1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SampleProfileLoader transformation. This pass 10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 12 // profile information in the given profile. 13 // 14 // This pass generates branch weight annotations on the IR: 15 // 16 // - prof: Represents branch weights. This annotation is added to branches 17 // to indicate the weights of each edge coming out of the branch. 18 // The weight of each edge is the weight of the target block for 19 // that edge. The weight of a block B is computed as the maximum 20 // number of samples found in B. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/IPO/SampleProfile.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/None.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringMap.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/ADT/Twine.h" 35 #include "llvm/Analysis/AssumptionCache.h" 36 #include "llvm/Analysis/InlineCost.h" 37 #include "llvm/Analysis/LoopInfo.h" 38 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 39 #include "llvm/Analysis/PostDominators.h" 40 #include "llvm/Analysis/ProfileSummaryInfo.h" 41 #include "llvm/Analysis/TargetTransformInfo.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/CallSite.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DiagnosticInfo.h" 48 #include "llvm/IR/Dominators.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/MDBuilder.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/PassManager.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/Pass.h" 61 #include "llvm/ProfileData/InstrProf.h" 62 #include "llvm/ProfileData/SampleProf.h" 63 #include "llvm/ProfileData/SampleProfReader.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/GenericDomTree.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Transforms/IPO.h" 72 #include "llvm/Transforms/Instrumentation.h" 73 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 74 #include "llvm/Transforms/Utils/Cloning.h" 75 #include "llvm/Transforms/Utils/MisExpect.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstdint> 79 #include <functional> 80 #include <limits> 81 #include <map> 82 #include <memory> 83 #include <queue> 84 #include <string> 85 #include <system_error> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 using namespace sampleprof; 91 using ProfileCount = Function::ProfileCount; 92 #define DEBUG_TYPE "sample-profile" 93 94 // Command line option to specify the file to read samples from. This is 95 // mainly used for debugging. 96 static cl::opt<std::string> SampleProfileFile( 97 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 98 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 99 100 // The named file contains a set of transformations that may have been applied 101 // to the symbol names between the program from which the sample data was 102 // collected and the current program's symbols. 103 static cl::opt<std::string> SampleProfileRemappingFile( 104 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), 105 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); 106 107 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 108 "sample-profile-max-propagate-iterations", cl::init(100), 109 cl::desc("Maximum number of iterations to go through when propagating " 110 "sample block/edge weights through the CFG.")); 111 112 static cl::opt<unsigned> SampleProfileRecordCoverage( 113 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 114 cl::desc("Emit a warning if less than N% of records in the input profile " 115 "are matched to the IR.")); 116 117 static cl::opt<unsigned> SampleProfileSampleCoverage( 118 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 119 cl::desc("Emit a warning if less than N% of samples in the input profile " 120 "are matched to the IR.")); 121 122 static cl::opt<bool> NoWarnSampleUnused( 123 "no-warn-sample-unused", cl::init(false), cl::Hidden, 124 cl::desc("Use this option to turn off/on warnings about function with " 125 "samples but without debug information to use those samples. ")); 126 127 static cl::opt<bool> ProfileSampleAccurate( 128 "profile-sample-accurate", cl::Hidden, cl::init(false), 129 cl::desc("If the sample profile is accurate, we will mark all un-sampled " 130 "callsite and function as having 0 samples. Otherwise, treat " 131 "un-sampled callsites and functions conservatively as unknown. ")); 132 133 namespace { 134 135 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 136 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 137 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 138 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 139 using BlockEdgeMap = 140 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 141 142 class SampleProfileLoader; 143 144 class SampleCoverageTracker { 145 public: 146 SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){}; 147 148 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 149 uint32_t Discriminator, uint64_t Samples); 150 unsigned computeCoverage(unsigned Used, unsigned Total) const; 151 unsigned countUsedRecords(const FunctionSamples *FS, 152 ProfileSummaryInfo *PSI) const; 153 unsigned countBodyRecords(const FunctionSamples *FS, 154 ProfileSummaryInfo *PSI) const; 155 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 156 uint64_t countBodySamples(const FunctionSamples *FS, 157 ProfileSummaryInfo *PSI) const; 158 159 void clear() { 160 SampleCoverage.clear(); 161 TotalUsedSamples = 0; 162 } 163 164 private: 165 using BodySampleCoverageMap = std::map<LineLocation, unsigned>; 166 using FunctionSamplesCoverageMap = 167 DenseMap<const FunctionSamples *, BodySampleCoverageMap>; 168 169 /// Coverage map for sampling records. 170 /// 171 /// This map keeps a record of sampling records that have been matched to 172 /// an IR instruction. This is used to detect some form of staleness in 173 /// profiles (see flag -sample-profile-check-coverage). 174 /// 175 /// Each entry in the map corresponds to a FunctionSamples instance. This is 176 /// another map that counts how many times the sample record at the 177 /// given location has been used. 178 FunctionSamplesCoverageMap SampleCoverage; 179 180 /// Number of samples used from the profile. 181 /// 182 /// When a sampling record is used for the first time, the samples from 183 /// that record are added to this accumulator. Coverage is later computed 184 /// based on the total number of samples available in this function and 185 /// its callsites. 186 /// 187 /// Note that this accumulator tracks samples used from a single function 188 /// and all the inlined callsites. Strictly, we should have a map of counters 189 /// keyed by FunctionSamples pointers, but these stats are cleared after 190 /// every function, so we just need to keep a single counter. 191 uint64_t TotalUsedSamples = 0; 192 193 SampleProfileLoader &SPLoader; 194 }; 195 196 class GUIDToFuncNameMapper { 197 public: 198 GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader, 199 DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap) 200 : CurrentReader(Reader), CurrentModule(M), 201 CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) { 202 if (CurrentReader.getFormat() != SPF_Compact_Binary) 203 return; 204 205 for (const auto &F : CurrentModule) { 206 StringRef OrigName = F.getName(); 207 CurrentGUIDToFuncNameMap.insert( 208 {Function::getGUID(OrigName), OrigName}); 209 210 // Local to global var promotion used by optimization like thinlto 211 // will rename the var and add suffix like ".llvm.xxx" to the 212 // original local name. In sample profile, the suffixes of function 213 // names are all stripped. Since it is possible that the mapper is 214 // built in post-thin-link phase and var promotion has been done, 215 // we need to add the substring of function name without the suffix 216 // into the GUIDToFuncNameMap. 217 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 218 if (CanonName != OrigName) 219 CurrentGUIDToFuncNameMap.insert( 220 {Function::getGUID(CanonName), CanonName}); 221 } 222 223 // Update GUIDToFuncNameMap for each function including inlinees. 224 SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap); 225 } 226 227 ~GUIDToFuncNameMapper() { 228 if (CurrentReader.getFormat() != SPF_Compact_Binary) 229 return; 230 231 CurrentGUIDToFuncNameMap.clear(); 232 233 // Reset GUIDToFuncNameMap for of each function as they're no 234 // longer valid at this point. 235 SetGUIDToFuncNameMapForAll(nullptr); 236 } 237 238 private: 239 void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) { 240 std::queue<FunctionSamples *> FSToUpdate; 241 for (auto &IFS : CurrentReader.getProfiles()) { 242 FSToUpdate.push(&IFS.second); 243 } 244 245 while (!FSToUpdate.empty()) { 246 FunctionSamples *FS = FSToUpdate.front(); 247 FSToUpdate.pop(); 248 FS->GUIDToFuncNameMap = Map; 249 for (const auto &ICS : FS->getCallsiteSamples()) { 250 const FunctionSamplesMap &FSMap = ICS.second; 251 for (auto &IFS : FSMap) { 252 FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second); 253 FSToUpdate.push(&FS); 254 } 255 } 256 } 257 } 258 259 SampleProfileReader &CurrentReader; 260 Module &CurrentModule; 261 DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap; 262 }; 263 264 /// Sample profile pass. 265 /// 266 /// This pass reads profile data from the file specified by 267 /// -sample-profile-file and annotates every affected function with the 268 /// profile information found in that file. 269 class SampleProfileLoader { 270 public: 271 SampleProfileLoader( 272 StringRef Name, StringRef RemapName, bool IsThinLTOPreLink, 273 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 274 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo) 275 : GetAC(std::move(GetAssumptionCache)), 276 GetTTI(std::move(GetTargetTransformInfo)), CoverageTracker(*this), 277 Filename(Name), RemappingFilename(RemapName), 278 IsThinLTOPreLink(IsThinLTOPreLink) {} 279 280 bool doInitialization(Module &M); 281 bool runOnModule(Module &M, ModuleAnalysisManager *AM, 282 ProfileSummaryInfo *_PSI); 283 284 void dump() { Reader->dump(); } 285 286 protected: 287 friend class SampleCoverageTracker; 288 289 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 290 unsigned getFunctionLoc(Function &F); 291 bool emitAnnotations(Function &F); 292 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 293 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 294 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 295 std::vector<const FunctionSamples *> 296 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 297 mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap; 298 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 299 bool inlineCallInstruction(Instruction *I); 300 bool inlineHotFunctions(Function &F, 301 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 302 void printEdgeWeight(raw_ostream &OS, Edge E); 303 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 304 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 305 bool computeBlockWeights(Function &F); 306 void findEquivalenceClasses(Function &F); 307 template <bool IsPostDom> 308 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 309 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 310 311 void propagateWeights(Function &F); 312 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 313 void buildEdges(Function &F); 314 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 315 void computeDominanceAndLoopInfo(Function &F); 316 void clearFunctionData(); 317 bool callsiteIsHot(const FunctionSamples *CallsiteFS, 318 ProfileSummaryInfo *PSI); 319 320 /// Map basic blocks to their computed weights. 321 /// 322 /// The weight of a basic block is defined to be the maximum 323 /// of all the instruction weights in that block. 324 BlockWeightMap BlockWeights; 325 326 /// Map edges to their computed weights. 327 /// 328 /// Edge weights are computed by propagating basic block weights in 329 /// SampleProfile::propagateWeights. 330 EdgeWeightMap EdgeWeights; 331 332 /// Set of visited blocks during propagation. 333 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 334 335 /// Set of visited edges during propagation. 336 SmallSet<Edge, 32> VisitedEdges; 337 338 /// Equivalence classes for block weights. 339 /// 340 /// Two blocks BB1 and BB2 are in the same equivalence class if they 341 /// dominate and post-dominate each other, and they are in the same loop 342 /// nest. When this happens, the two blocks are guaranteed to execute 343 /// the same number of times. 344 EquivalenceClassMap EquivalenceClass; 345 346 /// Map from function name to Function *. Used to find the function from 347 /// the function name. If the function name contains suffix, additional 348 /// entry is added to map from the stripped name to the function if there 349 /// is one-to-one mapping. 350 StringMap<Function *> SymbolMap; 351 352 /// Dominance, post-dominance and loop information. 353 std::unique_ptr<DominatorTree> DT; 354 std::unique_ptr<PostDominatorTree> PDT; 355 std::unique_ptr<LoopInfo> LI; 356 357 std::function<AssumptionCache &(Function &)> GetAC; 358 std::function<TargetTransformInfo &(Function &)> GetTTI; 359 360 /// Predecessors for each basic block in the CFG. 361 BlockEdgeMap Predecessors; 362 363 /// Successors for each basic block in the CFG. 364 BlockEdgeMap Successors; 365 366 SampleCoverageTracker CoverageTracker; 367 368 /// Profile reader object. 369 std::unique_ptr<SampleProfileReader> Reader; 370 371 /// Samples collected for the body of this function. 372 FunctionSamples *Samples = nullptr; 373 374 /// Name of the profile file to load. 375 std::string Filename; 376 377 /// Name of the profile remapping file to load. 378 std::string RemappingFilename; 379 380 /// Flag indicating whether the profile input loaded successfully. 381 bool ProfileIsValid = false; 382 383 /// Flag indicating if the pass is invoked in ThinLTO compile phase. 384 /// 385 /// In this phase, in annotation, we should not promote indirect calls. 386 /// Instead, we will mark GUIDs that needs to be annotated to the function. 387 bool IsThinLTOPreLink; 388 389 /// Profile Summary Info computed from sample profile. 390 ProfileSummaryInfo *PSI = nullptr; 391 392 /// Profle Symbol list tells whether a function name appears in the binary 393 /// used to generate the current profile. 394 std::unique_ptr<ProfileSymbolList> PSL; 395 396 /// Total number of samples collected in this profile. 397 /// 398 /// This is the sum of all the samples collected in all the functions executed 399 /// at runtime. 400 uint64_t TotalCollectedSamples = 0; 401 402 /// Optimization Remark Emitter used to emit diagnostic remarks. 403 OptimizationRemarkEmitter *ORE = nullptr; 404 405 // Information recorded when we declined to inline a call site 406 // because we have determined it is too cold is accumulated for 407 // each callee function. Initially this is just the entry count. 408 struct NotInlinedProfileInfo { 409 uint64_t entryCount; 410 }; 411 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo; 412 413 // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for 414 // all the function symbols defined or declared in current module. 415 DenseMap<uint64_t, StringRef> GUIDToFuncNameMap; 416 417 // All the Names used in FunctionSamples including outline function 418 // names, inline instance names and call target names. 419 StringSet<> NamesInProfile; 420 421 // Showing whether ProfileSampleAccurate is enabled for current function. 422 bool ProfSampleAccEnabled = false; 423 }; 424 425 class SampleProfileLoaderLegacyPass : public ModulePass { 426 public: 427 // Class identification, replacement for typeinfo 428 static char ID; 429 430 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, 431 bool IsThinLTOPreLink = false) 432 : ModulePass(ID), 433 SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink, 434 [&](Function &F) -> AssumptionCache & { 435 return ACT->getAssumptionCache(F); 436 }, 437 [&](Function &F) -> TargetTransformInfo & { 438 return TTIWP->getTTI(F); 439 }) { 440 initializeSampleProfileLoaderLegacyPassPass( 441 *PassRegistry::getPassRegistry()); 442 } 443 444 void dump() { SampleLoader.dump(); } 445 446 bool doInitialization(Module &M) override { 447 return SampleLoader.doInitialization(M); 448 } 449 450 StringRef getPassName() const override { return "Sample profile pass"; } 451 bool runOnModule(Module &M) override; 452 453 void getAnalysisUsage(AnalysisUsage &AU) const override { 454 AU.addRequired<AssumptionCacheTracker>(); 455 AU.addRequired<TargetTransformInfoWrapperPass>(); 456 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 457 } 458 459 private: 460 SampleProfileLoader SampleLoader; 461 AssumptionCacheTracker *ACT = nullptr; 462 TargetTransformInfoWrapperPass *TTIWP = nullptr; 463 }; 464 465 } // end anonymous namespace 466 467 /// Return true if the given callsite is hot wrt to hot cutoff threshold. 468 /// 469 /// Functions that were inlined in the original binary will be represented 470 /// in the inline stack in the sample profile. If the profile shows that 471 /// the original inline decision was "good" (i.e., the callsite is executed 472 /// frequently), then we will recreate the inline decision and apply the 473 /// profile from the inlined callsite. 474 /// 475 /// To decide whether an inlined callsite is hot, we compare the callsite 476 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is 477 /// regarded as hot if the count is above the cutoff value. 478 /// 479 /// When profile-sample-accurate is enabled, functions without profile will 480 /// be regarded as cold and much less inlining will happen in CGSCC inlining 481 /// pass, so we tend to lower the hot criteria here to allow more early 482 /// inlining to happen for warm callsites and it is helpful for performance. 483 bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS, 484 ProfileSummaryInfo *PSI) { 485 if (!CallsiteFS) 486 return false; // The callsite was not inlined in the original binary. 487 488 assert(PSI && "PSI is expected to be non null"); 489 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 490 if (ProfSampleAccEnabled) 491 return !PSI->isColdCount(CallsiteTotalSamples); 492 else 493 return PSI->isHotCount(CallsiteTotalSamples); 494 } 495 496 /// Mark as used the sample record for the given function samples at 497 /// (LineOffset, Discriminator). 498 /// 499 /// \returns true if this is the first time we mark the given record. 500 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 501 uint32_t LineOffset, 502 uint32_t Discriminator, 503 uint64_t Samples) { 504 LineLocation Loc(LineOffset, Discriminator); 505 unsigned &Count = SampleCoverage[FS][Loc]; 506 bool FirstTime = (++Count == 1); 507 if (FirstTime) 508 TotalUsedSamples += Samples; 509 return FirstTime; 510 } 511 512 /// Return the number of sample records that were applied from this profile. 513 /// 514 /// This count does not include records from cold inlined callsites. 515 unsigned 516 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS, 517 ProfileSummaryInfo *PSI) const { 518 auto I = SampleCoverage.find(FS); 519 520 // The size of the coverage map for FS represents the number of records 521 // that were marked used at least once. 522 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 523 524 // If there are inlined callsites in this function, count the samples found 525 // in the respective bodies. However, do not bother counting callees with 0 526 // total samples, these are callees that were never invoked at runtime. 527 for (const auto &I : FS->getCallsiteSamples()) 528 for (const auto &J : I.second) { 529 const FunctionSamples *CalleeSamples = &J.second; 530 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 531 Count += countUsedRecords(CalleeSamples, PSI); 532 } 533 534 return Count; 535 } 536 537 /// Return the number of sample records in the body of this profile. 538 /// 539 /// This count does not include records from cold inlined callsites. 540 unsigned 541 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS, 542 ProfileSummaryInfo *PSI) const { 543 unsigned Count = FS->getBodySamples().size(); 544 545 // Only count records in hot callsites. 546 for (const auto &I : FS->getCallsiteSamples()) 547 for (const auto &J : I.second) { 548 const FunctionSamples *CalleeSamples = &J.second; 549 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 550 Count += countBodyRecords(CalleeSamples, PSI); 551 } 552 553 return Count; 554 } 555 556 /// Return the number of samples collected in the body of this profile. 557 /// 558 /// This count does not include samples from cold inlined callsites. 559 uint64_t 560 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS, 561 ProfileSummaryInfo *PSI) const { 562 uint64_t Total = 0; 563 for (const auto &I : FS->getBodySamples()) 564 Total += I.second.getSamples(); 565 566 // Only count samples in hot callsites. 567 for (const auto &I : FS->getCallsiteSamples()) 568 for (const auto &J : I.second) { 569 const FunctionSamples *CalleeSamples = &J.second; 570 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 571 Total += countBodySamples(CalleeSamples, PSI); 572 } 573 574 return Total; 575 } 576 577 /// Return the fraction of sample records used in this profile. 578 /// 579 /// The returned value is an unsigned integer in the range 0-100 indicating 580 /// the percentage of sample records that were used while applying this 581 /// profile to the associated function. 582 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 583 unsigned Total) const { 584 assert(Used <= Total && 585 "number of used records cannot exceed the total number of records"); 586 return Total > 0 ? Used * 100 / Total : 100; 587 } 588 589 /// Clear all the per-function data used to load samples and propagate weights. 590 void SampleProfileLoader::clearFunctionData() { 591 BlockWeights.clear(); 592 EdgeWeights.clear(); 593 VisitedBlocks.clear(); 594 VisitedEdges.clear(); 595 EquivalenceClass.clear(); 596 DT = nullptr; 597 PDT = nullptr; 598 LI = nullptr; 599 Predecessors.clear(); 600 Successors.clear(); 601 CoverageTracker.clear(); 602 } 603 604 #ifndef NDEBUG 605 /// Print the weight of edge \p E on stream \p OS. 606 /// 607 /// \param OS Stream to emit the output to. 608 /// \param E Edge to print. 609 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 610 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 611 << "]: " << EdgeWeights[E] << "\n"; 612 } 613 614 /// Print the equivalence class of block \p BB on stream \p OS. 615 /// 616 /// \param OS Stream to emit the output to. 617 /// \param BB Block to print. 618 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 619 const BasicBlock *BB) { 620 const BasicBlock *Equiv = EquivalenceClass[BB]; 621 OS << "equivalence[" << BB->getName() 622 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 623 } 624 625 /// Print the weight of block \p BB on stream \p OS. 626 /// 627 /// \param OS Stream to emit the output to. 628 /// \param BB Block to print. 629 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 630 const BasicBlock *BB) const { 631 const auto &I = BlockWeights.find(BB); 632 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 633 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 634 } 635 #endif 636 637 /// Get the weight for an instruction. 638 /// 639 /// The "weight" of an instruction \p Inst is the number of samples 640 /// collected on that instruction at runtime. To retrieve it, we 641 /// need to compute the line number of \p Inst relative to the start of its 642 /// function. We use HeaderLineno to compute the offset. We then 643 /// look up the samples collected for \p Inst using BodySamples. 644 /// 645 /// \param Inst Instruction to query. 646 /// 647 /// \returns the weight of \p Inst. 648 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 649 const DebugLoc &DLoc = Inst.getDebugLoc(); 650 if (!DLoc) 651 return std::error_code(); 652 653 const FunctionSamples *FS = findFunctionSamples(Inst); 654 if (!FS) 655 return std::error_code(); 656 657 // Ignore all intrinsics, phinodes and branch instructions. 658 // Branch and phinodes instruction usually contains debug info from sources outside of 659 // the residing basic block, thus we ignore them during annotation. 660 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst)) 661 return std::error_code(); 662 663 // If a direct call/invoke instruction is inlined in profile 664 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 665 // it means that the inlined callsite has no sample, thus the call 666 // instruction should have 0 count. 667 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && 668 !ImmutableCallSite(&Inst).isIndirectCall() && 669 findCalleeFunctionSamples(Inst)) 670 return 0; 671 672 const DILocation *DIL = DLoc; 673 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 674 uint32_t Discriminator = DIL->getBaseDiscriminator(); 675 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 676 if (R) { 677 bool FirstMark = 678 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 679 if (FirstMark) { 680 ORE->emit([&]() { 681 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 682 Remark << "Applied " << ore::NV("NumSamples", *R); 683 Remark << " samples from profile (offset: "; 684 Remark << ore::NV("LineOffset", LineOffset); 685 if (Discriminator) { 686 Remark << "."; 687 Remark << ore::NV("Discriminator", Discriminator); 688 } 689 Remark << ")"; 690 return Remark; 691 }); 692 } 693 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." 694 << DIL->getBaseDiscriminator() << ":" << Inst 695 << " (line offset: " << LineOffset << "." 696 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 697 << ")\n"); 698 } 699 return R; 700 } 701 702 /// Compute the weight of a basic block. 703 /// 704 /// The weight of basic block \p BB is the maximum weight of all the 705 /// instructions in BB. 706 /// 707 /// \param BB The basic block to query. 708 /// 709 /// \returns the weight for \p BB. 710 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 711 uint64_t Max = 0; 712 bool HasWeight = false; 713 for (auto &I : BB->getInstList()) { 714 const ErrorOr<uint64_t> &R = getInstWeight(I); 715 if (R) { 716 Max = std::max(Max, R.get()); 717 HasWeight = true; 718 } 719 } 720 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 721 } 722 723 /// Compute and store the weights of every basic block. 724 /// 725 /// This populates the BlockWeights map by computing 726 /// the weights of every basic block in the CFG. 727 /// 728 /// \param F The function to query. 729 bool SampleProfileLoader::computeBlockWeights(Function &F) { 730 bool Changed = false; 731 LLVM_DEBUG(dbgs() << "Block weights\n"); 732 for (const auto &BB : F) { 733 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 734 if (Weight) { 735 BlockWeights[&BB] = Weight.get(); 736 VisitedBlocks.insert(&BB); 737 Changed = true; 738 } 739 LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); 740 } 741 742 return Changed; 743 } 744 745 /// Get the FunctionSamples for a call instruction. 746 /// 747 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 748 /// instance in which that call instruction is calling to. It contains 749 /// all samples that resides in the inlined instance. We first find the 750 /// inlined instance in which the call instruction is from, then we 751 /// traverse its children to find the callsite with the matching 752 /// location. 753 /// 754 /// \param Inst Call/Invoke instruction to query. 755 /// 756 /// \returns The FunctionSamples pointer to the inlined instance. 757 const FunctionSamples * 758 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 759 const DILocation *DIL = Inst.getDebugLoc(); 760 if (!DIL) { 761 return nullptr; 762 } 763 764 StringRef CalleeName; 765 if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) 766 if (Function *Callee = CI->getCalledFunction()) 767 CalleeName = Callee->getName(); 768 769 const FunctionSamples *FS = findFunctionSamples(Inst); 770 if (FS == nullptr) 771 return nullptr; 772 773 return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL), 774 DIL->getBaseDiscriminator()), 775 CalleeName); 776 } 777 778 /// Returns a vector of FunctionSamples that are the indirect call targets 779 /// of \p Inst. The vector is sorted by the total number of samples. Stores 780 /// the total call count of the indirect call in \p Sum. 781 std::vector<const FunctionSamples *> 782 SampleProfileLoader::findIndirectCallFunctionSamples( 783 const Instruction &Inst, uint64_t &Sum) const { 784 const DILocation *DIL = Inst.getDebugLoc(); 785 std::vector<const FunctionSamples *> R; 786 787 if (!DIL) { 788 return R; 789 } 790 791 const FunctionSamples *FS = findFunctionSamples(Inst); 792 if (FS == nullptr) 793 return R; 794 795 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 796 uint32_t Discriminator = DIL->getBaseDiscriminator(); 797 798 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 799 Sum = 0; 800 if (T) 801 for (const auto &T_C : T.get()) 802 Sum += T_C.second; 803 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation( 804 FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) { 805 if (M->empty()) 806 return R; 807 for (const auto &NameFS : *M) { 808 Sum += NameFS.second.getEntrySamples(); 809 R.push_back(&NameFS.second); 810 } 811 llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) { 812 if (L->getEntrySamples() != R->getEntrySamples()) 813 return L->getEntrySamples() > R->getEntrySamples(); 814 return FunctionSamples::getGUID(L->getName()) < 815 FunctionSamples::getGUID(R->getName()); 816 }); 817 } 818 return R; 819 } 820 821 /// Get the FunctionSamples for an instruction. 822 /// 823 /// The FunctionSamples of an instruction \p Inst is the inlined instance 824 /// in which that instruction is coming from. We traverse the inline stack 825 /// of that instruction, and match it with the tree nodes in the profile. 826 /// 827 /// \param Inst Instruction to query. 828 /// 829 /// \returns the FunctionSamples pointer to the inlined instance. 830 const FunctionSamples * 831 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 832 const DILocation *DIL = Inst.getDebugLoc(); 833 if (!DIL) 834 return Samples; 835 836 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr); 837 if (it.second) 838 it.first->second = Samples->findFunctionSamples(DIL); 839 return it.first->second; 840 } 841 842 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) { 843 assert(isa<CallInst>(I) || isa<InvokeInst>(I)); 844 CallSite CS(I); 845 Function *CalledFunction = CS.getCalledFunction(); 846 assert(CalledFunction); 847 DebugLoc DLoc = I->getDebugLoc(); 848 BasicBlock *BB = I->getParent(); 849 InlineParams Params = getInlineParams(); 850 Params.ComputeFullInlineCost = true; 851 // Checks if there is anything in the reachable portion of the callee at 852 // this callsite that makes this inlining potentially illegal. Need to 853 // set ComputeFullInlineCost, otherwise getInlineCost may return early 854 // when cost exceeds threshold without checking all IRs in the callee. 855 // The acutal cost does not matter because we only checks isNever() to 856 // see if it is legal to inline the callsite. 857 InlineCost Cost = 858 getInlineCost(cast<CallBase>(*I), Params, GetTTI(*CalledFunction), GetAC, 859 None, nullptr, nullptr); 860 if (Cost.isNever()) { 861 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB) 862 << "incompatible inlining"); 863 return false; 864 } 865 InlineFunctionInfo IFI(nullptr, &GetAC); 866 if (InlineFunction(CS, IFI)) { 867 // The call to InlineFunction erases I, so we can't pass it here. 868 ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB) 869 << "inlined hot callee '" << ore::NV("Callee", CalledFunction) 870 << "' into '" << ore::NV("Caller", BB->getParent()) << "'"); 871 return true; 872 } 873 return false; 874 } 875 876 /// Iteratively inline hot callsites of a function. 877 /// 878 /// Iteratively traverse all callsites of the function \p F, and find if 879 /// the corresponding inlined instance exists and is hot in profile. If 880 /// it is hot enough, inline the callsites and adds new callsites of the 881 /// callee into the caller. If the call is an indirect call, first promote 882 /// it to direct call. Each indirect call is limited with a single target. 883 /// 884 /// \param F function to perform iterative inlining. 885 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 886 /// inlined in the profiled binary. 887 /// 888 /// \returns True if there is any inline happened. 889 bool SampleProfileLoader::inlineHotFunctions( 890 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 891 DenseSet<Instruction *> PromotedInsns; 892 893 DenseMap<Instruction *, const FunctionSamples *> localNotInlinedCallSites; 894 bool Changed = false; 895 while (true) { 896 bool LocalChanged = false; 897 SmallVector<Instruction *, 10> CIS; 898 for (auto &BB : F) { 899 bool Hot = false; 900 SmallVector<Instruction *, 10> Candidates; 901 for (auto &I : BB.getInstList()) { 902 const FunctionSamples *FS = nullptr; 903 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 904 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { 905 Candidates.push_back(&I); 906 if (FS->getEntrySamples() > 0) 907 localNotInlinedCallSites.try_emplace(&I, FS); 908 if (callsiteIsHot(FS, PSI)) 909 Hot = true; 910 } 911 } 912 if (Hot) { 913 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); 914 } 915 } 916 for (auto I : CIS) { 917 Function *CalledFunction = CallSite(I).getCalledFunction(); 918 // Do not inline recursive calls. 919 if (CalledFunction == &F) 920 continue; 921 if (CallSite(I).isIndirectCall()) { 922 if (PromotedInsns.count(I)) 923 continue; 924 uint64_t Sum; 925 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 926 if (IsThinLTOPreLink) { 927 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), 928 PSI->getOrCompHotCountThreshold()); 929 continue; 930 } 931 auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent()); 932 // If it is a recursive call, we do not inline it as it could bloat 933 // the code exponentially. There is way to better handle this, e.g. 934 // clone the caller first, and inline the cloned caller if it is 935 // recursive. As llvm does not inline recursive calls, we will 936 // simply ignore it instead of handling it explicitly. 937 if (CalleeFunctionName == F.getName()) 938 continue; 939 940 if (!callsiteIsHot(FS, PSI)) 941 continue; 942 943 const char *Reason = "Callee function not available"; 944 auto R = SymbolMap.find(CalleeFunctionName); 945 if (R != SymbolMap.end() && R->getValue() && 946 !R->getValue()->isDeclaration() && 947 R->getValue()->getSubprogram() && 948 isLegalToPromote(CallSite(I), R->getValue(), &Reason)) { 949 uint64_t C = FS->getEntrySamples(); 950 Instruction *DI = 951 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE); 952 Sum -= C; 953 PromotedInsns.insert(I); 954 // If profile mismatches, we should not attempt to inline DI. 955 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && 956 inlineCallInstruction(DI)) { 957 localNotInlinedCallSites.erase(I); 958 LocalChanged = true; 959 } 960 } else { 961 LLVM_DEBUG(dbgs() 962 << "\nFailed to promote indirect call to " 963 << CalleeFunctionName << " because " << Reason << "\n"); 964 } 965 } 966 } else if (CalledFunction && CalledFunction->getSubprogram() && 967 !CalledFunction->isDeclaration()) { 968 if (inlineCallInstruction(I)) { 969 localNotInlinedCallSites.erase(I); 970 LocalChanged = true; 971 } 972 } else if (IsThinLTOPreLink) { 973 findCalleeFunctionSamples(*I)->findInlinedFunctions( 974 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold()); 975 } 976 } 977 if (LocalChanged) { 978 Changed = true; 979 } else { 980 break; 981 } 982 } 983 984 // Accumulate not inlined callsite information into notInlinedSamples 985 for (const auto &Pair : localNotInlinedCallSites) { 986 Instruction *I = Pair.getFirst(); 987 Function *Callee = CallSite(I).getCalledFunction(); 988 if (!Callee || Callee->isDeclaration()) 989 continue; 990 const FunctionSamples *FS = Pair.getSecond(); 991 auto pair = 992 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0}); 993 pair.first->second.entryCount += FS->getEntrySamples(); 994 } 995 return Changed; 996 } 997 998 /// Find equivalence classes for the given block. 999 /// 1000 /// This finds all the blocks that are guaranteed to execute the same 1001 /// number of times as \p BB1. To do this, it traverses all the 1002 /// descendants of \p BB1 in the dominator or post-dominator tree. 1003 /// 1004 /// A block BB2 will be in the same equivalence class as \p BB1 if 1005 /// the following holds: 1006 /// 1007 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 1008 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 1009 /// dominate BB1 in the post-dominator tree. 1010 /// 1011 /// 2- Both BB2 and \p BB1 must be in the same loop. 1012 /// 1013 /// For every block BB2 that meets those two requirements, we set BB2's 1014 /// equivalence class to \p BB1. 1015 /// 1016 /// \param BB1 Block to check. 1017 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 1018 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 1019 /// with blocks from \p BB1's dominator tree, then 1020 /// this is the post-dominator tree, and vice versa. 1021 template <bool IsPostDom> 1022 void SampleProfileLoader::findEquivalencesFor( 1023 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 1024 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 1025 const BasicBlock *EC = EquivalenceClass[BB1]; 1026 uint64_t Weight = BlockWeights[EC]; 1027 for (const auto *BB2 : Descendants) { 1028 bool IsDomParent = DomTree->dominates(BB2, BB1); 1029 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 1030 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 1031 EquivalenceClass[BB2] = EC; 1032 // If BB2 is visited, then the entire EC should be marked as visited. 1033 if (VisitedBlocks.count(BB2)) { 1034 VisitedBlocks.insert(EC); 1035 } 1036 1037 // If BB2 is heavier than BB1, make BB2 have the same weight 1038 // as BB1. 1039 // 1040 // Note that we don't worry about the opposite situation here 1041 // (when BB2 is lighter than BB1). We will deal with this 1042 // during the propagation phase. Right now, we just want to 1043 // make sure that BB1 has the largest weight of all the 1044 // members of its equivalence set. 1045 Weight = std::max(Weight, BlockWeights[BB2]); 1046 } 1047 } 1048 if (EC == &EC->getParent()->getEntryBlock()) { 1049 BlockWeights[EC] = Samples->getHeadSamples() + 1; 1050 } else { 1051 BlockWeights[EC] = Weight; 1052 } 1053 } 1054 1055 /// Find equivalence classes. 1056 /// 1057 /// Since samples may be missing from blocks, we can fill in the gaps by setting 1058 /// the weights of all the blocks in the same equivalence class to the same 1059 /// weight. To compute the concept of equivalence, we use dominance and loop 1060 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 1061 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1062 /// 1063 /// \param F The function to query. 1064 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 1065 SmallVector<BasicBlock *, 8> DominatedBBs; 1066 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); 1067 // Find equivalence sets based on dominance and post-dominance information. 1068 for (auto &BB : F) { 1069 BasicBlock *BB1 = &BB; 1070 1071 // Compute BB1's equivalence class once. 1072 if (EquivalenceClass.count(BB1)) { 1073 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1074 continue; 1075 } 1076 1077 // By default, blocks are in their own equivalence class. 1078 EquivalenceClass[BB1] = BB1; 1079 1080 // Traverse all the blocks dominated by BB1. We are looking for 1081 // every basic block BB2 such that: 1082 // 1083 // 1- BB1 dominates BB2. 1084 // 2- BB2 post-dominates BB1. 1085 // 3- BB1 and BB2 are in the same loop nest. 1086 // 1087 // If all those conditions hold, it means that BB2 is executed 1088 // as many times as BB1, so they are placed in the same equivalence 1089 // class by making BB2's equivalence class be BB1. 1090 DominatedBBs.clear(); 1091 DT->getDescendants(BB1, DominatedBBs); 1092 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 1093 1094 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1095 } 1096 1097 // Assign weights to equivalence classes. 1098 // 1099 // All the basic blocks in the same equivalence class will execute 1100 // the same number of times. Since we know that the head block in 1101 // each equivalence class has the largest weight, assign that weight 1102 // to all the blocks in that equivalence class. 1103 LLVM_DEBUG( 1104 dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 1105 for (auto &BI : F) { 1106 const BasicBlock *BB = &BI; 1107 const BasicBlock *EquivBB = EquivalenceClass[BB]; 1108 if (BB != EquivBB) 1109 BlockWeights[BB] = BlockWeights[EquivBB]; 1110 LLVM_DEBUG(printBlockWeight(dbgs(), BB)); 1111 } 1112 } 1113 1114 /// Visit the given edge to decide if it has a valid weight. 1115 /// 1116 /// If \p E has not been visited before, we copy to \p UnknownEdge 1117 /// and increment the count of unknown edges. 1118 /// 1119 /// \param E Edge to visit. 1120 /// \param NumUnknownEdges Current number of unknown edges. 1121 /// \param UnknownEdge Set if E has not been visited before. 1122 /// 1123 /// \returns E's weight, if known. Otherwise, return 0. 1124 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 1125 Edge *UnknownEdge) { 1126 if (!VisitedEdges.count(E)) { 1127 (*NumUnknownEdges)++; 1128 *UnknownEdge = E; 1129 return 0; 1130 } 1131 1132 return EdgeWeights[E]; 1133 } 1134 1135 /// Propagate weights through incoming/outgoing edges. 1136 /// 1137 /// If the weight of a basic block is known, and there is only one edge 1138 /// with an unknown weight, we can calculate the weight of that edge. 1139 /// 1140 /// Similarly, if all the edges have a known count, we can calculate the 1141 /// count of the basic block, if needed. 1142 /// 1143 /// \param F Function to process. 1144 /// \param UpdateBlockCount Whether we should update basic block counts that 1145 /// has already been annotated. 1146 /// 1147 /// \returns True if new weights were assigned to edges or blocks. 1148 bool SampleProfileLoader::propagateThroughEdges(Function &F, 1149 bool UpdateBlockCount) { 1150 bool Changed = false; 1151 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); 1152 for (const auto &BI : F) { 1153 const BasicBlock *BB = &BI; 1154 const BasicBlock *EC = EquivalenceClass[BB]; 1155 1156 // Visit all the predecessor and successor edges to determine 1157 // which ones have a weight assigned already. Note that it doesn't 1158 // matter that we only keep track of a single unknown edge. The 1159 // only case we are interested in handling is when only a single 1160 // edge is unknown (see setEdgeOrBlockWeight). 1161 for (unsigned i = 0; i < 2; i++) { 1162 uint64_t TotalWeight = 0; 1163 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 1164 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 1165 1166 if (i == 0) { 1167 // First, visit all predecessor edges. 1168 NumTotalEdges = Predecessors[BB].size(); 1169 for (auto *Pred : Predecessors[BB]) { 1170 Edge E = std::make_pair(Pred, BB); 1171 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1172 if (E.first == E.second) 1173 SelfReferentialEdge = E; 1174 } 1175 if (NumTotalEdges == 1) { 1176 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 1177 } 1178 } else { 1179 // On the second round, visit all successor edges. 1180 NumTotalEdges = Successors[BB].size(); 1181 for (auto *Succ : Successors[BB]) { 1182 Edge E = std::make_pair(BB, Succ); 1183 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1184 } 1185 if (NumTotalEdges == 1) { 1186 SingleEdge = std::make_pair(BB, Successors[BB][0]); 1187 } 1188 } 1189 1190 // After visiting all the edges, there are three cases that we 1191 // can handle immediately: 1192 // 1193 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 1194 // In this case, we simply check that the sum of all the edges 1195 // is the same as BB's weight. If not, we change BB's weight 1196 // to match. Additionally, if BB had not been visited before, 1197 // we mark it visited. 1198 // 1199 // - Only one edge is unknown and BB has already been visited. 1200 // In this case, we can compute the weight of the edge by 1201 // subtracting the total block weight from all the known 1202 // edge weights. If the edges weight more than BB, then the 1203 // edge of the last remaining edge is set to zero. 1204 // 1205 // - There exists a self-referential edge and the weight of BB is 1206 // known. In this case, this edge can be based on BB's weight. 1207 // We add up all the other known edges and set the weight on 1208 // the self-referential edge as we did in the previous case. 1209 // 1210 // In any other case, we must continue iterating. Eventually, 1211 // all edges will get a weight, or iteration will stop when 1212 // it reaches SampleProfileMaxPropagateIterations. 1213 if (NumUnknownEdges <= 1) { 1214 uint64_t &BBWeight = BlockWeights[EC]; 1215 if (NumUnknownEdges == 0) { 1216 if (!VisitedBlocks.count(EC)) { 1217 // If we already know the weight of all edges, the weight of the 1218 // basic block can be computed. It should be no larger than the sum 1219 // of all edge weights. 1220 if (TotalWeight > BBWeight) { 1221 BBWeight = TotalWeight; 1222 Changed = true; 1223 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() 1224 << " known. Set weight for block: "; 1225 printBlockWeight(dbgs(), BB);); 1226 } 1227 } else if (NumTotalEdges == 1 && 1228 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1229 // If there is only one edge for the visited basic block, use the 1230 // block weight to adjust edge weight if edge weight is smaller. 1231 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1232 Changed = true; 1233 } 1234 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1235 // If there is a single unknown edge and the block has been 1236 // visited, then we can compute E's weight. 1237 if (BBWeight >= TotalWeight) 1238 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1239 else 1240 EdgeWeights[UnknownEdge] = 0; 1241 const BasicBlock *OtherEC; 1242 if (i == 0) 1243 OtherEC = EquivalenceClass[UnknownEdge.first]; 1244 else 1245 OtherEC = EquivalenceClass[UnknownEdge.second]; 1246 // Edge weights should never exceed the BB weights it connects. 1247 if (VisitedBlocks.count(OtherEC) && 1248 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1249 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1250 VisitedEdges.insert(UnknownEdge); 1251 Changed = true; 1252 LLVM_DEBUG(dbgs() << "Set weight for edge: "; 1253 printEdgeWeight(dbgs(), UnknownEdge)); 1254 } 1255 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1256 // If a block Weights 0, all its in/out edges should weight 0. 1257 if (i == 0) { 1258 for (auto *Pred : Predecessors[BB]) { 1259 Edge E = std::make_pair(Pred, BB); 1260 EdgeWeights[E] = 0; 1261 VisitedEdges.insert(E); 1262 } 1263 } else { 1264 for (auto *Succ : Successors[BB]) { 1265 Edge E = std::make_pair(BB, Succ); 1266 EdgeWeights[E] = 0; 1267 VisitedEdges.insert(E); 1268 } 1269 } 1270 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1271 uint64_t &BBWeight = BlockWeights[BB]; 1272 // We have a self-referential edge and the weight of BB is known. 1273 if (BBWeight >= TotalWeight) 1274 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1275 else 1276 EdgeWeights[SelfReferentialEdge] = 0; 1277 VisitedEdges.insert(SelfReferentialEdge); 1278 Changed = true; 1279 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; 1280 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1281 } 1282 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1283 BlockWeights[EC] = TotalWeight; 1284 VisitedBlocks.insert(EC); 1285 Changed = true; 1286 } 1287 } 1288 } 1289 1290 return Changed; 1291 } 1292 1293 /// Build in/out edge lists for each basic block in the CFG. 1294 /// 1295 /// We are interested in unique edges. If a block B1 has multiple 1296 /// edges to another block B2, we only add a single B1->B2 edge. 1297 void SampleProfileLoader::buildEdges(Function &F) { 1298 for (auto &BI : F) { 1299 BasicBlock *B1 = &BI; 1300 1301 // Add predecessors for B1. 1302 SmallPtrSet<BasicBlock *, 16> Visited; 1303 if (!Predecessors[B1].empty()) 1304 llvm_unreachable("Found a stale predecessors list in a basic block."); 1305 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1306 BasicBlock *B2 = *PI; 1307 if (Visited.insert(B2).second) 1308 Predecessors[B1].push_back(B2); 1309 } 1310 1311 // Add successors for B1. 1312 Visited.clear(); 1313 if (!Successors[B1].empty()) 1314 llvm_unreachable("Found a stale successors list in a basic block."); 1315 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1316 BasicBlock *B2 = *SI; 1317 if (Visited.insert(B2).second) 1318 Successors[B1].push_back(B2); 1319 } 1320 } 1321 } 1322 1323 /// Returns the sorted CallTargetMap \p M by count in descending order. 1324 static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets( 1325 const SampleRecord::CallTargetMap & M) { 1326 SmallVector<InstrProfValueData, 2> R; 1327 for (const auto &I : SampleRecord::SortCallTargets(M)) { 1328 R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second}); 1329 } 1330 return R; 1331 } 1332 1333 /// Propagate weights into edges 1334 /// 1335 /// The following rules are applied to every block BB in the CFG: 1336 /// 1337 /// - If BB has a single predecessor/successor, then the weight 1338 /// of that edge is the weight of the block. 1339 /// 1340 /// - If all incoming or outgoing edges are known except one, and the 1341 /// weight of the block is already known, the weight of the unknown 1342 /// edge will be the weight of the block minus the sum of all the known 1343 /// edges. If the sum of all the known edges is larger than BB's weight, 1344 /// we set the unknown edge weight to zero. 1345 /// 1346 /// - If there is a self-referential edge, and the weight of the block is 1347 /// known, the weight for that edge is set to the weight of the block 1348 /// minus the weight of the other incoming edges to that block (if 1349 /// known). 1350 void SampleProfileLoader::propagateWeights(Function &F) { 1351 bool Changed = true; 1352 unsigned I = 0; 1353 1354 // If BB weight is larger than its corresponding loop's header BB weight, 1355 // use the BB weight to replace the loop header BB weight. 1356 for (auto &BI : F) { 1357 BasicBlock *BB = &BI; 1358 Loop *L = LI->getLoopFor(BB); 1359 if (!L) { 1360 continue; 1361 } 1362 BasicBlock *Header = L->getHeader(); 1363 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1364 BlockWeights[Header] = BlockWeights[BB]; 1365 } 1366 } 1367 1368 // Before propagation starts, build, for each block, a list of 1369 // unique predecessors and successors. This is necessary to handle 1370 // identical edges in multiway branches. Since we visit all blocks and all 1371 // edges of the CFG, it is cleaner to build these lists once at the start 1372 // of the pass. 1373 buildEdges(F); 1374 1375 // Propagate until we converge or we go past the iteration limit. 1376 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1377 Changed = propagateThroughEdges(F, false); 1378 } 1379 1380 // The first propagation propagates BB counts from annotated BBs to unknown 1381 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1382 // to propagate edge weights. 1383 VisitedEdges.clear(); 1384 Changed = true; 1385 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1386 Changed = propagateThroughEdges(F, false); 1387 } 1388 1389 // The 3rd propagation pass allows adjust annotated BB weights that are 1390 // obviously wrong. 1391 Changed = true; 1392 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1393 Changed = propagateThroughEdges(F, true); 1394 } 1395 1396 // Generate MD_prof metadata for every branch instruction using the 1397 // edge weights computed during propagation. 1398 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1399 LLVMContext &Ctx = F.getContext(); 1400 MDBuilder MDB(Ctx); 1401 for (auto &BI : F) { 1402 BasicBlock *BB = &BI; 1403 1404 if (BlockWeights[BB]) { 1405 for (auto &I : BB->getInstList()) { 1406 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1407 continue; 1408 CallSite CS(&I); 1409 if (!CS.getCalledFunction()) { 1410 const DebugLoc &DLoc = I.getDebugLoc(); 1411 if (!DLoc) 1412 continue; 1413 const DILocation *DIL = DLoc; 1414 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 1415 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1416 1417 const FunctionSamples *FS = findFunctionSamples(I); 1418 if (!FS) 1419 continue; 1420 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1421 if (!T || T.get().empty()) 1422 continue; 1423 SmallVector<InstrProfValueData, 2> SortedCallTargets = 1424 GetSortedValueDataFromCallTargets(T.get()); 1425 uint64_t Sum; 1426 findIndirectCallFunctionSamples(I, Sum); 1427 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1428 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1429 SortedCallTargets.size()); 1430 } else if (!isa<IntrinsicInst>(&I)) { 1431 I.setMetadata(LLVMContext::MD_prof, 1432 MDB.createBranchWeights( 1433 {static_cast<uint32_t>(BlockWeights[BB])})); 1434 } 1435 } 1436 } 1437 Instruction *TI = BB->getTerminator(); 1438 if (TI->getNumSuccessors() == 1) 1439 continue; 1440 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1441 continue; 1442 1443 DebugLoc BranchLoc = TI->getDebugLoc(); 1444 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " 1445 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1446 : Twine("<UNKNOWN LOCATION>")) 1447 << ".\n"); 1448 SmallVector<uint32_t, 4> Weights; 1449 uint32_t MaxWeight = 0; 1450 Instruction *MaxDestInst; 1451 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1452 BasicBlock *Succ = TI->getSuccessor(I); 1453 Edge E = std::make_pair(BB, Succ); 1454 uint64_t Weight = EdgeWeights[E]; 1455 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1456 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1457 // if needed. Sample counts in profiles are 64-bit unsigned values, 1458 // but internally branch weights are expressed as 32-bit values. 1459 if (Weight > std::numeric_limits<uint32_t>::max()) { 1460 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1461 Weight = std::numeric_limits<uint32_t>::max(); 1462 } 1463 // Weight is added by one to avoid propagation errors introduced by 1464 // 0 weights. 1465 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1466 if (Weight != 0) { 1467 if (Weight > MaxWeight) { 1468 MaxWeight = Weight; 1469 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1470 } 1471 } 1472 } 1473 1474 misexpect::verifyMisExpect(TI, Weights, TI->getContext()); 1475 1476 uint64_t TempWeight; 1477 // Only set weights if there is at least one non-zero weight. 1478 // In any other case, let the analyzer set weights. 1479 // Do not set weights if the weights are present. In ThinLTO, the profile 1480 // annotation is done twice. If the first annotation already set the 1481 // weights, the second pass does not need to set it. 1482 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1483 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1484 TI->setMetadata(LLVMContext::MD_prof, 1485 MDB.createBranchWeights(Weights)); 1486 ORE->emit([&]() { 1487 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1488 << "most popular destination for conditional branches at " 1489 << ore::NV("CondBranchesLoc", BranchLoc); 1490 }); 1491 } else { 1492 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1493 } 1494 } 1495 } 1496 1497 /// Get the line number for the function header. 1498 /// 1499 /// This looks up function \p F in the current compilation unit and 1500 /// retrieves the line number where the function is defined. This is 1501 /// line 0 for all the samples read from the profile file. Every line 1502 /// number is relative to this line. 1503 /// 1504 /// \param F Function object to query. 1505 /// 1506 /// \returns the line number where \p F is defined. If it returns 0, 1507 /// it means that there is no debug information available for \p F. 1508 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1509 if (DISubprogram *S = F.getSubprogram()) 1510 return S->getLine(); 1511 1512 if (NoWarnSampleUnused) 1513 return 0; 1514 1515 // If the start of \p F is missing, emit a diagnostic to inform the user 1516 // about the missed opportunity. 1517 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1518 "No debug information found in function " + F.getName() + 1519 ": Function profile not used", 1520 DS_Warning)); 1521 return 0; 1522 } 1523 1524 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1525 DT.reset(new DominatorTree); 1526 DT->recalculate(F); 1527 1528 PDT.reset(new PostDominatorTree(F)); 1529 1530 LI.reset(new LoopInfo); 1531 LI->analyze(*DT); 1532 } 1533 1534 /// Generate branch weight metadata for all branches in \p F. 1535 /// 1536 /// Branch weights are computed out of instruction samples using a 1537 /// propagation heuristic. Propagation proceeds in 3 phases: 1538 /// 1539 /// 1- Assignment of block weights. All the basic blocks in the function 1540 /// are initial assigned the same weight as their most frequently 1541 /// executed instruction. 1542 /// 1543 /// 2- Creation of equivalence classes. Since samples may be missing from 1544 /// blocks, we can fill in the gaps by setting the weights of all the 1545 /// blocks in the same equivalence class to the same weight. To compute 1546 /// the concept of equivalence, we use dominance and loop information. 1547 /// Two blocks B1 and B2 are in the same equivalence class if B1 1548 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1549 /// 1550 /// 3- Propagation of block weights into edges. This uses a simple 1551 /// propagation heuristic. The following rules are applied to every 1552 /// block BB in the CFG: 1553 /// 1554 /// - If BB has a single predecessor/successor, then the weight 1555 /// of that edge is the weight of the block. 1556 /// 1557 /// - If all the edges are known except one, and the weight of the 1558 /// block is already known, the weight of the unknown edge will 1559 /// be the weight of the block minus the sum of all the known 1560 /// edges. If the sum of all the known edges is larger than BB's weight, 1561 /// we set the unknown edge weight to zero. 1562 /// 1563 /// - If there is a self-referential edge, and the weight of the block is 1564 /// known, the weight for that edge is set to the weight of the block 1565 /// minus the weight of the other incoming edges to that block (if 1566 /// known). 1567 /// 1568 /// Since this propagation is not guaranteed to finalize for every CFG, we 1569 /// only allow it to proceed for a limited number of iterations (controlled 1570 /// by -sample-profile-max-propagate-iterations). 1571 /// 1572 /// FIXME: Try to replace this propagation heuristic with a scheme 1573 /// that is guaranteed to finalize. A work-list approach similar to 1574 /// the standard value propagation algorithm used by SSA-CCP might 1575 /// work here. 1576 /// 1577 /// Once all the branch weights are computed, we emit the MD_prof 1578 /// metadata on BB using the computed values for each of its branches. 1579 /// 1580 /// \param F The function to query. 1581 /// 1582 /// \returns true if \p F was modified. Returns false, otherwise. 1583 bool SampleProfileLoader::emitAnnotations(Function &F) { 1584 bool Changed = false; 1585 1586 if (getFunctionLoc(F) == 0) 1587 return false; 1588 1589 LLVM_DEBUG(dbgs() << "Line number for the first instruction in " 1590 << F.getName() << ": " << getFunctionLoc(F) << "\n"); 1591 1592 DenseSet<GlobalValue::GUID> InlinedGUIDs; 1593 Changed |= inlineHotFunctions(F, InlinedGUIDs); 1594 1595 // Compute basic block weights. 1596 Changed |= computeBlockWeights(F); 1597 1598 if (Changed) { 1599 // Add an entry count to the function using the samples gathered at the 1600 // function entry. 1601 // Sets the GUIDs that are inlined in the profiled binary. This is used 1602 // for ThinLink to make correct liveness analysis, and also make the IR 1603 // match the profiled binary before annotation. 1604 F.setEntryCount( 1605 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), 1606 &InlinedGUIDs); 1607 1608 // Compute dominance and loop info needed for propagation. 1609 computeDominanceAndLoopInfo(F); 1610 1611 // Find equivalence classes. 1612 findEquivalenceClasses(F); 1613 1614 // Propagate weights to all edges. 1615 propagateWeights(F); 1616 } 1617 1618 // If coverage checking was requested, compute it now. 1619 if (SampleProfileRecordCoverage) { 1620 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); 1621 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); 1622 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1623 if (Coverage < SampleProfileRecordCoverage) { 1624 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1625 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1626 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1627 Twine(Coverage) + "%) were applied", 1628 DS_Warning)); 1629 } 1630 } 1631 1632 if (SampleProfileSampleCoverage) { 1633 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1634 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); 1635 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1636 if (Coverage < SampleProfileSampleCoverage) { 1637 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1638 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1639 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1640 Twine(Coverage) + "%) were applied", 1641 DS_Warning)); 1642 } 1643 } 1644 return Changed; 1645 } 1646 1647 char SampleProfileLoaderLegacyPass::ID = 0; 1648 1649 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1650 "Sample Profile loader", false, false) 1651 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1652 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1653 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1654 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1655 "Sample Profile loader", false, false) 1656 1657 bool SampleProfileLoader::doInitialization(Module &M) { 1658 auto &Ctx = M.getContext(); 1659 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1660 if (std::error_code EC = ReaderOrErr.getError()) { 1661 std::string Msg = "Could not open profile: " + EC.message(); 1662 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1663 return false; 1664 } 1665 Reader = std::move(ReaderOrErr.get()); 1666 Reader->collectFuncsToUse(M); 1667 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1668 PSL = Reader->getProfileSymbolList(); 1669 1670 if (ProfileSampleAccurate) { 1671 NamesInProfile.clear(); 1672 if (auto NameTable = Reader->getNameTable()) 1673 NamesInProfile.insert(NameTable->begin(), NameTable->end()); 1674 } 1675 1676 if (!RemappingFilename.empty()) { 1677 // Apply profile remappings to the loaded profile data if requested. 1678 // For now, we only support remapping symbols encoded using the Itanium 1679 // C++ ABI's name mangling scheme. 1680 ReaderOrErr = SampleProfileReaderItaniumRemapper::create( 1681 RemappingFilename, Ctx, std::move(Reader)); 1682 if (std::error_code EC = ReaderOrErr.getError()) { 1683 std::string Msg = "Could not open profile remapping file: " + EC.message(); 1684 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1685 return false; 1686 } 1687 Reader = std::move(ReaderOrErr.get()); 1688 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1689 } 1690 return true; 1691 } 1692 1693 ModulePass *llvm::createSampleProfileLoaderPass() { 1694 return new SampleProfileLoaderLegacyPass(); 1695 } 1696 1697 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1698 return new SampleProfileLoaderLegacyPass(Name); 1699 } 1700 1701 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, 1702 ProfileSummaryInfo *_PSI) { 1703 GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap); 1704 if (!ProfileIsValid) 1705 return false; 1706 1707 PSI = _PSI; 1708 if (M.getProfileSummary(/* IsCS */ false) == nullptr) 1709 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()), 1710 ProfileSummary::PSK_Sample); 1711 1712 // Compute the total number of samples collected in this profile. 1713 for (const auto &I : Reader->getProfiles()) 1714 TotalCollectedSamples += I.second.getTotalSamples(); 1715 1716 // Populate the symbol map. 1717 for (const auto &N_F : M.getValueSymbolTable()) { 1718 StringRef OrigName = N_F.getKey(); 1719 Function *F = dyn_cast<Function>(N_F.getValue()); 1720 if (F == nullptr) 1721 continue; 1722 SymbolMap[OrigName] = F; 1723 auto pos = OrigName.find('.'); 1724 if (pos != StringRef::npos) { 1725 StringRef NewName = OrigName.substr(0, pos); 1726 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1727 // Failiing to insert means there is already an entry in SymbolMap, 1728 // thus there are multiple functions that are mapped to the same 1729 // stripped name. In this case of name conflicting, set the value 1730 // to nullptr to avoid confusion. 1731 if (!r.second) 1732 r.first->second = nullptr; 1733 } 1734 } 1735 1736 bool retval = false; 1737 for (auto &F : M) 1738 if (!F.isDeclaration()) { 1739 clearFunctionData(); 1740 retval |= runOnFunction(F, AM); 1741 } 1742 1743 // Account for cold calls not inlined.... 1744 for (const std::pair<Function *, NotInlinedProfileInfo> &pair : 1745 notInlinedCallInfo) 1746 updateProfileCallee(pair.first, pair.second.entryCount); 1747 1748 return retval; 1749 } 1750 1751 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1752 ACT = &getAnalysis<AssumptionCacheTracker>(); 1753 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 1754 ProfileSummaryInfo *PSI = 1755 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1756 return SampleLoader.runOnModule(M, nullptr, PSI); 1757 } 1758 1759 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 1760 1761 DILocation2SampleMap.clear(); 1762 // By default the entry count is initialized to -1, which will be treated 1763 // conservatively by getEntryCount as the same as unknown (None). This is 1764 // to avoid newly added code to be treated as cold. If we have samples 1765 // this will be overwritten in emitAnnotations. 1766 uint64_t initialEntryCount = -1; 1767 1768 ProfSampleAccEnabled = 1769 ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate"); 1770 if (ProfSampleAccEnabled) { 1771 // PSL -- profile symbol list include all the symbols in sampled binary. 1772 // It is used to prevent new functions to be treated as cold. 1773 if (PSL) { 1774 // Profile symbol list is available, initialize the entry count to 0 1775 // only for functions in the list. 1776 if (PSL->contains(F.getName())) 1777 initialEntryCount = 0; 1778 1779 // When ProfileSampleAccurate is true, function without sample will be 1780 // regarded as cold. To minimize the potential negative performance 1781 // impact it could have, we want to be a little conservative here 1782 // saying if a function shows up in the profile, no matter as outline 1783 // function, inline instance or call targets, treat the function as not 1784 // being cold. This will handle the cases such as most callsites of a 1785 // function are inlined in sampled binary but not inlined in current 1786 // build (because of source code drift, imprecise debug information, or 1787 // the callsites are all cold individually but not cold 1788 // accumulatively...), so the outline function showing up as cold in 1789 // sampled binary will actually not be cold after current build. 1790 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 1791 if (NamesInProfile.count(CanonName)) 1792 initialEntryCount = -1; 1793 } else { 1794 // If there is no profile symbol list available, initialize all the 1795 // function entry counts to 0. It means all the functions without 1796 // profile will be regarded as cold. 1797 initialEntryCount = 0; 1798 } 1799 } 1800 1801 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real)); 1802 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 1803 if (AM) { 1804 auto &FAM = 1805 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 1806 .getManager(); 1807 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1808 } else { 1809 OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F); 1810 ORE = OwnedORE.get(); 1811 } 1812 Samples = Reader->getSamplesFor(F); 1813 if (Samples && !Samples->empty()) 1814 return emitAnnotations(F); 1815 return false; 1816 } 1817 1818 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1819 ModuleAnalysisManager &AM) { 1820 FunctionAnalysisManager &FAM = 1821 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1822 1823 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 1824 return FAM.getResult<AssumptionAnalysis>(F); 1825 }; 1826 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 1827 return FAM.getResult<TargetIRAnalysis>(F); 1828 }; 1829 1830 SampleProfileLoader SampleLoader( 1831 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 1832 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile 1833 : ProfileRemappingFileName, 1834 IsThinLTOPreLink, GetAssumptionCache, GetTTI); 1835 1836 SampleLoader.doInitialization(M); 1837 1838 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 1839 if (!SampleLoader.runOnModule(M, &AM, PSI)) 1840 return PreservedAnalyses::all(); 1841 1842 return PreservedAnalyses::none(); 1843 } 1844