1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 //      to indicate the weights of each edge coming out of the branch.
19 //      The weight of each edge is the weight of the target block for
20 //      that edge. The weight of a block B is computed as the maximum
21 //      number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/SampleProfile.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringMap.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/AssumptionCache.h"
37 #include "llvm/Analysis/InlineCost.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
40 #include "llvm/Analysis/TargetTransformInfo.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/DiagnosticInfo.h"
47 #include "llvm/IR/Dominators.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/PassManager.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/Pass.h"
60 #include "llvm/ProfileData/InstrProf.h"
61 #include "llvm/ProfileData/SampleProf.h"
62 #include "llvm/ProfileData/SampleProfReader.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/ErrorOr.h"
68 #include "llvm/Support/GenericDomTree.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Transforms/IPO.h"
71 #include "llvm/Transforms/Instrumentation.h"
72 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
73 #include "llvm/Transforms/Utils/Cloning.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstdint>
77 #include <functional>
78 #include <limits>
79 #include <map>
80 #include <memory>
81 #include <string>
82 #include <system_error>
83 #include <utility>
84 #include <vector>
85 
86 using namespace llvm;
87 using namespace sampleprof;
88 using ProfileCount = Function::ProfileCount;
89 #define DEBUG_TYPE "sample-profile"
90 
91 // Command line option to specify the file to read samples from. This is
92 // mainly used for debugging.
93 static cl::opt<std::string> SampleProfileFile(
94     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
95     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
96 
97 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
98     "sample-profile-max-propagate-iterations", cl::init(100),
99     cl::desc("Maximum number of iterations to go through when propagating "
100              "sample block/edge weights through the CFG."));
101 
102 static cl::opt<unsigned> SampleProfileRecordCoverage(
103     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
104     cl::desc("Emit a warning if less than N% of records in the input profile "
105              "are matched to the IR."));
106 
107 static cl::opt<unsigned> SampleProfileSampleCoverage(
108     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
109     cl::desc("Emit a warning if less than N% of samples in the input profile "
110              "are matched to the IR."));
111 
112 static cl::opt<double> SampleProfileHotThreshold(
113     "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"),
114     cl::desc("Inlined functions that account for more than N% of all samples "
115              "collected in the parent function, will be inlined again."));
116 
117 namespace {
118 
119 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
120 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
121 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
122 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
123 using BlockEdgeMap =
124     DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
125 
126 class SampleCoverageTracker {
127 public:
128   SampleCoverageTracker() = default;
129 
130   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
131                        uint32_t Discriminator, uint64_t Samples);
132   unsigned computeCoverage(unsigned Used, unsigned Total) const;
133   unsigned countUsedRecords(const FunctionSamples *FS) const;
134   unsigned countBodyRecords(const FunctionSamples *FS) const;
135   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
136   uint64_t countBodySamples(const FunctionSamples *FS) const;
137 
138   void clear() {
139     SampleCoverage.clear();
140     TotalUsedSamples = 0;
141   }
142 
143 private:
144   using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
145   using FunctionSamplesCoverageMap =
146       DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
147 
148   /// Coverage map for sampling records.
149   ///
150   /// This map keeps a record of sampling records that have been matched to
151   /// an IR instruction. This is used to detect some form of staleness in
152   /// profiles (see flag -sample-profile-check-coverage).
153   ///
154   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
155   /// another map that counts how many times the sample record at the
156   /// given location has been used.
157   FunctionSamplesCoverageMap SampleCoverage;
158 
159   /// Number of samples used from the profile.
160   ///
161   /// When a sampling record is used for the first time, the samples from
162   /// that record are added to this accumulator.  Coverage is later computed
163   /// based on the total number of samples available in this function and
164   /// its callsites.
165   ///
166   /// Note that this accumulator tracks samples used from a single function
167   /// and all the inlined callsites. Strictly, we should have a map of counters
168   /// keyed by FunctionSamples pointers, but these stats are cleared after
169   /// every function, so we just need to keep a single counter.
170   uint64_t TotalUsedSamples = 0;
171 };
172 
173 /// \brief Sample profile pass.
174 ///
175 /// This pass reads profile data from the file specified by
176 /// -sample-profile-file and annotates every affected function with the
177 /// profile information found in that file.
178 class SampleProfileLoader {
179 public:
180   SampleProfileLoader(
181       StringRef Name, bool IsThinLTOPreLink,
182       std::function<AssumptionCache &(Function &)> GetAssumptionCache,
183       std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
184       : GetAC(std::move(GetAssumptionCache)),
185         GetTTI(std::move(GetTargetTransformInfo)), Filename(Name),
186         IsThinLTOPreLink(IsThinLTOPreLink) {}
187 
188   bool doInitialization(Module &M);
189   bool runOnModule(Module &M, ModuleAnalysisManager *AM);
190 
191   void dump() { Reader->dump(); }
192 
193 protected:
194   bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
195   unsigned getFunctionLoc(Function &F);
196   bool emitAnnotations(Function &F);
197   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
198   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
199   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
200   std::vector<const FunctionSamples *>
201   findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
202   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
203   bool inlineCallInstruction(Instruction *I);
204   bool inlineHotFunctions(Function &F,
205                           DenseSet<GlobalValue::GUID> &InlinedGUIDs);
206   void printEdgeWeight(raw_ostream &OS, Edge E);
207   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
208   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
209   bool computeBlockWeights(Function &F);
210   void findEquivalenceClasses(Function &F);
211   template <bool IsPostDom>
212   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
213                            DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
214 
215   void propagateWeights(Function &F);
216   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
217   void buildEdges(Function &F);
218   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
219   void computeDominanceAndLoopInfo(Function &F);
220   unsigned getOffset(const DILocation *DIL) const;
221   void clearFunctionData();
222 
223   /// \brief Map basic blocks to their computed weights.
224   ///
225   /// The weight of a basic block is defined to be the maximum
226   /// of all the instruction weights in that block.
227   BlockWeightMap BlockWeights;
228 
229   /// \brief Map edges to their computed weights.
230   ///
231   /// Edge weights are computed by propagating basic block weights in
232   /// SampleProfile::propagateWeights.
233   EdgeWeightMap EdgeWeights;
234 
235   /// \brief Set of visited blocks during propagation.
236   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
237 
238   /// \brief Set of visited edges during propagation.
239   SmallSet<Edge, 32> VisitedEdges;
240 
241   /// \brief Equivalence classes for block weights.
242   ///
243   /// Two blocks BB1 and BB2 are in the same equivalence class if they
244   /// dominate and post-dominate each other, and they are in the same loop
245   /// nest. When this happens, the two blocks are guaranteed to execute
246   /// the same number of times.
247   EquivalenceClassMap EquivalenceClass;
248 
249   /// Map from function name to Function *. Used to find the function from
250   /// the function name. If the function name contains suffix, additional
251   /// entry is added to map from the stripped name to the function if there
252   /// is one-to-one mapping.
253   StringMap<Function *> SymbolMap;
254 
255   /// \brief Dominance, post-dominance and loop information.
256   std::unique_ptr<DominatorTree> DT;
257   std::unique_ptr<PostDomTreeBase<BasicBlock>> PDT;
258   std::unique_ptr<LoopInfo> LI;
259 
260   std::function<AssumptionCache &(Function &)> GetAC;
261   std::function<TargetTransformInfo &(Function &)> GetTTI;
262 
263   /// \brief Predecessors for each basic block in the CFG.
264   BlockEdgeMap Predecessors;
265 
266   /// \brief Successors for each basic block in the CFG.
267   BlockEdgeMap Successors;
268 
269   SampleCoverageTracker CoverageTracker;
270 
271   /// \brief Profile reader object.
272   std::unique_ptr<SampleProfileReader> Reader;
273 
274   /// \brief Samples collected for the body of this function.
275   FunctionSamples *Samples = nullptr;
276 
277   /// \brief Name of the profile file to load.
278   std::string Filename;
279 
280   /// \brief Flag indicating whether the profile input loaded successfully.
281   bool ProfileIsValid = false;
282 
283   /// \brief Flag indicating if the pass is invoked in ThinLTO compile phase.
284   ///
285   /// In this phase, in annotation, we should not promote indirect calls.
286   /// Instead, we will mark GUIDs that needs to be annotated to the function.
287   bool IsThinLTOPreLink;
288 
289   /// \brief Total number of samples collected in this profile.
290   ///
291   /// This is the sum of all the samples collected in all the functions executed
292   /// at runtime.
293   uint64_t TotalCollectedSamples = 0;
294 
295   /// \brief Optimization Remark Emitter used to emit diagnostic remarks.
296   OptimizationRemarkEmitter *ORE = nullptr;
297 };
298 
299 class SampleProfileLoaderLegacyPass : public ModulePass {
300 public:
301   // Class identification, replacement for typeinfo
302   static char ID;
303 
304   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
305                                 bool IsThinLTOPreLink = false)
306       : ModulePass(ID), SampleLoader(Name, IsThinLTOPreLink,
307                                      [&](Function &F) -> AssumptionCache & {
308                                        return ACT->getAssumptionCache(F);
309                                      },
310                                      [&](Function &F) -> TargetTransformInfo & {
311                                        return TTIWP->getTTI(F);
312                                      }) {
313     initializeSampleProfileLoaderLegacyPassPass(
314         *PassRegistry::getPassRegistry());
315   }
316 
317   void dump() { SampleLoader.dump(); }
318 
319   bool doInitialization(Module &M) override {
320     return SampleLoader.doInitialization(M);
321   }
322 
323   StringRef getPassName() const override { return "Sample profile pass"; }
324   bool runOnModule(Module &M) override;
325 
326   void getAnalysisUsage(AnalysisUsage &AU) const override {
327     AU.addRequired<AssumptionCacheTracker>();
328     AU.addRequired<TargetTransformInfoWrapperPass>();
329   }
330 
331 private:
332   SampleProfileLoader SampleLoader;
333   AssumptionCacheTracker *ACT = nullptr;
334   TargetTransformInfoWrapperPass *TTIWP = nullptr;
335 };
336 
337 } // end anonymous namespace
338 
339 /// Return true if the given callsite is hot wrt to its caller.
340 ///
341 /// Functions that were inlined in the original binary will be represented
342 /// in the inline stack in the sample profile. If the profile shows that
343 /// the original inline decision was "good" (i.e., the callsite is executed
344 /// frequently), then we will recreate the inline decision and apply the
345 /// profile from the inlined callsite.
346 ///
347 /// To decide whether an inlined callsite is hot, we compute the fraction
348 /// of samples used by the callsite with respect to the total number of samples
349 /// collected in the caller.
350 ///
351 /// If that fraction is larger than the default given by
352 /// SampleProfileHotThreshold, the callsite will be inlined again.
353 static bool callsiteIsHot(const FunctionSamples *CallerFS,
354                           const FunctionSamples *CallsiteFS) {
355   if (!CallsiteFS)
356     return false; // The callsite was not inlined in the original binary.
357 
358   uint64_t ParentTotalSamples = CallerFS->getTotalSamples();
359   if (ParentTotalSamples == 0)
360     return false; // Avoid division by zero.
361 
362   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
363   if (CallsiteTotalSamples == 0)
364     return false; // Callsite is trivially cold.
365 
366   double PercentSamples =
367       (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0;
368   return PercentSamples >= SampleProfileHotThreshold;
369 }
370 
371 /// Mark as used the sample record for the given function samples at
372 /// (LineOffset, Discriminator).
373 ///
374 /// \returns true if this is the first time we mark the given record.
375 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
376                                             uint32_t LineOffset,
377                                             uint32_t Discriminator,
378                                             uint64_t Samples) {
379   LineLocation Loc(LineOffset, Discriminator);
380   unsigned &Count = SampleCoverage[FS][Loc];
381   bool FirstTime = (++Count == 1);
382   if (FirstTime)
383     TotalUsedSamples += Samples;
384   return FirstTime;
385 }
386 
387 /// Return the number of sample records that were applied from this profile.
388 ///
389 /// This count does not include records from cold inlined callsites.
390 unsigned
391 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const {
392   auto I = SampleCoverage.find(FS);
393 
394   // The size of the coverage map for FS represents the number of records
395   // that were marked used at least once.
396   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
397 
398   // If there are inlined callsites in this function, count the samples found
399   // in the respective bodies. However, do not bother counting callees with 0
400   // total samples, these are callees that were never invoked at runtime.
401   for (const auto &I : FS->getCallsiteSamples())
402     for (const auto &J : I.second) {
403       const FunctionSamples *CalleeSamples = &J.second;
404       if (callsiteIsHot(FS, CalleeSamples))
405         Count += countUsedRecords(CalleeSamples);
406     }
407 
408   return Count;
409 }
410 
411 /// Return the number of sample records in the body of this profile.
412 ///
413 /// This count does not include records from cold inlined callsites.
414 unsigned
415 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const {
416   unsigned Count = FS->getBodySamples().size();
417 
418   // Only count records in hot callsites.
419   for (const auto &I : FS->getCallsiteSamples())
420     for (const auto &J : I.second) {
421       const FunctionSamples *CalleeSamples = &J.second;
422       if (callsiteIsHot(FS, CalleeSamples))
423         Count += countBodyRecords(CalleeSamples);
424     }
425 
426   return Count;
427 }
428 
429 /// Return the number of samples collected in the body of this profile.
430 ///
431 /// This count does not include samples from cold inlined callsites.
432 uint64_t
433 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const {
434   uint64_t Total = 0;
435   for (const auto &I : FS->getBodySamples())
436     Total += I.second.getSamples();
437 
438   // Only count samples in hot callsites.
439   for (const auto &I : FS->getCallsiteSamples())
440     for (const auto &J : I.second) {
441       const FunctionSamples *CalleeSamples = &J.second;
442       if (callsiteIsHot(FS, CalleeSamples))
443         Total += countBodySamples(CalleeSamples);
444     }
445 
446   return Total;
447 }
448 
449 /// Return the fraction of sample records used in this profile.
450 ///
451 /// The returned value is an unsigned integer in the range 0-100 indicating
452 /// the percentage of sample records that were used while applying this
453 /// profile to the associated function.
454 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
455                                                 unsigned Total) const {
456   assert(Used <= Total &&
457          "number of used records cannot exceed the total number of records");
458   return Total > 0 ? Used * 100 / Total : 100;
459 }
460 
461 /// Clear all the per-function data used to load samples and propagate weights.
462 void SampleProfileLoader::clearFunctionData() {
463   BlockWeights.clear();
464   EdgeWeights.clear();
465   VisitedBlocks.clear();
466   VisitedEdges.clear();
467   EquivalenceClass.clear();
468   DT = nullptr;
469   PDT = nullptr;
470   LI = nullptr;
471   Predecessors.clear();
472   Successors.clear();
473   CoverageTracker.clear();
474 }
475 
476 /// Returns the line offset to the start line of the subprogram.
477 /// We assume that a single function will not exceed 65535 LOC.
478 unsigned SampleProfileLoader::getOffset(const DILocation *DIL) const {
479   return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) &
480          0xffff;
481 }
482 
483 #ifndef NDEBUG
484 /// \brief Print the weight of edge \p E on stream \p OS.
485 ///
486 /// \param OS  Stream to emit the output to.
487 /// \param E  Edge to print.
488 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
489   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
490      << "]: " << EdgeWeights[E] << "\n";
491 }
492 
493 /// \brief Print the equivalence class of block \p BB on stream \p OS.
494 ///
495 /// \param OS  Stream to emit the output to.
496 /// \param BB  Block to print.
497 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
498                                                 const BasicBlock *BB) {
499   const BasicBlock *Equiv = EquivalenceClass[BB];
500   OS << "equivalence[" << BB->getName()
501      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
502 }
503 
504 /// \brief Print the weight of block \p BB on stream \p OS.
505 ///
506 /// \param OS  Stream to emit the output to.
507 /// \param BB  Block to print.
508 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
509                                            const BasicBlock *BB) const {
510   const auto &I = BlockWeights.find(BB);
511   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
512   OS << "weight[" << BB->getName() << "]: " << W << "\n";
513 }
514 #endif
515 
516 /// \brief Get the weight for an instruction.
517 ///
518 /// The "weight" of an instruction \p Inst is the number of samples
519 /// collected on that instruction at runtime. To retrieve it, we
520 /// need to compute the line number of \p Inst relative to the start of its
521 /// function. We use HeaderLineno to compute the offset. We then
522 /// look up the samples collected for \p Inst using BodySamples.
523 ///
524 /// \param Inst Instruction to query.
525 ///
526 /// \returns the weight of \p Inst.
527 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
528   const DebugLoc &DLoc = Inst.getDebugLoc();
529   if (!DLoc)
530     return std::error_code();
531 
532   const FunctionSamples *FS = findFunctionSamples(Inst);
533   if (!FS)
534     return std::error_code();
535 
536   // Ignore all intrinsics and branch instructions.
537   // Branch instruction usually contains debug info from sources outside of
538   // the residing basic block, thus we ignore them during annotation.
539   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst))
540     return std::error_code();
541 
542   // If a direct call/invoke instruction is inlined in profile
543   // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
544   // it means that the inlined callsite has no sample, thus the call
545   // instruction should have 0 count.
546   if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
547       !ImmutableCallSite(&Inst).isIndirectCall() &&
548       findCalleeFunctionSamples(Inst))
549     return 0;
550 
551   const DILocation *DIL = DLoc;
552   uint32_t LineOffset = getOffset(DIL);
553   uint32_t Discriminator = DIL->getBaseDiscriminator();
554   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
555   if (R) {
556     bool FirstMark =
557         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
558     if (FirstMark) {
559       ORE->emit([&]() {
560         OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
561         Remark << "Applied " << ore::NV("NumSamples", *R);
562         Remark << " samples from profile (offset: ";
563         Remark << ore::NV("LineOffset", LineOffset);
564         if (Discriminator) {
565           Remark << ".";
566           Remark << ore::NV("Discriminator", Discriminator);
567         }
568         Remark << ")";
569         return Remark;
570       });
571     }
572     DEBUG(dbgs() << "    " << DLoc.getLine() << "."
573                  << DIL->getBaseDiscriminator() << ":" << Inst
574                  << " (line offset: " << LineOffset << "."
575                  << DIL->getBaseDiscriminator() << " - weight: " << R.get()
576                  << ")\n");
577   }
578   return R;
579 }
580 
581 /// \brief Compute the weight of a basic block.
582 ///
583 /// The weight of basic block \p BB is the maximum weight of all the
584 /// instructions in BB.
585 ///
586 /// \param BB The basic block to query.
587 ///
588 /// \returns the weight for \p BB.
589 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
590   uint64_t Max = 0;
591   bool HasWeight = false;
592   for (auto &I : BB->getInstList()) {
593     const ErrorOr<uint64_t> &R = getInstWeight(I);
594     if (R) {
595       Max = std::max(Max, R.get());
596       HasWeight = true;
597     }
598   }
599   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
600 }
601 
602 /// \brief Compute and store the weights of every basic block.
603 ///
604 /// This populates the BlockWeights map by computing
605 /// the weights of every basic block in the CFG.
606 ///
607 /// \param F The function to query.
608 bool SampleProfileLoader::computeBlockWeights(Function &F) {
609   bool Changed = false;
610   DEBUG(dbgs() << "Block weights\n");
611   for (const auto &BB : F) {
612     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
613     if (Weight) {
614       BlockWeights[&BB] = Weight.get();
615       VisitedBlocks.insert(&BB);
616       Changed = true;
617     }
618     DEBUG(printBlockWeight(dbgs(), &BB));
619   }
620 
621   return Changed;
622 }
623 
624 /// \brief Get the FunctionSamples for a call instruction.
625 ///
626 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
627 /// instance in which that call instruction is calling to. It contains
628 /// all samples that resides in the inlined instance. We first find the
629 /// inlined instance in which the call instruction is from, then we
630 /// traverse its children to find the callsite with the matching
631 /// location.
632 ///
633 /// \param Inst Call/Invoke instruction to query.
634 ///
635 /// \returns The FunctionSamples pointer to the inlined instance.
636 const FunctionSamples *
637 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
638   const DILocation *DIL = Inst.getDebugLoc();
639   if (!DIL) {
640     return nullptr;
641   }
642 
643   StringRef CalleeName;
644   if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
645     if (Function *Callee = CI->getCalledFunction())
646       CalleeName = Callee->getName();
647 
648   const FunctionSamples *FS = findFunctionSamples(Inst);
649   if (FS == nullptr)
650     return nullptr;
651 
652   return FS->findFunctionSamplesAt(
653       LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), CalleeName);
654 }
655 
656 /// Returns a vector of FunctionSamples that are the indirect call targets
657 /// of \p Inst. The vector is sorted by the total number of samples. Stores
658 /// the total call count of the indirect call in \p Sum.
659 std::vector<const FunctionSamples *>
660 SampleProfileLoader::findIndirectCallFunctionSamples(
661     const Instruction &Inst, uint64_t &Sum) const {
662   const DILocation *DIL = Inst.getDebugLoc();
663   std::vector<const FunctionSamples *> R;
664 
665   if (!DIL) {
666     return R;
667   }
668 
669   const FunctionSamples *FS = findFunctionSamples(Inst);
670   if (FS == nullptr)
671     return R;
672 
673   uint32_t LineOffset = getOffset(DIL);
674   uint32_t Discriminator = DIL->getBaseDiscriminator();
675 
676   auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
677   Sum = 0;
678   if (T)
679     for (const auto &T_C : T.get())
680       Sum += T_C.second;
681   if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(
682           LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()))) {
683     if (M->empty())
684       return R;
685     for (const auto &NameFS : *M) {
686       Sum += NameFS.second.getEntrySamples();
687       R.push_back(&NameFS.second);
688     }
689     std::sort(R.begin(), R.end(),
690               [](const FunctionSamples *L, const FunctionSamples *R) {
691                 return L->getEntrySamples() > R->getEntrySamples();
692               });
693   }
694   return R;
695 }
696 
697 /// \brief Get the FunctionSamples for an instruction.
698 ///
699 /// The FunctionSamples of an instruction \p Inst is the inlined instance
700 /// in which that instruction is coming from. We traverse the inline stack
701 /// of that instruction, and match it with the tree nodes in the profile.
702 ///
703 /// \param Inst Instruction to query.
704 ///
705 /// \returns the FunctionSamples pointer to the inlined instance.
706 const FunctionSamples *
707 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
708   SmallVector<std::pair<LineLocation, StringRef>, 10> S;
709   const DILocation *DIL = Inst.getDebugLoc();
710   if (!DIL)
711     return Samples;
712 
713   const DILocation *PrevDIL = DIL;
714   for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) {
715     S.push_back(std::make_pair(
716         LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()),
717         PrevDIL->getScope()->getSubprogram()->getLinkageName()));
718     PrevDIL = DIL;
719   }
720   if (S.size() == 0)
721     return Samples;
722   const FunctionSamples *FS = Samples;
723   for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
724     FS = FS->findFunctionSamplesAt(S[i].first, S[i].second);
725   }
726   return FS;
727 }
728 
729 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
730   assert(isa<CallInst>(I) || isa<InvokeInst>(I));
731   CallSite CS(I);
732   Function *CalledFunction = CS.getCalledFunction();
733   assert(CalledFunction);
734   DebugLoc DLoc = I->getDebugLoc();
735   BasicBlock *BB = I->getParent();
736   InlineParams Params = getInlineParams();
737   Params.ComputeFullInlineCost = true;
738   // Checks if there is anything in the reachable portion of the callee at
739   // this callsite that makes this inlining potentially illegal. Need to
740   // set ComputeFullInlineCost, otherwise getInlineCost may return early
741   // when cost exceeds threshold without checking all IRs in the callee.
742   // The acutal cost does not matter because we only checks isNever() to
743   // see if it is legal to inline the callsite.
744   InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC,
745                                   None, nullptr, nullptr);
746   if (Cost.isNever()) {
747     ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB)
748               << "incompatible inlining");
749     return false;
750   }
751   InlineFunctionInfo IFI(nullptr, &GetAC);
752   if (InlineFunction(CS, IFI)) {
753     // The call to InlineFunction erases I, so we can't pass it here.
754     ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB)
755               << "inlined hot callee '" << ore::NV("Callee", CalledFunction)
756               << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
757     return true;
758   }
759   return false;
760 }
761 
762 /// \brief Iteratively inline hot callsites of a function.
763 ///
764 /// Iteratively traverse all callsites of the function \p F, and find if
765 /// the corresponding inlined instance exists and is hot in profile. If
766 /// it is hot enough, inline the callsites and adds new callsites of the
767 /// callee into the caller. If the call is an indirect call, first promote
768 /// it to direct call. Each indirect call is limited with a single target.
769 ///
770 /// \param F function to perform iterative inlining.
771 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
772 ///     inlined in the profiled binary.
773 ///
774 /// \returns True if there is any inline happened.
775 bool SampleProfileLoader::inlineHotFunctions(
776     Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
777   DenseSet<Instruction *> PromotedInsns;
778   bool Changed = false;
779   while (true) {
780     bool LocalChanged = false;
781     SmallVector<Instruction *, 10> CIS;
782     for (auto &BB : F) {
783       bool Hot = false;
784       SmallVector<Instruction *, 10> Candidates;
785       for (auto &I : BB.getInstList()) {
786         const FunctionSamples *FS = nullptr;
787         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
788             !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
789           Candidates.push_back(&I);
790           if (callsiteIsHot(Samples, FS))
791             Hot = true;
792         }
793       }
794       if (Hot) {
795         CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
796       }
797     }
798     for (auto I : CIS) {
799       Function *CalledFunction = CallSite(I).getCalledFunction();
800       // Do not inline recursive calls.
801       if (CalledFunction == &F)
802         continue;
803       if (CallSite(I).isIndirectCall()) {
804         if (PromotedInsns.count(I))
805           continue;
806         uint64_t Sum;
807         for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
808           if (IsThinLTOPreLink) {
809             FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
810                                      Samples->getTotalSamples() *
811                                          SampleProfileHotThreshold / 100);
812             continue;
813           }
814           auto CalleeFunctionName = FS->getName();
815           // If it is a recursive call, we do not inline it as it could bloat
816           // the code exponentially. There is way to better handle this, e.g.
817           // clone the caller first, and inline the cloned caller if it is
818           // recursive. As llvm does not inline recursive calls, we will
819           // simply ignore it instead of handling it explicitly.
820           if (CalleeFunctionName == F.getName())
821             continue;
822 
823           const char *Reason = "Callee function not available";
824           auto R = SymbolMap.find(CalleeFunctionName);
825           if (R != SymbolMap.end() && R->getValue() &&
826               !R->getValue()->isDeclaration() &&
827               R->getValue()->getSubprogram() &&
828               isLegalToPromote(CallSite(I), R->getValue(), &Reason)) {
829             uint64_t C = FS->getEntrySamples();
830             Instruction *DI =
831                 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
832             Sum -= C;
833             PromotedInsns.insert(I);
834             // If profile mismatches, we should not attempt to inline DI.
835             if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
836                 inlineCallInstruction(DI))
837               LocalChanged = true;
838           } else {
839             DEBUG(dbgs()
840                   << "\nFailed to promote indirect call to "
841                   << CalleeFunctionName << " because " << Reason << "\n");
842           }
843         }
844       } else if (CalledFunction && CalledFunction->getSubprogram() &&
845                  !CalledFunction->isDeclaration()) {
846         if (inlineCallInstruction(I))
847           LocalChanged = true;
848       } else if (IsThinLTOPreLink) {
849         findCalleeFunctionSamples(*I)->findInlinedFunctions(
850             InlinedGUIDs, F.getParent(),
851             Samples->getTotalSamples() * SampleProfileHotThreshold / 100);
852       }
853     }
854     if (LocalChanged) {
855       Changed = true;
856     } else {
857       break;
858     }
859   }
860   return Changed;
861 }
862 
863 /// \brief Find equivalence classes for the given block.
864 ///
865 /// This finds all the blocks that are guaranteed to execute the same
866 /// number of times as \p BB1. To do this, it traverses all the
867 /// descendants of \p BB1 in the dominator or post-dominator tree.
868 ///
869 /// A block BB2 will be in the same equivalence class as \p BB1 if
870 /// the following holds:
871 ///
872 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
873 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
874 ///    dominate BB1 in the post-dominator tree.
875 ///
876 /// 2- Both BB2 and \p BB1 must be in the same loop.
877 ///
878 /// For every block BB2 that meets those two requirements, we set BB2's
879 /// equivalence class to \p BB1.
880 ///
881 /// \param BB1  Block to check.
882 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
883 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
884 ///                 with blocks from \p BB1's dominator tree, then
885 ///                 this is the post-dominator tree, and vice versa.
886 template <bool IsPostDom>
887 void SampleProfileLoader::findEquivalencesFor(
888     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
889     DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
890   const BasicBlock *EC = EquivalenceClass[BB1];
891   uint64_t Weight = BlockWeights[EC];
892   for (const auto *BB2 : Descendants) {
893     bool IsDomParent = DomTree->dominates(BB2, BB1);
894     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
895     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
896       EquivalenceClass[BB2] = EC;
897       // If BB2 is visited, then the entire EC should be marked as visited.
898       if (VisitedBlocks.count(BB2)) {
899         VisitedBlocks.insert(EC);
900       }
901 
902       // If BB2 is heavier than BB1, make BB2 have the same weight
903       // as BB1.
904       //
905       // Note that we don't worry about the opposite situation here
906       // (when BB2 is lighter than BB1). We will deal with this
907       // during the propagation phase. Right now, we just want to
908       // make sure that BB1 has the largest weight of all the
909       // members of its equivalence set.
910       Weight = std::max(Weight, BlockWeights[BB2]);
911     }
912   }
913   if (EC == &EC->getParent()->getEntryBlock()) {
914     BlockWeights[EC] = Samples->getHeadSamples() + 1;
915   } else {
916     BlockWeights[EC] = Weight;
917   }
918 }
919 
920 /// \brief Find equivalence classes.
921 ///
922 /// Since samples may be missing from blocks, we can fill in the gaps by setting
923 /// the weights of all the blocks in the same equivalence class to the same
924 /// weight. To compute the concept of equivalence, we use dominance and loop
925 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
926 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
927 ///
928 /// \param F The function to query.
929 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
930   SmallVector<BasicBlock *, 8> DominatedBBs;
931   DEBUG(dbgs() << "\nBlock equivalence classes\n");
932   // Find equivalence sets based on dominance and post-dominance information.
933   for (auto &BB : F) {
934     BasicBlock *BB1 = &BB;
935 
936     // Compute BB1's equivalence class once.
937     if (EquivalenceClass.count(BB1)) {
938       DEBUG(printBlockEquivalence(dbgs(), BB1));
939       continue;
940     }
941 
942     // By default, blocks are in their own equivalence class.
943     EquivalenceClass[BB1] = BB1;
944 
945     // Traverse all the blocks dominated by BB1. We are looking for
946     // every basic block BB2 such that:
947     //
948     // 1- BB1 dominates BB2.
949     // 2- BB2 post-dominates BB1.
950     // 3- BB1 and BB2 are in the same loop nest.
951     //
952     // If all those conditions hold, it means that BB2 is executed
953     // as many times as BB1, so they are placed in the same equivalence
954     // class by making BB2's equivalence class be BB1.
955     DominatedBBs.clear();
956     DT->getDescendants(BB1, DominatedBBs);
957     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
958 
959     DEBUG(printBlockEquivalence(dbgs(), BB1));
960   }
961 
962   // Assign weights to equivalence classes.
963   //
964   // All the basic blocks in the same equivalence class will execute
965   // the same number of times. Since we know that the head block in
966   // each equivalence class has the largest weight, assign that weight
967   // to all the blocks in that equivalence class.
968   DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
969   for (auto &BI : F) {
970     const BasicBlock *BB = &BI;
971     const BasicBlock *EquivBB = EquivalenceClass[BB];
972     if (BB != EquivBB)
973       BlockWeights[BB] = BlockWeights[EquivBB];
974     DEBUG(printBlockWeight(dbgs(), BB));
975   }
976 }
977 
978 /// \brief Visit the given edge to decide if it has a valid weight.
979 ///
980 /// If \p E has not been visited before, we copy to \p UnknownEdge
981 /// and increment the count of unknown edges.
982 ///
983 /// \param E  Edge to visit.
984 /// \param NumUnknownEdges  Current number of unknown edges.
985 /// \param UnknownEdge  Set if E has not been visited before.
986 ///
987 /// \returns E's weight, if known. Otherwise, return 0.
988 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
989                                         Edge *UnknownEdge) {
990   if (!VisitedEdges.count(E)) {
991     (*NumUnknownEdges)++;
992     *UnknownEdge = E;
993     return 0;
994   }
995 
996   return EdgeWeights[E];
997 }
998 
999 /// \brief Propagate weights through incoming/outgoing edges.
1000 ///
1001 /// If the weight of a basic block is known, and there is only one edge
1002 /// with an unknown weight, we can calculate the weight of that edge.
1003 ///
1004 /// Similarly, if all the edges have a known count, we can calculate the
1005 /// count of the basic block, if needed.
1006 ///
1007 /// \param F  Function to process.
1008 /// \param UpdateBlockCount  Whether we should update basic block counts that
1009 ///                          has already been annotated.
1010 ///
1011 /// \returns  True if new weights were assigned to edges or blocks.
1012 bool SampleProfileLoader::propagateThroughEdges(Function &F,
1013                                                 bool UpdateBlockCount) {
1014   bool Changed = false;
1015   DEBUG(dbgs() << "\nPropagation through edges\n");
1016   for (const auto &BI : F) {
1017     const BasicBlock *BB = &BI;
1018     const BasicBlock *EC = EquivalenceClass[BB];
1019 
1020     // Visit all the predecessor and successor edges to determine
1021     // which ones have a weight assigned already. Note that it doesn't
1022     // matter that we only keep track of a single unknown edge. The
1023     // only case we are interested in handling is when only a single
1024     // edge is unknown (see setEdgeOrBlockWeight).
1025     for (unsigned i = 0; i < 2; i++) {
1026       uint64_t TotalWeight = 0;
1027       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1028       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1029 
1030       if (i == 0) {
1031         // First, visit all predecessor edges.
1032         NumTotalEdges = Predecessors[BB].size();
1033         for (auto *Pred : Predecessors[BB]) {
1034           Edge E = std::make_pair(Pred, BB);
1035           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1036           if (E.first == E.second)
1037             SelfReferentialEdge = E;
1038         }
1039         if (NumTotalEdges == 1) {
1040           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1041         }
1042       } else {
1043         // On the second round, visit all successor edges.
1044         NumTotalEdges = Successors[BB].size();
1045         for (auto *Succ : Successors[BB]) {
1046           Edge E = std::make_pair(BB, Succ);
1047           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1048         }
1049         if (NumTotalEdges == 1) {
1050           SingleEdge = std::make_pair(BB, Successors[BB][0]);
1051         }
1052       }
1053 
1054       // After visiting all the edges, there are three cases that we
1055       // can handle immediately:
1056       //
1057       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1058       //   In this case, we simply check that the sum of all the edges
1059       //   is the same as BB's weight. If not, we change BB's weight
1060       //   to match. Additionally, if BB had not been visited before,
1061       //   we mark it visited.
1062       //
1063       // - Only one edge is unknown and BB has already been visited.
1064       //   In this case, we can compute the weight of the edge by
1065       //   subtracting the total block weight from all the known
1066       //   edge weights. If the edges weight more than BB, then the
1067       //   edge of the last remaining edge is set to zero.
1068       //
1069       // - There exists a self-referential edge and the weight of BB is
1070       //   known. In this case, this edge can be based on BB's weight.
1071       //   We add up all the other known edges and set the weight on
1072       //   the self-referential edge as we did in the previous case.
1073       //
1074       // In any other case, we must continue iterating. Eventually,
1075       // all edges will get a weight, or iteration will stop when
1076       // it reaches SampleProfileMaxPropagateIterations.
1077       if (NumUnknownEdges <= 1) {
1078         uint64_t &BBWeight = BlockWeights[EC];
1079         if (NumUnknownEdges == 0) {
1080           if (!VisitedBlocks.count(EC)) {
1081             // If we already know the weight of all edges, the weight of the
1082             // basic block can be computed. It should be no larger than the sum
1083             // of all edge weights.
1084             if (TotalWeight > BBWeight) {
1085               BBWeight = TotalWeight;
1086               Changed = true;
1087               DEBUG(dbgs() << "All edge weights for " << BB->getName()
1088                            << " known. Set weight for block: ";
1089                     printBlockWeight(dbgs(), BB););
1090             }
1091           } else if (NumTotalEdges == 1 &&
1092                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1093             // If there is only one edge for the visited basic block, use the
1094             // block weight to adjust edge weight if edge weight is smaller.
1095             EdgeWeights[SingleEdge] = BlockWeights[EC];
1096             Changed = true;
1097           }
1098         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1099           // If there is a single unknown edge and the block has been
1100           // visited, then we can compute E's weight.
1101           if (BBWeight >= TotalWeight)
1102             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1103           else
1104             EdgeWeights[UnknownEdge] = 0;
1105           const BasicBlock *OtherEC;
1106           if (i == 0)
1107             OtherEC = EquivalenceClass[UnknownEdge.first];
1108           else
1109             OtherEC = EquivalenceClass[UnknownEdge.second];
1110           // Edge weights should never exceed the BB weights it connects.
1111           if (VisitedBlocks.count(OtherEC) &&
1112               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1113             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1114           VisitedEdges.insert(UnknownEdge);
1115           Changed = true;
1116           DEBUG(dbgs() << "Set weight for edge: ";
1117                 printEdgeWeight(dbgs(), UnknownEdge));
1118         }
1119       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1120         // If a block Weights 0, all its in/out edges should weight 0.
1121         if (i == 0) {
1122           for (auto *Pred : Predecessors[BB]) {
1123             Edge E = std::make_pair(Pred, BB);
1124             EdgeWeights[E] = 0;
1125             VisitedEdges.insert(E);
1126           }
1127         } else {
1128           for (auto *Succ : Successors[BB]) {
1129             Edge E = std::make_pair(BB, Succ);
1130             EdgeWeights[E] = 0;
1131             VisitedEdges.insert(E);
1132           }
1133         }
1134       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1135         uint64_t &BBWeight = BlockWeights[BB];
1136         // We have a self-referential edge and the weight of BB is known.
1137         if (BBWeight >= TotalWeight)
1138           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1139         else
1140           EdgeWeights[SelfReferentialEdge] = 0;
1141         VisitedEdges.insert(SelfReferentialEdge);
1142         Changed = true;
1143         DEBUG(dbgs() << "Set self-referential edge weight to: ";
1144               printEdgeWeight(dbgs(), SelfReferentialEdge));
1145       }
1146       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1147         BlockWeights[EC] = TotalWeight;
1148         VisitedBlocks.insert(EC);
1149         Changed = true;
1150       }
1151     }
1152   }
1153 
1154   return Changed;
1155 }
1156 
1157 /// \brief Build in/out edge lists for each basic block in the CFG.
1158 ///
1159 /// We are interested in unique edges. If a block B1 has multiple
1160 /// edges to another block B2, we only add a single B1->B2 edge.
1161 void SampleProfileLoader::buildEdges(Function &F) {
1162   for (auto &BI : F) {
1163     BasicBlock *B1 = &BI;
1164 
1165     // Add predecessors for B1.
1166     SmallPtrSet<BasicBlock *, 16> Visited;
1167     if (!Predecessors[B1].empty())
1168       llvm_unreachable("Found a stale predecessors list in a basic block.");
1169     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1170       BasicBlock *B2 = *PI;
1171       if (Visited.insert(B2).second)
1172         Predecessors[B1].push_back(B2);
1173     }
1174 
1175     // Add successors for B1.
1176     Visited.clear();
1177     if (!Successors[B1].empty())
1178       llvm_unreachable("Found a stale successors list in a basic block.");
1179     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1180       BasicBlock *B2 = *SI;
1181       if (Visited.insert(B2).second)
1182         Successors[B1].push_back(B2);
1183     }
1184   }
1185 }
1186 
1187 /// Returns the sorted CallTargetMap \p M by count in descending order.
1188 static SmallVector<InstrProfValueData, 2> SortCallTargets(
1189     const SampleRecord::CallTargetMap &M) {
1190   SmallVector<InstrProfValueData, 2> R;
1191   for (auto I = M.begin(); I != M.end(); ++I)
1192     R.push_back({Function::getGUID(I->getKey()), I->getValue()});
1193   std::sort(R.begin(), R.end(),
1194             [](const InstrProfValueData &L, const InstrProfValueData &R) {
1195               if (L.Count == R.Count)
1196                 return L.Value > R.Value;
1197               else
1198                 return L.Count > R.Count;
1199             });
1200   return R;
1201 }
1202 
1203 /// \brief Propagate weights into edges
1204 ///
1205 /// The following rules are applied to every block BB in the CFG:
1206 ///
1207 /// - If BB has a single predecessor/successor, then the weight
1208 ///   of that edge is the weight of the block.
1209 ///
1210 /// - If all incoming or outgoing edges are known except one, and the
1211 ///   weight of the block is already known, the weight of the unknown
1212 ///   edge will be the weight of the block minus the sum of all the known
1213 ///   edges. If the sum of all the known edges is larger than BB's weight,
1214 ///   we set the unknown edge weight to zero.
1215 ///
1216 /// - If there is a self-referential edge, and the weight of the block is
1217 ///   known, the weight for that edge is set to the weight of the block
1218 ///   minus the weight of the other incoming edges to that block (if
1219 ///   known).
1220 void SampleProfileLoader::propagateWeights(Function &F) {
1221   bool Changed = true;
1222   unsigned I = 0;
1223 
1224   // If BB weight is larger than its corresponding loop's header BB weight,
1225   // use the BB weight to replace the loop header BB weight.
1226   for (auto &BI : F) {
1227     BasicBlock *BB = &BI;
1228     Loop *L = LI->getLoopFor(BB);
1229     if (!L) {
1230       continue;
1231     }
1232     BasicBlock *Header = L->getHeader();
1233     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1234       BlockWeights[Header] = BlockWeights[BB];
1235     }
1236   }
1237 
1238   // Before propagation starts, build, for each block, a list of
1239   // unique predecessors and successors. This is necessary to handle
1240   // identical edges in multiway branches. Since we visit all blocks and all
1241   // edges of the CFG, it is cleaner to build these lists once at the start
1242   // of the pass.
1243   buildEdges(F);
1244 
1245   // Propagate until we converge or we go past the iteration limit.
1246   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1247     Changed = propagateThroughEdges(F, false);
1248   }
1249 
1250   // The first propagation propagates BB counts from annotated BBs to unknown
1251   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1252   // to propagate edge weights.
1253   VisitedEdges.clear();
1254   Changed = true;
1255   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1256     Changed = propagateThroughEdges(F, false);
1257   }
1258 
1259   // The 3rd propagation pass allows adjust annotated BB weights that are
1260   // obviously wrong.
1261   Changed = true;
1262   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1263     Changed = propagateThroughEdges(F, true);
1264   }
1265 
1266   // Generate MD_prof metadata for every branch instruction using the
1267   // edge weights computed during propagation.
1268   DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1269   LLVMContext &Ctx = F.getContext();
1270   MDBuilder MDB(Ctx);
1271   for (auto &BI : F) {
1272     BasicBlock *BB = &BI;
1273 
1274     if (BlockWeights[BB]) {
1275       for (auto &I : BB->getInstList()) {
1276         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1277           continue;
1278         CallSite CS(&I);
1279         if (!CS.getCalledFunction()) {
1280           const DebugLoc &DLoc = I.getDebugLoc();
1281           if (!DLoc)
1282             continue;
1283           const DILocation *DIL = DLoc;
1284           uint32_t LineOffset = getOffset(DIL);
1285           uint32_t Discriminator = DIL->getBaseDiscriminator();
1286 
1287           const FunctionSamples *FS = findFunctionSamples(I);
1288           if (!FS)
1289             continue;
1290           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1291           if (!T || T.get().empty())
1292             continue;
1293           SmallVector<InstrProfValueData, 2> SortedCallTargets =
1294               SortCallTargets(T.get());
1295           uint64_t Sum;
1296           findIndirectCallFunctionSamples(I, Sum);
1297           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1298                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1299                             SortedCallTargets.size());
1300         } else if (!dyn_cast<IntrinsicInst>(&I)) {
1301           SmallVector<uint32_t, 1> Weights;
1302           Weights.push_back(BlockWeights[BB]);
1303           I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
1304         }
1305       }
1306     }
1307     TerminatorInst *TI = BB->getTerminator();
1308     if (TI->getNumSuccessors() == 1)
1309       continue;
1310     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1311       continue;
1312 
1313     DebugLoc BranchLoc = TI->getDebugLoc();
1314     DEBUG(dbgs() << "\nGetting weights for branch at line "
1315                  << ((BranchLoc) ? Twine(BranchLoc.getLine())
1316                                  : Twine("<UNKNOWN LOCATION>"))
1317                  << ".\n");
1318     SmallVector<uint32_t, 4> Weights;
1319     uint32_t MaxWeight = 0;
1320     Instruction *MaxDestInst;
1321     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1322       BasicBlock *Succ = TI->getSuccessor(I);
1323       Edge E = std::make_pair(BB, Succ);
1324       uint64_t Weight = EdgeWeights[E];
1325       DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1326       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1327       // if needed. Sample counts in profiles are 64-bit unsigned values,
1328       // but internally branch weights are expressed as 32-bit values.
1329       if (Weight > std::numeric_limits<uint32_t>::max()) {
1330         DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1331         Weight = std::numeric_limits<uint32_t>::max();
1332       }
1333       // Weight is added by one to avoid propagation errors introduced by
1334       // 0 weights.
1335       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1336       if (Weight != 0) {
1337         if (Weight > MaxWeight) {
1338           MaxWeight = Weight;
1339           MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1340         }
1341       }
1342     }
1343 
1344     uint64_t TempWeight;
1345     // Only set weights if there is at least one non-zero weight.
1346     // In any other case, let the analyzer set weights.
1347     // Do not set weights if the weights are present. In ThinLTO, the profile
1348     // annotation is done twice. If the first annotation already set the
1349     // weights, the second pass does not need to set it.
1350     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1351       DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1352       TI->setMetadata(LLVMContext::MD_prof,
1353                       MDB.createBranchWeights(Weights));
1354       ORE->emit([&]() {
1355         return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1356                << "most popular destination for conditional branches at "
1357                << ore::NV("CondBranchesLoc", BranchLoc);
1358       });
1359     } else {
1360       DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1361     }
1362   }
1363 }
1364 
1365 /// \brief Get the line number for the function header.
1366 ///
1367 /// This looks up function \p F in the current compilation unit and
1368 /// retrieves the line number where the function is defined. This is
1369 /// line 0 for all the samples read from the profile file. Every line
1370 /// number is relative to this line.
1371 ///
1372 /// \param F  Function object to query.
1373 ///
1374 /// \returns the line number where \p F is defined. If it returns 0,
1375 ///          it means that there is no debug information available for \p F.
1376 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1377   if (DISubprogram *S = F.getSubprogram())
1378     return S->getLine();
1379 
1380   // If the start of \p F is missing, emit a diagnostic to inform the user
1381   // about the missed opportunity.
1382   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1383       "No debug information found in function " + F.getName() +
1384           ": Function profile not used",
1385       DS_Warning));
1386   return 0;
1387 }
1388 
1389 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1390   DT.reset(new DominatorTree);
1391   DT->recalculate(F);
1392 
1393   PDT.reset(new PostDomTreeBase<BasicBlock>());
1394   PDT->recalculate(F);
1395 
1396   LI.reset(new LoopInfo);
1397   LI->analyze(*DT);
1398 }
1399 
1400 /// \brief Generate branch weight metadata for all branches in \p F.
1401 ///
1402 /// Branch weights are computed out of instruction samples using a
1403 /// propagation heuristic. Propagation proceeds in 3 phases:
1404 ///
1405 /// 1- Assignment of block weights. All the basic blocks in the function
1406 ///    are initial assigned the same weight as their most frequently
1407 ///    executed instruction.
1408 ///
1409 /// 2- Creation of equivalence classes. Since samples may be missing from
1410 ///    blocks, we can fill in the gaps by setting the weights of all the
1411 ///    blocks in the same equivalence class to the same weight. To compute
1412 ///    the concept of equivalence, we use dominance and loop information.
1413 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1414 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1415 ///
1416 /// 3- Propagation of block weights into edges. This uses a simple
1417 ///    propagation heuristic. The following rules are applied to every
1418 ///    block BB in the CFG:
1419 ///
1420 ///    - If BB has a single predecessor/successor, then the weight
1421 ///      of that edge is the weight of the block.
1422 ///
1423 ///    - If all the edges are known except one, and the weight of the
1424 ///      block is already known, the weight of the unknown edge will
1425 ///      be the weight of the block minus the sum of all the known
1426 ///      edges. If the sum of all the known edges is larger than BB's weight,
1427 ///      we set the unknown edge weight to zero.
1428 ///
1429 ///    - If there is a self-referential edge, and the weight of the block is
1430 ///      known, the weight for that edge is set to the weight of the block
1431 ///      minus the weight of the other incoming edges to that block (if
1432 ///      known).
1433 ///
1434 /// Since this propagation is not guaranteed to finalize for every CFG, we
1435 /// only allow it to proceed for a limited number of iterations (controlled
1436 /// by -sample-profile-max-propagate-iterations).
1437 ///
1438 /// FIXME: Try to replace this propagation heuristic with a scheme
1439 /// that is guaranteed to finalize. A work-list approach similar to
1440 /// the standard value propagation algorithm used by SSA-CCP might
1441 /// work here.
1442 ///
1443 /// Once all the branch weights are computed, we emit the MD_prof
1444 /// metadata on BB using the computed values for each of its branches.
1445 ///
1446 /// \param F The function to query.
1447 ///
1448 /// \returns true if \p F was modified. Returns false, otherwise.
1449 bool SampleProfileLoader::emitAnnotations(Function &F) {
1450   bool Changed = false;
1451 
1452   if (getFunctionLoc(F) == 0)
1453     return false;
1454 
1455   DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
1456                << ": " << getFunctionLoc(F) << "\n");
1457 
1458   DenseSet<GlobalValue::GUID> InlinedGUIDs;
1459   Changed |= inlineHotFunctions(F, InlinedGUIDs);
1460 
1461   // Compute basic block weights.
1462   Changed |= computeBlockWeights(F);
1463 
1464   if (Changed) {
1465     // Add an entry count to the function using the samples gathered at the
1466     // function entry.
1467     // Sets the GUIDs that are inlined in the profiled binary. This is used
1468     // for ThinLink to make correct liveness analysis, and also make the IR
1469     // match the profiled binary before annotation.
1470     F.setEntryCount(
1471         ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1472         &InlinedGUIDs);
1473 
1474     // Compute dominance and loop info needed for propagation.
1475     computeDominanceAndLoopInfo(F);
1476 
1477     // Find equivalence classes.
1478     findEquivalenceClasses(F);
1479 
1480     // Propagate weights to all edges.
1481     propagateWeights(F);
1482   }
1483 
1484   // If coverage checking was requested, compute it now.
1485   if (SampleProfileRecordCoverage) {
1486     unsigned Used = CoverageTracker.countUsedRecords(Samples);
1487     unsigned Total = CoverageTracker.countBodyRecords(Samples);
1488     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1489     if (Coverage < SampleProfileRecordCoverage) {
1490       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1491           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1492           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1493               Twine(Coverage) + "%) were applied",
1494           DS_Warning));
1495     }
1496   }
1497 
1498   if (SampleProfileSampleCoverage) {
1499     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1500     uint64_t Total = CoverageTracker.countBodySamples(Samples);
1501     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1502     if (Coverage < SampleProfileSampleCoverage) {
1503       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1504           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1505           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1506               Twine(Coverage) + "%) were applied",
1507           DS_Warning));
1508     }
1509   }
1510   return Changed;
1511 }
1512 
1513 char SampleProfileLoaderLegacyPass::ID = 0;
1514 
1515 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1516                       "Sample Profile loader", false, false)
1517 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1518 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1519 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1520                     "Sample Profile loader", false, false)
1521 
1522 bool SampleProfileLoader::doInitialization(Module &M) {
1523   auto &Ctx = M.getContext();
1524   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1525   if (std::error_code EC = ReaderOrErr.getError()) {
1526     std::string Msg = "Could not open profile: " + EC.message();
1527     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1528     return false;
1529   }
1530   Reader = std::move(ReaderOrErr.get());
1531   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1532   return true;
1533 }
1534 
1535 ModulePass *llvm::createSampleProfileLoaderPass() {
1536   return new SampleProfileLoaderLegacyPass(SampleProfileFile);
1537 }
1538 
1539 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1540   return new SampleProfileLoaderLegacyPass(Name);
1541 }
1542 
1543 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM) {
1544   if (!ProfileIsValid)
1545     return false;
1546 
1547   // Compute the total number of samples collected in this profile.
1548   for (const auto &I : Reader->getProfiles())
1549     TotalCollectedSamples += I.second.getTotalSamples();
1550 
1551   // Populate the symbol map.
1552   for (const auto &N_F : M.getValueSymbolTable()) {
1553     StringRef OrigName = N_F.getKey();
1554     Function *F = dyn_cast<Function>(N_F.getValue());
1555     if (F == nullptr)
1556       continue;
1557     SymbolMap[OrigName] = F;
1558     auto pos = OrigName.find('.');
1559     if (pos != StringRef::npos) {
1560       StringRef NewName = OrigName.substr(0, pos);
1561       auto r = SymbolMap.insert(std::make_pair(NewName, F));
1562       // Failiing to insert means there is already an entry in SymbolMap,
1563       // thus there are multiple functions that are mapped to the same
1564       // stripped name. In this case of name conflicting, set the value
1565       // to nullptr to avoid confusion.
1566       if (!r.second)
1567         r.first->second = nullptr;
1568     }
1569   }
1570 
1571   bool retval = false;
1572   for (auto &F : M)
1573     if (!F.isDeclaration()) {
1574       clearFunctionData();
1575       retval |= runOnFunction(F, AM);
1576     }
1577   if (M.getProfileSummary() == nullptr)
1578     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
1579   return retval;
1580 }
1581 
1582 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1583   ACT = &getAnalysis<AssumptionCacheTracker>();
1584   TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1585   return SampleLoader.runOnModule(M, nullptr);
1586 }
1587 
1588 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1589   // Initialize the entry count to -1, which will be treated conservatively
1590   // by getEntryCount as the same as unknown (None). If we have samples this
1591   // will be overwritten in emitAnnotations.
1592   F.setEntryCount(ProfileCount(-1, Function::PCT_Real));
1593   std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1594   if (AM) {
1595     auto &FAM =
1596         AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1597             .getManager();
1598     ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1599   } else {
1600     OwnedORE = make_unique<OptimizationRemarkEmitter>(&F);
1601     ORE = OwnedORE.get();
1602   }
1603   Samples = Reader->getSamplesFor(F);
1604   if (Samples && !Samples->empty())
1605     return emitAnnotations(F);
1606   return false;
1607 }
1608 
1609 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1610                                                ModuleAnalysisManager &AM) {
1611   FunctionAnalysisManager &FAM =
1612       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1613 
1614   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1615     return FAM.getResult<AssumptionAnalysis>(F);
1616   };
1617   auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1618     return FAM.getResult<TargetIRAnalysis>(F);
1619   };
1620 
1621   SampleProfileLoader SampleLoader(
1622       ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1623       IsThinLTOPreLink, GetAssumptionCache, GetTTI);
1624 
1625   SampleLoader.doInitialization(M);
1626 
1627   if (!SampleLoader.runOnModule(M, &AM))
1628     return PreservedAnalyses::all();
1629 
1630   return PreservedAnalyses::none();
1631 }
1632