1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/SampleProfile.h" 26 #include "llvm/ADT/ArrayRef.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/StringMap.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/ADT/Twine.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/InlineCost.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 40 #include "llvm/Analysis/TargetTransformInfo.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/CallSite.h" 44 #include "llvm/IR/DebugInfoMetadata.h" 45 #include "llvm/IR/DebugLoc.h" 46 #include "llvm/IR/DiagnosticInfo.h" 47 #include "llvm/IR/Dominators.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/MDBuilder.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/PassManager.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/Pass.h" 60 #include "llvm/ProfileData/InstrProf.h" 61 #include "llvm/ProfileData/SampleProf.h" 62 #include "llvm/ProfileData/SampleProfReader.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/ErrorOr.h" 68 #include "llvm/Support/GenericDomTree.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Transforms/IPO.h" 71 #include "llvm/Transforms/Instrumentation.h" 72 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 73 #include "llvm/Transforms/Utils/Cloning.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstdint> 77 #include <functional> 78 #include <limits> 79 #include <map> 80 #include <memory> 81 #include <string> 82 #include <system_error> 83 #include <utility> 84 #include <vector> 85 86 using namespace llvm; 87 using namespace sampleprof; 88 using ProfileCount = Function::ProfileCount; 89 #define DEBUG_TYPE "sample-profile" 90 91 // Command line option to specify the file to read samples from. This is 92 // mainly used for debugging. 93 static cl::opt<std::string> SampleProfileFile( 94 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 95 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 96 97 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 98 "sample-profile-max-propagate-iterations", cl::init(100), 99 cl::desc("Maximum number of iterations to go through when propagating " 100 "sample block/edge weights through the CFG.")); 101 102 static cl::opt<unsigned> SampleProfileRecordCoverage( 103 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 104 cl::desc("Emit a warning if less than N% of records in the input profile " 105 "are matched to the IR.")); 106 107 static cl::opt<unsigned> SampleProfileSampleCoverage( 108 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 109 cl::desc("Emit a warning if less than N% of samples in the input profile " 110 "are matched to the IR.")); 111 112 static cl::opt<double> SampleProfileHotThreshold( 113 "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"), 114 cl::desc("Inlined functions that account for more than N% of all samples " 115 "collected in the parent function, will be inlined again.")); 116 117 namespace { 118 119 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 120 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 121 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 122 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 123 using BlockEdgeMap = 124 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 125 126 class SampleCoverageTracker { 127 public: 128 SampleCoverageTracker() = default; 129 130 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 131 uint32_t Discriminator, uint64_t Samples); 132 unsigned computeCoverage(unsigned Used, unsigned Total) const; 133 unsigned countUsedRecords(const FunctionSamples *FS) const; 134 unsigned countBodyRecords(const FunctionSamples *FS) const; 135 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 136 uint64_t countBodySamples(const FunctionSamples *FS) const; 137 138 void clear() { 139 SampleCoverage.clear(); 140 TotalUsedSamples = 0; 141 } 142 143 private: 144 using BodySampleCoverageMap = std::map<LineLocation, unsigned>; 145 using FunctionSamplesCoverageMap = 146 DenseMap<const FunctionSamples *, BodySampleCoverageMap>; 147 148 /// Coverage map for sampling records. 149 /// 150 /// This map keeps a record of sampling records that have been matched to 151 /// an IR instruction. This is used to detect some form of staleness in 152 /// profiles (see flag -sample-profile-check-coverage). 153 /// 154 /// Each entry in the map corresponds to a FunctionSamples instance. This is 155 /// another map that counts how many times the sample record at the 156 /// given location has been used. 157 FunctionSamplesCoverageMap SampleCoverage; 158 159 /// Number of samples used from the profile. 160 /// 161 /// When a sampling record is used for the first time, the samples from 162 /// that record are added to this accumulator. Coverage is later computed 163 /// based on the total number of samples available in this function and 164 /// its callsites. 165 /// 166 /// Note that this accumulator tracks samples used from a single function 167 /// and all the inlined callsites. Strictly, we should have a map of counters 168 /// keyed by FunctionSamples pointers, but these stats are cleared after 169 /// every function, so we just need to keep a single counter. 170 uint64_t TotalUsedSamples = 0; 171 }; 172 173 /// \brief Sample profile pass. 174 /// 175 /// This pass reads profile data from the file specified by 176 /// -sample-profile-file and annotates every affected function with the 177 /// profile information found in that file. 178 class SampleProfileLoader { 179 public: 180 SampleProfileLoader( 181 StringRef Name, bool IsThinLTOPreLink, 182 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 183 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo) 184 : GetAC(std::move(GetAssumptionCache)), 185 GetTTI(std::move(GetTargetTransformInfo)), Filename(Name), 186 IsThinLTOPreLink(IsThinLTOPreLink) {} 187 188 bool doInitialization(Module &M); 189 bool runOnModule(Module &M, ModuleAnalysisManager *AM); 190 191 void dump() { Reader->dump(); } 192 193 protected: 194 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 195 unsigned getFunctionLoc(Function &F); 196 bool emitAnnotations(Function &F); 197 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 198 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 199 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 200 std::vector<const FunctionSamples *> 201 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 202 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 203 bool inlineCallInstruction(Instruction *I); 204 bool inlineHotFunctions(Function &F, 205 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 206 void printEdgeWeight(raw_ostream &OS, Edge E); 207 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 208 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 209 bool computeBlockWeights(Function &F); 210 void findEquivalenceClasses(Function &F); 211 template <bool IsPostDom> 212 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 213 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 214 215 void propagateWeights(Function &F); 216 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 217 void buildEdges(Function &F); 218 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 219 void computeDominanceAndLoopInfo(Function &F); 220 unsigned getOffset(const DILocation *DIL) const; 221 void clearFunctionData(); 222 223 /// \brief Map basic blocks to their computed weights. 224 /// 225 /// The weight of a basic block is defined to be the maximum 226 /// of all the instruction weights in that block. 227 BlockWeightMap BlockWeights; 228 229 /// \brief Map edges to their computed weights. 230 /// 231 /// Edge weights are computed by propagating basic block weights in 232 /// SampleProfile::propagateWeights. 233 EdgeWeightMap EdgeWeights; 234 235 /// \brief Set of visited blocks during propagation. 236 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 237 238 /// \brief Set of visited edges during propagation. 239 SmallSet<Edge, 32> VisitedEdges; 240 241 /// \brief Equivalence classes for block weights. 242 /// 243 /// Two blocks BB1 and BB2 are in the same equivalence class if they 244 /// dominate and post-dominate each other, and they are in the same loop 245 /// nest. When this happens, the two blocks are guaranteed to execute 246 /// the same number of times. 247 EquivalenceClassMap EquivalenceClass; 248 249 /// Map from function name to Function *. Used to find the function from 250 /// the function name. If the function name contains suffix, additional 251 /// entry is added to map from the stripped name to the function if there 252 /// is one-to-one mapping. 253 StringMap<Function *> SymbolMap; 254 255 /// \brief Dominance, post-dominance and loop information. 256 std::unique_ptr<DominatorTree> DT; 257 std::unique_ptr<PostDomTreeBase<BasicBlock>> PDT; 258 std::unique_ptr<LoopInfo> LI; 259 260 std::function<AssumptionCache &(Function &)> GetAC; 261 std::function<TargetTransformInfo &(Function &)> GetTTI; 262 263 /// \brief Predecessors for each basic block in the CFG. 264 BlockEdgeMap Predecessors; 265 266 /// \brief Successors for each basic block in the CFG. 267 BlockEdgeMap Successors; 268 269 SampleCoverageTracker CoverageTracker; 270 271 /// \brief Profile reader object. 272 std::unique_ptr<SampleProfileReader> Reader; 273 274 /// \brief Samples collected for the body of this function. 275 FunctionSamples *Samples = nullptr; 276 277 /// \brief Name of the profile file to load. 278 std::string Filename; 279 280 /// \brief Flag indicating whether the profile input loaded successfully. 281 bool ProfileIsValid = false; 282 283 /// \brief Flag indicating if the pass is invoked in ThinLTO compile phase. 284 /// 285 /// In this phase, in annotation, we should not promote indirect calls. 286 /// Instead, we will mark GUIDs that needs to be annotated to the function. 287 bool IsThinLTOPreLink; 288 289 /// \brief Total number of samples collected in this profile. 290 /// 291 /// This is the sum of all the samples collected in all the functions executed 292 /// at runtime. 293 uint64_t TotalCollectedSamples = 0; 294 295 /// \brief Optimization Remark Emitter used to emit diagnostic remarks. 296 OptimizationRemarkEmitter *ORE = nullptr; 297 }; 298 299 class SampleProfileLoaderLegacyPass : public ModulePass { 300 public: 301 // Class identification, replacement for typeinfo 302 static char ID; 303 304 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, 305 bool IsThinLTOPreLink = false) 306 : ModulePass(ID), SampleLoader(Name, IsThinLTOPreLink, 307 [&](Function &F) -> AssumptionCache & { 308 return ACT->getAssumptionCache(F); 309 }, 310 [&](Function &F) -> TargetTransformInfo & { 311 return TTIWP->getTTI(F); 312 }) { 313 initializeSampleProfileLoaderLegacyPassPass( 314 *PassRegistry::getPassRegistry()); 315 } 316 317 void dump() { SampleLoader.dump(); } 318 319 bool doInitialization(Module &M) override { 320 return SampleLoader.doInitialization(M); 321 } 322 323 StringRef getPassName() const override { return "Sample profile pass"; } 324 bool runOnModule(Module &M) override; 325 326 void getAnalysisUsage(AnalysisUsage &AU) const override { 327 AU.addRequired<AssumptionCacheTracker>(); 328 AU.addRequired<TargetTransformInfoWrapperPass>(); 329 } 330 331 private: 332 SampleProfileLoader SampleLoader; 333 AssumptionCacheTracker *ACT = nullptr; 334 TargetTransformInfoWrapperPass *TTIWP = nullptr; 335 }; 336 337 } // end anonymous namespace 338 339 /// Return true if the given callsite is hot wrt to its caller. 340 /// 341 /// Functions that were inlined in the original binary will be represented 342 /// in the inline stack in the sample profile. If the profile shows that 343 /// the original inline decision was "good" (i.e., the callsite is executed 344 /// frequently), then we will recreate the inline decision and apply the 345 /// profile from the inlined callsite. 346 /// 347 /// To decide whether an inlined callsite is hot, we compute the fraction 348 /// of samples used by the callsite with respect to the total number of samples 349 /// collected in the caller. 350 /// 351 /// If that fraction is larger than the default given by 352 /// SampleProfileHotThreshold, the callsite will be inlined again. 353 static bool callsiteIsHot(const FunctionSamples *CallerFS, 354 const FunctionSamples *CallsiteFS) { 355 if (!CallsiteFS) 356 return false; // The callsite was not inlined in the original binary. 357 358 uint64_t ParentTotalSamples = CallerFS->getTotalSamples(); 359 if (ParentTotalSamples == 0) 360 return false; // Avoid division by zero. 361 362 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 363 if (CallsiteTotalSamples == 0) 364 return false; // Callsite is trivially cold. 365 366 double PercentSamples = 367 (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0; 368 return PercentSamples >= SampleProfileHotThreshold; 369 } 370 371 /// Mark as used the sample record for the given function samples at 372 /// (LineOffset, Discriminator). 373 /// 374 /// \returns true if this is the first time we mark the given record. 375 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 376 uint32_t LineOffset, 377 uint32_t Discriminator, 378 uint64_t Samples) { 379 LineLocation Loc(LineOffset, Discriminator); 380 unsigned &Count = SampleCoverage[FS][Loc]; 381 bool FirstTime = (++Count == 1); 382 if (FirstTime) 383 TotalUsedSamples += Samples; 384 return FirstTime; 385 } 386 387 /// Return the number of sample records that were applied from this profile. 388 /// 389 /// This count does not include records from cold inlined callsites. 390 unsigned 391 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const { 392 auto I = SampleCoverage.find(FS); 393 394 // The size of the coverage map for FS represents the number of records 395 // that were marked used at least once. 396 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 397 398 // If there are inlined callsites in this function, count the samples found 399 // in the respective bodies. However, do not bother counting callees with 0 400 // total samples, these are callees that were never invoked at runtime. 401 for (const auto &I : FS->getCallsiteSamples()) 402 for (const auto &J : I.second) { 403 const FunctionSamples *CalleeSamples = &J.second; 404 if (callsiteIsHot(FS, CalleeSamples)) 405 Count += countUsedRecords(CalleeSamples); 406 } 407 408 return Count; 409 } 410 411 /// Return the number of sample records in the body of this profile. 412 /// 413 /// This count does not include records from cold inlined callsites. 414 unsigned 415 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const { 416 unsigned Count = FS->getBodySamples().size(); 417 418 // Only count records in hot callsites. 419 for (const auto &I : FS->getCallsiteSamples()) 420 for (const auto &J : I.second) { 421 const FunctionSamples *CalleeSamples = &J.second; 422 if (callsiteIsHot(FS, CalleeSamples)) 423 Count += countBodyRecords(CalleeSamples); 424 } 425 426 return Count; 427 } 428 429 /// Return the number of samples collected in the body of this profile. 430 /// 431 /// This count does not include samples from cold inlined callsites. 432 uint64_t 433 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const { 434 uint64_t Total = 0; 435 for (const auto &I : FS->getBodySamples()) 436 Total += I.second.getSamples(); 437 438 // Only count samples in hot callsites. 439 for (const auto &I : FS->getCallsiteSamples()) 440 for (const auto &J : I.second) { 441 const FunctionSamples *CalleeSamples = &J.second; 442 if (callsiteIsHot(FS, CalleeSamples)) 443 Total += countBodySamples(CalleeSamples); 444 } 445 446 return Total; 447 } 448 449 /// Return the fraction of sample records used in this profile. 450 /// 451 /// The returned value is an unsigned integer in the range 0-100 indicating 452 /// the percentage of sample records that were used while applying this 453 /// profile to the associated function. 454 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 455 unsigned Total) const { 456 assert(Used <= Total && 457 "number of used records cannot exceed the total number of records"); 458 return Total > 0 ? Used * 100 / Total : 100; 459 } 460 461 /// Clear all the per-function data used to load samples and propagate weights. 462 void SampleProfileLoader::clearFunctionData() { 463 BlockWeights.clear(); 464 EdgeWeights.clear(); 465 VisitedBlocks.clear(); 466 VisitedEdges.clear(); 467 EquivalenceClass.clear(); 468 DT = nullptr; 469 PDT = nullptr; 470 LI = nullptr; 471 Predecessors.clear(); 472 Successors.clear(); 473 CoverageTracker.clear(); 474 } 475 476 /// Returns the line offset to the start line of the subprogram. 477 /// We assume that a single function will not exceed 65535 LOC. 478 unsigned SampleProfileLoader::getOffset(const DILocation *DIL) const { 479 return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) & 480 0xffff; 481 } 482 483 #ifndef NDEBUG 484 /// \brief Print the weight of edge \p E on stream \p OS. 485 /// 486 /// \param OS Stream to emit the output to. 487 /// \param E Edge to print. 488 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 489 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 490 << "]: " << EdgeWeights[E] << "\n"; 491 } 492 493 /// \brief Print the equivalence class of block \p BB on stream \p OS. 494 /// 495 /// \param OS Stream to emit the output to. 496 /// \param BB Block to print. 497 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 498 const BasicBlock *BB) { 499 const BasicBlock *Equiv = EquivalenceClass[BB]; 500 OS << "equivalence[" << BB->getName() 501 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 502 } 503 504 /// \brief Print the weight of block \p BB on stream \p OS. 505 /// 506 /// \param OS Stream to emit the output to. 507 /// \param BB Block to print. 508 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 509 const BasicBlock *BB) const { 510 const auto &I = BlockWeights.find(BB); 511 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 512 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 513 } 514 #endif 515 516 /// \brief Get the weight for an instruction. 517 /// 518 /// The "weight" of an instruction \p Inst is the number of samples 519 /// collected on that instruction at runtime. To retrieve it, we 520 /// need to compute the line number of \p Inst relative to the start of its 521 /// function. We use HeaderLineno to compute the offset. We then 522 /// look up the samples collected for \p Inst using BodySamples. 523 /// 524 /// \param Inst Instruction to query. 525 /// 526 /// \returns the weight of \p Inst. 527 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 528 const DebugLoc &DLoc = Inst.getDebugLoc(); 529 if (!DLoc) 530 return std::error_code(); 531 532 const FunctionSamples *FS = findFunctionSamples(Inst); 533 if (!FS) 534 return std::error_code(); 535 536 // Ignore all intrinsics and branch instructions. 537 // Branch instruction usually contains debug info from sources outside of 538 // the residing basic block, thus we ignore them during annotation. 539 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst)) 540 return std::error_code(); 541 542 // If a direct call/invoke instruction is inlined in profile 543 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 544 // it means that the inlined callsite has no sample, thus the call 545 // instruction should have 0 count. 546 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && 547 !ImmutableCallSite(&Inst).isIndirectCall() && 548 findCalleeFunctionSamples(Inst)) 549 return 0; 550 551 const DILocation *DIL = DLoc; 552 uint32_t LineOffset = getOffset(DIL); 553 uint32_t Discriminator = DIL->getBaseDiscriminator(); 554 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 555 if (R) { 556 bool FirstMark = 557 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 558 if (FirstMark) { 559 ORE->emit([&]() { 560 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 561 Remark << "Applied " << ore::NV("NumSamples", *R); 562 Remark << " samples from profile (offset: "; 563 Remark << ore::NV("LineOffset", LineOffset); 564 if (Discriminator) { 565 Remark << "."; 566 Remark << ore::NV("Discriminator", Discriminator); 567 } 568 Remark << ")"; 569 return Remark; 570 }); 571 } 572 DEBUG(dbgs() << " " << DLoc.getLine() << "." 573 << DIL->getBaseDiscriminator() << ":" << Inst 574 << " (line offset: " << LineOffset << "." 575 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 576 << ")\n"); 577 } 578 return R; 579 } 580 581 /// \brief Compute the weight of a basic block. 582 /// 583 /// The weight of basic block \p BB is the maximum weight of all the 584 /// instructions in BB. 585 /// 586 /// \param BB The basic block to query. 587 /// 588 /// \returns the weight for \p BB. 589 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 590 uint64_t Max = 0; 591 bool HasWeight = false; 592 for (auto &I : BB->getInstList()) { 593 const ErrorOr<uint64_t> &R = getInstWeight(I); 594 if (R) { 595 Max = std::max(Max, R.get()); 596 HasWeight = true; 597 } 598 } 599 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 600 } 601 602 /// \brief Compute and store the weights of every basic block. 603 /// 604 /// This populates the BlockWeights map by computing 605 /// the weights of every basic block in the CFG. 606 /// 607 /// \param F The function to query. 608 bool SampleProfileLoader::computeBlockWeights(Function &F) { 609 bool Changed = false; 610 DEBUG(dbgs() << "Block weights\n"); 611 for (const auto &BB : F) { 612 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 613 if (Weight) { 614 BlockWeights[&BB] = Weight.get(); 615 VisitedBlocks.insert(&BB); 616 Changed = true; 617 } 618 DEBUG(printBlockWeight(dbgs(), &BB)); 619 } 620 621 return Changed; 622 } 623 624 /// \brief Get the FunctionSamples for a call instruction. 625 /// 626 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 627 /// instance in which that call instruction is calling to. It contains 628 /// all samples that resides in the inlined instance. We first find the 629 /// inlined instance in which the call instruction is from, then we 630 /// traverse its children to find the callsite with the matching 631 /// location. 632 /// 633 /// \param Inst Call/Invoke instruction to query. 634 /// 635 /// \returns The FunctionSamples pointer to the inlined instance. 636 const FunctionSamples * 637 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 638 const DILocation *DIL = Inst.getDebugLoc(); 639 if (!DIL) { 640 return nullptr; 641 } 642 643 StringRef CalleeName; 644 if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) 645 if (Function *Callee = CI->getCalledFunction()) 646 CalleeName = Callee->getName(); 647 648 const FunctionSamples *FS = findFunctionSamples(Inst); 649 if (FS == nullptr) 650 return nullptr; 651 652 return FS->findFunctionSamplesAt( 653 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), CalleeName); 654 } 655 656 /// Returns a vector of FunctionSamples that are the indirect call targets 657 /// of \p Inst. The vector is sorted by the total number of samples. Stores 658 /// the total call count of the indirect call in \p Sum. 659 std::vector<const FunctionSamples *> 660 SampleProfileLoader::findIndirectCallFunctionSamples( 661 const Instruction &Inst, uint64_t &Sum) const { 662 const DILocation *DIL = Inst.getDebugLoc(); 663 std::vector<const FunctionSamples *> R; 664 665 if (!DIL) { 666 return R; 667 } 668 669 const FunctionSamples *FS = findFunctionSamples(Inst); 670 if (FS == nullptr) 671 return R; 672 673 uint32_t LineOffset = getOffset(DIL); 674 uint32_t Discriminator = DIL->getBaseDiscriminator(); 675 676 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 677 Sum = 0; 678 if (T) 679 for (const auto &T_C : T.get()) 680 Sum += T_C.second; 681 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt( 682 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()))) { 683 if (M->empty()) 684 return R; 685 for (const auto &NameFS : *M) { 686 Sum += NameFS.second.getEntrySamples(); 687 R.push_back(&NameFS.second); 688 } 689 std::sort(R.begin(), R.end(), 690 [](const FunctionSamples *L, const FunctionSamples *R) { 691 return L->getEntrySamples() > R->getEntrySamples(); 692 }); 693 } 694 return R; 695 } 696 697 /// \brief Get the FunctionSamples for an instruction. 698 /// 699 /// The FunctionSamples of an instruction \p Inst is the inlined instance 700 /// in which that instruction is coming from. We traverse the inline stack 701 /// of that instruction, and match it with the tree nodes in the profile. 702 /// 703 /// \param Inst Instruction to query. 704 /// 705 /// \returns the FunctionSamples pointer to the inlined instance. 706 const FunctionSamples * 707 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 708 SmallVector<std::pair<LineLocation, StringRef>, 10> S; 709 const DILocation *DIL = Inst.getDebugLoc(); 710 if (!DIL) 711 return Samples; 712 713 const DILocation *PrevDIL = DIL; 714 for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) { 715 S.push_back(std::make_pair( 716 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), 717 PrevDIL->getScope()->getSubprogram()->getLinkageName())); 718 PrevDIL = DIL; 719 } 720 if (S.size() == 0) 721 return Samples; 722 const FunctionSamples *FS = Samples; 723 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 724 FS = FS->findFunctionSamplesAt(S[i].first, S[i].second); 725 } 726 return FS; 727 } 728 729 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) { 730 assert(isa<CallInst>(I) || isa<InvokeInst>(I)); 731 CallSite CS(I); 732 Function *CalledFunction = CS.getCalledFunction(); 733 assert(CalledFunction); 734 DebugLoc DLoc = I->getDebugLoc(); 735 BasicBlock *BB = I->getParent(); 736 InlineParams Params = getInlineParams(); 737 Params.ComputeFullInlineCost = true; 738 // Checks if there is anything in the reachable portion of the callee at 739 // this callsite that makes this inlining potentially illegal. Need to 740 // set ComputeFullInlineCost, otherwise getInlineCost may return early 741 // when cost exceeds threshold without checking all IRs in the callee. 742 // The acutal cost does not matter because we only checks isNever() to 743 // see if it is legal to inline the callsite. 744 InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC, 745 None, nullptr, nullptr); 746 if (Cost.isNever()) { 747 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB) 748 << "incompatible inlining"); 749 return false; 750 } 751 InlineFunctionInfo IFI(nullptr, &GetAC); 752 if (InlineFunction(CS, IFI)) { 753 // The call to InlineFunction erases I, so we can't pass it here. 754 ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB) 755 << "inlined hot callee '" << ore::NV("Callee", CalledFunction) 756 << "' into '" << ore::NV("Caller", BB->getParent()) << "'"); 757 return true; 758 } 759 return false; 760 } 761 762 /// \brief Iteratively inline hot callsites of a function. 763 /// 764 /// Iteratively traverse all callsites of the function \p F, and find if 765 /// the corresponding inlined instance exists and is hot in profile. If 766 /// it is hot enough, inline the callsites and adds new callsites of the 767 /// callee into the caller. If the call is an indirect call, first promote 768 /// it to direct call. Each indirect call is limited with a single target. 769 /// 770 /// \param F function to perform iterative inlining. 771 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 772 /// inlined in the profiled binary. 773 /// 774 /// \returns True if there is any inline happened. 775 bool SampleProfileLoader::inlineHotFunctions( 776 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 777 DenseSet<Instruction *> PromotedInsns; 778 bool Changed = false; 779 while (true) { 780 bool LocalChanged = false; 781 SmallVector<Instruction *, 10> CIS; 782 for (auto &BB : F) { 783 bool Hot = false; 784 SmallVector<Instruction *, 10> Candidates; 785 for (auto &I : BB.getInstList()) { 786 const FunctionSamples *FS = nullptr; 787 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 788 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { 789 Candidates.push_back(&I); 790 if (callsiteIsHot(Samples, FS)) 791 Hot = true; 792 } 793 } 794 if (Hot) { 795 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); 796 } 797 } 798 for (auto I : CIS) { 799 Function *CalledFunction = CallSite(I).getCalledFunction(); 800 // Do not inline recursive calls. 801 if (CalledFunction == &F) 802 continue; 803 if (CallSite(I).isIndirectCall()) { 804 if (PromotedInsns.count(I)) 805 continue; 806 uint64_t Sum; 807 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 808 if (IsThinLTOPreLink) { 809 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), 810 Samples->getTotalSamples() * 811 SampleProfileHotThreshold / 100); 812 continue; 813 } 814 auto CalleeFunctionName = FS->getName(); 815 // If it is a recursive call, we do not inline it as it could bloat 816 // the code exponentially. There is way to better handle this, e.g. 817 // clone the caller first, and inline the cloned caller if it is 818 // recursive. As llvm does not inline recursive calls, we will 819 // simply ignore it instead of handling it explicitly. 820 if (CalleeFunctionName == F.getName()) 821 continue; 822 823 const char *Reason = "Callee function not available"; 824 auto R = SymbolMap.find(CalleeFunctionName); 825 if (R != SymbolMap.end() && R->getValue() && 826 !R->getValue()->isDeclaration() && 827 R->getValue()->getSubprogram() && 828 isLegalToPromote(CallSite(I), R->getValue(), &Reason)) { 829 uint64_t C = FS->getEntrySamples(); 830 Instruction *DI = 831 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE); 832 Sum -= C; 833 PromotedInsns.insert(I); 834 // If profile mismatches, we should not attempt to inline DI. 835 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && 836 inlineCallInstruction(DI)) 837 LocalChanged = true; 838 } else { 839 DEBUG(dbgs() 840 << "\nFailed to promote indirect call to " 841 << CalleeFunctionName << " because " << Reason << "\n"); 842 } 843 } 844 } else if (CalledFunction && CalledFunction->getSubprogram() && 845 !CalledFunction->isDeclaration()) { 846 if (inlineCallInstruction(I)) 847 LocalChanged = true; 848 } else if (IsThinLTOPreLink) { 849 findCalleeFunctionSamples(*I)->findInlinedFunctions( 850 InlinedGUIDs, F.getParent(), 851 Samples->getTotalSamples() * SampleProfileHotThreshold / 100); 852 } 853 } 854 if (LocalChanged) { 855 Changed = true; 856 } else { 857 break; 858 } 859 } 860 return Changed; 861 } 862 863 /// \brief Find equivalence classes for the given block. 864 /// 865 /// This finds all the blocks that are guaranteed to execute the same 866 /// number of times as \p BB1. To do this, it traverses all the 867 /// descendants of \p BB1 in the dominator or post-dominator tree. 868 /// 869 /// A block BB2 will be in the same equivalence class as \p BB1 if 870 /// the following holds: 871 /// 872 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 873 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 874 /// dominate BB1 in the post-dominator tree. 875 /// 876 /// 2- Both BB2 and \p BB1 must be in the same loop. 877 /// 878 /// For every block BB2 that meets those two requirements, we set BB2's 879 /// equivalence class to \p BB1. 880 /// 881 /// \param BB1 Block to check. 882 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 883 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 884 /// with blocks from \p BB1's dominator tree, then 885 /// this is the post-dominator tree, and vice versa. 886 template <bool IsPostDom> 887 void SampleProfileLoader::findEquivalencesFor( 888 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 889 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 890 const BasicBlock *EC = EquivalenceClass[BB1]; 891 uint64_t Weight = BlockWeights[EC]; 892 for (const auto *BB2 : Descendants) { 893 bool IsDomParent = DomTree->dominates(BB2, BB1); 894 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 895 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 896 EquivalenceClass[BB2] = EC; 897 // If BB2 is visited, then the entire EC should be marked as visited. 898 if (VisitedBlocks.count(BB2)) { 899 VisitedBlocks.insert(EC); 900 } 901 902 // If BB2 is heavier than BB1, make BB2 have the same weight 903 // as BB1. 904 // 905 // Note that we don't worry about the opposite situation here 906 // (when BB2 is lighter than BB1). We will deal with this 907 // during the propagation phase. Right now, we just want to 908 // make sure that BB1 has the largest weight of all the 909 // members of its equivalence set. 910 Weight = std::max(Weight, BlockWeights[BB2]); 911 } 912 } 913 if (EC == &EC->getParent()->getEntryBlock()) { 914 BlockWeights[EC] = Samples->getHeadSamples() + 1; 915 } else { 916 BlockWeights[EC] = Weight; 917 } 918 } 919 920 /// \brief Find equivalence classes. 921 /// 922 /// Since samples may be missing from blocks, we can fill in the gaps by setting 923 /// the weights of all the blocks in the same equivalence class to the same 924 /// weight. To compute the concept of equivalence, we use dominance and loop 925 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 926 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 927 /// 928 /// \param F The function to query. 929 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 930 SmallVector<BasicBlock *, 8> DominatedBBs; 931 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 932 // Find equivalence sets based on dominance and post-dominance information. 933 for (auto &BB : F) { 934 BasicBlock *BB1 = &BB; 935 936 // Compute BB1's equivalence class once. 937 if (EquivalenceClass.count(BB1)) { 938 DEBUG(printBlockEquivalence(dbgs(), BB1)); 939 continue; 940 } 941 942 // By default, blocks are in their own equivalence class. 943 EquivalenceClass[BB1] = BB1; 944 945 // Traverse all the blocks dominated by BB1. We are looking for 946 // every basic block BB2 such that: 947 // 948 // 1- BB1 dominates BB2. 949 // 2- BB2 post-dominates BB1. 950 // 3- BB1 and BB2 are in the same loop nest. 951 // 952 // If all those conditions hold, it means that BB2 is executed 953 // as many times as BB1, so they are placed in the same equivalence 954 // class by making BB2's equivalence class be BB1. 955 DominatedBBs.clear(); 956 DT->getDescendants(BB1, DominatedBBs); 957 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 958 959 DEBUG(printBlockEquivalence(dbgs(), BB1)); 960 } 961 962 // Assign weights to equivalence classes. 963 // 964 // All the basic blocks in the same equivalence class will execute 965 // the same number of times. Since we know that the head block in 966 // each equivalence class has the largest weight, assign that weight 967 // to all the blocks in that equivalence class. 968 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 969 for (auto &BI : F) { 970 const BasicBlock *BB = &BI; 971 const BasicBlock *EquivBB = EquivalenceClass[BB]; 972 if (BB != EquivBB) 973 BlockWeights[BB] = BlockWeights[EquivBB]; 974 DEBUG(printBlockWeight(dbgs(), BB)); 975 } 976 } 977 978 /// \brief Visit the given edge to decide if it has a valid weight. 979 /// 980 /// If \p E has not been visited before, we copy to \p UnknownEdge 981 /// and increment the count of unknown edges. 982 /// 983 /// \param E Edge to visit. 984 /// \param NumUnknownEdges Current number of unknown edges. 985 /// \param UnknownEdge Set if E has not been visited before. 986 /// 987 /// \returns E's weight, if known. Otherwise, return 0. 988 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 989 Edge *UnknownEdge) { 990 if (!VisitedEdges.count(E)) { 991 (*NumUnknownEdges)++; 992 *UnknownEdge = E; 993 return 0; 994 } 995 996 return EdgeWeights[E]; 997 } 998 999 /// \brief Propagate weights through incoming/outgoing edges. 1000 /// 1001 /// If the weight of a basic block is known, and there is only one edge 1002 /// with an unknown weight, we can calculate the weight of that edge. 1003 /// 1004 /// Similarly, if all the edges have a known count, we can calculate the 1005 /// count of the basic block, if needed. 1006 /// 1007 /// \param F Function to process. 1008 /// \param UpdateBlockCount Whether we should update basic block counts that 1009 /// has already been annotated. 1010 /// 1011 /// \returns True if new weights were assigned to edges or blocks. 1012 bool SampleProfileLoader::propagateThroughEdges(Function &F, 1013 bool UpdateBlockCount) { 1014 bool Changed = false; 1015 DEBUG(dbgs() << "\nPropagation through edges\n"); 1016 for (const auto &BI : F) { 1017 const BasicBlock *BB = &BI; 1018 const BasicBlock *EC = EquivalenceClass[BB]; 1019 1020 // Visit all the predecessor and successor edges to determine 1021 // which ones have a weight assigned already. Note that it doesn't 1022 // matter that we only keep track of a single unknown edge. The 1023 // only case we are interested in handling is when only a single 1024 // edge is unknown (see setEdgeOrBlockWeight). 1025 for (unsigned i = 0; i < 2; i++) { 1026 uint64_t TotalWeight = 0; 1027 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 1028 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 1029 1030 if (i == 0) { 1031 // First, visit all predecessor edges. 1032 NumTotalEdges = Predecessors[BB].size(); 1033 for (auto *Pred : Predecessors[BB]) { 1034 Edge E = std::make_pair(Pred, BB); 1035 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1036 if (E.first == E.second) 1037 SelfReferentialEdge = E; 1038 } 1039 if (NumTotalEdges == 1) { 1040 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 1041 } 1042 } else { 1043 // On the second round, visit all successor edges. 1044 NumTotalEdges = Successors[BB].size(); 1045 for (auto *Succ : Successors[BB]) { 1046 Edge E = std::make_pair(BB, Succ); 1047 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1048 } 1049 if (NumTotalEdges == 1) { 1050 SingleEdge = std::make_pair(BB, Successors[BB][0]); 1051 } 1052 } 1053 1054 // After visiting all the edges, there are three cases that we 1055 // can handle immediately: 1056 // 1057 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 1058 // In this case, we simply check that the sum of all the edges 1059 // is the same as BB's weight. If not, we change BB's weight 1060 // to match. Additionally, if BB had not been visited before, 1061 // we mark it visited. 1062 // 1063 // - Only one edge is unknown and BB has already been visited. 1064 // In this case, we can compute the weight of the edge by 1065 // subtracting the total block weight from all the known 1066 // edge weights. If the edges weight more than BB, then the 1067 // edge of the last remaining edge is set to zero. 1068 // 1069 // - There exists a self-referential edge and the weight of BB is 1070 // known. In this case, this edge can be based on BB's weight. 1071 // We add up all the other known edges and set the weight on 1072 // the self-referential edge as we did in the previous case. 1073 // 1074 // In any other case, we must continue iterating. Eventually, 1075 // all edges will get a weight, or iteration will stop when 1076 // it reaches SampleProfileMaxPropagateIterations. 1077 if (NumUnknownEdges <= 1) { 1078 uint64_t &BBWeight = BlockWeights[EC]; 1079 if (NumUnknownEdges == 0) { 1080 if (!VisitedBlocks.count(EC)) { 1081 // If we already know the weight of all edges, the weight of the 1082 // basic block can be computed. It should be no larger than the sum 1083 // of all edge weights. 1084 if (TotalWeight > BBWeight) { 1085 BBWeight = TotalWeight; 1086 Changed = true; 1087 DEBUG(dbgs() << "All edge weights for " << BB->getName() 1088 << " known. Set weight for block: "; 1089 printBlockWeight(dbgs(), BB);); 1090 } 1091 } else if (NumTotalEdges == 1 && 1092 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1093 // If there is only one edge for the visited basic block, use the 1094 // block weight to adjust edge weight if edge weight is smaller. 1095 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1096 Changed = true; 1097 } 1098 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1099 // If there is a single unknown edge and the block has been 1100 // visited, then we can compute E's weight. 1101 if (BBWeight >= TotalWeight) 1102 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1103 else 1104 EdgeWeights[UnknownEdge] = 0; 1105 const BasicBlock *OtherEC; 1106 if (i == 0) 1107 OtherEC = EquivalenceClass[UnknownEdge.first]; 1108 else 1109 OtherEC = EquivalenceClass[UnknownEdge.second]; 1110 // Edge weights should never exceed the BB weights it connects. 1111 if (VisitedBlocks.count(OtherEC) && 1112 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1113 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1114 VisitedEdges.insert(UnknownEdge); 1115 Changed = true; 1116 DEBUG(dbgs() << "Set weight for edge: "; 1117 printEdgeWeight(dbgs(), UnknownEdge)); 1118 } 1119 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1120 // If a block Weights 0, all its in/out edges should weight 0. 1121 if (i == 0) { 1122 for (auto *Pred : Predecessors[BB]) { 1123 Edge E = std::make_pair(Pred, BB); 1124 EdgeWeights[E] = 0; 1125 VisitedEdges.insert(E); 1126 } 1127 } else { 1128 for (auto *Succ : Successors[BB]) { 1129 Edge E = std::make_pair(BB, Succ); 1130 EdgeWeights[E] = 0; 1131 VisitedEdges.insert(E); 1132 } 1133 } 1134 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1135 uint64_t &BBWeight = BlockWeights[BB]; 1136 // We have a self-referential edge and the weight of BB is known. 1137 if (BBWeight >= TotalWeight) 1138 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1139 else 1140 EdgeWeights[SelfReferentialEdge] = 0; 1141 VisitedEdges.insert(SelfReferentialEdge); 1142 Changed = true; 1143 DEBUG(dbgs() << "Set self-referential edge weight to: "; 1144 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1145 } 1146 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1147 BlockWeights[EC] = TotalWeight; 1148 VisitedBlocks.insert(EC); 1149 Changed = true; 1150 } 1151 } 1152 } 1153 1154 return Changed; 1155 } 1156 1157 /// \brief Build in/out edge lists for each basic block in the CFG. 1158 /// 1159 /// We are interested in unique edges. If a block B1 has multiple 1160 /// edges to another block B2, we only add a single B1->B2 edge. 1161 void SampleProfileLoader::buildEdges(Function &F) { 1162 for (auto &BI : F) { 1163 BasicBlock *B1 = &BI; 1164 1165 // Add predecessors for B1. 1166 SmallPtrSet<BasicBlock *, 16> Visited; 1167 if (!Predecessors[B1].empty()) 1168 llvm_unreachable("Found a stale predecessors list in a basic block."); 1169 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1170 BasicBlock *B2 = *PI; 1171 if (Visited.insert(B2).second) 1172 Predecessors[B1].push_back(B2); 1173 } 1174 1175 // Add successors for B1. 1176 Visited.clear(); 1177 if (!Successors[B1].empty()) 1178 llvm_unreachable("Found a stale successors list in a basic block."); 1179 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1180 BasicBlock *B2 = *SI; 1181 if (Visited.insert(B2).second) 1182 Successors[B1].push_back(B2); 1183 } 1184 } 1185 } 1186 1187 /// Returns the sorted CallTargetMap \p M by count in descending order. 1188 static SmallVector<InstrProfValueData, 2> SortCallTargets( 1189 const SampleRecord::CallTargetMap &M) { 1190 SmallVector<InstrProfValueData, 2> R; 1191 for (auto I = M.begin(); I != M.end(); ++I) 1192 R.push_back({Function::getGUID(I->getKey()), I->getValue()}); 1193 std::sort(R.begin(), R.end(), 1194 [](const InstrProfValueData &L, const InstrProfValueData &R) { 1195 if (L.Count == R.Count) 1196 return L.Value > R.Value; 1197 else 1198 return L.Count > R.Count; 1199 }); 1200 return R; 1201 } 1202 1203 /// \brief Propagate weights into edges 1204 /// 1205 /// The following rules are applied to every block BB in the CFG: 1206 /// 1207 /// - If BB has a single predecessor/successor, then the weight 1208 /// of that edge is the weight of the block. 1209 /// 1210 /// - If all incoming or outgoing edges are known except one, and the 1211 /// weight of the block is already known, the weight of the unknown 1212 /// edge will be the weight of the block minus the sum of all the known 1213 /// edges. If the sum of all the known edges is larger than BB's weight, 1214 /// we set the unknown edge weight to zero. 1215 /// 1216 /// - If there is a self-referential edge, and the weight of the block is 1217 /// known, the weight for that edge is set to the weight of the block 1218 /// minus the weight of the other incoming edges to that block (if 1219 /// known). 1220 void SampleProfileLoader::propagateWeights(Function &F) { 1221 bool Changed = true; 1222 unsigned I = 0; 1223 1224 // If BB weight is larger than its corresponding loop's header BB weight, 1225 // use the BB weight to replace the loop header BB weight. 1226 for (auto &BI : F) { 1227 BasicBlock *BB = &BI; 1228 Loop *L = LI->getLoopFor(BB); 1229 if (!L) { 1230 continue; 1231 } 1232 BasicBlock *Header = L->getHeader(); 1233 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1234 BlockWeights[Header] = BlockWeights[BB]; 1235 } 1236 } 1237 1238 // Before propagation starts, build, for each block, a list of 1239 // unique predecessors and successors. This is necessary to handle 1240 // identical edges in multiway branches. Since we visit all blocks and all 1241 // edges of the CFG, it is cleaner to build these lists once at the start 1242 // of the pass. 1243 buildEdges(F); 1244 1245 // Propagate until we converge or we go past the iteration limit. 1246 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1247 Changed = propagateThroughEdges(F, false); 1248 } 1249 1250 // The first propagation propagates BB counts from annotated BBs to unknown 1251 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1252 // to propagate edge weights. 1253 VisitedEdges.clear(); 1254 Changed = true; 1255 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1256 Changed = propagateThroughEdges(F, false); 1257 } 1258 1259 // The 3rd propagation pass allows adjust annotated BB weights that are 1260 // obviously wrong. 1261 Changed = true; 1262 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1263 Changed = propagateThroughEdges(F, true); 1264 } 1265 1266 // Generate MD_prof metadata for every branch instruction using the 1267 // edge weights computed during propagation. 1268 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1269 LLVMContext &Ctx = F.getContext(); 1270 MDBuilder MDB(Ctx); 1271 for (auto &BI : F) { 1272 BasicBlock *BB = &BI; 1273 1274 if (BlockWeights[BB]) { 1275 for (auto &I : BB->getInstList()) { 1276 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1277 continue; 1278 CallSite CS(&I); 1279 if (!CS.getCalledFunction()) { 1280 const DebugLoc &DLoc = I.getDebugLoc(); 1281 if (!DLoc) 1282 continue; 1283 const DILocation *DIL = DLoc; 1284 uint32_t LineOffset = getOffset(DIL); 1285 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1286 1287 const FunctionSamples *FS = findFunctionSamples(I); 1288 if (!FS) 1289 continue; 1290 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1291 if (!T || T.get().empty()) 1292 continue; 1293 SmallVector<InstrProfValueData, 2> SortedCallTargets = 1294 SortCallTargets(T.get()); 1295 uint64_t Sum; 1296 findIndirectCallFunctionSamples(I, Sum); 1297 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1298 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1299 SortedCallTargets.size()); 1300 } else if (!dyn_cast<IntrinsicInst>(&I)) { 1301 SmallVector<uint32_t, 1> Weights; 1302 Weights.push_back(BlockWeights[BB]); 1303 I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); 1304 } 1305 } 1306 } 1307 TerminatorInst *TI = BB->getTerminator(); 1308 if (TI->getNumSuccessors() == 1) 1309 continue; 1310 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1311 continue; 1312 1313 DebugLoc BranchLoc = TI->getDebugLoc(); 1314 DEBUG(dbgs() << "\nGetting weights for branch at line " 1315 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1316 : Twine("<UNKNOWN LOCATION>")) 1317 << ".\n"); 1318 SmallVector<uint32_t, 4> Weights; 1319 uint32_t MaxWeight = 0; 1320 Instruction *MaxDestInst; 1321 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1322 BasicBlock *Succ = TI->getSuccessor(I); 1323 Edge E = std::make_pair(BB, Succ); 1324 uint64_t Weight = EdgeWeights[E]; 1325 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1326 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1327 // if needed. Sample counts in profiles are 64-bit unsigned values, 1328 // but internally branch weights are expressed as 32-bit values. 1329 if (Weight > std::numeric_limits<uint32_t>::max()) { 1330 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1331 Weight = std::numeric_limits<uint32_t>::max(); 1332 } 1333 // Weight is added by one to avoid propagation errors introduced by 1334 // 0 weights. 1335 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1336 if (Weight != 0) { 1337 if (Weight > MaxWeight) { 1338 MaxWeight = Weight; 1339 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1340 } 1341 } 1342 } 1343 1344 uint64_t TempWeight; 1345 // Only set weights if there is at least one non-zero weight. 1346 // In any other case, let the analyzer set weights. 1347 // Do not set weights if the weights are present. In ThinLTO, the profile 1348 // annotation is done twice. If the first annotation already set the 1349 // weights, the second pass does not need to set it. 1350 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1351 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1352 TI->setMetadata(LLVMContext::MD_prof, 1353 MDB.createBranchWeights(Weights)); 1354 ORE->emit([&]() { 1355 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1356 << "most popular destination for conditional branches at " 1357 << ore::NV("CondBranchesLoc", BranchLoc); 1358 }); 1359 } else { 1360 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1361 } 1362 } 1363 } 1364 1365 /// \brief Get the line number for the function header. 1366 /// 1367 /// This looks up function \p F in the current compilation unit and 1368 /// retrieves the line number where the function is defined. This is 1369 /// line 0 for all the samples read from the profile file. Every line 1370 /// number is relative to this line. 1371 /// 1372 /// \param F Function object to query. 1373 /// 1374 /// \returns the line number where \p F is defined. If it returns 0, 1375 /// it means that there is no debug information available for \p F. 1376 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1377 if (DISubprogram *S = F.getSubprogram()) 1378 return S->getLine(); 1379 1380 // If the start of \p F is missing, emit a diagnostic to inform the user 1381 // about the missed opportunity. 1382 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1383 "No debug information found in function " + F.getName() + 1384 ": Function profile not used", 1385 DS_Warning)); 1386 return 0; 1387 } 1388 1389 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1390 DT.reset(new DominatorTree); 1391 DT->recalculate(F); 1392 1393 PDT.reset(new PostDomTreeBase<BasicBlock>()); 1394 PDT->recalculate(F); 1395 1396 LI.reset(new LoopInfo); 1397 LI->analyze(*DT); 1398 } 1399 1400 /// \brief Generate branch weight metadata for all branches in \p F. 1401 /// 1402 /// Branch weights are computed out of instruction samples using a 1403 /// propagation heuristic. Propagation proceeds in 3 phases: 1404 /// 1405 /// 1- Assignment of block weights. All the basic blocks in the function 1406 /// are initial assigned the same weight as their most frequently 1407 /// executed instruction. 1408 /// 1409 /// 2- Creation of equivalence classes. Since samples may be missing from 1410 /// blocks, we can fill in the gaps by setting the weights of all the 1411 /// blocks in the same equivalence class to the same weight. To compute 1412 /// the concept of equivalence, we use dominance and loop information. 1413 /// Two blocks B1 and B2 are in the same equivalence class if B1 1414 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1415 /// 1416 /// 3- Propagation of block weights into edges. This uses a simple 1417 /// propagation heuristic. The following rules are applied to every 1418 /// block BB in the CFG: 1419 /// 1420 /// - If BB has a single predecessor/successor, then the weight 1421 /// of that edge is the weight of the block. 1422 /// 1423 /// - If all the edges are known except one, and the weight of the 1424 /// block is already known, the weight of the unknown edge will 1425 /// be the weight of the block minus the sum of all the known 1426 /// edges. If the sum of all the known edges is larger than BB's weight, 1427 /// we set the unknown edge weight to zero. 1428 /// 1429 /// - If there is a self-referential edge, and the weight of the block is 1430 /// known, the weight for that edge is set to the weight of the block 1431 /// minus the weight of the other incoming edges to that block (if 1432 /// known). 1433 /// 1434 /// Since this propagation is not guaranteed to finalize for every CFG, we 1435 /// only allow it to proceed for a limited number of iterations (controlled 1436 /// by -sample-profile-max-propagate-iterations). 1437 /// 1438 /// FIXME: Try to replace this propagation heuristic with a scheme 1439 /// that is guaranteed to finalize. A work-list approach similar to 1440 /// the standard value propagation algorithm used by SSA-CCP might 1441 /// work here. 1442 /// 1443 /// Once all the branch weights are computed, we emit the MD_prof 1444 /// metadata on BB using the computed values for each of its branches. 1445 /// 1446 /// \param F The function to query. 1447 /// 1448 /// \returns true if \p F was modified. Returns false, otherwise. 1449 bool SampleProfileLoader::emitAnnotations(Function &F) { 1450 bool Changed = false; 1451 1452 if (getFunctionLoc(F) == 0) 1453 return false; 1454 1455 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 1456 << ": " << getFunctionLoc(F) << "\n"); 1457 1458 DenseSet<GlobalValue::GUID> InlinedGUIDs; 1459 Changed |= inlineHotFunctions(F, InlinedGUIDs); 1460 1461 // Compute basic block weights. 1462 Changed |= computeBlockWeights(F); 1463 1464 if (Changed) { 1465 // Add an entry count to the function using the samples gathered at the 1466 // function entry. 1467 // Sets the GUIDs that are inlined in the profiled binary. This is used 1468 // for ThinLink to make correct liveness analysis, and also make the IR 1469 // match the profiled binary before annotation. 1470 F.setEntryCount( 1471 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), 1472 &InlinedGUIDs); 1473 1474 // Compute dominance and loop info needed for propagation. 1475 computeDominanceAndLoopInfo(F); 1476 1477 // Find equivalence classes. 1478 findEquivalenceClasses(F); 1479 1480 // Propagate weights to all edges. 1481 propagateWeights(F); 1482 } 1483 1484 // If coverage checking was requested, compute it now. 1485 if (SampleProfileRecordCoverage) { 1486 unsigned Used = CoverageTracker.countUsedRecords(Samples); 1487 unsigned Total = CoverageTracker.countBodyRecords(Samples); 1488 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1489 if (Coverage < SampleProfileRecordCoverage) { 1490 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1491 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1492 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1493 Twine(Coverage) + "%) were applied", 1494 DS_Warning)); 1495 } 1496 } 1497 1498 if (SampleProfileSampleCoverage) { 1499 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1500 uint64_t Total = CoverageTracker.countBodySamples(Samples); 1501 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1502 if (Coverage < SampleProfileSampleCoverage) { 1503 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1504 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1505 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1506 Twine(Coverage) + "%) were applied", 1507 DS_Warning)); 1508 } 1509 } 1510 return Changed; 1511 } 1512 1513 char SampleProfileLoaderLegacyPass::ID = 0; 1514 1515 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1516 "Sample Profile loader", false, false) 1517 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1518 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1519 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1520 "Sample Profile loader", false, false) 1521 1522 bool SampleProfileLoader::doInitialization(Module &M) { 1523 auto &Ctx = M.getContext(); 1524 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1525 if (std::error_code EC = ReaderOrErr.getError()) { 1526 std::string Msg = "Could not open profile: " + EC.message(); 1527 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1528 return false; 1529 } 1530 Reader = std::move(ReaderOrErr.get()); 1531 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1532 return true; 1533 } 1534 1535 ModulePass *llvm::createSampleProfileLoaderPass() { 1536 return new SampleProfileLoaderLegacyPass(SampleProfileFile); 1537 } 1538 1539 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1540 return new SampleProfileLoaderLegacyPass(Name); 1541 } 1542 1543 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM) { 1544 if (!ProfileIsValid) 1545 return false; 1546 1547 // Compute the total number of samples collected in this profile. 1548 for (const auto &I : Reader->getProfiles()) 1549 TotalCollectedSamples += I.second.getTotalSamples(); 1550 1551 // Populate the symbol map. 1552 for (const auto &N_F : M.getValueSymbolTable()) { 1553 StringRef OrigName = N_F.getKey(); 1554 Function *F = dyn_cast<Function>(N_F.getValue()); 1555 if (F == nullptr) 1556 continue; 1557 SymbolMap[OrigName] = F; 1558 auto pos = OrigName.find('.'); 1559 if (pos != StringRef::npos) { 1560 StringRef NewName = OrigName.substr(0, pos); 1561 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1562 // Failiing to insert means there is already an entry in SymbolMap, 1563 // thus there are multiple functions that are mapped to the same 1564 // stripped name. In this case of name conflicting, set the value 1565 // to nullptr to avoid confusion. 1566 if (!r.second) 1567 r.first->second = nullptr; 1568 } 1569 } 1570 1571 bool retval = false; 1572 for (auto &F : M) 1573 if (!F.isDeclaration()) { 1574 clearFunctionData(); 1575 retval |= runOnFunction(F, AM); 1576 } 1577 if (M.getProfileSummary() == nullptr) 1578 M.setProfileSummary(Reader->getSummary().getMD(M.getContext())); 1579 return retval; 1580 } 1581 1582 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1583 ACT = &getAnalysis<AssumptionCacheTracker>(); 1584 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 1585 return SampleLoader.runOnModule(M, nullptr); 1586 } 1587 1588 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 1589 // Initialize the entry count to -1, which will be treated conservatively 1590 // by getEntryCount as the same as unknown (None). If we have samples this 1591 // will be overwritten in emitAnnotations. 1592 F.setEntryCount(ProfileCount(-1, Function::PCT_Real)); 1593 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 1594 if (AM) { 1595 auto &FAM = 1596 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 1597 .getManager(); 1598 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1599 } else { 1600 OwnedORE = make_unique<OptimizationRemarkEmitter>(&F); 1601 ORE = OwnedORE.get(); 1602 } 1603 Samples = Reader->getSamplesFor(F); 1604 if (Samples && !Samples->empty()) 1605 return emitAnnotations(F); 1606 return false; 1607 } 1608 1609 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1610 ModuleAnalysisManager &AM) { 1611 FunctionAnalysisManager &FAM = 1612 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1613 1614 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 1615 return FAM.getResult<AssumptionAnalysis>(F); 1616 }; 1617 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 1618 return FAM.getResult<TargetIRAnalysis>(F); 1619 }; 1620 1621 SampleProfileLoader SampleLoader( 1622 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 1623 IsThinLTOPreLink, GetAssumptionCache, GetTTI); 1624 1625 SampleLoader.doInitialization(M); 1626 1627 if (!SampleLoader.runOnModule(M, &AM)) 1628 return PreservedAnalyses::all(); 1629 1630 return PreservedAnalyses::none(); 1631 } 1632