1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/PostDominators.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/InstIterator.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Metadata.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/Pass.h" 43 #include "llvm/ProfileData/SampleProfReader.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorOr.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Transforms/IPO.h" 49 #include "llvm/Transforms/Utils/Cloning.h" 50 #include <cctype> 51 52 using namespace llvm; 53 using namespace sampleprof; 54 55 #define DEBUG_TYPE "sample-profile" 56 57 // Command line option to specify the file to read samples from. This is 58 // mainly used for debugging. 59 static cl::opt<std::string> SampleProfileFile( 60 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 61 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 62 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 63 "sample-profile-max-propagate-iterations", cl::init(100), 64 cl::desc("Maximum number of iterations to go through when propagating " 65 "sample block/edge weights through the CFG.")); 66 67 namespace { 68 typedef DenseMap<const BasicBlock *, unsigned> BlockWeightMap; 69 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap; 70 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge; 71 typedef DenseMap<Edge, unsigned> EdgeWeightMap; 72 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>> 73 BlockEdgeMap; 74 75 /// \brief Sample profile pass. 76 /// 77 /// This pass reads profile data from the file specified by 78 /// -sample-profile-file and annotates every affected function with the 79 /// profile information found in that file. 80 class SampleProfileLoader : public ModulePass { 81 public: 82 // Class identification, replacement for typeinfo 83 static char ID; 84 85 SampleProfileLoader(StringRef Name = SampleProfileFile) 86 : ModulePass(ID), DT(nullptr), PDT(nullptr), LI(nullptr), Reader(), 87 Samples(nullptr), Filename(Name), ProfileIsValid(false) { 88 initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry()); 89 } 90 91 bool doInitialization(Module &M) override; 92 93 void dump() { Reader->dump(); } 94 95 const char *getPassName() const override { return "Sample profile pass"; } 96 97 bool runOnModule(Module &M) override; 98 99 void getAnalysisUsage(AnalysisUsage &AU) const override { 100 AU.setPreservesCFG(); 101 } 102 103 protected: 104 bool runOnFunction(Function &F); 105 unsigned getFunctionLoc(Function &F); 106 bool emitAnnotations(Function &F); 107 ErrorOr<unsigned> getInstWeight(const Instruction &I) const; 108 ErrorOr<unsigned> getBlockWeight(const BasicBlock *BB) const; 109 const FunctionSamples *findCalleeFunctionSamples(const CallInst &I) const; 110 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 111 bool inlineHotFunctions(Function &F); 112 void printEdgeWeight(raw_ostream &OS, Edge E); 113 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 114 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 115 bool computeBlockWeights(Function &F); 116 void findEquivalenceClasses(Function &F); 117 void findEquivalencesFor(BasicBlock *BB1, 118 SmallVector<BasicBlock *, 8> Descendants, 119 DominatorTreeBase<BasicBlock> *DomTree); 120 void propagateWeights(Function &F); 121 unsigned visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 122 void buildEdges(Function &F); 123 bool propagateThroughEdges(Function &F); 124 void computeDominanceAndLoopInfo(Function &F); 125 126 /// \brief Line number for the function header. Used to compute absolute 127 /// line numbers from the relative line numbers found in the profile. 128 unsigned HeaderLineno; 129 130 /// \brief Map basic blocks to their computed weights. 131 /// 132 /// The weight of a basic block is defined to be the maximum 133 /// of all the instruction weights in that block. 134 BlockWeightMap BlockWeights; 135 136 /// \brief Map edges to their computed weights. 137 /// 138 /// Edge weights are computed by propagating basic block weights in 139 /// SampleProfile::propagateWeights. 140 EdgeWeightMap EdgeWeights; 141 142 /// \brief Set of visited blocks during propagation. 143 SmallPtrSet<const BasicBlock *, 128> VisitedBlocks; 144 145 /// \brief Set of visited edges during propagation. 146 SmallSet<Edge, 128> VisitedEdges; 147 148 /// \brief Equivalence classes for block weights. 149 /// 150 /// Two blocks BB1 and BB2 are in the same equivalence class if they 151 /// dominate and post-dominate each other, and they are in the same loop 152 /// nest. When this happens, the two blocks are guaranteed to execute 153 /// the same number of times. 154 EquivalenceClassMap EquivalenceClass; 155 156 /// \brief Dominance, post-dominance and loop information. 157 std::unique_ptr<DominatorTree> DT; 158 std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT; 159 std::unique_ptr<LoopInfo> LI; 160 161 /// \brief Predecessors for each basic block in the CFG. 162 BlockEdgeMap Predecessors; 163 164 /// \brief Successors for each basic block in the CFG. 165 BlockEdgeMap Successors; 166 167 /// \brief Profile reader object. 168 std::unique_ptr<SampleProfileReader> Reader; 169 170 /// \brief Samples collected for the body of this function. 171 FunctionSamples *Samples; 172 173 /// \brief Name of the profile file to load. 174 StringRef Filename; 175 176 /// \brief Flag indicating whether the profile input loaded successfully. 177 bool ProfileIsValid; 178 }; 179 } 180 181 /// \brief Print the weight of edge \p E on stream \p OS. 182 /// 183 /// \param OS Stream to emit the output to. 184 /// \param E Edge to print. 185 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 186 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 187 << "]: " << EdgeWeights[E] << "\n"; 188 } 189 190 /// \brief Print the equivalence class of block \p BB on stream \p OS. 191 /// 192 /// \param OS Stream to emit the output to. 193 /// \param BB Block to print. 194 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 195 const BasicBlock *BB) { 196 const BasicBlock *Equiv = EquivalenceClass[BB]; 197 OS << "equivalence[" << BB->getName() 198 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 199 } 200 201 /// \brief Print the weight of block \p BB on stream \p OS. 202 /// 203 /// \param OS Stream to emit the output to. 204 /// \param BB Block to print. 205 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 206 const BasicBlock *BB) const { 207 const auto &I = BlockWeights.find(BB); 208 unsigned W = (I == BlockWeights.end() ? 0 : I->second); 209 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 210 } 211 212 /// \brief Get the weight for an instruction. 213 /// 214 /// The "weight" of an instruction \p Inst is the number of samples 215 /// collected on that instruction at runtime. To retrieve it, we 216 /// need to compute the line number of \p Inst relative to the start of its 217 /// function. We use HeaderLineno to compute the offset. We then 218 /// look up the samples collected for \p Inst using BodySamples. 219 /// 220 /// \param Inst Instruction to query. 221 /// 222 /// \returns the weight of \p Inst. 223 ErrorOr<unsigned> 224 SampleProfileLoader::getInstWeight(const Instruction &Inst) const { 225 DebugLoc DLoc = Inst.getDebugLoc(); 226 if (!DLoc) 227 return std::error_code(); 228 229 unsigned Lineno = DLoc.getLine(); 230 if (Lineno < HeaderLineno) 231 return std::error_code(); 232 233 const DILocation *DIL = DLoc; 234 const FunctionSamples *FS = findFunctionSamples(Inst); 235 if (!FS) 236 return std::error_code(); 237 ErrorOr<unsigned> R = 238 FS->findSamplesAt(Lineno - HeaderLineno, DIL->getDiscriminator()); 239 if (R) 240 DEBUG(dbgs() << " " << Lineno << "." << DIL->getDiscriminator() << ":" 241 << Inst << " (line offset: " << Lineno - HeaderLineno << "." 242 << DIL->getDiscriminator() << " - weight: " << R.get() 243 << ")\n"); 244 return R; 245 } 246 247 /// \brief Compute the weight of a basic block. 248 /// 249 /// The weight of basic block \p BB is the maximum weight of all the 250 /// instructions in BB. 251 /// 252 /// \param BB The basic block to query. 253 /// 254 /// \returns the weight for \p BB. 255 ErrorOr<unsigned> 256 SampleProfileLoader::getBlockWeight(const BasicBlock *BB) const { 257 bool Found = false; 258 unsigned Weight = 0; 259 for (auto &I : BB->getInstList()) { 260 const ErrorOr<unsigned> &R = getInstWeight(I); 261 if (R && R.get() >= Weight) { 262 Weight = R.get(); 263 Found = true; 264 } 265 } 266 if (Found) 267 return Weight; 268 else 269 return std::error_code(); 270 } 271 272 /// \brief Compute and store the weights of every basic block. 273 /// 274 /// This populates the BlockWeights map by computing 275 /// the weights of every basic block in the CFG. 276 /// 277 /// \param F The function to query. 278 bool SampleProfileLoader::computeBlockWeights(Function &F) { 279 bool Changed = false; 280 DEBUG(dbgs() << "Block weights\n"); 281 for (const auto &BB : F) { 282 ErrorOr<unsigned> Weight = getBlockWeight(&BB); 283 if (Weight) { 284 BlockWeights[&BB] = Weight.get(); 285 VisitedBlocks.insert(&BB); 286 Changed = true; 287 } 288 DEBUG(printBlockWeight(dbgs(), &BB)); 289 } 290 291 return Changed; 292 } 293 294 /// \brief Get the FunctionSamples for a call instruction. 295 /// 296 /// The FunctionSamples of a call instruction \p Inst is the inlined 297 /// instance in which that call instruction is calling to. It contains 298 /// all samples that resides in the inlined instance. We first find the 299 /// inlined instance in which the call instruction is from, then we 300 /// traverse its children to find the callsite with the matching 301 /// location and callee function name. 302 /// 303 /// \param Inst Call instruction to query. 304 /// 305 /// \returns The FunctionSamples pointer to the inlined instance. 306 const FunctionSamples * 307 SampleProfileLoader::findCalleeFunctionSamples(const CallInst &Inst) const { 308 const DILocation *DIL = Inst.getDebugLoc(); 309 if (!DIL) { 310 return nullptr; 311 } 312 DISubprogram *SP = DIL->getScope()->getSubprogram(); 313 if (!SP || DIL->getLine() < SP->getLine()) 314 return nullptr; 315 316 Function *CalleeFunc = Inst.getCalledFunction(); 317 if (!CalleeFunc) { 318 return nullptr; 319 } 320 321 StringRef CalleeName = CalleeFunc->getName(); 322 const FunctionSamples *FS = findFunctionSamples(Inst); 323 if (FS == nullptr) 324 return nullptr; 325 326 return FS->findFunctionSamplesAt(CallsiteLocation( 327 DIL->getLine() - SP->getLine(), DIL->getDiscriminator(), CalleeName)); 328 } 329 330 /// \brief Get the FunctionSamples for an instruction. 331 /// 332 /// The FunctionSamples of an instruction \p Inst is the inlined instance 333 /// in which that instruction is coming from. We traverse the inline stack 334 /// of that instruction, and match it with the tree nodes in the profile. 335 /// 336 /// \param Inst Instruction to query. 337 /// 338 /// \returns the FunctionSamples pointer to the inlined instance. 339 const FunctionSamples * 340 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 341 SmallVector<CallsiteLocation, 10> S; 342 const DILocation *DIL = Inst.getDebugLoc(); 343 if (!DIL) { 344 return Samples; 345 } 346 StringRef CalleeName; 347 for (const DILocation *DIL = Inst.getDebugLoc(); DIL; 348 DIL = DIL->getInlinedAt()) { 349 DISubprogram *SP = DIL->getScope()->getSubprogram(); 350 if (!SP || DIL->getLine() < SP->getLine()) 351 return nullptr; 352 if (!CalleeName.empty()) { 353 S.push_back(CallsiteLocation(DIL->getLine() - SP->getLine(), 354 DIL->getDiscriminator(), CalleeName)); 355 } 356 CalleeName = SP->getLinkageName(); 357 } 358 if (S.size() == 0) 359 return Samples; 360 const FunctionSamples *FS = Samples; 361 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 362 FS = FS->findFunctionSamplesAt(S[i]); 363 } 364 return FS; 365 } 366 367 /// \brief Iteratively inline hot callsites of a function. 368 /// 369 /// Iteratively traverse all callsites of the function \p F, and find if 370 /// the corresponding inlined instance exists and is hot in profile. If 371 /// it is hot enough, inline the callsites and adds new callsites of the 372 /// callee into the caller. 373 /// 374 /// TODO: investigate the possibility of not invoking InlineFunction directly. 375 /// 376 /// \param F function to perform iterative inlining. 377 /// 378 /// \returns True if there is any inline happened. 379 bool SampleProfileLoader::inlineHotFunctions(Function &F) { 380 bool Changed = false; 381 while (true) { 382 bool LocalChanged = false; 383 SmallVector<CallInst *, 10> CIS; 384 for (auto &BB : F) { 385 for (auto &I : BB.getInstList()) { 386 CallInst *CI = dyn_cast<CallInst>(&I); 387 if (CI) { 388 const FunctionSamples *FS = findCalleeFunctionSamples(*CI); 389 if (FS && FS->getTotalSamples() > 0) { 390 CIS.push_back(CI); 391 } 392 } 393 } 394 } 395 for (auto CI : CIS) { 396 InlineFunctionInfo IFI; 397 if (InlineFunction(CI, IFI)) 398 LocalChanged = true; 399 } 400 if (LocalChanged) { 401 Changed = true; 402 } else { 403 break; 404 } 405 } 406 return Changed; 407 } 408 409 /// \brief Find equivalence classes for the given block. 410 /// 411 /// This finds all the blocks that are guaranteed to execute the same 412 /// number of times as \p BB1. To do this, it traverses all the 413 /// descendants of \p BB1 in the dominator or post-dominator tree. 414 /// 415 /// A block BB2 will be in the same equivalence class as \p BB1 if 416 /// the following holds: 417 /// 418 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 419 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 420 /// dominate BB1 in the post-dominator tree. 421 /// 422 /// 2- Both BB2 and \p BB1 must be in the same loop. 423 /// 424 /// For every block BB2 that meets those two requirements, we set BB2's 425 /// equivalence class to \p BB1. 426 /// 427 /// \param BB1 Block to check. 428 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 429 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 430 /// with blocks from \p BB1's dominator tree, then 431 /// this is the post-dominator tree, and vice versa. 432 void SampleProfileLoader::findEquivalencesFor( 433 BasicBlock *BB1, SmallVector<BasicBlock *, 8> Descendants, 434 DominatorTreeBase<BasicBlock> *DomTree) { 435 const BasicBlock *EC = EquivalenceClass[BB1]; 436 unsigned Weight = BlockWeights[EC]; 437 for (const auto *BB2 : Descendants) { 438 bool IsDomParent = DomTree->dominates(BB2, BB1); 439 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 440 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 441 EquivalenceClass[BB2] = EC; 442 443 // If BB2 is heavier than BB1, make BB2 have the same weight 444 // as BB1. 445 // 446 // Note that we don't worry about the opposite situation here 447 // (when BB2 is lighter than BB1). We will deal with this 448 // during the propagation phase. Right now, we just want to 449 // make sure that BB1 has the largest weight of all the 450 // members of its equivalence set. 451 Weight = std::max(Weight, BlockWeights[BB2]); 452 } 453 } 454 BlockWeights[EC] = Weight; 455 } 456 457 /// \brief Find equivalence classes. 458 /// 459 /// Since samples may be missing from blocks, we can fill in the gaps by setting 460 /// the weights of all the blocks in the same equivalence class to the same 461 /// weight. To compute the concept of equivalence, we use dominance and loop 462 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 463 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 464 /// 465 /// \param F The function to query. 466 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 467 SmallVector<BasicBlock *, 8> DominatedBBs; 468 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 469 // Find equivalence sets based on dominance and post-dominance information. 470 for (auto &BB : F) { 471 BasicBlock *BB1 = &BB; 472 473 // Compute BB1's equivalence class once. 474 if (EquivalenceClass.count(BB1)) { 475 DEBUG(printBlockEquivalence(dbgs(), BB1)); 476 continue; 477 } 478 479 // By default, blocks are in their own equivalence class. 480 EquivalenceClass[BB1] = BB1; 481 482 // Traverse all the blocks dominated by BB1. We are looking for 483 // every basic block BB2 such that: 484 // 485 // 1- BB1 dominates BB2. 486 // 2- BB2 post-dominates BB1. 487 // 3- BB1 and BB2 are in the same loop nest. 488 // 489 // If all those conditions hold, it means that BB2 is executed 490 // as many times as BB1, so they are placed in the same equivalence 491 // class by making BB2's equivalence class be BB1. 492 DominatedBBs.clear(); 493 DT->getDescendants(BB1, DominatedBBs); 494 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 495 496 DEBUG(printBlockEquivalence(dbgs(), BB1)); 497 } 498 499 // Assign weights to equivalence classes. 500 // 501 // All the basic blocks in the same equivalence class will execute 502 // the same number of times. Since we know that the head block in 503 // each equivalence class has the largest weight, assign that weight 504 // to all the blocks in that equivalence class. 505 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 506 for (auto &BI : F) { 507 const BasicBlock *BB = &BI; 508 const BasicBlock *EquivBB = EquivalenceClass[BB]; 509 if (BB != EquivBB) 510 BlockWeights[BB] = BlockWeights[EquivBB]; 511 DEBUG(printBlockWeight(dbgs(), BB)); 512 } 513 } 514 515 /// \brief Visit the given edge to decide if it has a valid weight. 516 /// 517 /// If \p E has not been visited before, we copy to \p UnknownEdge 518 /// and increment the count of unknown edges. 519 /// 520 /// \param E Edge to visit. 521 /// \param NumUnknownEdges Current number of unknown edges. 522 /// \param UnknownEdge Set if E has not been visited before. 523 /// 524 /// \returns E's weight, if known. Otherwise, return 0. 525 unsigned SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 526 Edge *UnknownEdge) { 527 if (!VisitedEdges.count(E)) { 528 (*NumUnknownEdges)++; 529 *UnknownEdge = E; 530 return 0; 531 } 532 533 return EdgeWeights[E]; 534 } 535 536 /// \brief Propagate weights through incoming/outgoing edges. 537 /// 538 /// If the weight of a basic block is known, and there is only one edge 539 /// with an unknown weight, we can calculate the weight of that edge. 540 /// 541 /// Similarly, if all the edges have a known count, we can calculate the 542 /// count of the basic block, if needed. 543 /// 544 /// \param F Function to process. 545 /// 546 /// \returns True if new weights were assigned to edges or blocks. 547 bool SampleProfileLoader::propagateThroughEdges(Function &F) { 548 bool Changed = false; 549 DEBUG(dbgs() << "\nPropagation through edges\n"); 550 for (const auto &BI : F) { 551 const BasicBlock *BB = &BI; 552 const BasicBlock *EC = EquivalenceClass[BB]; 553 554 // Visit all the predecessor and successor edges to determine 555 // which ones have a weight assigned already. Note that it doesn't 556 // matter that we only keep track of a single unknown edge. The 557 // only case we are interested in handling is when only a single 558 // edge is unknown (see setEdgeOrBlockWeight). 559 for (unsigned i = 0; i < 2; i++) { 560 unsigned TotalWeight = 0; 561 unsigned NumUnknownEdges = 0; 562 Edge UnknownEdge, SelfReferentialEdge; 563 564 if (i == 0) { 565 // First, visit all predecessor edges. 566 for (auto *Pred : Predecessors[BB]) { 567 Edge E = std::make_pair(Pred, BB); 568 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 569 if (E.first == E.second) 570 SelfReferentialEdge = E; 571 } 572 } else { 573 // On the second round, visit all successor edges. 574 for (auto *Succ : Successors[BB]) { 575 Edge E = std::make_pair(BB, Succ); 576 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 577 } 578 } 579 580 // After visiting all the edges, there are three cases that we 581 // can handle immediately: 582 // 583 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 584 // In this case, we simply check that the sum of all the edges 585 // is the same as BB's weight. If not, we change BB's weight 586 // to match. Additionally, if BB had not been visited before, 587 // we mark it visited. 588 // 589 // - Only one edge is unknown and BB has already been visited. 590 // In this case, we can compute the weight of the edge by 591 // subtracting the total block weight from all the known 592 // edge weights. If the edges weight more than BB, then the 593 // edge of the last remaining edge is set to zero. 594 // 595 // - There exists a self-referential edge and the weight of BB is 596 // known. In this case, this edge can be based on BB's weight. 597 // We add up all the other known edges and set the weight on 598 // the self-referential edge as we did in the previous case. 599 // 600 // In any other case, we must continue iterating. Eventually, 601 // all edges will get a weight, or iteration will stop when 602 // it reaches SampleProfileMaxPropagateIterations. 603 if (NumUnknownEdges <= 1) { 604 unsigned &BBWeight = BlockWeights[EC]; 605 if (NumUnknownEdges == 0) { 606 // If we already know the weight of all edges, the weight of the 607 // basic block can be computed. It should be no larger than the sum 608 // of all edge weights. 609 if (TotalWeight > BBWeight) { 610 BBWeight = TotalWeight; 611 Changed = true; 612 DEBUG(dbgs() << "All edge weights for " << BB->getName() 613 << " known. Set weight for block: "; 614 printBlockWeight(dbgs(), BB);); 615 } 616 if (VisitedBlocks.insert(EC).second) 617 Changed = true; 618 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 619 // If there is a single unknown edge and the block has been 620 // visited, then we can compute E's weight. 621 if (BBWeight >= TotalWeight) 622 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 623 else 624 EdgeWeights[UnknownEdge] = 0; 625 VisitedEdges.insert(UnknownEdge); 626 Changed = true; 627 DEBUG(dbgs() << "Set weight for edge: "; 628 printEdgeWeight(dbgs(), UnknownEdge)); 629 } 630 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 631 unsigned &BBWeight = BlockWeights[BB]; 632 // We have a self-referential edge and the weight of BB is known. 633 if (BBWeight >= TotalWeight) 634 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 635 else 636 EdgeWeights[SelfReferentialEdge] = 0; 637 VisitedEdges.insert(SelfReferentialEdge); 638 Changed = true; 639 DEBUG(dbgs() << "Set self-referential edge weight to: "; 640 printEdgeWeight(dbgs(), SelfReferentialEdge)); 641 } 642 } 643 } 644 645 return Changed; 646 } 647 648 /// \brief Build in/out edge lists for each basic block in the CFG. 649 /// 650 /// We are interested in unique edges. If a block B1 has multiple 651 /// edges to another block B2, we only add a single B1->B2 edge. 652 void SampleProfileLoader::buildEdges(Function &F) { 653 for (auto &BI : F) { 654 BasicBlock *B1 = &BI; 655 656 // Add predecessors for B1. 657 SmallPtrSet<BasicBlock *, 16> Visited; 658 if (!Predecessors[B1].empty()) 659 llvm_unreachable("Found a stale predecessors list in a basic block."); 660 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 661 BasicBlock *B2 = *PI; 662 if (Visited.insert(B2).second) 663 Predecessors[B1].push_back(B2); 664 } 665 666 // Add successors for B1. 667 Visited.clear(); 668 if (!Successors[B1].empty()) 669 llvm_unreachable("Found a stale successors list in a basic block."); 670 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 671 BasicBlock *B2 = *SI; 672 if (Visited.insert(B2).second) 673 Successors[B1].push_back(B2); 674 } 675 } 676 } 677 678 /// \brief Propagate weights into edges 679 /// 680 /// The following rules are applied to every block BB in the CFG: 681 /// 682 /// - If BB has a single predecessor/successor, then the weight 683 /// of that edge is the weight of the block. 684 /// 685 /// - If all incoming or outgoing edges are known except one, and the 686 /// weight of the block is already known, the weight of the unknown 687 /// edge will be the weight of the block minus the sum of all the known 688 /// edges. If the sum of all the known edges is larger than BB's weight, 689 /// we set the unknown edge weight to zero. 690 /// 691 /// - If there is a self-referential edge, and the weight of the block is 692 /// known, the weight for that edge is set to the weight of the block 693 /// minus the weight of the other incoming edges to that block (if 694 /// known). 695 void SampleProfileLoader::propagateWeights(Function &F) { 696 bool Changed = true; 697 unsigned i = 0; 698 699 // Add an entry count to the function using the samples gathered 700 // at the function entry. 701 F.setEntryCount(Samples->getHeadSamples()); 702 703 // Before propagation starts, build, for each block, a list of 704 // unique predecessors and successors. This is necessary to handle 705 // identical edges in multiway branches. Since we visit all blocks and all 706 // edges of the CFG, it is cleaner to build these lists once at the start 707 // of the pass. 708 buildEdges(F); 709 710 // Propagate until we converge or we go past the iteration limit. 711 while (Changed && i++ < SampleProfileMaxPropagateIterations) { 712 Changed = propagateThroughEdges(F); 713 } 714 715 // Generate MD_prof metadata for every branch instruction using the 716 // edge weights computed during propagation. 717 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 718 MDBuilder MDB(F.getContext()); 719 for (auto &BI : F) { 720 BasicBlock *BB = &BI; 721 TerminatorInst *TI = BB->getTerminator(); 722 if (TI->getNumSuccessors() == 1) 723 continue; 724 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 725 continue; 726 727 DEBUG(dbgs() << "\nGetting weights for branch at line " 728 << TI->getDebugLoc().getLine() << ".\n"); 729 SmallVector<unsigned, 4> Weights; 730 bool AllWeightsZero = true; 731 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 732 BasicBlock *Succ = TI->getSuccessor(I); 733 Edge E = std::make_pair(BB, Succ); 734 unsigned Weight = EdgeWeights[E]; 735 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 736 Weights.push_back(Weight); 737 if (Weight != 0) 738 AllWeightsZero = false; 739 } 740 741 // Only set weights if there is at least one non-zero weight. 742 // In any other case, let the analyzer set weights. 743 if (!AllWeightsZero) { 744 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 745 TI->setMetadata(llvm::LLVMContext::MD_prof, 746 MDB.createBranchWeights(Weights)); 747 } else { 748 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 749 } 750 } 751 } 752 753 /// \brief Get the line number for the function header. 754 /// 755 /// This looks up function \p F in the current compilation unit and 756 /// retrieves the line number where the function is defined. This is 757 /// line 0 for all the samples read from the profile file. Every line 758 /// number is relative to this line. 759 /// 760 /// \param F Function object to query. 761 /// 762 /// \returns the line number where \p F is defined. If it returns 0, 763 /// it means that there is no debug information available for \p F. 764 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 765 if (DISubprogram *S = getDISubprogram(&F)) 766 return S->getLine(); 767 768 // If could not find the start of \p F, emit a diagnostic to inform the user 769 // about the missed opportunity. 770 F.getContext().diagnose(DiagnosticInfoSampleProfile( 771 "No debug information found in function " + F.getName() + 772 ": Function profile not used", 773 DS_Warning)); 774 return 0; 775 } 776 777 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 778 DT.reset(new DominatorTree); 779 DT->recalculate(F); 780 781 PDT.reset(new DominatorTreeBase<BasicBlock>(true)); 782 PDT->recalculate(F); 783 784 LI.reset(new LoopInfo); 785 LI->analyze(*DT); 786 } 787 788 /// \brief Generate branch weight metadata for all branches in \p F. 789 /// 790 /// Branch weights are computed out of instruction samples using a 791 /// propagation heuristic. Propagation proceeds in 3 phases: 792 /// 793 /// 1- Assignment of block weights. All the basic blocks in the function 794 /// are initial assigned the same weight as their most frequently 795 /// executed instruction. 796 /// 797 /// 2- Creation of equivalence classes. Since samples may be missing from 798 /// blocks, we can fill in the gaps by setting the weights of all the 799 /// blocks in the same equivalence class to the same weight. To compute 800 /// the concept of equivalence, we use dominance and loop information. 801 /// Two blocks B1 and B2 are in the same equivalence class if B1 802 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 803 /// 804 /// 3- Propagation of block weights into edges. This uses a simple 805 /// propagation heuristic. The following rules are applied to every 806 /// block BB in the CFG: 807 /// 808 /// - If BB has a single predecessor/successor, then the weight 809 /// of that edge is the weight of the block. 810 /// 811 /// - If all the edges are known except one, and the weight of the 812 /// block is already known, the weight of the unknown edge will 813 /// be the weight of the block minus the sum of all the known 814 /// edges. If the sum of all the known edges is larger than BB's weight, 815 /// we set the unknown edge weight to zero. 816 /// 817 /// - If there is a self-referential edge, and the weight of the block is 818 /// known, the weight for that edge is set to the weight of the block 819 /// minus the weight of the other incoming edges to that block (if 820 /// known). 821 /// 822 /// Since this propagation is not guaranteed to finalize for every CFG, we 823 /// only allow it to proceed for a limited number of iterations (controlled 824 /// by -sample-profile-max-propagate-iterations). 825 /// 826 /// FIXME: Try to replace this propagation heuristic with a scheme 827 /// that is guaranteed to finalize. A work-list approach similar to 828 /// the standard value propagation algorithm used by SSA-CCP might 829 /// work here. 830 /// 831 /// Once all the branch weights are computed, we emit the MD_prof 832 /// metadata on BB using the computed values for each of its branches. 833 /// 834 /// \param F The function to query. 835 /// 836 /// \returns true if \p F was modified. Returns false, otherwise. 837 bool SampleProfileLoader::emitAnnotations(Function &F) { 838 bool Changed = false; 839 840 // Initialize invariants used during computation and propagation. 841 HeaderLineno = getFunctionLoc(F); 842 if (HeaderLineno == 0) 843 return false; 844 845 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 846 << ": " << HeaderLineno << "\n"); 847 848 Changed |= inlineHotFunctions(F); 849 850 // Compute basic block weights. 851 Changed |= computeBlockWeights(F); 852 853 if (Changed) { 854 // Compute dominance and loop info needed for propagation. 855 computeDominanceAndLoopInfo(F); 856 857 // Find equivalence classes. 858 findEquivalenceClasses(F); 859 860 // Propagate weights to all edges. 861 propagateWeights(F); 862 } 863 864 return Changed; 865 } 866 867 char SampleProfileLoader::ID = 0; 868 INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile", 869 "Sample Profile loader", false, false) 870 INITIALIZE_PASS_DEPENDENCY(AddDiscriminators) 871 INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile", 872 "Sample Profile loader", false, false) 873 874 bool SampleProfileLoader::doInitialization(Module &M) { 875 auto &Ctx = M.getContext(); 876 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 877 if (std::error_code EC = ReaderOrErr.getError()) { 878 std::string Msg = "Could not open profile: " + EC.message(); 879 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename.data(), Msg)); 880 return false; 881 } 882 Reader = std::move(ReaderOrErr.get()); 883 ProfileIsValid = (Reader->read() == sampleprof_error::success); 884 return true; 885 } 886 887 ModulePass *llvm::createSampleProfileLoaderPass() { 888 return new SampleProfileLoader(SampleProfileFile); 889 } 890 891 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 892 return new SampleProfileLoader(Name); 893 } 894 895 bool SampleProfileLoader::runOnModule(Module &M) { 896 bool retval = false; 897 for (auto &F : M) 898 if (!F.isDeclaration()) 899 retval |= runOnFunction(F); 900 return retval; 901 } 902 903 bool SampleProfileLoader::runOnFunction(Function &F) { 904 if (!ProfileIsValid) 905 return false; 906 907 Samples = Reader->getSamplesFor(F); 908 if (!Samples->empty()) 909 return emitAnnotations(F); 910 return false; 911 } 912