1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SampleProfileLoader transformation. This pass 10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 12 // profile information in the given profile. 13 // 14 // This pass generates branch weight annotations on the IR: 15 // 16 // - prof: Represents branch weights. This annotation is added to branches 17 // to indicate the weights of each edge coming out of the branch. 18 // The weight of each edge is the weight of the target block for 19 // that edge. The weight of a block B is computed as the maximum 20 // number of samples found in B. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/IPO/SampleProfile.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/PriorityQueue.h" 29 #include "llvm/ADT/SCCIterator.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/StringMap.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/ADT/Twine.h" 35 #include "llvm/Analysis/AssumptionCache.h" 36 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 37 #include "llvm/Analysis/CallGraph.h" 38 #include "llvm/Analysis/InlineAdvisor.h" 39 #include "llvm/Analysis/InlineCost.h" 40 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 41 #include "llvm/Analysis/ProfileSummaryInfo.h" 42 #include "llvm/Analysis/ReplayInlineAdvisor.h" 43 #include "llvm/Analysis/TargetLibraryInfo.h" 44 #include "llvm/Analysis/TargetTransformInfo.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DiagnosticInfo.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/MDBuilder.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/PassManager.h" 58 #include "llvm/IR/PseudoProbe.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/InitializePasses.h" 61 #include "llvm/Pass.h" 62 #include "llvm/ProfileData/InstrProf.h" 63 #include "llvm/ProfileData/SampleProf.h" 64 #include "llvm/ProfileData/SampleProfReader.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Transforms/IPO.h" 71 #include "llvm/Transforms/IPO/ProfiledCallGraph.h" 72 #include "llvm/Transforms/IPO/SampleContextTracker.h" 73 #include "llvm/Transforms/IPO/SampleProfileProbe.h" 74 #include "llvm/Transforms/Instrumentation.h" 75 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 76 #include "llvm/Transforms/Utils/Cloning.h" 77 #include "llvm/Transforms/Utils/SampleProfileLoaderBaseImpl.h" 78 #include "llvm/Transforms/Utils/SampleProfileLoaderBaseUtil.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <cstdint> 82 #include <functional> 83 #include <limits> 84 #include <map> 85 #include <memory> 86 #include <queue> 87 #include <string> 88 #include <system_error> 89 #include <utility> 90 #include <vector> 91 92 using namespace llvm; 93 using namespace sampleprof; 94 using namespace llvm::sampleprofutil; 95 using ProfileCount = Function::ProfileCount; 96 #define DEBUG_TYPE "sample-profile" 97 #define CSINLINE_DEBUG DEBUG_TYPE "-inline" 98 99 STATISTIC(NumCSInlined, 100 "Number of functions inlined with context sensitive profile"); 101 STATISTIC(NumCSNotInlined, 102 "Number of functions not inlined with context sensitive profile"); 103 STATISTIC(NumMismatchedProfile, 104 "Number of functions with CFG mismatched profile"); 105 STATISTIC(NumMatchedProfile, "Number of functions with CFG matched profile"); 106 STATISTIC(NumDuplicatedInlinesite, 107 "Number of inlined callsites with a partial distribution factor"); 108 109 STATISTIC(NumCSInlinedHitMinLimit, 110 "Number of functions with FDO inline stopped due to min size limit"); 111 STATISTIC(NumCSInlinedHitMaxLimit, 112 "Number of functions with FDO inline stopped due to max size limit"); 113 STATISTIC( 114 NumCSInlinedHitGrowthLimit, 115 "Number of functions with FDO inline stopped due to growth size limit"); 116 117 // Command line option to specify the file to read samples from. This is 118 // mainly used for debugging. 119 static cl::opt<std::string> SampleProfileFile( 120 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 121 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 122 123 // The named file contains a set of transformations that may have been applied 124 // to the symbol names between the program from which the sample data was 125 // collected and the current program's symbols. 126 static cl::opt<std::string> SampleProfileRemappingFile( 127 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), 128 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); 129 130 static cl::opt<bool> ProfileSampleAccurate( 131 "profile-sample-accurate", cl::Hidden, cl::init(false), 132 cl::desc("If the sample profile is accurate, we will mark all un-sampled " 133 "callsite and function as having 0 samples. Otherwise, treat " 134 "un-sampled callsites and functions conservatively as unknown. ")); 135 136 static cl::opt<bool> ProfileSampleBlockAccurate( 137 "profile-sample-block-accurate", cl::Hidden, cl::init(false), 138 cl::desc("If the sample profile is accurate, we will mark all un-sampled " 139 "branches and calls as having 0 samples. Otherwise, treat " 140 "them conservatively as unknown. ")); 141 142 static cl::opt<bool> ProfileAccurateForSymsInList( 143 "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore, 144 cl::init(true), 145 cl::desc("For symbols in profile symbol list, regard their profiles to " 146 "be accurate. It may be overriden by profile-sample-accurate. ")); 147 148 static cl::opt<bool> ProfileMergeInlinee( 149 "sample-profile-merge-inlinee", cl::Hidden, cl::init(true), 150 cl::desc("Merge past inlinee's profile to outline version if sample " 151 "profile loader decided not to inline a call site. It will " 152 "only be enabled when top-down order of profile loading is " 153 "enabled. ")); 154 155 static cl::opt<bool> ProfileTopDownLoad( 156 "sample-profile-top-down-load", cl::Hidden, cl::init(true), 157 cl::desc("Do profile annotation and inlining for functions in top-down " 158 "order of call graph during sample profile loading. It only " 159 "works for new pass manager. ")); 160 161 static cl::opt<bool> 162 UseProfiledCallGraph("use-profiled-call-graph", cl::init(true), cl::Hidden, 163 cl::desc("Process functions in a top-down order " 164 "defined by the profiled call graph when " 165 "-sample-profile-top-down-load is on.")); 166 cl::opt<bool> 167 SortProfiledSCC("sort-profiled-scc-member", cl::init(true), cl::Hidden, 168 cl::desc("Sort profiled recursion by edge weights.")); 169 170 static cl::opt<bool> ProfileSizeInline( 171 "sample-profile-inline-size", cl::Hidden, cl::init(false), 172 cl::desc("Inline cold call sites in profile loader if it's beneficial " 173 "for code size.")); 174 175 // Since profiles are consumed by many passes, turning on this option has 176 // side effects. For instance, pre-link SCC inliner would see merged profiles 177 // and inline the hot functions (that are skipped in this pass). 178 static cl::opt<bool> DisableSampleLoaderInlining( 179 "disable-sample-loader-inlining", cl::Hidden, cl::init(false), 180 cl::desc("If true, artifically skip inline transformation in sample-loader " 181 "pass, and merge (or scale) profiles (as configured by " 182 "--sample-profile-merge-inlinee).")); 183 184 cl::opt<int> ProfileInlineGrowthLimit( 185 "sample-profile-inline-growth-limit", cl::Hidden, cl::init(12), 186 cl::desc("The size growth ratio limit for proirity-based sample profile " 187 "loader inlining.")); 188 189 cl::opt<int> ProfileInlineLimitMin( 190 "sample-profile-inline-limit-min", cl::Hidden, cl::init(100), 191 cl::desc("The lower bound of size growth limit for " 192 "proirity-based sample profile loader inlining.")); 193 194 cl::opt<int> ProfileInlineLimitMax( 195 "sample-profile-inline-limit-max", cl::Hidden, cl::init(10000), 196 cl::desc("The upper bound of size growth limit for " 197 "proirity-based sample profile loader inlining.")); 198 199 cl::opt<int> SampleHotCallSiteThreshold( 200 "sample-profile-hot-inline-threshold", cl::Hidden, cl::init(3000), 201 cl::desc("Hot callsite threshold for proirity-based sample profile loader " 202 "inlining.")); 203 204 cl::opt<int> SampleColdCallSiteThreshold( 205 "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45), 206 cl::desc("Threshold for inlining cold callsites")); 207 208 static cl::opt<unsigned> ProfileICPRelativeHotness( 209 "sample-profile-icp-relative-hotness", cl::Hidden, cl::init(25), 210 cl::desc( 211 "Relative hotness percentage threshold for indirect " 212 "call promotion in proirity-based sample profile loader inlining.")); 213 214 static cl::opt<unsigned> ProfileICPRelativeHotnessSkip( 215 "sample-profile-icp-relative-hotness-skip", cl::Hidden, cl::init(1), 216 cl::desc( 217 "Skip relative hotness check for ICP up to given number of targets.")); 218 219 static cl::opt<bool> CallsitePrioritizedInline( 220 "sample-profile-prioritized-inline", cl::Hidden, cl::ZeroOrMore, 221 cl::init(false), 222 cl::desc("Use call site prioritized inlining for sample profile loader." 223 "Currently only CSSPGO is supported.")); 224 225 static cl::opt<bool> UsePreInlinerDecision( 226 "sample-profile-use-preinliner", cl::Hidden, cl::ZeroOrMore, 227 cl::init(false), 228 cl::desc("Use the preinliner decisions stored in profile context.")); 229 230 static cl::opt<bool> AllowRecursiveInline( 231 "sample-profile-recursive-inline", cl::Hidden, cl::ZeroOrMore, 232 cl::init(false), 233 cl::desc("Allow sample loader inliner to inline recursive calls.")); 234 235 static cl::opt<std::string> ProfileInlineReplayFile( 236 "sample-profile-inline-replay", cl::init(""), cl::value_desc("filename"), 237 cl::desc( 238 "Optimization remarks file containing inline remarks to be replayed " 239 "by inlining from sample profile loader."), 240 cl::Hidden); 241 242 static cl::opt<ReplayInlinerSettings::Scope> ProfileInlineReplayScope( 243 "sample-profile-inline-replay-scope", 244 cl::init(ReplayInlinerSettings::Scope::Function), 245 cl::values(clEnumValN(ReplayInlinerSettings::Scope::Function, "Function", 246 "Replay on functions that have remarks associated " 247 "with them (default)"), 248 clEnumValN(ReplayInlinerSettings::Scope::Module, "Module", 249 "Replay on the entire module")), 250 cl::desc("Whether inline replay should be applied to the entire " 251 "Module or just the Functions (default) that are present as " 252 "callers in remarks during sample profile inlining."), 253 cl::Hidden); 254 255 static cl::opt<ReplayInlinerSettings::Fallback> ProfileInlineReplayFallback( 256 "sample-profile-inline-replay-fallback", 257 cl::init(ReplayInlinerSettings::Fallback::Original), 258 cl::values( 259 clEnumValN( 260 ReplayInlinerSettings::Fallback::Original, "Original", 261 "All decisions not in replay send to original advisor (default)"), 262 clEnumValN(ReplayInlinerSettings::Fallback::AlwaysInline, 263 "AlwaysInline", "All decisions not in replay are inlined"), 264 clEnumValN(ReplayInlinerSettings::Fallback::NeverInline, "NeverInline", 265 "All decisions not in replay are not inlined")), 266 cl::desc("How sample profile inline replay treats sites that don't come " 267 "from the replay. Original: defers to original advisor, " 268 "AlwaysInline: inline all sites not in replay, NeverInline: " 269 "inline no sites not in replay"), 270 cl::Hidden); 271 272 static cl::opt<CallSiteFormat::Format> ProfileInlineReplayFormat( 273 "sample-profile-inline-replay-format", 274 cl::init(CallSiteFormat::Format::LineColumnDiscriminator), 275 cl::values( 276 clEnumValN(CallSiteFormat::Format::Line, "Line", "<Line Number>"), 277 clEnumValN(CallSiteFormat::Format::LineColumn, "LineColumn", 278 "<Line Number>:<Column Number>"), 279 clEnumValN(CallSiteFormat::Format::LineDiscriminator, 280 "LineDiscriminator", "<Line Number>.<Discriminator>"), 281 clEnumValN(CallSiteFormat::Format::LineColumnDiscriminator, 282 "LineColumnDiscriminator", 283 "<Line Number>:<Column Number>.<Discriminator> (default)")), 284 cl::desc("How sample profile inline replay file is formatted"), cl::Hidden); 285 286 static cl::opt<unsigned> 287 MaxNumPromotions("sample-profile-icp-max-prom", cl::init(3), cl::Hidden, 288 cl::ZeroOrMore, 289 cl::desc("Max number of promotions for a single indirect " 290 "call callsite in sample profile loader")); 291 292 static cl::opt<bool> OverwriteExistingWeights( 293 "overwrite-existing-weights", cl::Hidden, cl::init(false), 294 cl::desc("Ignore existing branch weights on IR and always overwrite.")); 295 296 extern cl::opt<bool> EnableExtTspBlockPlacement; 297 298 namespace { 299 300 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 301 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 302 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 303 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 304 using BlockEdgeMap = 305 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 306 307 class GUIDToFuncNameMapper { 308 public: 309 GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader, 310 DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap) 311 : CurrentReader(Reader), CurrentModule(M), 312 CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) { 313 if (!CurrentReader.useMD5()) 314 return; 315 316 for (const auto &F : CurrentModule) { 317 StringRef OrigName = F.getName(); 318 CurrentGUIDToFuncNameMap.insert( 319 {Function::getGUID(OrigName), OrigName}); 320 321 // Local to global var promotion used by optimization like thinlto 322 // will rename the var and add suffix like ".llvm.xxx" to the 323 // original local name. In sample profile, the suffixes of function 324 // names are all stripped. Since it is possible that the mapper is 325 // built in post-thin-link phase and var promotion has been done, 326 // we need to add the substring of function name without the suffix 327 // into the GUIDToFuncNameMap. 328 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 329 if (CanonName != OrigName) 330 CurrentGUIDToFuncNameMap.insert( 331 {Function::getGUID(CanonName), CanonName}); 332 } 333 334 // Update GUIDToFuncNameMap for each function including inlinees. 335 SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap); 336 } 337 338 ~GUIDToFuncNameMapper() { 339 if (!CurrentReader.useMD5()) 340 return; 341 342 CurrentGUIDToFuncNameMap.clear(); 343 344 // Reset GUIDToFuncNameMap for of each function as they're no 345 // longer valid at this point. 346 SetGUIDToFuncNameMapForAll(nullptr); 347 } 348 349 private: 350 void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) { 351 std::queue<FunctionSamples *> FSToUpdate; 352 for (auto &IFS : CurrentReader.getProfiles()) { 353 FSToUpdate.push(&IFS.second); 354 } 355 356 while (!FSToUpdate.empty()) { 357 FunctionSamples *FS = FSToUpdate.front(); 358 FSToUpdate.pop(); 359 FS->GUIDToFuncNameMap = Map; 360 for (const auto &ICS : FS->getCallsiteSamples()) { 361 const FunctionSamplesMap &FSMap = ICS.second; 362 for (auto &IFS : FSMap) { 363 FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second); 364 FSToUpdate.push(&FS); 365 } 366 } 367 } 368 } 369 370 SampleProfileReader &CurrentReader; 371 Module &CurrentModule; 372 DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap; 373 }; 374 375 // Inline candidate used by iterative callsite prioritized inliner 376 struct InlineCandidate { 377 CallBase *CallInstr; 378 const FunctionSamples *CalleeSamples; 379 // Prorated callsite count, which will be used to guide inlining. For example, 380 // if a callsite is duplicated in LTO prelink, then in LTO postlink the two 381 // copies will get their own distribution factors and their prorated counts 382 // will be used to decide if they should be inlined independently. 383 uint64_t CallsiteCount; 384 // Call site distribution factor to prorate the profile samples for a 385 // duplicated callsite. Default value is 1.0. 386 float CallsiteDistribution; 387 }; 388 389 // Inline candidate comparer using call site weight 390 struct CandidateComparer { 391 bool operator()(const InlineCandidate &LHS, const InlineCandidate &RHS) { 392 if (LHS.CallsiteCount != RHS.CallsiteCount) 393 return LHS.CallsiteCount < RHS.CallsiteCount; 394 395 const FunctionSamples *LCS = LHS.CalleeSamples; 396 const FunctionSamples *RCS = RHS.CalleeSamples; 397 assert(LCS && RCS && "Expect non-null FunctionSamples"); 398 399 // Tie breaker using number of samples try to favor smaller functions first 400 if (LCS->getBodySamples().size() != RCS->getBodySamples().size()) 401 return LCS->getBodySamples().size() > RCS->getBodySamples().size(); 402 403 // Tie breaker using GUID so we have stable/deterministic inlining order 404 return LCS->getGUID(LCS->getName()) < RCS->getGUID(RCS->getName()); 405 } 406 }; 407 408 using CandidateQueue = 409 PriorityQueue<InlineCandidate, std::vector<InlineCandidate>, 410 CandidateComparer>; 411 412 /// Sample profile pass. 413 /// 414 /// This pass reads profile data from the file specified by 415 /// -sample-profile-file and annotates every affected function with the 416 /// profile information found in that file. 417 class SampleProfileLoader final 418 : public SampleProfileLoaderBaseImpl<BasicBlock> { 419 public: 420 SampleProfileLoader( 421 StringRef Name, StringRef RemapName, ThinOrFullLTOPhase LTOPhase, 422 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 423 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo, 424 std::function<const TargetLibraryInfo &(Function &)> GetTLI) 425 : SampleProfileLoaderBaseImpl(std::string(Name), std::string(RemapName)), 426 GetAC(std::move(GetAssumptionCache)), 427 GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)), 428 LTOPhase(LTOPhase) {} 429 430 bool doInitialization(Module &M, FunctionAnalysisManager *FAM = nullptr); 431 bool runOnModule(Module &M, ModuleAnalysisManager *AM, 432 ProfileSummaryInfo *_PSI, CallGraph *CG); 433 434 protected: 435 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 436 bool emitAnnotations(Function &F); 437 ErrorOr<uint64_t> getInstWeight(const Instruction &I) override; 438 ErrorOr<uint64_t> getProbeWeight(const Instruction &I); 439 const FunctionSamples *findCalleeFunctionSamples(const CallBase &I) const; 440 const FunctionSamples * 441 findFunctionSamples(const Instruction &I) const override; 442 std::vector<const FunctionSamples *> 443 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 444 void findExternalInlineCandidate(CallBase *CB, const FunctionSamples *Samples, 445 DenseSet<GlobalValue::GUID> &InlinedGUIDs, 446 const StringMap<Function *> &SymbolMap, 447 uint64_t Threshold); 448 // Attempt to promote indirect call and also inline the promoted call 449 bool tryPromoteAndInlineCandidate( 450 Function &F, InlineCandidate &Candidate, uint64_t SumOrigin, 451 uint64_t &Sum, SmallVector<CallBase *, 8> *InlinedCallSites = nullptr); 452 453 bool inlineHotFunctions(Function &F, 454 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 455 Optional<InlineCost> getExternalInlineAdvisorCost(CallBase &CB); 456 bool getExternalInlineAdvisorShouldInline(CallBase &CB); 457 InlineCost shouldInlineCandidate(InlineCandidate &Candidate); 458 bool getInlineCandidate(InlineCandidate *NewCandidate, CallBase *CB); 459 bool 460 tryInlineCandidate(InlineCandidate &Candidate, 461 SmallVector<CallBase *, 8> *InlinedCallSites = nullptr); 462 bool 463 inlineHotFunctionsWithPriority(Function &F, 464 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 465 // Inline cold/small functions in addition to hot ones 466 bool shouldInlineColdCallee(CallBase &CallInst); 467 void emitOptimizationRemarksForInlineCandidates( 468 const SmallVectorImpl<CallBase *> &Candidates, const Function &F, 469 bool Hot); 470 void promoteMergeNotInlinedContextSamples( 471 DenseMap<CallBase *, const FunctionSamples *> NonInlinedCallSites, 472 const Function &F); 473 std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG); 474 std::unique_ptr<ProfiledCallGraph> buildProfiledCallGraph(CallGraph &CG); 475 void generateMDProfMetadata(Function &F); 476 477 /// Map from function name to Function *. Used to find the function from 478 /// the function name. If the function name contains suffix, additional 479 /// entry is added to map from the stripped name to the function if there 480 /// is one-to-one mapping. 481 StringMap<Function *> SymbolMap; 482 483 std::function<AssumptionCache &(Function &)> GetAC; 484 std::function<TargetTransformInfo &(Function &)> GetTTI; 485 std::function<const TargetLibraryInfo &(Function &)> GetTLI; 486 487 /// Profile tracker for different context. 488 std::unique_ptr<SampleContextTracker> ContextTracker; 489 490 /// Flag indicating which LTO/ThinLTO phase the pass is invoked in. 491 /// 492 /// We need to know the LTO phase because for example in ThinLTOPrelink 493 /// phase, in annotation, we should not promote indirect calls. Instead, 494 /// we will mark GUIDs that needs to be annotated to the function. 495 ThinOrFullLTOPhase LTOPhase; 496 497 /// Profle Symbol list tells whether a function name appears in the binary 498 /// used to generate the current profile. 499 std::unique_ptr<ProfileSymbolList> PSL; 500 501 /// Total number of samples collected in this profile. 502 /// 503 /// This is the sum of all the samples collected in all the functions executed 504 /// at runtime. 505 uint64_t TotalCollectedSamples = 0; 506 507 // Information recorded when we declined to inline a call site 508 // because we have determined it is too cold is accumulated for 509 // each callee function. Initially this is just the entry count. 510 struct NotInlinedProfileInfo { 511 uint64_t entryCount; 512 }; 513 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo; 514 515 // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for 516 // all the function symbols defined or declared in current module. 517 DenseMap<uint64_t, StringRef> GUIDToFuncNameMap; 518 519 // All the Names used in FunctionSamples including outline function 520 // names, inline instance names and call target names. 521 StringSet<> NamesInProfile; 522 523 // For symbol in profile symbol list, whether to regard their profiles 524 // to be accurate. It is mainly decided by existance of profile symbol 525 // list and -profile-accurate-for-symsinlist flag, but it can be 526 // overriden by -profile-sample-accurate or profile-sample-accurate 527 // attribute. 528 bool ProfAccForSymsInList; 529 530 // External inline advisor used to replay inline decision from remarks. 531 std::unique_ptr<InlineAdvisor> ExternalInlineAdvisor; 532 533 // A pseudo probe helper to correlate the imported sample counts. 534 std::unique_ptr<PseudoProbeManager> ProbeManager; 535 }; 536 537 class SampleProfileLoaderLegacyPass : public ModulePass { 538 public: 539 // Class identification, replacement for typeinfo 540 static char ID; 541 542 SampleProfileLoaderLegacyPass( 543 StringRef Name = SampleProfileFile, 544 ThinOrFullLTOPhase LTOPhase = ThinOrFullLTOPhase::None) 545 : ModulePass(ID), SampleLoader( 546 Name, SampleProfileRemappingFile, LTOPhase, 547 [&](Function &F) -> AssumptionCache & { 548 return ACT->getAssumptionCache(F); 549 }, 550 [&](Function &F) -> TargetTransformInfo & { 551 return TTIWP->getTTI(F); 552 }, 553 [&](Function &F) -> TargetLibraryInfo & { 554 return TLIWP->getTLI(F); 555 }) { 556 initializeSampleProfileLoaderLegacyPassPass( 557 *PassRegistry::getPassRegistry()); 558 } 559 560 void dump() { SampleLoader.dump(); } 561 562 bool doInitialization(Module &M) override { 563 return SampleLoader.doInitialization(M); 564 } 565 566 StringRef getPassName() const override { return "Sample profile pass"; } 567 bool runOnModule(Module &M) override; 568 569 void getAnalysisUsage(AnalysisUsage &AU) const override { 570 AU.addRequired<AssumptionCacheTracker>(); 571 AU.addRequired<TargetTransformInfoWrapperPass>(); 572 AU.addRequired<TargetLibraryInfoWrapperPass>(); 573 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 574 } 575 576 private: 577 SampleProfileLoader SampleLoader; 578 AssumptionCacheTracker *ACT = nullptr; 579 TargetTransformInfoWrapperPass *TTIWP = nullptr; 580 TargetLibraryInfoWrapperPass *TLIWP = nullptr; 581 }; 582 583 } // end anonymous namespace 584 585 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 586 if (FunctionSamples::ProfileIsProbeBased) 587 return getProbeWeight(Inst); 588 589 const DebugLoc &DLoc = Inst.getDebugLoc(); 590 if (!DLoc) 591 return std::error_code(); 592 593 // Ignore all intrinsics, phinodes and branch instructions. 594 // Branch and phinodes instruction usually contains debug info from sources 595 // outside of the residing basic block, thus we ignore them during annotation. 596 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst)) 597 return std::error_code(); 598 599 // For non-CS profile, if a direct call/invoke instruction is inlined in 600 // profile (findCalleeFunctionSamples returns non-empty result), but not 601 // inlined here, it means that the inlined callsite has no sample, thus the 602 // call instruction should have 0 count. 603 // For CS profile, the callsite count of previously inlined callees is 604 // populated with the entry count of the callees. 605 if (!FunctionSamples::ProfileIsCS) 606 if (const auto *CB = dyn_cast<CallBase>(&Inst)) 607 if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB)) 608 return 0; 609 610 return getInstWeightImpl(Inst); 611 } 612 613 // Here use error_code to represent: 1) The dangling probe. 2) Ignore the weight 614 // of non-probe instruction. So if all instructions of the BB give error_code, 615 // tell the inference algorithm to infer the BB weight. 616 ErrorOr<uint64_t> SampleProfileLoader::getProbeWeight(const Instruction &Inst) { 617 assert(FunctionSamples::ProfileIsProbeBased && 618 "Profile is not pseudo probe based"); 619 Optional<PseudoProbe> Probe = extractProbe(Inst); 620 // Ignore the non-probe instruction. If none of the instruction in the BB is 621 // probe, we choose to infer the BB's weight. 622 if (!Probe) 623 return std::error_code(); 624 625 const FunctionSamples *FS = findFunctionSamples(Inst); 626 // If none of the instruction has FunctionSample, we choose to return zero 627 // value sample to indicate the BB is cold. This could happen when the 628 // instruction is from inlinee and no profile data is found. 629 // FIXME: This should not be affected by the source drift issue as 1) if the 630 // newly added function is top-level inliner, it won't match the CFG checksum 631 // in the function profile or 2) if it's the inlinee, the inlinee should have 632 // a profile, otherwise it wouldn't be inlined. For non-probe based profile, 633 // we can improve it by adding a switch for profile-sample-block-accurate for 634 // block level counts in the future. 635 if (!FS) 636 return 0; 637 638 // For non-CS profile, If a direct call/invoke instruction is inlined in 639 // profile (findCalleeFunctionSamples returns non-empty result), but not 640 // inlined here, it means that the inlined callsite has no sample, thus the 641 // call instruction should have 0 count. 642 // For CS profile, the callsite count of previously inlined callees is 643 // populated with the entry count of the callees. 644 if (!FunctionSamples::ProfileIsCS) 645 if (const auto *CB = dyn_cast<CallBase>(&Inst)) 646 if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB)) 647 return 0; 648 649 const ErrorOr<uint64_t> &R = FS->findSamplesAt(Probe->Id, 0); 650 if (R) { 651 uint64_t Samples = R.get() * Probe->Factor; 652 bool FirstMark = CoverageTracker.markSamplesUsed(FS, Probe->Id, 0, Samples); 653 if (FirstMark) { 654 ORE->emit([&]() { 655 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 656 Remark << "Applied " << ore::NV("NumSamples", Samples); 657 Remark << " samples from profile (ProbeId="; 658 Remark << ore::NV("ProbeId", Probe->Id); 659 Remark << ", Factor="; 660 Remark << ore::NV("Factor", Probe->Factor); 661 Remark << ", OriginalSamples="; 662 Remark << ore::NV("OriginalSamples", R.get()); 663 Remark << ")"; 664 return Remark; 665 }); 666 } 667 LLVM_DEBUG(dbgs() << " " << Probe->Id << ":" << Inst 668 << " - weight: " << R.get() << " - factor: " 669 << format("%0.2f", Probe->Factor) << ")\n"); 670 return Samples; 671 } 672 return R; 673 } 674 675 /// Get the FunctionSamples for a call instruction. 676 /// 677 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 678 /// instance in which that call instruction is calling to. It contains 679 /// all samples that resides in the inlined instance. We first find the 680 /// inlined instance in which the call instruction is from, then we 681 /// traverse its children to find the callsite with the matching 682 /// location. 683 /// 684 /// \param Inst Call/Invoke instruction to query. 685 /// 686 /// \returns The FunctionSamples pointer to the inlined instance. 687 const FunctionSamples * 688 SampleProfileLoader::findCalleeFunctionSamples(const CallBase &Inst) const { 689 const DILocation *DIL = Inst.getDebugLoc(); 690 if (!DIL) { 691 return nullptr; 692 } 693 694 StringRef CalleeName; 695 if (Function *Callee = Inst.getCalledFunction()) 696 CalleeName = Callee->getName(); 697 698 if (FunctionSamples::ProfileIsCS) 699 return ContextTracker->getCalleeContextSamplesFor(Inst, CalleeName); 700 701 const FunctionSamples *FS = findFunctionSamples(Inst); 702 if (FS == nullptr) 703 return nullptr; 704 705 return FS->findFunctionSamplesAt(FunctionSamples::getCallSiteIdentifier(DIL), 706 CalleeName, Reader->getRemapper()); 707 } 708 709 /// Returns a vector of FunctionSamples that are the indirect call targets 710 /// of \p Inst. The vector is sorted by the total number of samples. Stores 711 /// the total call count of the indirect call in \p Sum. 712 std::vector<const FunctionSamples *> 713 SampleProfileLoader::findIndirectCallFunctionSamples( 714 const Instruction &Inst, uint64_t &Sum) const { 715 const DILocation *DIL = Inst.getDebugLoc(); 716 std::vector<const FunctionSamples *> R; 717 718 if (!DIL) { 719 return R; 720 } 721 722 auto FSCompare = [](const FunctionSamples *L, const FunctionSamples *R) { 723 assert(L && R && "Expect non-null FunctionSamples"); 724 if (L->getEntrySamples() != R->getEntrySamples()) 725 return L->getEntrySamples() > R->getEntrySamples(); 726 return FunctionSamples::getGUID(L->getName()) < 727 FunctionSamples::getGUID(R->getName()); 728 }; 729 730 if (FunctionSamples::ProfileIsCS) { 731 auto CalleeSamples = 732 ContextTracker->getIndirectCalleeContextSamplesFor(DIL); 733 if (CalleeSamples.empty()) 734 return R; 735 736 // For CSSPGO, we only use target context profile's entry count 737 // as that already includes both inlined callee and non-inlined ones.. 738 Sum = 0; 739 for (const auto *const FS : CalleeSamples) { 740 Sum += FS->getEntrySamples(); 741 R.push_back(FS); 742 } 743 llvm::sort(R, FSCompare); 744 return R; 745 } 746 747 const FunctionSamples *FS = findFunctionSamples(Inst); 748 if (FS == nullptr) 749 return R; 750 751 auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL); 752 auto T = FS->findCallTargetMapAt(CallSite); 753 Sum = 0; 754 if (T) 755 for (const auto &T_C : T.get()) 756 Sum += T_C.second; 757 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(CallSite)) { 758 if (M->empty()) 759 return R; 760 for (const auto &NameFS : *M) { 761 Sum += NameFS.second.getEntrySamples(); 762 R.push_back(&NameFS.second); 763 } 764 llvm::sort(R, FSCompare); 765 } 766 return R; 767 } 768 769 const FunctionSamples * 770 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 771 if (FunctionSamples::ProfileIsProbeBased) { 772 Optional<PseudoProbe> Probe = extractProbe(Inst); 773 if (!Probe) 774 return nullptr; 775 } 776 777 const DILocation *DIL = Inst.getDebugLoc(); 778 if (!DIL) 779 return Samples; 780 781 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr); 782 if (it.second) { 783 if (FunctionSamples::ProfileIsCS) 784 it.first->second = ContextTracker->getContextSamplesFor(DIL); 785 else 786 it.first->second = 787 Samples->findFunctionSamples(DIL, Reader->getRemapper()); 788 } 789 return it.first->second; 790 } 791 792 /// Check whether the indirect call promotion history of \p Inst allows 793 /// the promotion for \p Candidate. 794 /// If the profile count for the promotion candidate \p Candidate is 795 /// NOMORE_ICP_MAGICNUM, it means \p Candidate has already been promoted 796 /// for \p Inst. If we already have at least MaxNumPromotions 797 /// NOMORE_ICP_MAGICNUM count values in the value profile of \p Inst, we 798 /// cannot promote for \p Inst anymore. 799 static bool doesHistoryAllowICP(const Instruction &Inst, StringRef Candidate) { 800 uint32_t NumVals = 0; 801 uint64_t TotalCount = 0; 802 std::unique_ptr<InstrProfValueData[]> ValueData = 803 std::make_unique<InstrProfValueData[]>(MaxNumPromotions); 804 bool Valid = 805 getValueProfDataFromInst(Inst, IPVK_IndirectCallTarget, MaxNumPromotions, 806 ValueData.get(), NumVals, TotalCount, true); 807 // No valid value profile so no promoted targets have been recorded 808 // before. Ok to do ICP. 809 if (!Valid) 810 return true; 811 812 unsigned NumPromoted = 0; 813 for (uint32_t I = 0; I < NumVals; I++) { 814 if (ValueData[I].Count != NOMORE_ICP_MAGICNUM) 815 continue; 816 817 // If the promotion candidate has NOMORE_ICP_MAGICNUM count in the 818 // metadata, it means the candidate has been promoted for this 819 // indirect call. 820 if (ValueData[I].Value == Function::getGUID(Candidate)) 821 return false; 822 NumPromoted++; 823 // If already have MaxNumPromotions promotion, don't do it anymore. 824 if (NumPromoted == MaxNumPromotions) 825 return false; 826 } 827 return true; 828 } 829 830 /// Update indirect call target profile metadata for \p Inst. 831 /// Usually \p Sum is the sum of counts of all the targets for \p Inst. 832 /// If it is 0, it means updateIDTMetaData is used to mark a 833 /// certain target to be promoted already. If it is not zero, 834 /// we expect to use it to update the total count in the value profile. 835 static void 836 updateIDTMetaData(Instruction &Inst, 837 const SmallVectorImpl<InstrProfValueData> &CallTargets, 838 uint64_t Sum) { 839 // Bail out early if MaxNumPromotions is zero. 840 // This prevents allocating an array of zero length below. 841 // 842 // Note `updateIDTMetaData` is called in two places so check 843 // `MaxNumPromotions` inside it. 844 if (MaxNumPromotions == 0) 845 return; 846 uint32_t NumVals = 0; 847 // OldSum is the existing total count in the value profile data. 848 uint64_t OldSum = 0; 849 std::unique_ptr<InstrProfValueData[]> ValueData = 850 std::make_unique<InstrProfValueData[]>(MaxNumPromotions); 851 bool Valid = 852 getValueProfDataFromInst(Inst, IPVK_IndirectCallTarget, MaxNumPromotions, 853 ValueData.get(), NumVals, OldSum, true); 854 855 DenseMap<uint64_t, uint64_t> ValueCountMap; 856 if (Sum == 0) { 857 assert((CallTargets.size() == 1 && 858 CallTargets[0].Count == NOMORE_ICP_MAGICNUM) && 859 "If sum is 0, assume only one element in CallTargets " 860 "with count being NOMORE_ICP_MAGICNUM"); 861 // Initialize ValueCountMap with existing value profile data. 862 if (Valid) { 863 for (uint32_t I = 0; I < NumVals; I++) 864 ValueCountMap[ValueData[I].Value] = ValueData[I].Count; 865 } 866 auto Pair = 867 ValueCountMap.try_emplace(CallTargets[0].Value, CallTargets[0].Count); 868 // If the target already exists in value profile, decrease the total 869 // count OldSum and reset the target's count to NOMORE_ICP_MAGICNUM. 870 if (!Pair.second) { 871 OldSum -= Pair.first->second; 872 Pair.first->second = NOMORE_ICP_MAGICNUM; 873 } 874 Sum = OldSum; 875 } else { 876 // Initialize ValueCountMap with existing NOMORE_ICP_MAGICNUM 877 // counts in the value profile. 878 if (Valid) { 879 for (uint32_t I = 0; I < NumVals; I++) { 880 if (ValueData[I].Count == NOMORE_ICP_MAGICNUM) 881 ValueCountMap[ValueData[I].Value] = ValueData[I].Count; 882 } 883 } 884 885 for (const auto &Data : CallTargets) { 886 auto Pair = ValueCountMap.try_emplace(Data.Value, Data.Count); 887 if (Pair.second) 888 continue; 889 // The target represented by Data.Value has already been promoted. 890 // Keep the count as NOMORE_ICP_MAGICNUM in the profile and decrease 891 // Sum by Data.Count. 892 assert(Sum >= Data.Count && "Sum should never be less than Data.Count"); 893 Sum -= Data.Count; 894 } 895 } 896 897 SmallVector<InstrProfValueData, 8> NewCallTargets; 898 for (const auto &ValueCount : ValueCountMap) { 899 NewCallTargets.emplace_back( 900 InstrProfValueData{ValueCount.first, ValueCount.second}); 901 } 902 903 llvm::sort(NewCallTargets, 904 [](const InstrProfValueData &L, const InstrProfValueData &R) { 905 if (L.Count != R.Count) 906 return L.Count > R.Count; 907 return L.Value > R.Value; 908 }); 909 910 uint32_t MaxMDCount = 911 std::min(NewCallTargets.size(), static_cast<size_t>(MaxNumPromotions)); 912 annotateValueSite(*Inst.getParent()->getParent()->getParent(), Inst, 913 NewCallTargets, Sum, IPVK_IndirectCallTarget, MaxMDCount); 914 } 915 916 /// Attempt to promote indirect call and also inline the promoted call. 917 /// 918 /// \param F Caller function. 919 /// \param Candidate ICP and inline candidate. 920 /// \param SumOrigin Original sum of target counts for indirect call before 921 /// promoting given candidate. 922 /// \param Sum Prorated sum of remaining target counts for indirect call 923 /// after promoting given candidate. 924 /// \param InlinedCallSite Output vector for new call sites exposed after 925 /// inlining. 926 bool SampleProfileLoader::tryPromoteAndInlineCandidate( 927 Function &F, InlineCandidate &Candidate, uint64_t SumOrigin, uint64_t &Sum, 928 SmallVector<CallBase *, 8> *InlinedCallSite) { 929 // Bail out early if sample-loader inliner is disabled. 930 if (DisableSampleLoaderInlining) 931 return false; 932 933 // Bail out early if MaxNumPromotions is zero. 934 // This prevents allocating an array of zero length in callees below. 935 if (MaxNumPromotions == 0) 936 return false; 937 auto CalleeFunctionName = Candidate.CalleeSamples->getFuncName(); 938 auto R = SymbolMap.find(CalleeFunctionName); 939 if (R == SymbolMap.end() || !R->getValue()) 940 return false; 941 942 auto &CI = *Candidate.CallInstr; 943 if (!doesHistoryAllowICP(CI, R->getValue()->getName())) 944 return false; 945 946 const char *Reason = "Callee function not available"; 947 // R->getValue() != &F is to prevent promoting a recursive call. 948 // If it is a recursive call, we do not inline it as it could bloat 949 // the code exponentially. There is way to better handle this, e.g. 950 // clone the caller first, and inline the cloned caller if it is 951 // recursive. As llvm does not inline recursive calls, we will 952 // simply ignore it instead of handling it explicitly. 953 if (!R->getValue()->isDeclaration() && R->getValue()->getSubprogram() && 954 R->getValue()->hasFnAttribute("use-sample-profile") && 955 R->getValue() != &F && isLegalToPromote(CI, R->getValue(), &Reason)) { 956 // For promoted target, set its value with NOMORE_ICP_MAGICNUM count 957 // in the value profile metadata so the target won't be promoted again. 958 SmallVector<InstrProfValueData, 1> SortedCallTargets = {InstrProfValueData{ 959 Function::getGUID(R->getValue()->getName()), NOMORE_ICP_MAGICNUM}}; 960 updateIDTMetaData(CI, SortedCallTargets, 0); 961 962 auto *DI = &pgo::promoteIndirectCall( 963 CI, R->getValue(), Candidate.CallsiteCount, Sum, false, ORE); 964 if (DI) { 965 Sum -= Candidate.CallsiteCount; 966 // Do not prorate the indirect callsite distribution since the original 967 // distribution will be used to scale down non-promoted profile target 968 // counts later. By doing this we lose track of the real callsite count 969 // for the leftover indirect callsite as a trade off for accurate call 970 // target counts. 971 // TODO: Ideally we would have two separate factors, one for call site 972 // counts and one is used to prorate call target counts. 973 // Do not update the promoted direct callsite distribution at this 974 // point since the original distribution combined with the callee profile 975 // will be used to prorate callsites from the callee if inlined. Once not 976 // inlined, the direct callsite distribution should be prorated so that 977 // the it will reflect the real callsite counts. 978 Candidate.CallInstr = DI; 979 if (isa<CallInst>(DI) || isa<InvokeInst>(DI)) { 980 bool Inlined = tryInlineCandidate(Candidate, InlinedCallSite); 981 if (!Inlined) { 982 // Prorate the direct callsite distribution so that it reflects real 983 // callsite counts. 984 setProbeDistributionFactor( 985 *DI, static_cast<float>(Candidate.CallsiteCount) / SumOrigin); 986 } 987 return Inlined; 988 } 989 } 990 } else { 991 LLVM_DEBUG(dbgs() << "\nFailed to promote indirect call to " 992 << Candidate.CalleeSamples->getFuncName() << " because " 993 << Reason << "\n"); 994 } 995 return false; 996 } 997 998 bool SampleProfileLoader::shouldInlineColdCallee(CallBase &CallInst) { 999 if (!ProfileSizeInline) 1000 return false; 1001 1002 Function *Callee = CallInst.getCalledFunction(); 1003 if (Callee == nullptr) 1004 return false; 1005 1006 InlineCost Cost = getInlineCost(CallInst, getInlineParams(), GetTTI(*Callee), 1007 GetAC, GetTLI); 1008 1009 if (Cost.isNever()) 1010 return false; 1011 1012 if (Cost.isAlways()) 1013 return true; 1014 1015 return Cost.getCost() <= SampleColdCallSiteThreshold; 1016 } 1017 1018 void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates( 1019 const SmallVectorImpl<CallBase *> &Candidates, const Function &F, 1020 bool Hot) { 1021 for (auto I : Candidates) { 1022 Function *CalledFunction = I->getCalledFunction(); 1023 if (CalledFunction) { 1024 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt", 1025 I->getDebugLoc(), I->getParent()) 1026 << "previous inlining reattempted for " 1027 << (Hot ? "hotness: '" : "size: '") 1028 << ore::NV("Callee", CalledFunction) << "' into '" 1029 << ore::NV("Caller", &F) << "'"); 1030 } 1031 } 1032 } 1033 1034 void SampleProfileLoader::findExternalInlineCandidate( 1035 CallBase *CB, const FunctionSamples *Samples, 1036 DenseSet<GlobalValue::GUID> &InlinedGUIDs, 1037 const StringMap<Function *> &SymbolMap, uint64_t Threshold) { 1038 1039 // If ExternalInlineAdvisor wants to inline an external function 1040 // make sure it's imported 1041 if (CB && getExternalInlineAdvisorShouldInline(*CB)) { 1042 // Samples may not exist for replayed function, if so 1043 // just add the direct GUID and move on 1044 if (!Samples) { 1045 InlinedGUIDs.insert( 1046 FunctionSamples::getGUID(CB->getCalledFunction()->getName())); 1047 return; 1048 } 1049 // Otherwise, drop the threshold to import everything that we can 1050 Threshold = 0; 1051 } 1052 1053 assert(Samples && "expect non-null caller profile"); 1054 1055 // For AutoFDO profile, retrieve candidate profiles by walking over 1056 // the nested inlinee profiles. 1057 if (!FunctionSamples::ProfileIsCS) { 1058 Samples->findInlinedFunctions(InlinedGUIDs, SymbolMap, Threshold); 1059 return; 1060 } 1061 1062 ContextTrieNode *Caller = 1063 ContextTracker->getContextFor(Samples->getContext()); 1064 std::queue<ContextTrieNode *> CalleeList; 1065 CalleeList.push(Caller); 1066 while (!CalleeList.empty()) { 1067 ContextTrieNode *Node = CalleeList.front(); 1068 CalleeList.pop(); 1069 FunctionSamples *CalleeSample = Node->getFunctionSamples(); 1070 // For CSSPGO profile, retrieve candidate profile by walking over the 1071 // trie built for context profile. Note that also take call targets 1072 // even if callee doesn't have a corresponding context profile. 1073 if (!CalleeSample) 1074 continue; 1075 1076 // If pre-inliner decision is used, honor that for importing as well. 1077 bool PreInline = 1078 UsePreInlinerDecision && 1079 CalleeSample->getContext().hasAttribute(ContextShouldBeInlined); 1080 if (!PreInline && CalleeSample->getEntrySamples() < Threshold) 1081 continue; 1082 1083 StringRef Name = CalleeSample->getFuncName(); 1084 Function *Func = SymbolMap.lookup(Name); 1085 // Add to the import list only when it's defined out of module. 1086 if (!Func || Func->isDeclaration()) 1087 InlinedGUIDs.insert(FunctionSamples::getGUID(CalleeSample->getName())); 1088 1089 // Import hot CallTargets, which may not be available in IR because full 1090 // profile annotation cannot be done until backend compilation in ThinLTO. 1091 for (const auto &BS : CalleeSample->getBodySamples()) 1092 for (const auto &TS : BS.second.getCallTargets()) 1093 if (TS.getValue() > Threshold) { 1094 StringRef CalleeName = CalleeSample->getFuncName(TS.getKey()); 1095 const Function *Callee = SymbolMap.lookup(CalleeName); 1096 if (!Callee || Callee->isDeclaration()) 1097 InlinedGUIDs.insert(FunctionSamples::getGUID(TS.getKey())); 1098 } 1099 1100 // Import hot child context profile associted with callees. Note that this 1101 // may have some overlap with the call target loop above, but doing this 1102 // based child context profile again effectively allow us to use the max of 1103 // entry count and call target count to determine importing. 1104 for (auto &Child : Node->getAllChildContext()) { 1105 ContextTrieNode *CalleeNode = &Child.second; 1106 CalleeList.push(CalleeNode); 1107 } 1108 } 1109 } 1110 1111 /// Iteratively inline hot callsites of a function. 1112 /// 1113 /// Iteratively traverse all callsites of the function \p F, so as to 1114 /// find out callsites with corresponding inline instances. 1115 /// 1116 /// For such callsites, 1117 /// - If it is hot enough, inline the callsites and adds callsites of the callee 1118 /// into the caller. If the call is an indirect call, first promote 1119 /// it to direct call. Each indirect call is limited with a single target. 1120 /// 1121 /// - If a callsite is not inlined, merge the its profile to the outline 1122 /// version (if --sample-profile-merge-inlinee is true), or scale the 1123 /// counters of standalone function based on the profile of inlined 1124 /// instances (if --sample-profile-merge-inlinee is false). 1125 /// 1126 /// Later passes may consume the updated profiles. 1127 /// 1128 /// \param F function to perform iterative inlining. 1129 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 1130 /// inlined in the profiled binary. 1131 /// 1132 /// \returns True if there is any inline happened. 1133 bool SampleProfileLoader::inlineHotFunctions( 1134 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 1135 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure 1136 // Profile symbol list is ignored when profile-sample-accurate is on. 1137 assert((!ProfAccForSymsInList || 1138 (!ProfileSampleAccurate && 1139 !F.hasFnAttribute("profile-sample-accurate"))) && 1140 "ProfAccForSymsInList should be false when profile-sample-accurate " 1141 "is enabled"); 1142 1143 DenseMap<CallBase *, const FunctionSamples *> LocalNotInlinedCallSites; 1144 bool Changed = false; 1145 bool LocalChanged = true; 1146 while (LocalChanged) { 1147 LocalChanged = false; 1148 SmallVector<CallBase *, 10> CIS; 1149 for (auto &BB : F) { 1150 bool Hot = false; 1151 SmallVector<CallBase *, 10> AllCandidates; 1152 SmallVector<CallBase *, 10> ColdCandidates; 1153 for (auto &I : BB.getInstList()) { 1154 const FunctionSamples *FS = nullptr; 1155 if (auto *CB = dyn_cast<CallBase>(&I)) { 1156 if (!isa<IntrinsicInst>(I)) { 1157 if ((FS = findCalleeFunctionSamples(*CB))) { 1158 assert((!FunctionSamples::UseMD5 || FS->GUIDToFuncNameMap) && 1159 "GUIDToFuncNameMap has to be populated"); 1160 AllCandidates.push_back(CB); 1161 if (FS->getEntrySamples() > 0 || FunctionSamples::ProfileIsCS) 1162 LocalNotInlinedCallSites.try_emplace(CB, FS); 1163 if (callsiteIsHot(FS, PSI, ProfAccForSymsInList)) 1164 Hot = true; 1165 else if (shouldInlineColdCallee(*CB)) 1166 ColdCandidates.push_back(CB); 1167 } else if (getExternalInlineAdvisorShouldInline(*CB)) { 1168 AllCandidates.push_back(CB); 1169 } 1170 } 1171 } 1172 } 1173 if (Hot || ExternalInlineAdvisor) { 1174 CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end()); 1175 emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true); 1176 } else { 1177 CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end()); 1178 emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false); 1179 } 1180 } 1181 for (CallBase *I : CIS) { 1182 Function *CalledFunction = I->getCalledFunction(); 1183 InlineCandidate Candidate = {I, LocalNotInlinedCallSites.lookup(I), 1184 0 /* dummy count */, 1185 1.0 /* dummy distribution factor */}; 1186 // Do not inline recursive calls. 1187 if (CalledFunction == &F) 1188 continue; 1189 if (I->isIndirectCall()) { 1190 uint64_t Sum; 1191 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 1192 uint64_t SumOrigin = Sum; 1193 if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { 1194 findExternalInlineCandidate(I, FS, InlinedGUIDs, SymbolMap, 1195 PSI->getOrCompHotCountThreshold()); 1196 continue; 1197 } 1198 if (!callsiteIsHot(FS, PSI, ProfAccForSymsInList)) 1199 continue; 1200 1201 Candidate = {I, FS, FS->getEntrySamples(), 1.0}; 1202 if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum)) { 1203 LocalNotInlinedCallSites.erase(I); 1204 LocalChanged = true; 1205 } 1206 } 1207 } else if (CalledFunction && CalledFunction->getSubprogram() && 1208 !CalledFunction->isDeclaration()) { 1209 if (tryInlineCandidate(Candidate)) { 1210 LocalNotInlinedCallSites.erase(I); 1211 LocalChanged = true; 1212 } 1213 } else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { 1214 findExternalInlineCandidate(I, findCalleeFunctionSamples(*I), 1215 InlinedGUIDs, SymbolMap, 1216 PSI->getOrCompHotCountThreshold()); 1217 } 1218 } 1219 Changed |= LocalChanged; 1220 } 1221 1222 // For CS profile, profile for not inlined context will be merged when 1223 // base profile is being retrieved. 1224 if (!FunctionSamples::ProfileIsCS) 1225 promoteMergeNotInlinedContextSamples(LocalNotInlinedCallSites, F); 1226 return Changed; 1227 } 1228 1229 bool SampleProfileLoader::tryInlineCandidate( 1230 InlineCandidate &Candidate, SmallVector<CallBase *, 8> *InlinedCallSites) { 1231 // Do not attempt to inline a candidate if 1232 // --disable-sample-loader-inlining is true. 1233 if (DisableSampleLoaderInlining) 1234 return false; 1235 1236 CallBase &CB = *Candidate.CallInstr; 1237 Function *CalledFunction = CB.getCalledFunction(); 1238 assert(CalledFunction && "Expect a callee with definition"); 1239 DebugLoc DLoc = CB.getDebugLoc(); 1240 BasicBlock *BB = CB.getParent(); 1241 1242 InlineCost Cost = shouldInlineCandidate(Candidate); 1243 if (Cost.isNever()) { 1244 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB) 1245 << "incompatible inlining"); 1246 return false; 1247 } 1248 1249 if (!Cost) 1250 return false; 1251 1252 InlineFunctionInfo IFI(nullptr, GetAC); 1253 IFI.UpdateProfile = false; 1254 if (!InlineFunction(CB, IFI).isSuccess()) 1255 return false; 1256 1257 // Merge the attributes based on the inlining. 1258 AttributeFuncs::mergeAttributesForInlining(*BB->getParent(), 1259 *CalledFunction); 1260 1261 // The call to InlineFunction erases I, so we can't pass it here. 1262 emitInlinedIntoBasedOnCost(*ORE, DLoc, BB, *CalledFunction, 1263 *BB->getParent(), Cost, true, CSINLINE_DEBUG); 1264 1265 // Now populate the list of newly exposed call sites. 1266 if (InlinedCallSites) { 1267 InlinedCallSites->clear(); 1268 for (auto &I : IFI.InlinedCallSites) 1269 InlinedCallSites->push_back(I); 1270 } 1271 1272 if (FunctionSamples::ProfileIsCS) 1273 ContextTracker->markContextSamplesInlined(Candidate.CalleeSamples); 1274 ++NumCSInlined; 1275 1276 // Prorate inlined probes for a duplicated inlining callsite which probably 1277 // has a distribution less than 100%. Samples for an inlinee should be 1278 // distributed among the copies of the original callsite based on each 1279 // callsite's distribution factor for counts accuracy. Note that an inlined 1280 // probe may come with its own distribution factor if it has been duplicated 1281 // in the inlinee body. The two factor are multiplied to reflect the 1282 // aggregation of duplication. 1283 if (Candidate.CallsiteDistribution < 1) { 1284 for (auto &I : IFI.InlinedCallSites) { 1285 if (Optional<PseudoProbe> Probe = extractProbe(*I)) 1286 setProbeDistributionFactor(*I, Probe->Factor * 1287 Candidate.CallsiteDistribution); 1288 } 1289 NumDuplicatedInlinesite++; 1290 } 1291 1292 return true; 1293 } 1294 1295 bool SampleProfileLoader::getInlineCandidate(InlineCandidate *NewCandidate, 1296 CallBase *CB) { 1297 assert(CB && "Expect non-null call instruction"); 1298 1299 if (isa<IntrinsicInst>(CB)) 1300 return false; 1301 1302 // Find the callee's profile. For indirect call, find hottest target profile. 1303 const FunctionSamples *CalleeSamples = findCalleeFunctionSamples(*CB); 1304 // If ExternalInlineAdvisor wants to inline this site, do so even 1305 // if Samples are not present. 1306 if (!CalleeSamples && !getExternalInlineAdvisorShouldInline(*CB)) 1307 return false; 1308 1309 float Factor = 1.0; 1310 if (Optional<PseudoProbe> Probe = extractProbe(*CB)) 1311 Factor = Probe->Factor; 1312 1313 uint64_t CallsiteCount = 1314 CalleeSamples ? CalleeSamples->getEntrySamples() * Factor : 0; 1315 *NewCandidate = {CB, CalleeSamples, CallsiteCount, Factor}; 1316 return true; 1317 } 1318 1319 Optional<InlineCost> 1320 SampleProfileLoader::getExternalInlineAdvisorCost(CallBase &CB) { 1321 std::unique_ptr<InlineAdvice> Advice = nullptr; 1322 if (ExternalInlineAdvisor) { 1323 Advice = ExternalInlineAdvisor->getAdvice(CB); 1324 if (Advice) { 1325 if (!Advice->isInliningRecommended()) { 1326 Advice->recordUnattemptedInlining(); 1327 return InlineCost::getNever("not previously inlined"); 1328 } 1329 Advice->recordInlining(); 1330 return InlineCost::getAlways("previously inlined"); 1331 } 1332 } 1333 1334 return {}; 1335 } 1336 1337 bool SampleProfileLoader::getExternalInlineAdvisorShouldInline(CallBase &CB) { 1338 Optional<InlineCost> Cost = getExternalInlineAdvisorCost(CB); 1339 return Cost ? !!Cost.getValue() : false; 1340 } 1341 1342 InlineCost 1343 SampleProfileLoader::shouldInlineCandidate(InlineCandidate &Candidate) { 1344 if (Optional<InlineCost> ReplayCost = 1345 getExternalInlineAdvisorCost(*Candidate.CallInstr)) 1346 return ReplayCost.getValue(); 1347 // Adjust threshold based on call site hotness, only do this for callsite 1348 // prioritized inliner because otherwise cost-benefit check is done earlier. 1349 int SampleThreshold = SampleColdCallSiteThreshold; 1350 if (CallsitePrioritizedInline) { 1351 if (Candidate.CallsiteCount > PSI->getHotCountThreshold()) 1352 SampleThreshold = SampleHotCallSiteThreshold; 1353 else if (!ProfileSizeInline) 1354 return InlineCost::getNever("cold callsite"); 1355 } 1356 1357 Function *Callee = Candidate.CallInstr->getCalledFunction(); 1358 assert(Callee && "Expect a definition for inline candidate of direct call"); 1359 1360 InlineParams Params = getInlineParams(); 1361 // We will ignore the threshold from inline cost, so always get full cost. 1362 Params.ComputeFullInlineCost = true; 1363 Params.AllowRecursiveCall = AllowRecursiveInline; 1364 // Checks if there is anything in the reachable portion of the callee at 1365 // this callsite that makes this inlining potentially illegal. Need to 1366 // set ComputeFullInlineCost, otherwise getInlineCost may return early 1367 // when cost exceeds threshold without checking all IRs in the callee. 1368 // The acutal cost does not matter because we only checks isNever() to 1369 // see if it is legal to inline the callsite. 1370 InlineCost Cost = getInlineCost(*Candidate.CallInstr, Callee, Params, 1371 GetTTI(*Callee), GetAC, GetTLI); 1372 1373 // Honor always inline and never inline from call analyzer 1374 if (Cost.isNever() || Cost.isAlways()) 1375 return Cost; 1376 1377 // With CSSPGO, the preinliner in llvm-profgen can estimate global inline 1378 // decisions based on hotness as well as accurate function byte sizes for 1379 // given context using function/inlinee sizes from previous build. It 1380 // stores the decision in profile, and also adjust/merge context profile 1381 // aiming at better context-sensitive post-inline profile quality, assuming 1382 // all inline decision estimates are going to be honored by compiler. Here 1383 // we replay that inline decision under `sample-profile-use-preinliner`. 1384 // Note that we don't need to handle negative decision from preinliner as 1385 // context profile for not inlined calls are merged by preinliner already. 1386 if (UsePreInlinerDecision && Candidate.CalleeSamples) { 1387 // Once two node are merged due to promotion, we're losing some context 1388 // so the original context-sensitive preinliner decision should be ignored 1389 // for SyntheticContext. 1390 SampleContext &Context = Candidate.CalleeSamples->getContext(); 1391 if (!Context.hasState(SyntheticContext) && 1392 Context.hasAttribute(ContextShouldBeInlined)) 1393 return InlineCost::getAlways("preinliner"); 1394 } 1395 1396 // For old FDO inliner, we inline the call site as long as cost is not 1397 // "Never". The cost-benefit check is done earlier. 1398 if (!CallsitePrioritizedInline) { 1399 return InlineCost::get(Cost.getCost(), INT_MAX); 1400 } 1401 1402 // Otherwise only use the cost from call analyzer, but overwite threshold with 1403 // Sample PGO threshold. 1404 return InlineCost::get(Cost.getCost(), SampleThreshold); 1405 } 1406 1407 bool SampleProfileLoader::inlineHotFunctionsWithPriority( 1408 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 1409 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure 1410 // Profile symbol list is ignored when profile-sample-accurate is on. 1411 assert((!ProfAccForSymsInList || 1412 (!ProfileSampleAccurate && 1413 !F.hasFnAttribute("profile-sample-accurate"))) && 1414 "ProfAccForSymsInList should be false when profile-sample-accurate " 1415 "is enabled"); 1416 1417 // Populating worklist with initial call sites from root inliner, along 1418 // with call site weights. 1419 CandidateQueue CQueue; 1420 InlineCandidate NewCandidate; 1421 for (auto &BB : F) { 1422 for (auto &I : BB.getInstList()) { 1423 auto *CB = dyn_cast<CallBase>(&I); 1424 if (!CB) 1425 continue; 1426 if (getInlineCandidate(&NewCandidate, CB)) 1427 CQueue.push(NewCandidate); 1428 } 1429 } 1430 1431 // Cap the size growth from profile guided inlining. This is needed even 1432 // though cost of each inline candidate already accounts for callee size, 1433 // because with top-down inlining, we can grow inliner size significantly 1434 // with large number of smaller inlinees each pass the cost check. 1435 assert(ProfileInlineLimitMax >= ProfileInlineLimitMin && 1436 "Max inline size limit should not be smaller than min inline size " 1437 "limit."); 1438 unsigned SizeLimit = F.getInstructionCount() * ProfileInlineGrowthLimit; 1439 SizeLimit = std::min(SizeLimit, (unsigned)ProfileInlineLimitMax); 1440 SizeLimit = std::max(SizeLimit, (unsigned)ProfileInlineLimitMin); 1441 if (ExternalInlineAdvisor) 1442 SizeLimit = std::numeric_limits<unsigned>::max(); 1443 1444 DenseMap<CallBase *, const FunctionSamples *> LocalNotInlinedCallSites; 1445 1446 // Perform iterative BFS call site prioritized inlining 1447 bool Changed = false; 1448 while (!CQueue.empty() && F.getInstructionCount() < SizeLimit) { 1449 InlineCandidate Candidate = CQueue.top(); 1450 CQueue.pop(); 1451 CallBase *I = Candidate.CallInstr; 1452 Function *CalledFunction = I->getCalledFunction(); 1453 1454 if (CalledFunction == &F) 1455 continue; 1456 if (I->isIndirectCall()) { 1457 uint64_t Sum = 0; 1458 auto CalleeSamples = findIndirectCallFunctionSamples(*I, Sum); 1459 uint64_t SumOrigin = Sum; 1460 Sum *= Candidate.CallsiteDistribution; 1461 unsigned ICPCount = 0; 1462 for (const auto *FS : CalleeSamples) { 1463 // TODO: Consider disable pre-lTO ICP for MonoLTO as well 1464 if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { 1465 findExternalInlineCandidate(I, FS, InlinedGUIDs, SymbolMap, 1466 PSI->getOrCompHotCountThreshold()); 1467 continue; 1468 } 1469 uint64_t EntryCountDistributed = 1470 FS->getEntrySamples() * Candidate.CallsiteDistribution; 1471 // In addition to regular inline cost check, we also need to make sure 1472 // ICP isn't introducing excessive speculative checks even if individual 1473 // target looks beneficial to promote and inline. That means we should 1474 // only do ICP when there's a small number dominant targets. 1475 if (ICPCount >= ProfileICPRelativeHotnessSkip && 1476 EntryCountDistributed * 100 < SumOrigin * ProfileICPRelativeHotness) 1477 break; 1478 // TODO: Fix CallAnalyzer to handle all indirect calls. 1479 // For indirect call, we don't run CallAnalyzer to get InlineCost 1480 // before actual inlining. This is because we could see two different 1481 // types from the same definition, which makes CallAnalyzer choke as 1482 // it's expecting matching parameter type on both caller and callee 1483 // side. See example from PR18962 for the triggering cases (the bug was 1484 // fixed, but we generate different types). 1485 if (!PSI->isHotCount(EntryCountDistributed)) 1486 break; 1487 SmallVector<CallBase *, 8> InlinedCallSites; 1488 // Attach function profile for promoted indirect callee, and update 1489 // call site count for the promoted inline candidate too. 1490 Candidate = {I, FS, EntryCountDistributed, 1491 Candidate.CallsiteDistribution}; 1492 if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum, 1493 &InlinedCallSites)) { 1494 for (auto *CB : InlinedCallSites) { 1495 if (getInlineCandidate(&NewCandidate, CB)) 1496 CQueue.emplace(NewCandidate); 1497 } 1498 ICPCount++; 1499 Changed = true; 1500 } else if (!ContextTracker) { 1501 LocalNotInlinedCallSites.try_emplace(I, FS); 1502 } 1503 } 1504 } else if (CalledFunction && CalledFunction->getSubprogram() && 1505 !CalledFunction->isDeclaration()) { 1506 SmallVector<CallBase *, 8> InlinedCallSites; 1507 if (tryInlineCandidate(Candidate, &InlinedCallSites)) { 1508 for (auto *CB : InlinedCallSites) { 1509 if (getInlineCandidate(&NewCandidate, CB)) 1510 CQueue.emplace(NewCandidate); 1511 } 1512 Changed = true; 1513 } else if (!ContextTracker) { 1514 LocalNotInlinedCallSites.try_emplace(I, Candidate.CalleeSamples); 1515 } 1516 } else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { 1517 findExternalInlineCandidate(I, findCalleeFunctionSamples(*I), 1518 InlinedGUIDs, SymbolMap, 1519 PSI->getOrCompHotCountThreshold()); 1520 } 1521 } 1522 1523 if (!CQueue.empty()) { 1524 if (SizeLimit == (unsigned)ProfileInlineLimitMax) 1525 ++NumCSInlinedHitMaxLimit; 1526 else if (SizeLimit == (unsigned)ProfileInlineLimitMin) 1527 ++NumCSInlinedHitMinLimit; 1528 else 1529 ++NumCSInlinedHitGrowthLimit; 1530 } 1531 1532 // For CS profile, profile for not inlined context will be merged when 1533 // base profile is being retrieved. 1534 if (!FunctionSamples::ProfileIsCS) 1535 promoteMergeNotInlinedContextSamples(LocalNotInlinedCallSites, F); 1536 return Changed; 1537 } 1538 1539 void SampleProfileLoader::promoteMergeNotInlinedContextSamples( 1540 DenseMap<CallBase *, const FunctionSamples *> NonInlinedCallSites, 1541 const Function &F) { 1542 // Accumulate not inlined callsite information into notInlinedSamples 1543 for (const auto &Pair : NonInlinedCallSites) { 1544 CallBase *I = Pair.getFirst(); 1545 Function *Callee = I->getCalledFunction(); 1546 if (!Callee || Callee->isDeclaration()) 1547 continue; 1548 1549 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline", 1550 I->getDebugLoc(), I->getParent()) 1551 << "previous inlining not repeated: '" 1552 << ore::NV("Callee", Callee) << "' into '" 1553 << ore::NV("Caller", &F) << "'"); 1554 1555 ++NumCSNotInlined; 1556 const FunctionSamples *FS = Pair.getSecond(); 1557 if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) { 1558 continue; 1559 } 1560 1561 // Do not merge a context that is already duplicated into the base profile. 1562 if (FS->getContext().hasAttribute(sampleprof::ContextDuplicatedIntoBase)) 1563 continue; 1564 1565 if (ProfileMergeInlinee) { 1566 // A function call can be replicated by optimizations like callsite 1567 // splitting or jump threading and the replicates end up sharing the 1568 // sample nested callee profile instead of slicing the original 1569 // inlinee's profile. We want to do merge exactly once by filtering out 1570 // callee profiles with a non-zero head sample count. 1571 if (FS->getHeadSamples() == 0) { 1572 // Use entry samples as head samples during the merge, as inlinees 1573 // don't have head samples. 1574 const_cast<FunctionSamples *>(FS)->addHeadSamples( 1575 FS->getEntrySamples()); 1576 1577 // Note that we have to do the merge right after processing function. 1578 // This allows OutlineFS's profile to be used for annotation during 1579 // top-down processing of functions' annotation. 1580 FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee); 1581 OutlineFS->merge(*FS, 1); 1582 // Set outlined profile to be synthetic to not bias the inliner. 1583 OutlineFS->SetContextSynthetic(); 1584 } 1585 } else { 1586 auto pair = 1587 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0}); 1588 pair.first->second.entryCount += FS->getEntrySamples(); 1589 } 1590 } 1591 } 1592 1593 /// Returns the sorted CallTargetMap \p M by count in descending order. 1594 static SmallVector<InstrProfValueData, 2> 1595 GetSortedValueDataFromCallTargets(const SampleRecord::CallTargetMap &M) { 1596 SmallVector<InstrProfValueData, 2> R; 1597 for (const auto &I : SampleRecord::SortCallTargets(M)) { 1598 R.emplace_back( 1599 InstrProfValueData{FunctionSamples::getGUID(I.first), I.second}); 1600 } 1601 return R; 1602 } 1603 1604 // Generate MD_prof metadata for every branch instruction using the 1605 // edge weights computed during propagation. 1606 void SampleProfileLoader::generateMDProfMetadata(Function &F) { 1607 // Generate MD_prof metadata for every branch instruction using the 1608 // edge weights computed during propagation. 1609 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1610 LLVMContext &Ctx = F.getContext(); 1611 MDBuilder MDB(Ctx); 1612 for (auto &BI : F) { 1613 BasicBlock *BB = &BI; 1614 1615 if (BlockWeights[BB]) { 1616 for (auto &I : BB->getInstList()) { 1617 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1618 continue; 1619 if (!cast<CallBase>(I).getCalledFunction()) { 1620 const DebugLoc &DLoc = I.getDebugLoc(); 1621 if (!DLoc) 1622 continue; 1623 const DILocation *DIL = DLoc; 1624 const FunctionSamples *FS = findFunctionSamples(I); 1625 if (!FS) 1626 continue; 1627 auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL); 1628 auto T = FS->findCallTargetMapAt(CallSite); 1629 if (!T || T.get().empty()) 1630 continue; 1631 if (FunctionSamples::ProfileIsProbeBased) { 1632 // Prorate the callsite counts based on the pre-ICP distribution 1633 // factor to reflect what is already done to the callsite before 1634 // ICP, such as calliste cloning. 1635 if (Optional<PseudoProbe> Probe = extractProbe(I)) { 1636 if (Probe->Factor < 1) 1637 T = SampleRecord::adjustCallTargets(T.get(), Probe->Factor); 1638 } 1639 } 1640 SmallVector<InstrProfValueData, 2> SortedCallTargets = 1641 GetSortedValueDataFromCallTargets(T.get()); 1642 uint64_t Sum = 0; 1643 for (const auto &C : T.get()) 1644 Sum += C.second; 1645 // With CSSPGO all indirect call targets are counted torwards the 1646 // original indirect call site in the profile, including both 1647 // inlined and non-inlined targets. 1648 if (!FunctionSamples::ProfileIsCS) { 1649 if (const FunctionSamplesMap *M = 1650 FS->findFunctionSamplesMapAt(CallSite)) { 1651 for (const auto &NameFS : *M) 1652 Sum += NameFS.second.getEntrySamples(); 1653 } 1654 } 1655 if (Sum) 1656 updateIDTMetaData(I, SortedCallTargets, Sum); 1657 else if (OverwriteExistingWeights) 1658 I.setMetadata(LLVMContext::MD_prof, nullptr); 1659 } else if (!isa<IntrinsicInst>(&I)) { 1660 I.setMetadata(LLVMContext::MD_prof, 1661 MDB.createBranchWeights( 1662 {static_cast<uint32_t>(BlockWeights[BB])})); 1663 } 1664 } 1665 } else if (OverwriteExistingWeights || ProfileSampleBlockAccurate) { 1666 // Set profile metadata (possibly annotated by LTO prelink) to zero or 1667 // clear it for cold code. 1668 for (auto &I : BB->getInstList()) { 1669 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 1670 if (cast<CallBase>(I).isIndirectCall()) 1671 I.setMetadata(LLVMContext::MD_prof, nullptr); 1672 else 1673 I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(0)); 1674 } 1675 } 1676 } 1677 1678 Instruction *TI = BB->getTerminator(); 1679 if (TI->getNumSuccessors() == 1) 1680 continue; 1681 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI) && 1682 !isa<IndirectBrInst>(TI)) 1683 continue; 1684 1685 DebugLoc BranchLoc = TI->getDebugLoc(); 1686 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " 1687 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1688 : Twine("<UNKNOWN LOCATION>")) 1689 << ".\n"); 1690 SmallVector<uint32_t, 4> Weights; 1691 uint32_t MaxWeight = 0; 1692 Instruction *MaxDestInst; 1693 // Since profi treats multiple edges (multiway branches) as a single edge, 1694 // we need to distribute the computed weight among the branches. We do 1695 // this by evenly splitting the edge weight among destinations. 1696 DenseMap<const BasicBlock *, uint64_t> EdgeMultiplicity; 1697 std::vector<uint64_t> EdgeIndex; 1698 if (SampleProfileUseProfi) { 1699 EdgeIndex.resize(TI->getNumSuccessors()); 1700 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1701 const BasicBlock *Succ = TI->getSuccessor(I); 1702 EdgeIndex[I] = EdgeMultiplicity[Succ]; 1703 EdgeMultiplicity[Succ]++; 1704 } 1705 } 1706 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1707 BasicBlock *Succ = TI->getSuccessor(I); 1708 Edge E = std::make_pair(BB, Succ); 1709 uint64_t Weight = EdgeWeights[E]; 1710 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1711 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1712 // if needed. Sample counts in profiles are 64-bit unsigned values, 1713 // but internally branch weights are expressed as 32-bit values. 1714 if (Weight > std::numeric_limits<uint32_t>::max()) { 1715 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1716 Weight = std::numeric_limits<uint32_t>::max(); 1717 } 1718 if (!SampleProfileUseProfi) { 1719 // Weight is added by one to avoid propagation errors introduced by 1720 // 0 weights. 1721 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1722 } else { 1723 // Profi creates proper weights that do not require "+1" adjustments but 1724 // we evenly split the weight among branches with the same destination. 1725 uint64_t W = Weight / EdgeMultiplicity[Succ]; 1726 // Rounding up, if needed, so that first branches are hotter. 1727 if (EdgeIndex[I] < Weight % EdgeMultiplicity[Succ]) 1728 W++; 1729 Weights.push_back(static_cast<uint32_t>(W)); 1730 } 1731 if (Weight != 0) { 1732 if (Weight > MaxWeight) { 1733 MaxWeight = Weight; 1734 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1735 } 1736 } 1737 } 1738 1739 // FIXME: Re-enable for sample profiling after investigating why the sum 1740 // of branch weights can be 0 1741 // 1742 // misexpect::checkExpectAnnotations(*TI, Weights, /*IsFrontend=*/false); 1743 1744 uint64_t TempWeight; 1745 // Only set weights if there is at least one non-zero weight. 1746 // In any other case, let the analyzer set weights. 1747 // Do not set weights if the weights are present unless under 1748 // OverwriteExistingWeights. In ThinLTO, the profile annotation is done 1749 // twice. If the first annotation already set the weights, the second pass 1750 // does not need to set it. With OverwriteExistingWeights, Blocks with zero 1751 // weight should have their existing metadata (possibly annotated by LTO 1752 // prelink) cleared. 1753 if (MaxWeight > 0 && 1754 (!TI->extractProfTotalWeight(TempWeight) || OverwriteExistingWeights)) { 1755 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1756 TI->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); 1757 ORE->emit([&]() { 1758 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1759 << "most popular destination for conditional branches at " 1760 << ore::NV("CondBranchesLoc", BranchLoc); 1761 }); 1762 } else { 1763 if (OverwriteExistingWeights) { 1764 TI->setMetadata(LLVMContext::MD_prof, nullptr); 1765 LLVM_DEBUG(dbgs() << "CLEARED. All branch weights are zero.\n"); 1766 } else { 1767 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1768 } 1769 } 1770 } 1771 } 1772 1773 /// Once all the branch weights are computed, we emit the MD_prof 1774 /// metadata on BB using the computed values for each of its branches. 1775 /// 1776 /// \param F The function to query. 1777 /// 1778 /// \returns true if \p F was modified. Returns false, otherwise. 1779 bool SampleProfileLoader::emitAnnotations(Function &F) { 1780 bool Changed = false; 1781 1782 if (FunctionSamples::ProfileIsProbeBased) { 1783 if (!ProbeManager->profileIsValid(F, *Samples)) { 1784 LLVM_DEBUG( 1785 dbgs() << "Profile is invalid due to CFG mismatch for Function " 1786 << F.getName()); 1787 ++NumMismatchedProfile; 1788 return false; 1789 } 1790 ++NumMatchedProfile; 1791 } else { 1792 if (getFunctionLoc(F) == 0) 1793 return false; 1794 1795 LLVM_DEBUG(dbgs() << "Line number for the first instruction in " 1796 << F.getName() << ": " << getFunctionLoc(F) << "\n"); 1797 } 1798 1799 DenseSet<GlobalValue::GUID> InlinedGUIDs; 1800 if (CallsitePrioritizedInline) 1801 Changed |= inlineHotFunctionsWithPriority(F, InlinedGUIDs); 1802 else 1803 Changed |= inlineHotFunctions(F, InlinedGUIDs); 1804 1805 Changed |= computeAndPropagateWeights(F, InlinedGUIDs); 1806 1807 if (Changed) 1808 generateMDProfMetadata(F); 1809 1810 emitCoverageRemarks(F); 1811 return Changed; 1812 } 1813 1814 char SampleProfileLoaderLegacyPass::ID = 0; 1815 1816 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1817 "Sample Profile loader", false, false) 1818 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1819 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1820 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1821 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1822 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1823 "Sample Profile loader", false, false) 1824 1825 std::unique_ptr<ProfiledCallGraph> 1826 SampleProfileLoader::buildProfiledCallGraph(CallGraph &CG) { 1827 std::unique_ptr<ProfiledCallGraph> ProfiledCG; 1828 if (FunctionSamples::ProfileIsCS) 1829 ProfiledCG = std::make_unique<ProfiledCallGraph>(*ContextTracker); 1830 else 1831 ProfiledCG = std::make_unique<ProfiledCallGraph>(Reader->getProfiles()); 1832 1833 // Add all functions into the profiled call graph even if they are not in 1834 // the profile. This makes sure functions missing from the profile still 1835 // gets a chance to be processed. 1836 for (auto &Node : CG) { 1837 const auto *F = Node.first; 1838 if (!F || F->isDeclaration() || !F->hasFnAttribute("use-sample-profile")) 1839 continue; 1840 ProfiledCG->addProfiledFunction(FunctionSamples::getCanonicalFnName(*F)); 1841 } 1842 1843 return ProfiledCG; 1844 } 1845 1846 std::vector<Function *> 1847 SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) { 1848 std::vector<Function *> FunctionOrderList; 1849 FunctionOrderList.reserve(M.size()); 1850 1851 if (!ProfileTopDownLoad && UseProfiledCallGraph) 1852 errs() << "WARNING: -use-profiled-call-graph ignored, should be used " 1853 "together with -sample-profile-top-down-load.\n"; 1854 1855 if (!ProfileTopDownLoad || CG == nullptr) { 1856 if (ProfileMergeInlinee) { 1857 // Disable ProfileMergeInlinee if profile is not loaded in top down order, 1858 // because the profile for a function may be used for the profile 1859 // annotation of its outline copy before the profile merging of its 1860 // non-inlined inline instances, and that is not the way how 1861 // ProfileMergeInlinee is supposed to work. 1862 ProfileMergeInlinee = false; 1863 } 1864 1865 for (Function &F : M) 1866 if (!F.isDeclaration() && F.hasFnAttribute("use-sample-profile")) 1867 FunctionOrderList.push_back(&F); 1868 return FunctionOrderList; 1869 } 1870 1871 assert(&CG->getModule() == &M); 1872 1873 if (UseProfiledCallGraph || (FunctionSamples::ProfileIsCS && 1874 !UseProfiledCallGraph.getNumOccurrences())) { 1875 // Use profiled call edges to augment the top-down order. There are cases 1876 // that the top-down order computed based on the static call graph doesn't 1877 // reflect real execution order. For example 1878 // 1879 // 1. Incomplete static call graph due to unknown indirect call targets. 1880 // Adjusting the order by considering indirect call edges from the 1881 // profile can enable the inlining of indirect call targets by allowing 1882 // the caller processed before them. 1883 // 2. Mutual call edges in an SCC. The static processing order computed for 1884 // an SCC may not reflect the call contexts in the context-sensitive 1885 // profile, thus may cause potential inlining to be overlooked. The 1886 // function order in one SCC is being adjusted to a top-down order based 1887 // on the profile to favor more inlining. This is only a problem with CS 1888 // profile. 1889 // 3. Transitive indirect call edges due to inlining. When a callee function 1890 // (say B) is inlined into into a caller function (say A) in LTO prelink, 1891 // every call edge originated from the callee B will be transferred to 1892 // the caller A. If any transferred edge (say A->C) is indirect, the 1893 // original profiled indirect edge B->C, even if considered, would not 1894 // enforce a top-down order from the caller A to the potential indirect 1895 // call target C in LTO postlink since the inlined callee B is gone from 1896 // the static call graph. 1897 // 4. #3 can happen even for direct call targets, due to functions defined 1898 // in header files. A header function (say A), when included into source 1899 // files, is defined multiple times but only one definition survives due 1900 // to ODR. Therefore, the LTO prelink inlining done on those dropped 1901 // definitions can be useless based on a local file scope. More 1902 // importantly, the inlinee (say B), once fully inlined to a 1903 // to-be-dropped A, will have no profile to consume when its outlined 1904 // version is compiled. This can lead to a profile-less prelink 1905 // compilation for the outlined version of B which may be called from 1906 // external modules. while this isn't easy to fix, we rely on the 1907 // postlink AutoFDO pipeline to optimize B. Since the survived copy of 1908 // the A can be inlined in its local scope in prelink, it may not exist 1909 // in the merged IR in postlink, and we'll need the profiled call edges 1910 // to enforce a top-down order for the rest of the functions. 1911 // 1912 // Considering those cases, a profiled call graph completely independent of 1913 // the static call graph is constructed based on profile data, where 1914 // function objects are not even needed to handle case #3 and case 4. 1915 // 1916 // Note that static callgraph edges are completely ignored since they 1917 // can be conflicting with profiled edges for cyclic SCCs and may result in 1918 // an SCC order incompatible with profile-defined one. Using strictly 1919 // profile order ensures a maximum inlining experience. On the other hand, 1920 // static call edges are not so important when they don't correspond to a 1921 // context in the profile. 1922 1923 std::unique_ptr<ProfiledCallGraph> ProfiledCG = buildProfiledCallGraph(*CG); 1924 scc_iterator<ProfiledCallGraph *> CGI = scc_begin(ProfiledCG.get()); 1925 while (!CGI.isAtEnd()) { 1926 auto Range = *CGI; 1927 if (SortProfiledSCC) { 1928 // Sort nodes in one SCC based on callsite hotness. 1929 scc_member_iterator<ProfiledCallGraph *> SI(*CGI); 1930 Range = *SI; 1931 } 1932 for (auto *Node : Range) { 1933 Function *F = SymbolMap.lookup(Node->Name); 1934 if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile")) 1935 FunctionOrderList.push_back(F); 1936 } 1937 ++CGI; 1938 } 1939 } else { 1940 scc_iterator<CallGraph *> CGI = scc_begin(CG); 1941 while (!CGI.isAtEnd()) { 1942 for (CallGraphNode *Node : *CGI) { 1943 auto *F = Node->getFunction(); 1944 if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile")) 1945 FunctionOrderList.push_back(F); 1946 } 1947 ++CGI; 1948 } 1949 } 1950 1951 LLVM_DEBUG({ 1952 dbgs() << "Function processing order:\n"; 1953 for (auto F : reverse(FunctionOrderList)) { 1954 dbgs() << F->getName() << "\n"; 1955 } 1956 }); 1957 1958 std::reverse(FunctionOrderList.begin(), FunctionOrderList.end()); 1959 return FunctionOrderList; 1960 } 1961 1962 bool SampleProfileLoader::doInitialization(Module &M, 1963 FunctionAnalysisManager *FAM) { 1964 auto &Ctx = M.getContext(); 1965 1966 auto ReaderOrErr = SampleProfileReader::create( 1967 Filename, Ctx, FSDiscriminatorPass::Base, RemappingFilename); 1968 if (std::error_code EC = ReaderOrErr.getError()) { 1969 std::string Msg = "Could not open profile: " + EC.message(); 1970 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1971 return false; 1972 } 1973 Reader = std::move(ReaderOrErr.get()); 1974 Reader->setSkipFlatProf(LTOPhase == ThinOrFullLTOPhase::ThinLTOPostLink); 1975 // set module before reading the profile so reader may be able to only 1976 // read the function profiles which are used by the current module. 1977 Reader->setModule(&M); 1978 if (std::error_code EC = Reader->read()) { 1979 std::string Msg = "profile reading failed: " + EC.message(); 1980 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1981 return false; 1982 } 1983 1984 PSL = Reader->getProfileSymbolList(); 1985 1986 // While profile-sample-accurate is on, ignore symbol list. 1987 ProfAccForSymsInList = 1988 ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate; 1989 if (ProfAccForSymsInList) { 1990 NamesInProfile.clear(); 1991 if (auto NameTable = Reader->getNameTable()) 1992 NamesInProfile.insert(NameTable->begin(), NameTable->end()); 1993 CoverageTracker.setProfAccForSymsInList(true); 1994 } 1995 1996 if (FAM && !ProfileInlineReplayFile.empty()) { 1997 ExternalInlineAdvisor = getReplayInlineAdvisor( 1998 M, *FAM, Ctx, /*OriginalAdvisor=*/nullptr, 1999 ReplayInlinerSettings{ProfileInlineReplayFile, 2000 ProfileInlineReplayScope, 2001 ProfileInlineReplayFallback, 2002 {ProfileInlineReplayFormat}}, 2003 /*EmitRemarks=*/false); 2004 } 2005 2006 // Apply tweaks if context-sensitive or probe-based profile is available. 2007 if (Reader->profileIsCS() || Reader->profileIsPreInlined() || 2008 Reader->profileIsProbeBased()) { 2009 if (!UseIterativeBFIInference.getNumOccurrences()) 2010 UseIterativeBFIInference = true; 2011 if (!SampleProfileUseProfi.getNumOccurrences()) 2012 SampleProfileUseProfi = true; 2013 if (!EnableExtTspBlockPlacement.getNumOccurrences()) 2014 EnableExtTspBlockPlacement = true; 2015 // Enable priority-base inliner and size inline by default for CSSPGO. 2016 if (!ProfileSizeInline.getNumOccurrences()) 2017 ProfileSizeInline = true; 2018 if (!CallsitePrioritizedInline.getNumOccurrences()) 2019 CallsitePrioritizedInline = true; 2020 // For CSSPGO, we also allow recursive inline to best use context profile. 2021 if (!AllowRecursiveInline.getNumOccurrences()) 2022 AllowRecursiveInline = true; 2023 2024 if (Reader->profileIsPreInlined()) { 2025 if (!UsePreInlinerDecision.getNumOccurrences()) 2026 UsePreInlinerDecision = true; 2027 } 2028 2029 if (!Reader->profileIsCS()) { 2030 // Non-CS profile should be fine without a function size budget for the 2031 // inliner since the contexts in the profile are either all from inlining 2032 // in the prevoius build or pre-computed by the preinliner with a size 2033 // cap, thus they are bounded. 2034 if (!ProfileInlineLimitMin.getNumOccurrences()) 2035 ProfileInlineLimitMin = std::numeric_limits<unsigned>::max(); 2036 if (!ProfileInlineLimitMax.getNumOccurrences()) 2037 ProfileInlineLimitMax = std::numeric_limits<unsigned>::max(); 2038 } 2039 } 2040 2041 if (Reader->profileIsCS()) { 2042 // Tracker for profiles under different context 2043 ContextTracker = std::make_unique<SampleContextTracker>( 2044 Reader->getProfiles(), &GUIDToFuncNameMap); 2045 } 2046 2047 // Load pseudo probe descriptors for probe-based function samples. 2048 if (Reader->profileIsProbeBased()) { 2049 ProbeManager = std::make_unique<PseudoProbeManager>(M); 2050 if (!ProbeManager->moduleIsProbed(M)) { 2051 const char *Msg = 2052 "Pseudo-probe-based profile requires SampleProfileProbePass"; 2053 Ctx.diagnose(DiagnosticInfoSampleProfile(M.getModuleIdentifier(), Msg, 2054 DS_Warning)); 2055 return false; 2056 } 2057 } 2058 2059 return true; 2060 } 2061 2062 ModulePass *llvm::createSampleProfileLoaderPass() { 2063 return new SampleProfileLoaderLegacyPass(); 2064 } 2065 2066 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 2067 return new SampleProfileLoaderLegacyPass(Name); 2068 } 2069 2070 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, 2071 ProfileSummaryInfo *_PSI, CallGraph *CG) { 2072 GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap); 2073 2074 PSI = _PSI; 2075 if (M.getProfileSummary(/* IsCS */ false) == nullptr) { 2076 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()), 2077 ProfileSummary::PSK_Sample); 2078 PSI->refresh(); 2079 } 2080 // Compute the total number of samples collected in this profile. 2081 for (const auto &I : Reader->getProfiles()) 2082 TotalCollectedSamples += I.second.getTotalSamples(); 2083 2084 auto Remapper = Reader->getRemapper(); 2085 // Populate the symbol map. 2086 for (const auto &N_F : M.getValueSymbolTable()) { 2087 StringRef OrigName = N_F.getKey(); 2088 Function *F = dyn_cast<Function>(N_F.getValue()); 2089 if (F == nullptr || OrigName.empty()) 2090 continue; 2091 SymbolMap[OrigName] = F; 2092 StringRef NewName = FunctionSamples::getCanonicalFnName(*F); 2093 if (OrigName != NewName && !NewName.empty()) { 2094 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 2095 // Failiing to insert means there is already an entry in SymbolMap, 2096 // thus there are multiple functions that are mapped to the same 2097 // stripped name. In this case of name conflicting, set the value 2098 // to nullptr to avoid confusion. 2099 if (!r.second) 2100 r.first->second = nullptr; 2101 OrigName = NewName; 2102 } 2103 // Insert the remapped names into SymbolMap. 2104 if (Remapper) { 2105 if (auto MapName = Remapper->lookUpNameInProfile(OrigName)) { 2106 if (*MapName != OrigName && !MapName->empty()) 2107 SymbolMap.insert(std::make_pair(*MapName, F)); 2108 } 2109 } 2110 } 2111 assert(SymbolMap.count(StringRef()) == 0 && 2112 "No empty StringRef should be added in SymbolMap"); 2113 2114 bool retval = false; 2115 for (auto F : buildFunctionOrder(M, CG)) { 2116 assert(!F->isDeclaration()); 2117 clearFunctionData(); 2118 retval |= runOnFunction(*F, AM); 2119 } 2120 2121 // Account for cold calls not inlined.... 2122 if (!FunctionSamples::ProfileIsCS) 2123 for (const std::pair<Function *, NotInlinedProfileInfo> &pair : 2124 notInlinedCallInfo) 2125 updateProfileCallee(pair.first, pair.second.entryCount); 2126 2127 return retval; 2128 } 2129 2130 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 2131 ACT = &getAnalysis<AssumptionCacheTracker>(); 2132 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 2133 TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>(); 2134 ProfileSummaryInfo *PSI = 2135 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2136 return SampleLoader.runOnModule(M, nullptr, PSI, nullptr); 2137 } 2138 2139 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 2140 LLVM_DEBUG(dbgs() << "\n\nProcessing Function " << F.getName() << "\n"); 2141 DILocation2SampleMap.clear(); 2142 // By default the entry count is initialized to -1, which will be treated 2143 // conservatively by getEntryCount as the same as unknown (None). This is 2144 // to avoid newly added code to be treated as cold. If we have samples 2145 // this will be overwritten in emitAnnotations. 2146 uint64_t initialEntryCount = -1; 2147 2148 ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL; 2149 if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) { 2150 // initialize all the function entry counts to 0. It means all the 2151 // functions without profile will be regarded as cold. 2152 initialEntryCount = 0; 2153 // profile-sample-accurate is a user assertion which has a higher precedence 2154 // than symbol list. When profile-sample-accurate is on, ignore symbol list. 2155 ProfAccForSymsInList = false; 2156 } 2157 CoverageTracker.setProfAccForSymsInList(ProfAccForSymsInList); 2158 2159 // PSL -- profile symbol list include all the symbols in sampled binary. 2160 // If ProfileAccurateForSymsInList is enabled, PSL is used to treat 2161 // old functions without samples being cold, without having to worry 2162 // about new and hot functions being mistakenly treated as cold. 2163 if (ProfAccForSymsInList) { 2164 // Initialize the entry count to 0 for functions in the list. 2165 if (PSL->contains(F.getName())) 2166 initialEntryCount = 0; 2167 2168 // Function in the symbol list but without sample will be regarded as 2169 // cold. To minimize the potential negative performance impact it could 2170 // have, we want to be a little conservative here saying if a function 2171 // shows up in the profile, no matter as outline function, inline instance 2172 // or call targets, treat the function as not being cold. This will handle 2173 // the cases such as most callsites of a function are inlined in sampled 2174 // binary but not inlined in current build (because of source code drift, 2175 // imprecise debug information, or the callsites are all cold individually 2176 // but not cold accumulatively...), so the outline function showing up as 2177 // cold in sampled binary will actually not be cold after current build. 2178 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 2179 if (NamesInProfile.count(CanonName)) 2180 initialEntryCount = -1; 2181 } 2182 2183 // Initialize entry count when the function has no existing entry 2184 // count value. 2185 if (!F.getEntryCount().hasValue()) 2186 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real)); 2187 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 2188 if (AM) { 2189 auto &FAM = 2190 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 2191 .getManager(); 2192 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 2193 } else { 2194 OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F); 2195 ORE = OwnedORE.get(); 2196 } 2197 2198 if (FunctionSamples::ProfileIsCS) 2199 Samples = ContextTracker->getBaseSamplesFor(F); 2200 else 2201 Samples = Reader->getSamplesFor(F); 2202 2203 if (Samples && !Samples->empty()) 2204 return emitAnnotations(F); 2205 return false; 2206 } 2207 2208 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 2209 ModuleAnalysisManager &AM) { 2210 FunctionAnalysisManager &FAM = 2211 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2212 2213 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 2214 return FAM.getResult<AssumptionAnalysis>(F); 2215 }; 2216 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 2217 return FAM.getResult<TargetIRAnalysis>(F); 2218 }; 2219 auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & { 2220 return FAM.getResult<TargetLibraryAnalysis>(F); 2221 }; 2222 2223 SampleProfileLoader SampleLoader( 2224 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 2225 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile 2226 : ProfileRemappingFileName, 2227 LTOPhase, GetAssumptionCache, GetTTI, GetTLI); 2228 2229 if (!SampleLoader.doInitialization(M, &FAM)) 2230 return PreservedAnalyses::all(); 2231 2232 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 2233 CallGraph &CG = AM.getResult<CallGraphAnalysis>(M); 2234 if (!SampleLoader.runOnModule(M, &AM, PSI, &CG)) 2235 return PreservedAnalyses::all(); 2236 2237 return PreservedAnalyses::none(); 2238 } 2239