For symbols in profile symbol list, regard their profiles to " 150 "be accurate. It may be overriden by profile-sample-accurate. ")); 151 152 static cl::opt<bool> ProfileMergeInlinee( 153 "sample-profile-merge-inlinee", cl::Hidden, cl::init(true), 154 cl::desc("Merge past inlinee's profile to outline version if sample " 155 "profile loader decided not to inline a call site. It will " 156 "only be enabled when top-down order of profile loading is " 157 "enabled. ")); 158 159 static cl::opt<bool> ProfileTopDownLoad( 160 "sample-profile-top-down-load", cl::Hidden, cl::init(true), 161 cl::desc("Do profile annotation and inlining for functions in top-down " 162 "order of call graph during sample profile loading. It only " 163 "works for new pass manager. ")); 164 165 static cl::opt<bool> ProfileSizeInline( 166 "sample-profile-inline-size", cl::Hidden, cl::init(false), 167 cl::desc("Inline cold call sites in profile loader if it's beneficial " 168 "for code size.")); 169 170 static cl::opt<int> SampleColdCallSiteThreshold( 171 "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45), 172 cl::desc("Threshold for inlining cold callsites")); 173 174 static cl::opt<std::string> ProfileInlineReplayFile( 175 "sample-profile-inline-replay", cl::init(""), cl::value_desc("filename"), 176 cl::desc( 177 "Optimization remarks file containing inline remarks to be replayed " 178 "by inlining from sample profile loader."), 179 cl::Hidden); 180 181 namespace { 182 183 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 184 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 185 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 186 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 187 using BlockEdgeMap = 188 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 189 190 class SampleProfileLoader; 191 192 class SampleCoverageTracker { 193 public: 194 SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){}; 195 196 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 197 uint32_t Discriminator, uint64_t Samples); 198 unsigned computeCoverage(unsigned Used, unsigned Total) const; 199 unsigned countUsedRecords(const FunctionSamples *FS, 200 ProfileSummaryInfo *PSI) const; 201 unsigned countBodyRecords(const FunctionSamples *FS, 202 ProfileSummaryInfo *PSI) const; 203 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 204 uint64_t countBodySamples(const FunctionSamples *FS, 205 ProfileSummaryInfo *PSI) const; 206 207 void clear() { 208 SampleCoverage.clear(); 209 TotalUsedSamples = 0; 210 } 211 212 private: 213 using BodySampleCoverageMap = std::map<LineLocation, unsigned>; 214 using FunctionSamplesCoverageMap = 215 DenseMap<const FunctionSamples *, BodySampleCoverageMap>; 216 217 /// Coverage map for sampling records. 218 /// 219 /// This map keeps a record of sampling records that have been matched to 220 /// an IR instruction. This is used to detect some form of staleness in 221 /// profiles (see flag -sample-profile-check-coverage). 222 /// 223 /// Each entry in the map corresponds to a FunctionSamples instance. This is 224 /// another map that counts how many times the sample record at the 225 /// given location has been used. 226 FunctionSamplesCoverageMap SampleCoverage; 227 228 /// Number of samples used from the profile. 229 /// 230 /// When a sampling record is used for the first time, the samples from 231 /// that record are added to this accumulator. Coverage is later computed 232 /// based on the total number of samples available in this function and 233 /// its callsites. 234 /// 235 /// Note that this accumulator tracks samples used from a single function 236 /// and all the inlined callsites. Strictly, we should have a map of counters 237 /// keyed by FunctionSamples pointers, but these stats are cleared after 238 /// every function, so we just need to keep a single counter. 239 uint64_t TotalUsedSamples = 0; 240 241 SampleProfileLoader &SPLoader; 242 }; 243 244 class GUIDToFuncNameMapper { 245 public: 246 GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader, 247 DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap) 248 : CurrentReader(Reader), CurrentModule(M), 249 CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) { 250 if (!CurrentReader.useMD5()) 251 return; 252 253 for (const auto &F : CurrentModule) { 254 StringRef OrigName = F.getName(); 255 CurrentGUIDToFuncNameMap.insert( 256 {Function::getGUID(OrigName), OrigName}); 257 258 // Local to global var promotion used by optimization like thinlto 259 // will rename the var and add suffix like ".llvm.xxx" to the 260 // original local name. In sample profile, the suffixes of function 261 // names are all stripped. Since it is possible that the mapper is 262 // built in post-thin-link phase and var promotion has been done, 263 // we need to add the substring of function name without the suffix 264 // into the GUIDToFuncNameMap. 265 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 266 if (CanonName != OrigName) 267 CurrentGUIDToFuncNameMap.insert( 268 {Function::getGUID(CanonName), CanonName}); 269 } 270 271 // Update GUIDToFuncNameMap for each function including inlinees. 272 SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap); 273 } 274 275 ~GUIDToFuncNameMapper() { 276 if (!CurrentReader.useMD5()) 277 return; 278 279 CurrentGUIDToFuncNameMap.clear(); 280 281 // Reset GUIDToFuncNameMap for of each function as they're no 282 // longer valid at this point. 283 SetGUIDToFuncNameMapForAll(nullptr); 284 } 285 286 private: 287 void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) { 288 std::queue<FunctionSamples *> FSToUpdate; 289 for (auto &IFS : CurrentReader.getProfiles()) { 290 FSToUpdate.push(&IFS.second); 291 } 292 293 while (!FSToUpdate.empty()) { 294 FunctionSamples *FS = FSToUpdate.front(); 295 FSToUpdate.pop(); 296 FS->GUIDToFuncNameMap = Map; 297 for (const auto &ICS : FS->getCallsiteSamples()) { 298 const FunctionSamplesMap &FSMap = ICS.second; 299 for (auto &IFS : FSMap) { 300 FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second); 301 FSToUpdate.push(&FS); 302 } 303 } 304 } 305 } 306 307 SampleProfileReader &CurrentReader; 308 Module &CurrentModule; 309 DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap; 310 }; 311 312 /// Sample profile pass. 313 /// 314 /// This pass reads profile data from the file specified by 315 /// -sample-profile-file and annotates every affected function with the 316 /// profile information found in that file. 317 class SampleProfileLoader { 318 public: 319 SampleProfileLoader( 320 StringRef Name, StringRef RemapName, bool IsThinLTOPreLink, 321 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 322 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo, 323 std::function<const TargetLibraryInfo &(Function &)> GetTLI) 324 : GetAC(std::move(GetAssumptionCache)), 325 GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)), 326 CoverageTracker(*this), Filename(std::string(Name)), 327 RemappingFilename(std::string(RemapName)), 328 IsThinLTOPreLink(IsThinLTOPreLink) {} 329 330 bool doInitialization(Module &M, FunctionAnalysisManager *FAM = nullptr); 331 bool runOnModule(Module &M, ModuleAnalysisManager *AM, 332 ProfileSummaryInfo *_PSI, CallGraph *CG); 333 334 void dump() { Reader->dump(); } 335 336 protected: 337 friend class SampleCoverageTracker; 338 339 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 340 unsigned getFunctionLoc(Function &F); 341 bool emitAnnotations(Function &F); 342 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 343 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 344 const FunctionSamples *findCalleeFunctionSamples(const CallBase &I) const; 345 std::vector<const FunctionSamples *> 346 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 347 mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap; 348 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 349 bool inlineCallInstruction(CallBase &CB); 350 bool inlineHotFunctions(Function &F, 351 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 352 // Inline cold/small functions in addition to hot ones 353 bool shouldInlineColdCallee(CallBase &CallInst); 354 void emitOptimizationRemarksForInlineCandidates( 355 const SmallVectorImpl<CallBase *> &Candidates, const Function &F, 356 bool Hot); 357 void printEdgeWeight(raw_ostream &OS, Edge E); 358 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 359 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 360 bool computeBlockWeights(Function &F); 361 void findEquivalenceClasses(Function &F); 362 template <bool IsPostDom> 363 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 364 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 365 366 void propagateWeights(Function &F); 367 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 368 void buildEdges(Function &F); 369 std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG); 370 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 371 void computeDominanceAndLoopInfo(Function &F); 372 void clearFunctionData(); 373 bool callsiteIsHot(const FunctionSamples *CallsiteFS, 374 ProfileSummaryInfo *PSI); 375 376 /// Map basic blocks to their computed weights. 377 /// 378 /// The weight of a basic block is defined to be the maximum 379 /// of all the instruction weights in that block. 380 BlockWeightMap BlockWeights; 381 382 /// Map edges to their computed weights. 383 /// 384 /// Edge weights are computed by propagating basic block weights in 385 /// SampleProfile::propagateWeights. 386 EdgeWeightMap EdgeWeights; 387 388 /// Set of visited blocks during propagation. 389 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 390 391 /// Set of visited edges during propagation. 392 SmallSet<Edge, 32> VisitedEdges; 393 394 /// Equivalence classes for block weights. 395 /// 396 /// Two blocks BB1 and BB2 are in the same equivalence class if they 397 /// dominate and post-dominate each other, and they are in the same loop 398 /// nest. When this happens, the two blocks are guaranteed to execute 399 /// the same number of times. 400 EquivalenceClassMap EquivalenceClass; 401 402 /// Map from function name to Function *. Used to find the function from 403 /// the function name. If the function name contains suffix, additional 404 /// entry is added to map from the stripped name to the function if there 405 /// is one-to-one mapping. 406 StringMap<Function *> SymbolMap; 407 408 /// Dominance, post-dominance and loop information. 409 std::unique_ptr<DominatorTree> DT; 410 std::unique_ptr<PostDominatorTree> PDT; 411 std::unique_ptr<LoopInfo> LI; 412 413 std::function<AssumptionCache &(Function &)> GetAC; 414 std::function<TargetTransformInfo &(Function &)> GetTTI; 415 std::function<const TargetLibraryInfo &(Function &)> GetTLI; 416 417 /// Predecessors for each basic block in the CFG. 418 BlockEdgeMap Predecessors; 419 420 /// Successors for each basic block in the CFG. 421 BlockEdgeMap Successors; 422 423 SampleCoverageTracker CoverageTracker; 424 425 /// Profile reader object. 426 std::unique_ptr<SampleProfileReader> Reader; 427 428 /// Samples collected for the body of this function. 429 FunctionSamples *Samples = nullptr; 430 431 /// Name of the profile file to load. 432 std::string Filename; 433 434 /// Name of the profile remapping file to load. 435 std::string RemappingFilename; 436 437 /// Flag indicating whether the profile input loaded successfully. 438 bool ProfileIsValid = false; 439 440 /// Flag indicating if the pass is invoked in ThinLTO compile phase. 441 /// 442 /// In this phase, in annotation, we should not promote indirect calls. 443 /// Instead, we will mark GUIDs that needs to be annotated to the function. 444 bool IsThinLTOPreLink; 445 446 /// Profile Summary Info computed from sample profile. 447 ProfileSummaryInfo *PSI = nullptr; 448 449 /// Profle Symbol list tells whether a function name appears in the binary 450 /// used to generate the current profile. 451 std::unique_ptr<ProfileSymbolList> PSL; 452 453 /// Total number of samples collected in this profile. 454 /// 455 /// This is the sum of all the samples collected in all the functions executed 456 /// at runtime. 457 uint64_t TotalCollectedSamples = 0; 458 459 /// Optimization Remark Emitter used to emit diagnostic remarks. 460 OptimizationRemarkEmitter *ORE = nullptr; 461 462 // Information recorded when we declined to inline a call site 463 // because we have determined it is too cold is accumulated for 464 // each callee function. Initially this is just the entry count. 465 struct NotInlinedProfileInfo { 466 uint64_t entryCount; 467 }; 468 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo; 469 470 // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for 471 // all the function symbols defined or declared in current module. 472 DenseMap<uint64_t, StringRef> GUIDToFuncNameMap; 473 474 // All the Names used in FunctionSamples including outline function 475 // names, inline instance names and call target names. 476 StringSet<> NamesInProfile; 477 478 // For symbol in profile symbol list, whether to regard their profiles 479 // to be accurate. It is mainly decided by existance of profile symbol 480 // list and -profile-accurate-for-symsinlist flag, but it can be 481 // overriden by -profile-sample-accurate or profile-sample-accurate 482 // attribute. 483 bool ProfAccForSymsInList; 484 485 // External inline advisor used to replay inline decision from remarks. 486 std::unique_ptr<ReplayInlineAdvisor> ExternalInlineAdvisor; 487 }; 488 489 class SampleProfileLoaderLegacyPass : public ModulePass { 490 public: 491 // Class identification, replacement for typeinfo 492 static char ID; 493 494 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, 495 bool IsThinLTOPreLink = false) 496 : ModulePass(ID), SampleLoader( 497 Name, SampleProfileRemappingFile, IsThinLTOPreLink, 498 [&](Function &F) -> AssumptionCache & { 499 return ACT->getAssumptionCache(F); 500 }, 501 [&](Function &F) -> TargetTransformInfo & { 502 return TTIWP->getTTI(F); 503 }, 504 [&](Function &F) -> TargetLibraryInfo & { 505 return TLIWP->getTLI(F); 506 }) { 507 initializeSampleProfileLoaderLegacyPassPass( 508 *PassRegistry::getPassRegistry()); 509 } 510 511 void dump() { SampleLoader.dump(); } 512 513 bool doInitialization(Module &M) override { 514 return SampleLoader.doInitialization(M); 515 } 516 517 StringRef getPassName() const override { return "Sample profile pass"; } 518 bool runOnModule(Module &M) override; 519 520 void getAnalysisUsage(AnalysisUsage &AU) const override { 521 AU.addRequired<AssumptionCacheTracker>(); 522 AU.addRequired<TargetTransformInfoWrapperPass>(); 523 AU.addRequired<TargetLibraryInfoWrapperPass>(); 524 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 525 } 526 527 private: 528 SampleProfileLoader SampleLoader; 529 AssumptionCacheTracker *ACT = nullptr; 530 TargetTransformInfoWrapperPass *TTIWP = nullptr; 531 TargetLibraryInfoWrapperPass *TLIWP = nullptr; 532 }; 533 534 } // end anonymous namespace 535 536 /// Return true if the given callsite is hot wrt to hot cutoff threshold. 537 /// 538 /// Functions that were inlined in the original binary will be represented 539 /// in the inline stack in the sample profile. If the profile shows that 540 /// the original inline decision was "good" (i.e., the callsite is executed 541 /// frequently), then we will recreate the inline decision and apply the 542 /// profile from the inlined callsite. 543 /// 544 /// To decide whether an inlined callsite is hot, we compare the callsite 545 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is 546 /// regarded as hot if the count is above the cutoff value. 547 /// 548 /// When ProfileAccurateForSymsInList is enabled and profile symbol list 549 /// is present, functions in the profile symbol list but without profile will 550 /// be regarded as cold and much less inlining will happen in CGSCC inlining 551 /// pass, so we tend to lower the hot criteria here to allow more early 552 /// inlining to happen for warm callsites and it is helpful for performance. 553 bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS, 554 ProfileSummaryInfo *PSI) { 555 if (!CallsiteFS) 556 return false; // The callsite was not inlined in the original binary. 557 558 assert(PSI && "PSI is expected to be non null"); 559 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 560 if (ProfAccForSymsInList) 561 return !PSI->isColdCount(CallsiteTotalSamples); 562 else 563 return PSI->isHotCount(CallsiteTotalSamples); 564 } 565 566 /// Mark as used the sample record for the given function samples at 567 /// (LineOffset, Discriminator). 568 /// 569 /// \returns true if this is the first time we mark the given record. 570 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 571 uint32_t LineOffset, 572 uint32_t Discriminator, 573 uint64_t Samples) { 574 LineLocation Loc(LineOffset, Discriminator); 575 unsigned &Count = SampleCoverage[FS][Loc]; 576 bool FirstTime = (++Count == 1); 577 if (FirstTime) 578 TotalUsedSamples += Samples; 579 return FirstTime; 580 } 581 582 /// Return the number of sample records that were applied from this profile. 583 /// 584 /// This count does not include records from cold inlined callsites. 585 unsigned 586 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS, 587 ProfileSummaryInfo *PSI) const { 588 auto I = SampleCoverage.find(FS); 589 590 // The size of the coverage map for FS represents the number of records 591 // that were marked used at least once. 592 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 593 594 // If there are inlined callsites in this function, count the samples found 595 // in the respective bodies. However, do not bother counting callees with 0 596 // total samples, these are callees that were never invoked at runtime. 597 for (const auto &I : FS->getCallsiteSamples()) 598 for (const auto &J : I.second) { 599 const FunctionSamples *CalleeSamples = &J.second; 600 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 601 Count += countUsedRecords(CalleeSamples, PSI); 602 } 603 604 return Count; 605 } 606 607 /// Return the number of sample records in the body of this profile. 608 /// 609 /// This count does not include records from cold inlined callsites. 610 unsigned 611 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS, 612 ProfileSummaryInfo *PSI) const { 613 unsigned Count = FS->getBodySamples().size(); 614 615 // Only count records in hot callsites. 616 for (const auto &I : FS->getCallsiteSamples()) 617 for (const auto &J : I.second) { 618 const FunctionSamples *CalleeSamples = &J.second; 619 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 620 Count += countBodyRecords(CalleeSamples, PSI); 621 } 622 623 return Count; 624 } 625 626 /// Return the number of samples collected in the body of this profile. 627 /// 628 /// This count does not include samples from cold inlined callsites. 629 uint64_t 630 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS, 631 ProfileSummaryInfo *PSI) const { 632 uint64_t Total = 0; 633 for (const auto &I : FS->getBodySamples()) 634 Total += I.second.getSamples(); 635 636 // Only count samples in hot callsites. 637 for (const auto &I : FS->getCallsiteSamples()) 638 for (const auto &J : I.second) { 639 const FunctionSamples *CalleeSamples = &J.second; 640 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 641 Total += countBodySamples(CalleeSamples, PSI); 642 } 643 644 return Total; 645 } 646 647 /// Return the fraction of sample records used in this profile. 648 /// 649 /// The returned value is an unsigned integer in the range 0-100 indicating 650 /// the percentage of sample records that were used while applying this 651 /// profile to the associated function. 652 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 653 unsigned Total) const { 654 assert(Used <= Total && 655 "number of used records cannot exceed the total number of records"); 656 return Total > 0 ? Used * 100 / Total : 100; 657 } 658 659 /// Clear all the per-function data used to load samples and propagate weights. 660 void SampleProfileLoader::clearFunctionData() { 661 BlockWeights.clear(); 662 EdgeWeights.clear(); 663 VisitedBlocks.clear(); 664 VisitedEdges.clear(); 665 EquivalenceClass.clear(); 666 DT = nullptr; 667 PDT = nullptr; 668 LI = nullptr; 669 Predecessors.clear(); 670 Successors.clear(); 671 CoverageTracker.clear(); 672 } 673 674 #ifndef NDEBUG 675 /// Print the weight of edge \p E on stream \p OS. 676 /// 677 /// \param OS Stream to emit the output to. 678 /// \param E Edge to print. 679 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 680 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 681 << "]: " << EdgeWeights[E] << "\n"; 682 } 683 684 /// Print the equivalence class of block \p BB on stream \p OS. 685 /// 686 /// \param OS Stream to emit the output to. 687 /// \param BB Block to print. 688 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 689 const BasicBlock *BB) { 690 const BasicBlock *Equiv = EquivalenceClass[BB]; 691 OS << "equivalence[" << BB->getName() 692 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 693 } 694 695 /// Print the weight of block \p BB on stream \p OS. 696 /// 697 /// \param OS Stream to emit the output to. 698 /// \param BB Block to print. 699 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 700 const BasicBlock *BB) const { 701 const auto &I = BlockWeights.find(BB); 702 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 703 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 704 } 705 #endif 706 707 /// Get the weight for an instruction. 708 /// 709 /// The "weight" of an instruction \p Inst is the number of samples 710 /// collected on that instruction at runtime. To retrieve it, we 711 /// need to compute the line number of \p Inst relative to the start of its 712 /// function. We use HeaderLineno to compute the offset. We then 713 /// look up the samples collected for \p Inst using BodySamples. 714 /// 715 /// \param Inst Instruction to query. 716 /// 717 /// \returns the weight of \p Inst. 718 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 719 const DebugLoc &DLoc = Inst.getDebugLoc(); 720 if (!DLoc) 721 return std::error_code(); 722 723 const FunctionSamples *FS = findFunctionSamples(Inst); 724 if (!FS) 725 return std::error_code(); 726 727 // Ignore all intrinsics, phinodes and branch instructions. 728 // Branch and phinodes instruction usually contains debug info from sources outside of 729 // the residing basic block, thus we ignore them during annotation. 730 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst)) 731 return std::error_code(); 732 733 // If a direct call/invoke instruction is inlined in profile 734 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 735 // it means that the inlined callsite has no sample, thus the call 736 // instruction should have 0 count. 737 if (auto *CB = dyn_cast<CallBase>(&Inst)) 738 if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB)) 739 return 0; 740 741 const DILocation *DIL = DLoc; 742 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 743 uint32_t Discriminator = DIL->getBaseDiscriminator(); 744 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 745 if (R) { 746 bool FirstMark = 747 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 748 if (FirstMark) { 749 ORE->emit([&]() { 750 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 751 Remark << "Applied " << ore::NV("NumSamples", *R); 752 Remark << " samples from profile (offset: "; 753 Remark << ore::NV("LineOffset", LineOffset); 754 if (Discriminator) { 755 Remark << "."; 756 Remark << ore::NV("Discriminator", Discriminator); 757 } 758 Remark << ")"; 759 return Remark; 760 }); 761 } 762 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." 763 << DIL->getBaseDiscriminator() << ":" << Inst 764 << " (line offset: " << LineOffset << "." 765 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 766 << ")\n"); 767 } 768 return R; 769 } 770 771 /// Compute the weight of a basic block. 772 /// 773 /// The weight of basic block \p BB is the maximum weight of all the 774 /// instructions in BB. 775 /// 776 /// \param BB The basic block to query. 777 /// 778 /// \returns the weight for \p BB. 779 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 780 uint64_t Max = 0; 781 bool HasWeight = false; 782 for (auto &I : BB->getInstList()) { 783 const ErrorOr<uint64_t> &R = getInstWeight(I); 784 if (R) { 785 Max = std::max(Max, R.get()); 786 HasWeight = true; 787 } 788 } 789 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 790 } 791 792 /// Compute and store the weights of every basic block. 793 /// 794 /// This populates the BlockWeights map by computing 795 /// the weights of every basic block in the CFG. 796 /// 797 /// \param F The function to query. 798 bool SampleProfileLoader::computeBlockWeights(Function &F) { 799 bool Changed = false; 800 LLVM_DEBUG(dbgs() << "Block weights\n"); 801 for (const auto &BB : F) { 802 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 803 if (Weight) { 804 BlockWeights[&BB] = Weight.get(); 805 VisitedBlocks.insert(&BB); 806 Changed = true; 807 } 808 LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); 809 } 810 811 return Changed; 812 } 813 814 /// Get the FunctionSamples for a call instruction. 815 /// 816 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 817 /// instance in which that call instruction is calling to. It contains 818 /// all samples that resides in the inlined instance. We first find the 819 /// inlined instance in which the call instruction is from, then we 820 /// traverse its children to find the callsite with the matching 821 /// location. 822 /// 823 /// \param Inst Call/Invoke instruction to query. 824 /// 825 /// \returns The FunctionSamples pointer to the inlined instance. 826 const FunctionSamples * 827 SampleProfileLoader::findCalleeFunctionSamples(const CallBase &Inst) const { 828 const DILocation *DIL = Inst.getDebugLoc(); 829 if (!DIL) { 830 return nullptr; 831 } 832 833 StringRef CalleeName; 834 if (Function *Callee = Inst.getCalledFunction()) 835 CalleeName = Callee->getName(); 836 837 const FunctionSamples *FS = findFunctionSamples(Inst); 838 if (FS == nullptr) 839 return nullptr; 840 841 return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL), 842 DIL->getBaseDiscriminator()), 843 CalleeName, Reader->getRemapper()); 844 } 845 846 /// Returns a vector of FunctionSamples that are the indirect call targets 847 /// of \p Inst. The vector is sorted by the total number of samples. Stores 848 /// the total call count of the indirect call in \p Sum. 849 std::vector<const FunctionSamples *> 850 SampleProfileLoader::findIndirectCallFunctionSamples( 851 const Instruction &Inst, uint64_t &Sum) const { 852 const DILocation *DIL = Inst.getDebugLoc(); 853 std::vector<const FunctionSamples *> R; 854 855 if (!DIL) { 856 return R; 857 } 858 859 const FunctionSamples *FS = findFunctionSamples(Inst); 860 if (FS == nullptr) 861 return R; 862 863 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 864 uint32_t Discriminator = DIL->getBaseDiscriminator(); 865 866 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 867 Sum = 0; 868 if (T) 869 for (const auto &T_C : T.get()) 870 Sum += T_C.second; 871 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation( 872 FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) { 873 if (M->empty()) 874 return R; 875 for (const auto &NameFS : *M) { 876 Sum += NameFS.second.getEntrySamples(); 877 R.push_back(&NameFS.second); 878 } 879 llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) { 880 if (L->getEntrySamples() != R->getEntrySamples()) 881 return L->getEntrySamples() > R->getEntrySamples(); 882 return FunctionSamples::getGUID(L->getName()) < 883 FunctionSamples::getGUID(R->getName()); 884 }); 885 } 886 return R; 887 } 888 889 /// Get the FunctionSamples for an instruction. 890 /// 891 /// The FunctionSamples of an instruction \p Inst is the inlined instance 892 /// in which that instruction is coming from. We traverse the inline stack 893 /// of that instruction, and match it with the tree nodes in the profile. 894 /// 895 /// \param Inst Instruction to query. 896 /// 897 /// \returns the FunctionSamples pointer to the inlined instance. 898 const FunctionSamples * 899 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 900 const DILocation *DIL = Inst.getDebugLoc(); 901 if (!DIL) 902 return Samples; 903 904 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr); 905 if (it.second) 906 it.first->second = Samples->findFunctionSamples(DIL, Reader->getRemapper()); 907 return it.first->second; 908 } 909 910 bool SampleProfileLoader::inlineCallInstruction(CallBase &CB) { 911 if (ExternalInlineAdvisor) { 912 auto Advice = ExternalInlineAdvisor->getAdvice(CB); 913 if (!Advice->isInliningRecommended()) { 914 Advice->recordUnattemptedInlining(); 915 return false; 916 } 917 // Dummy record, we don't use it for replay. 918 Advice->recordInlining(); 919 } 920 921 Function *CalledFunction = CB.getCalledFunction(); 922 assert(CalledFunction); 923 DebugLoc DLoc = CB.getDebugLoc(); 924 BasicBlock *BB = CB.getParent(); 925 InlineParams Params = getInlineParams(); 926 Params.ComputeFullInlineCost = true; 927 // Checks if there is anything in the reachable portion of the callee at 928 // this callsite that makes this inlining potentially illegal. Need to 929 // set ComputeFullInlineCost, otherwise getInlineCost may return early 930 // when cost exceeds threshold without checking all IRs in the callee. 931 // The acutal cost does not matter because we only checks isNever() to 932 // see if it is legal to inline the callsite. 933 InlineCost Cost = 934 getInlineCost(CB, Params, GetTTI(*CalledFunction), GetAC, GetTLI); 935 if (Cost.isNever()) { 936 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB) 937 << "incompatible inlining"); 938 return false; 939 } 940 InlineFunctionInfo IFI(nullptr, GetAC); 941 if (InlineFunction(CB, IFI).isSuccess()) { 942 // The call to InlineFunction erases I, so we can't pass it here. 943 emitInlinedInto(*ORE, DLoc, BB, *CalledFunction, *BB->getParent(), Cost, 944 true, CSINLINE_DEBUG); 945 return true; 946 } 947 return false; 948 } 949 950 bool SampleProfileLoader::shouldInlineColdCallee(CallBase &CallInst) { 951 if (!ProfileSizeInline) 952 return false; 953 954 Function *Callee = CallInst.getCalledFunction(); 955 if (Callee == nullptr) 956 return false; 957 958 InlineCost Cost = getInlineCost(CallInst, getInlineParams(), GetTTI(*Callee), 959 GetAC, GetTLI); 960 961 return Cost.getCost() <= SampleColdCallSiteThreshold; 962 } 963 964 void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates( 965 const SmallVectorImpl<CallBase *> &Candidates, const Function &F, 966 bool Hot) { 967 for (auto I : Candidates) { 968 Function *CalledFunction = I->getCalledFunction(); 969 if (CalledFunction) { 970 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt", 971 I->getDebugLoc(), I->getParent()) 972 << "previous inlining reattempted for " 973 << (Hot ? "hotness: '" : "size: '") 974 << ore::NV("Callee", CalledFunction) << "' into '" 975 << ore::NV("Caller", &F) << "'"); 976 } 977 } 978 } 979 980 /// Iteratively inline hot callsites of a function. 981 /// 982 /// Iteratively traverse all callsites of the function \p F, and find if 983 /// the corresponding inlined instance exists and is hot in profile. If 984 /// it is hot enough, inline the callsites and adds new callsites of the 985 /// callee into the caller. If the call is an indirect call, first promote 986 /// it to direct call. Each indirect call is limited with a single target. 987 /// 988 /// \param F function to perform iterative inlining. 989 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 990 /// inlined in the profiled binary. 991 /// 992 /// \returns True if there is any inline happened. 993 bool SampleProfileLoader::inlineHotFunctions( 994 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 995 DenseSet<Instruction *> PromotedInsns; 996 997 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure 998 // Profile symbol list is ignored when profile-sample-accurate is on. 999 assert((!ProfAccForSymsInList || 1000 (!ProfileSampleAccurate && 1001 !F.hasFnAttribute("profile-sample-accurate"))) && 1002 "ProfAccForSymsInList should be false when profile-sample-accurate " 1003 "is enabled"); 1004 1005 DenseMap<CallBase *, const FunctionSamples *> localNotInlinedCallSites; 1006 bool Changed = false; 1007 while (true) { 1008 bool LocalChanged = false; 1009 SmallVector<CallBase *, 10> CIS; 1010 for (auto &BB : F) { 1011 bool Hot = false; 1012 SmallVector<CallBase *, 10> AllCandidates; 1013 SmallVector<CallBase *, 10> ColdCandidates; 1014 for (auto &I : BB.getInstList()) { 1015 const FunctionSamples *FS = nullptr; 1016 if (auto *CB = dyn_cast<CallBase>(&I)) { 1017 if (!isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(*CB))) { 1018 assert((!FunctionSamples::UseMD5 || FS->GUIDToFuncNameMap) && 1019 "GUIDToFuncNameMap has to be populated"); 1020 AllCandidates.push_back(CB); 1021 if (FS->getEntrySamples() > 0) 1022 localNotInlinedCallSites.try_emplace(CB, FS); 1023 if (callsiteIsHot(FS, PSI)) 1024 Hot = true; 1025 else if (shouldInlineColdCallee(*CB)) 1026 ColdCandidates.push_back(CB); 1027 } 1028 } 1029 } 1030 if (Hot || ExternalInlineAdvisor) { 1031 CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end()); 1032 emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true); 1033 } else { 1034 CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end()); 1035 emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false); 1036 } 1037 } 1038 for (CallBase *I : CIS) { 1039 Function *CalledFunction = I->getCalledFunction(); 1040 // Do not inline recursive calls. 1041 if (CalledFunction == &F) 1042 continue; 1043 if (I->isIndirectCall()) { 1044 if (PromotedInsns.count(I)) 1045 continue; 1046 uint64_t Sum; 1047 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 1048 if (IsThinLTOPreLink) { 1049 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), 1050 PSI->getOrCompHotCountThreshold()); 1051 continue; 1052 } 1053 if (!callsiteIsHot(FS, PSI)) 1054 continue; 1055 1056 const char *Reason = "Callee function not available"; 1057 // R->getValue() != &F is to prevent promoting a recursive call. 1058 // If it is a recursive call, we do not inline it as it could bloat 1059 // the code exponentially. There is way to better handle this, e.g. 1060 // clone the caller first, and inline the cloned caller if it is 1061 // recursive. As llvm does not inline recursive calls, we will 1062 // simply ignore it instead of handling it explicitly. 1063 auto CalleeFunctionName = FS->getFuncName(); 1064 auto R = SymbolMap.find(CalleeFunctionName); 1065 if (R != SymbolMap.end() && R->getValue() && 1066 !R->getValue()->isDeclaration() && 1067 R->getValue()->getSubprogram() && 1068 R->getValue()->hasFnAttribute("use-sample-profile") && 1069 R->getValue() != &F && 1070 isLegalToPromote(*I, R->getValue(), &Reason)) { 1071 uint64_t C = FS->getEntrySamples(); 1072 auto &DI = 1073 pgo::promoteIndirectCall(*I, R->getValue(), C, Sum, false, ORE); 1074 Sum -= C; 1075 PromotedInsns.insert(I); 1076 // If profile mismatches, we should not attempt to inline DI. 1077 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && 1078 inlineCallInstruction(cast<CallBase>(DI))) { 1079 localNotInlinedCallSites.erase(I); 1080 LocalChanged = true; 1081 ++NumCSInlined; 1082 } 1083 } else { 1084 LLVM_DEBUG(dbgs() 1085 << "\nFailed to promote indirect call to " 1086 << CalleeFunctionName << " because " << Reason << "\n"); 1087 } 1088 } 1089 } else if (CalledFunction && CalledFunction->getSubprogram() && 1090 !CalledFunction->isDeclaration()) { 1091 if (inlineCallInstruction(*I)) { 1092 localNotInlinedCallSites.erase(I); 1093 LocalChanged = true; 1094 ++NumCSInlined; 1095 } 1096 } else if (IsThinLTOPreLink) { 1097 findCalleeFunctionSamples(*I)->findInlinedFunctions( 1098 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold()); 1099 } 1100 } 1101 if (LocalChanged) { 1102 Changed = true; 1103 } else { 1104 break; 1105 } 1106 } 1107 1108 // Accumulate not inlined callsite information into notInlinedSamples 1109 for (const auto &Pair : localNotInlinedCallSites) { 1110 CallBase *I = Pair.getFirst(); 1111 Function *Callee = I->getCalledFunction(); 1112 if (!Callee || Callee->isDeclaration()) 1113 continue; 1114 1115 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline", 1116 I->getDebugLoc(), I->getParent()) 1117 << "previous inlining not repeated: '" 1118 << ore::NV("Callee", Callee) << "' into '" 1119 << ore::NV("Caller", &F) << "'"); 1120 1121 ++NumCSNotInlined; 1122 const FunctionSamples *FS = Pair.getSecond(); 1123 if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) { 1124 continue; 1125 } 1126 1127 if (ProfileMergeInlinee) { 1128 // A function call can be replicated by optimizations like callsite 1129 // splitting or jump threading and the replicates end up sharing the 1130 // sample nested callee profile instead of slicing the original inlinee's 1131 // profile. We want to do merge exactly once by filtering out callee 1132 // profiles with a non-zero head sample count. 1133 if (FS->getHeadSamples() == 0) { 1134 // Use entry samples as head samples during the merge, as inlinees 1135 // don't have head samples. 1136 const_cast<FunctionSamples *>(FS)->addHeadSamples( 1137 FS->getEntrySamples()); 1138 1139 // Note that we have to do the merge right after processing function. 1140 // This allows OutlineFS's profile to be used for annotation during 1141 // top-down processing of functions' annotation. 1142 FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee); 1143 OutlineFS->merge(*FS); 1144 } else 1145 assert(FS->getHeadSamples() == FS->getEntrySamples() && 1146 "Expect same head and entry sample counts for profiles already " 1147 "merged."); 1148 } else { 1149 auto pair = 1150 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0}); 1151 pair.first->second.entryCount += FS->getEntrySamples(); 1152 } 1153 } 1154 return Changed; 1155 } 1156 1157 /// Find equivalence classes for the given block. 1158 /// 1159 /// This finds all the blocks that are guaranteed to execute the same 1160 /// number of times as \p BB1. To do this, it traverses all the 1161 /// descendants of \p BB1 in the dominator or post-dominator tree. 1162 /// 1163 /// A block BB2 will be in the same equivalence class as \p BB1 if 1164 /// the following holds: 1165 /// 1166 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 1167 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 1168 /// dominate BB1 in the post-dominator tree. 1169 /// 1170 /// 2- Both BB2 and \p BB1 must be in the same loop. 1171 /// 1172 /// For every block BB2 that meets those two requirements, we set BB2's 1173 /// equivalence class to \p BB1. 1174 /// 1175 /// \param BB1 Block to check. 1176 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 1177 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 1178 /// with blocks from \p BB1's dominator tree, then 1179 /// this is the post-dominator tree, and vice versa. 1180 template <bool IsPostDom> 1181 void SampleProfileLoader::findEquivalencesFor( 1182 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 1183 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 1184 const BasicBlock *EC = EquivalenceClass[BB1]; 1185 uint64_t Weight = BlockWeights[EC]; 1186 for (const auto *BB2 : Descendants) { 1187 bool IsDomParent = DomTree->dominates(BB2, BB1); 1188 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 1189 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 1190 EquivalenceClass[BB2] = EC; 1191 // If BB2 is visited, then the entire EC should be marked as visited. 1192 if (VisitedBlocks.count(BB2)) { 1193 VisitedBlocks.insert(EC); 1194 } 1195 1196 // If BB2 is heavier than BB1, make BB2 have the same weight 1197 // as BB1. 1198 // 1199 // Note that we don't worry about the opposite situation here 1200 // (when BB2 is lighter than BB1). We will deal with this 1201 // during the propagation phase. Right now, we just want to 1202 // make sure that BB1 has the largest weight of all the 1203 // members of its equivalence set. 1204 Weight = std::max(Weight, BlockWeights[BB2]); 1205 } 1206 } 1207 if (EC == &EC->getParent()->getEntryBlock()) { 1208 BlockWeights[EC] = Samples->getHeadSamples() + 1; 1209 } else { 1210 BlockWeights[EC] = Weight; 1211 } 1212 } 1213 1214 /// Find equivalence classes. 1215 /// 1216 /// Since samples may be missing from blocks, we can fill in the gaps by setting 1217 /// the weights of all the blocks in the same equivalence class to the same 1218 /// weight. To compute the concept of equivalence, we use dominance and loop 1219 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 1220 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1221 /// 1222 /// \param F The function to query. 1223 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 1224 SmallVector<BasicBlock *, 8> DominatedBBs; 1225 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); 1226 // Find equivalence sets based on dominance and post-dominance information. 1227 for (auto &BB : F) { 1228 BasicBlock *BB1 = &BB; 1229 1230 // Compute BB1's equivalence class once. 1231 if (EquivalenceClass.count(BB1)) { 1232 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1233 continue; 1234 } 1235 1236 // By default, blocks are in their own equivalence class. 1237 EquivalenceClass[BB1] = BB1; 1238 1239 // Traverse all the blocks dominated by BB1. We are looking for 1240 // every basic block BB2 such that: 1241 // 1242 // 1- BB1 dominates BB2. 1243 // 2- BB2 post-dominates BB1. 1244 // 3- BB1 and BB2 are in the same loop nest. 1245 // 1246 // If all those conditions hold, it means that BB2 is executed 1247 // as many times as BB1, so they are placed in the same equivalence 1248 // class by making BB2's equivalence class be BB1. 1249 DominatedBBs.clear(); 1250 DT->getDescendants(BB1, DominatedBBs); 1251 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 1252 1253 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1254 } 1255 1256 // Assign weights to equivalence classes. 1257 // 1258 // All the basic blocks in the same equivalence class will execute 1259 // the same number of times. Since we know that the head block in 1260 // each equivalence class has the largest weight, assign that weight 1261 // to all the blocks in that equivalence class. 1262 LLVM_DEBUG( 1263 dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 1264 for (auto &BI : F) { 1265 const BasicBlock *BB = &BI; 1266 const BasicBlock *EquivBB = EquivalenceClass[BB]; 1267 if (BB != EquivBB) 1268 BlockWeights[BB] = BlockWeights[EquivBB]; 1269 LLVM_DEBUG(printBlockWeight(dbgs(), BB)); 1270 } 1271 } 1272 1273 /// Visit the given edge to decide if it has a valid weight. 1274 /// 1275 /// If \p E has not been visited before, we copy to \p UnknownEdge 1276 /// and increment the count of unknown edges. 1277 /// 1278 /// \param E Edge to visit. 1279 /// \param NumUnknownEdges Current number of unknown edges. 1280 /// \param UnknownEdge Set if E has not been visited before. 1281 /// 1282 /// \returns E's weight, if known. Otherwise, return 0. 1283 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 1284 Edge *UnknownEdge) { 1285 if (!VisitedEdges.count(E)) { 1286 (*NumUnknownEdges)++; 1287 *UnknownEdge = E; 1288 return 0; 1289 } 1290 1291 return EdgeWeights[E]; 1292 } 1293 1294 /// Propagate weights through incoming/outgoing edges. 1295 /// 1296 /// If the weight of a basic block is known, and there is only one edge 1297 /// with an unknown weight, we can calculate the weight of that edge. 1298 /// 1299 /// Similarly, if all the edges have a known count, we can calculate the 1300 /// count of the basic block, if needed. 1301 /// 1302 /// \param F Function to process. 1303 /// \param UpdateBlockCount Whether we should update basic block counts that 1304 /// has already been annotated. 1305 /// 1306 /// \returns True if new weights were assigned to edges or blocks. 1307 bool SampleProfileLoader::propagateThroughEdges(Function &F, 1308 bool UpdateBlockCount) { 1309 bool Changed = false; 1310 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); 1311 for (const auto &BI : F) { 1312 const BasicBlock *BB = &BI; 1313 const BasicBlock *EC = EquivalenceClass[BB]; 1314 1315 // Visit all the predecessor and successor edges to determine 1316 // which ones have a weight assigned already. Note that it doesn't 1317 // matter that we only keep track of a single unknown edge. The 1318 // only case we are interested in handling is when only a single 1319 // edge is unknown (see setEdgeOrBlockWeight). 1320 for (unsigned i = 0; i < 2; i++) { 1321 uint64_t TotalWeight = 0; 1322 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 1323 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 1324 1325 if (i == 0) { 1326 // First, visit all predecessor edges. 1327 NumTotalEdges = Predecessors[BB].size(); 1328 for (auto *Pred : Predecessors[BB]) { 1329 Edge E = std::make_pair(Pred, BB); 1330 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1331 if (E.first == E.second) 1332 SelfReferentialEdge = E; 1333 } 1334 if (NumTotalEdges == 1) { 1335 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 1336 } 1337 } else { 1338 // On the second round, visit all successor edges. 1339 NumTotalEdges = Successors[BB].size(); 1340 for (auto *Succ : Successors[BB]) { 1341 Edge E = std::make_pair(BB, Succ); 1342 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1343 } 1344 if (NumTotalEdges == 1) { 1345 SingleEdge = std::make_pair(BB, Successors[BB][0]); 1346 } 1347 } 1348 1349 // After visiting all the edges, there are three cases that we 1350 // can handle immediately: 1351 // 1352 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 1353 // In this case, we simply check that the sum of all the edges 1354 // is the same as BB's weight. If not, we change BB's weight 1355 // to match. Additionally, if BB had not been visited before, 1356 // we mark it visited. 1357 // 1358 // - Only one edge is unknown and BB has already been visited. 1359 // In this case, we can compute the weight of the edge by 1360 // subtracting the total block weight from all the known 1361 // edge weights. If the edges weight more than BB, then the 1362 // edge of the last remaining edge is set to zero. 1363 // 1364 // - There exists a self-referential edge and the weight of BB is 1365 // known. In this case, this edge can be based on BB's weight. 1366 // We add up all the other known edges and set the weight on 1367 // the self-referential edge as we did in the previous case. 1368 // 1369 // In any other case, we must continue iterating. Eventually, 1370 // all edges will get a weight, or iteration will stop when 1371 // it reaches SampleProfileMaxPropagateIterations. 1372 if (NumUnknownEdges <= 1) { 1373 uint64_t &BBWeight = BlockWeights[EC]; 1374 if (NumUnknownEdges == 0) { 1375 if (!VisitedBlocks.count(EC)) { 1376 // If we already know the weight of all edges, the weight of the 1377 // basic block can be computed. It should be no larger than the sum 1378 // of all edge weights. 1379 if (TotalWeight > BBWeight) { 1380 BBWeight = TotalWeight; 1381 Changed = true; 1382 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() 1383 << " known. Set weight for block: "; 1384 printBlockWeight(dbgs(), BB);); 1385 } 1386 } else if (NumTotalEdges == 1 && 1387 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1388 // If there is only one edge for the visited basic block, use the 1389 // block weight to adjust edge weight if edge weight is smaller. 1390 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1391 Changed = true; 1392 } 1393 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1394 // If there is a single unknown edge and the block has been 1395 // visited, then we can compute E's weight. 1396 if (BBWeight >= TotalWeight) 1397 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1398 else 1399 EdgeWeights[UnknownEdge] = 0; 1400 const BasicBlock *OtherEC; 1401 if (i == 0) 1402 OtherEC = EquivalenceClass[UnknownEdge.first]; 1403 else 1404 OtherEC = EquivalenceClass[UnknownEdge.second]; 1405 // Edge weights should never exceed the BB weights it connects. 1406 if (VisitedBlocks.count(OtherEC) && 1407 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1408 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1409 VisitedEdges.insert(UnknownEdge); 1410 Changed = true; 1411 LLVM_DEBUG(dbgs() << "Set weight for edge: "; 1412 printEdgeWeight(dbgs(), UnknownEdge)); 1413 } 1414 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1415 // If a block Weights 0, all its in/out edges should weight 0. 1416 if (i == 0) { 1417 for (auto *Pred : Predecessors[BB]) { 1418 Edge E = std::make_pair(Pred, BB); 1419 EdgeWeights[E] = 0; 1420 VisitedEdges.insert(E); 1421 } 1422 } else { 1423 for (auto *Succ : Successors[BB]) { 1424 Edge E = std::make_pair(BB, Succ); 1425 EdgeWeights[E] = 0; 1426 VisitedEdges.insert(E); 1427 } 1428 } 1429 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1430 uint64_t &BBWeight = BlockWeights[BB]; 1431 // We have a self-referential edge and the weight of BB is known. 1432 if (BBWeight >= TotalWeight) 1433 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1434 else 1435 EdgeWeights[SelfReferentialEdge] = 0; 1436 VisitedEdges.insert(SelfReferentialEdge); 1437 Changed = true; 1438 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; 1439 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1440 } 1441 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1442 BlockWeights[EC] = TotalWeight; 1443 VisitedBlocks.insert(EC); 1444 Changed = true; 1445 } 1446 } 1447 } 1448 1449 return Changed; 1450 } 1451 1452 /// Build in/out edge lists for each basic block in the CFG. 1453 /// 1454 /// We are interested in unique edges. If a block B1 has multiple 1455 /// edges to another block B2, we only add a single B1->B2 edge. 1456 void SampleProfileLoader::buildEdges(Function &F) { 1457 for (auto &BI : F) { 1458 BasicBlock *B1 = &BI; 1459 1460 // Add predecessors for B1. 1461 SmallPtrSet<BasicBlock *, 16> Visited; 1462 if (!Predecessors[B1].empty()) 1463 llvm_unreachable("Found a stale predecessors list in a basic block."); 1464 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1465 BasicBlock *B2 = *PI; 1466 if (Visited.insert(B2).second) 1467 Predecessors[B1].push_back(B2); 1468 } 1469 1470 // Add successors for B1. 1471 Visited.clear(); 1472 if (!Successors[B1].empty()) 1473 llvm_unreachable("Found a stale successors list in a basic block."); 1474 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1475 BasicBlock *B2 = *SI; 1476 if (Visited.insert(B2).second) 1477 Successors[B1].push_back(B2); 1478 } 1479 } 1480 } 1481 1482 /// Returns the sorted CallTargetMap \p M by count in descending order. 1483 static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets( 1484 const SampleRecord::CallTargetMap & M) { 1485 SmallVector<InstrProfValueData, 2> R; 1486 for (const auto &I : SampleRecord::SortCallTargets(M)) { 1487 R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second}); 1488 } 1489 return R; 1490 } 1491 1492 /// Propagate weights into edges 1493 /// 1494 /// The following rules are applied to every block BB in the CFG: 1495 /// 1496 /// - If BB has a single predecessor/successor, then the weight 1497 /// of that edge is the weight of the block. 1498 /// 1499 /// - If all incoming or outgoing edges are known except one, and the 1500 /// weight of the block is already known, the weight of the unknown 1501 /// edge will be the weight of the block minus the sum of all the known 1502 /// edges. If the sum of all the known edges is larger than BB's weight, 1503 /// we set the unknown edge weight to zero. 1504 /// 1505 /// - If there is a self-referential edge, and the weight of the block is 1506 /// known, the weight for that edge is set to the weight of the block 1507 /// minus the weight of the other incoming edges to that block (if 1508 /// known). 1509 void SampleProfileLoader::propagateWeights(Function &F) { 1510 bool Changed = true; 1511 unsigned I = 0; 1512 1513 // If BB weight is larger than its corresponding loop's header BB weight, 1514 // use the BB weight to replace the loop header BB weight. 1515 for (auto &BI : F) { 1516 BasicBlock *BB = &BI; 1517 Loop *L = LI->getLoopFor(BB); 1518 if (!L) { 1519 continue; 1520 } 1521 BasicBlock *Header = L->getHeader(); 1522 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1523 BlockWeights[Header] = BlockWeights[BB]; 1524 } 1525 } 1526 1527 // Before propagation starts, build, for each block, a list of 1528 // unique predecessors and successors. This is necessary to handle 1529 // identical edges in multiway branches. Since we visit all blocks and all 1530 // edges of the CFG, it is cleaner to build these lists once at the start 1531 // of the pass. 1532 buildEdges(F); 1533 1534 // Propagate until we converge or we go past the iteration limit. 1535 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1536 Changed = propagateThroughEdges(F, false); 1537 } 1538 1539 // The first propagation propagates BB counts from annotated BBs to unknown 1540 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1541 // to propagate edge weights. 1542 VisitedEdges.clear(); 1543 Changed = true; 1544 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1545 Changed = propagateThroughEdges(F, false); 1546 } 1547 1548 // The 3rd propagation pass allows adjust annotated BB weights that are 1549 // obviously wrong. 1550 Changed = true; 1551 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1552 Changed = propagateThroughEdges(F, true); 1553 } 1554 1555 // Generate MD_prof metadata for every branch instruction using the 1556 // edge weights computed during propagation. 1557 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1558 LLVMContext &Ctx = F.getContext(); 1559 MDBuilder MDB(Ctx); 1560 for (auto &BI : F) { 1561 BasicBlock *BB = &BI; 1562 1563 if (BlockWeights[BB]) { 1564 for (auto &I : BB->getInstList()) { 1565 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1566 continue; 1567 if (!cast<CallBase>(I).getCalledFunction()) { 1568 const DebugLoc &DLoc = I.getDebugLoc(); 1569 if (!DLoc) 1570 continue; 1571 const DILocation *DIL = DLoc; 1572 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 1573 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1574 1575 const FunctionSamples *FS = findFunctionSamples(I); 1576 if (!FS) 1577 continue; 1578 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1579 if (!T || T.get().empty()) 1580 continue; 1581 SmallVector<InstrProfValueData, 2> SortedCallTargets = 1582 GetSortedValueDataFromCallTargets(T.get()); 1583 uint64_t Sum; 1584 findIndirectCallFunctionSamples(I, Sum); 1585 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1586 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1587 SortedCallTargets.size()); 1588 } else if (!isa<IntrinsicInst>(&I)) { 1589 I.setMetadata(LLVMContext::MD_prof, 1590 MDB.createBranchWeights( 1591 {static_cast<uint32_t>(BlockWeights[BB])})); 1592 } 1593 } 1594 } 1595 Instruction *TI = BB->getTerminator(); 1596 if (TI->getNumSuccessors() == 1) 1597 continue; 1598 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1599 continue; 1600 1601 DebugLoc BranchLoc = TI->getDebugLoc(); 1602 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " 1603 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1604 : Twine("<UNKNOWN LOCATION>")) 1605 << ".\n"); 1606 SmallVector<uint32_t, 4> Weights; 1607 uint32_t MaxWeight = 0; 1608 Instruction *MaxDestInst; 1609 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1610 BasicBlock *Succ = TI->getSuccessor(I); 1611 Edge E = std::make_pair(BB, Succ); 1612 uint64_t Weight = EdgeWeights[E]; 1613 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1614 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1615 // if needed. Sample counts in profiles are 64-bit unsigned values, 1616 // but internally branch weights are expressed as 32-bit values. 1617 if (Weight > std::numeric_limits<uint32_t>::max()) { 1618 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1619 Weight = std::numeric_limits<uint32_t>::max(); 1620 } 1621 // Weight is added by one to avoid propagation errors introduced by 1622 // 0 weights. 1623 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1624 if (Weight != 0) { 1625 if (Weight > MaxWeight) { 1626 MaxWeight = Weight; 1627 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1628 } 1629 } 1630 } 1631 1632 misexpect::verifyMisExpect(TI, Weights, TI->getContext()); 1633 1634 uint64_t TempWeight; 1635 // Only set weights if there is at least one non-zero weight. 1636 // In any other case, let the analyzer set weights. 1637 // Do not set weights if the weights are present. In ThinLTO, the profile 1638 // annotation is done twice. If the first annotation already set the 1639 // weights, the second pass does not need to set it. 1640 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1641 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1642 TI->setMetadata(LLVMContext::MD_prof, 1643 MDB.createBranchWeights(Weights)); 1644 ORE->emit([&]() { 1645 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1646 << "most popular destination for conditional branches at " 1647 << ore::NV("CondBranchesLoc", BranchLoc); 1648 }); 1649 } else { 1650 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1651 } 1652 } 1653 } 1654 1655 /// Get the line number for the function header. 1656 /// 1657 /// This looks up function \p F in the current compilation unit and 1658 /// retrieves the line number where the function is defined. This is 1659 /// line 0 for all the samples read from the profile file. Every line 1660 /// number is relative to this line. 1661 /// 1662 /// \param F Function object to query. 1663 /// 1664 /// \returns the line number where \p F is defined. If it returns 0, 1665 /// it means that there is no debug information available for \p F. 1666 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1667 if (DISubprogram *S = F.getSubprogram()) 1668 return S->getLine(); 1669 1670 if (NoWarnSampleUnused) 1671 return 0; 1672 1673 // If the start of \p F is missing, emit a diagnostic to inform the user 1674 // about the missed opportunity. 1675 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1676 "No debug information found in function " + F.getName() + 1677 ": Function profile not used", 1678 DS_Warning)); 1679 return 0; 1680 } 1681 1682 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1683 DT.reset(new DominatorTree); 1684 DT->recalculate(F); 1685 1686 PDT.reset(new PostDominatorTree(F)); 1687 1688 LI.reset(new LoopInfo); 1689 LI->analyze(*DT); 1690 } 1691 1692 /// Generate branch weight metadata for all branches in \p F. 1693 /// 1694 /// Branch weights are computed out of instruction samples using a 1695 /// propagation heuristic. Propagation proceeds in 3 phases: 1696 /// 1697 /// 1- Assignment of block weights. All the basic blocks in the function 1698 /// are initial assigned the same weight as their most frequently 1699 /// executed instruction. 1700 /// 1701 /// 2- Creation of equivalence classes. Since samples may be missing from 1702 /// blocks, we can fill in the gaps by setting the weights of all the 1703 /// blocks in the same equivalence class to the same weight. To compute 1704 /// the concept of equivalence, we use dominance and loop information. 1705 /// Two blocks B1 and B2 are in the same equivalence class if B1 1706 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1707 /// 1708 /// 3- Propagation of block weights into edges. This uses a simple 1709 /// propagation heuristic. The following rules are applied to every 1710 /// block BB in the CFG: 1711 /// 1712 /// - If BB has a single predecessor/successor, then the weight 1713 /// of that edge is the weight of the block. 1714 /// 1715 /// - If all the edges are known except one, and the weight of the 1716 /// block is already known, the weight of the unknown edge will 1717 /// be the weight of the block minus the sum of all the known 1718 /// edges. If the sum of all the known edges is larger than BB's weight, 1719 /// we set the unknown edge weight to zero. 1720 /// 1721 /// - If there is a self-referential edge, and the weight of the block is 1722 /// known, the weight for that edge is set to the weight of the block 1723 /// minus the weight of the other incoming edges to that block (if 1724 /// known). 1725 /// 1726 /// Since this propagation is not guaranteed to finalize for every CFG, we 1727 /// only allow it to proceed for a limited number of iterations (controlled 1728 /// by -sample-profile-max-propagate-iterations). 1729 /// 1730 /// FIXME: Try to replace this propagation heuristic with a scheme 1731 /// that is guaranteed to finalize. A work-list approach similar to 1732 /// the standard value propagation algorithm used by SSA-CCP might 1733 /// work here. 1734 /// 1735 /// Once all the branch weights are computed, we emit the MD_prof 1736 /// metadata on BB using the computed values for each of its branches. 1737 /// 1738 /// \param F The function to query. 1739 /// 1740 /// \returns true if \p F was modified. Returns false, otherwise. 1741 bool SampleProfileLoader::emitAnnotations(Function &F) { 1742 bool Changed = false; 1743 1744 if (getFunctionLoc(F) == 0) 1745 return false; 1746 1747 LLVM_DEBUG(dbgs() << "Line number for the first instruction in " 1748 << F.getName() << ": " << getFunctionLoc(F) << "\n"); 1749 1750 DenseSet<GlobalValue::GUID> InlinedGUIDs; 1751 Changed |= inlineHotFunctions(F, InlinedGUIDs); 1752 1753 // Compute basic block weights. 1754 Changed |= computeBlockWeights(F); 1755 1756 if (Changed) { 1757 // Add an entry count to the function using the samples gathered at the 1758 // function entry. 1759 // Sets the GUIDs that are inlined in the profiled binary. This is used 1760 // for ThinLink to make correct liveness analysis, and also make the IR 1761 // match the profiled binary before annotation. 1762 F.setEntryCount( 1763 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), 1764 &InlinedGUIDs); 1765 1766 // Compute dominance and loop info needed for propagation. 1767 computeDominanceAndLoopInfo(F); 1768 1769 // Find equivalence classes. 1770 findEquivalenceClasses(F); 1771 1772 // Propagate weights to all edges. 1773 propagateWeights(F); 1774 } 1775 1776 // If coverage checking was requested, compute it now. 1777 if (SampleProfileRecordCoverage) { 1778 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); 1779 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); 1780 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1781 if (Coverage < SampleProfileRecordCoverage) { 1782 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1783 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1784 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1785 Twine(Coverage) + "%) were applied", 1786 DS_Warning)); 1787 } 1788 } 1789 1790 if (SampleProfileSampleCoverage) { 1791 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1792 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); 1793 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1794 if (Coverage < SampleProfileSampleCoverage) { 1795 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1796 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1797 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1798 Twine(Coverage) + "%) were applied", 1799 DS_Warning)); 1800 } 1801 } 1802 return Changed; 1803 } 1804 1805 char SampleProfileLoaderLegacyPass::ID = 0; 1806 1807 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1808 "Sample Profile loader", false, false) 1809 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1810 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1811 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1812 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1813 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1814 "Sample Profile loader", false, false) 1815 1816 std::vector<Function *> 1817 SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) { 1818 std::vector<Function *> FunctionOrderList; 1819 FunctionOrderList.reserve(M.size()); 1820 1821 if (!ProfileTopDownLoad || CG == nullptr) { 1822 if (ProfileMergeInlinee) { 1823 // Disable ProfileMergeInlinee if profile is not loaded in top down order, 1824 // because the profile for a function may be used for the profile 1825 // annotation of its outline copy before the profile merging of its 1826 // non-inlined inline instances, and that is not the way how 1827 // ProfileMergeInlinee is supposed to work. 1828 ProfileMergeInlinee = false; 1829 } 1830 1831 for (Function &F : M) 1832 if (!F.isDeclaration() && F.hasFnAttribute("use-sample-profile")) 1833 FunctionOrderList.push_back(&F); 1834 return FunctionOrderList; 1835 } 1836 1837 assert(&CG->getModule() == &M); 1838 scc_iterator<CallGraph *> CGI = scc_begin(CG); 1839 while (!CGI.isAtEnd()) { 1840 for (CallGraphNode *node : *CGI) { 1841 auto F = node->getFunction(); 1842 if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile")) 1843 FunctionOrderList.push_back(F); 1844 } 1845 ++CGI; 1846 } 1847 1848 std::reverse(FunctionOrderList.begin(), FunctionOrderList.end()); 1849 return FunctionOrderList; 1850 } 1851 1852 bool SampleProfileLoader::doInitialization(Module &M, 1853 FunctionAnalysisManager *FAM) { 1854 auto &Ctx = M.getContext(); 1855 1856 auto ReaderOrErr = 1857 SampleProfileReader::create(Filename, Ctx, RemappingFilename); 1858 if (std::error_code EC = ReaderOrErr.getError()) { 1859 std::string Msg = "Could not open profile: " + EC.message(); 1860 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1861 return false; 1862 } 1863 Reader = std::move(ReaderOrErr.get()); 1864 Reader->collectFuncsFrom(M); 1865 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1866 PSL = Reader->getProfileSymbolList(); 1867 1868 // While profile-sample-accurate is on, ignore symbol list. 1869 ProfAccForSymsInList = 1870 ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate; 1871 if (ProfAccForSymsInList) { 1872 NamesInProfile.clear(); 1873 if (auto NameTable = Reader->getNameTable()) 1874 NamesInProfile.insert(NameTable->begin(), NameTable->end()); 1875 } 1876 1877 if (FAM && !ProfileInlineReplayFile.empty()) { 1878 ExternalInlineAdvisor = std::make_unique<ReplayInlineAdvisor>( 1879 *FAM, Ctx, ProfileInlineReplayFile); 1880 if (!ExternalInlineAdvisor->areReplayRemarksLoaded()) 1881 ExternalInlineAdvisor.reset(); 1882 } 1883 1884 return true; 1885 } 1886 1887 ModulePass *llvm::createSampleProfileLoaderPass() { 1888 return new SampleProfileLoaderLegacyPass(); 1889 } 1890 1891 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1892 return new SampleProfileLoaderLegacyPass(Name); 1893 } 1894 1895 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, 1896 ProfileSummaryInfo *_PSI, CallGraph *CG) { 1897 if (!ProfileIsValid) 1898 return false; 1899 GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap); 1900 1901 PSI = _PSI; 1902 if (M.getProfileSummary(/* IsCS */ false) == nullptr) { 1903 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()), 1904 ProfileSummary::PSK_Sample); 1905 PSI->refresh(); 1906 } 1907 // Compute the total number of samples collected in this profile. 1908 for (const auto &I : Reader->getProfiles()) 1909 TotalCollectedSamples += I.second.getTotalSamples(); 1910 1911 auto Remapper = Reader->getRemapper(); 1912 // Populate the symbol map. 1913 for (const auto &N_F : M.getValueSymbolTable()) { 1914 StringRef OrigName = N_F.getKey(); 1915 Function *F = dyn_cast<Function>(N_F.getValue()); 1916 if (F == nullptr) 1917 continue; 1918 SymbolMap[OrigName] = F; 1919 auto pos = OrigName.find('.'); 1920 if (pos != StringRef::npos) { 1921 StringRef NewName = OrigName.substr(0, pos); 1922 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1923 // Failiing to insert means there is already an entry in SymbolMap, 1924 // thus there are multiple functions that are mapped to the same 1925 // stripped name. In this case of name conflicting, set the value 1926 // to nullptr to avoid confusion. 1927 if (!r.second) 1928 r.first->second = nullptr; 1929 OrigName = NewName; 1930 } 1931 // Insert the remapped names into SymbolMap. 1932 if (Remapper) { 1933 if (auto MapName = Remapper->lookUpNameInProfile(OrigName)) { 1934 if (*MapName == OrigName) 1935 continue; 1936 SymbolMap.insert(std::make_pair(*MapName, F)); 1937 } 1938 } 1939 } 1940 1941 bool retval = false; 1942 for (auto F : buildFunctionOrder(M, CG)) { 1943 assert(!F->isDeclaration()); 1944 clearFunctionData(); 1945 retval |= runOnFunction(*F, AM); 1946 } 1947 1948 // Account for cold calls not inlined.... 1949 for (const std::pair<Function *, NotInlinedProfileInfo> &pair : 1950 notInlinedCallInfo) 1951 updateProfileCallee(pair.first, pair.second.entryCount); 1952 1953 return retval; 1954 } 1955 1956 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1957 ACT = &getAnalysis<AssumptionCacheTracker>(); 1958 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 1959 TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>(); 1960 ProfileSummaryInfo *PSI = 1961 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1962 return SampleLoader.runOnModule(M, nullptr, PSI, nullptr); 1963 } 1964 1965 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 1966 1967 DILocation2SampleMap.clear(); 1968 // By default the entry count is initialized to -1, which will be treated 1969 // conservatively by getEntryCount as the same as unknown (None). This is 1970 // to avoid newly added code to be treated as cold. If we have samples 1971 // this will be overwritten in emitAnnotations. 1972 uint64_t initialEntryCount = -1; 1973 1974 ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL; 1975 if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) { 1976 // initialize all the function entry counts to 0. It means all the 1977 // functions without profile will be regarded as cold. 1978 initialEntryCount = 0; 1979 // profile-sample-accurate is a user assertion which has a higher precedence 1980 // than symbol list. When profile-sample-accurate is on, ignore symbol list. 1981 ProfAccForSymsInList = false; 1982 } 1983 1984 // PSL -- profile symbol list include all the symbols in sampled binary. 1985 // If ProfileAccurateForSymsInList is enabled, PSL is used to treat 1986 // old functions without samples being cold, without having to worry 1987 // about new and hot functions being mistakenly treated as cold. 1988 if (ProfAccForSymsInList) { 1989 // Initialize the entry count to 0 for functions in the list. 1990 if (PSL->contains(F.getName())) 1991 initialEntryCount = 0; 1992 1993 // Function in the symbol list but without sample will be regarded as 1994 // cold. To minimize the potential negative performance impact it could 1995 // have, we want to be a little conservative here saying if a function 1996 // shows up in the profile, no matter as outline function, inline instance 1997 // or call targets, treat the function as not being cold. This will handle 1998 // the cases such as most callsites of a function are inlined in sampled 1999 // binary but not inlined in current build (because of source code drift, 2000 // imprecise debug information, or the callsites are all cold individually 2001 // but not cold accumulatively...), so the outline function showing up as 2002 // cold in sampled binary will actually not be cold after current build. 2003 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 2004 if (NamesInProfile.count(CanonName)) 2005 initialEntryCount = -1; 2006 } 2007 2008 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real)); 2009 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 2010 if (AM) { 2011 auto &FAM = 2012 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 2013 .getManager(); 2014 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 2015 } else { 2016 OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F); 2017 ORE = OwnedORE.get(); 2018 } 2019 Samples = Reader->getSamplesFor(F); 2020 if (Samples && !Samples->empty()) 2021 return emitAnnotations(F); 2022 return false; 2023 } 2024 2025 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 2026 ModuleAnalysisManager &AM) { 2027 FunctionAnalysisManager &FAM = 2028 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2029 2030 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 2031 return FAM.getResult<AssumptionAnalysis>(F); 2032 }; 2033 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 2034 return FAM.getResult<TargetIRAnalysis>(F); 2035 }; 2036 auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & { 2037 return FAM.getResult<TargetLibraryAnalysis>(F); 2038 }; 2039 2040 SampleProfileLoader SampleLoader( 2041 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 2042 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile 2043 : ProfileRemappingFileName, 2044 IsThinLTOPreLink, GetAssumptionCache, GetTTI, GetTLI); 2045 2046 if (!SampleLoader.doInitialization(M, &FAM)) 2047 return PreservedAnalyses::all(); 2048 2049 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 2050 CallGraph &CG = AM.getResult<CallGraphAnalysis>(M); 2051 if (!SampleLoader.runOnModule(M, &AM, PSI, &CG)) 2052 return PreservedAnalyses::all(); 2053 2054 return PreservedAnalyses::none(); 2055 } 2056