1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 //      to indicate the weights of each edge coming out of the branch.
19 //      The weight of each edge is the weight of the target block for
20 //      that edge. The weight of a block B is computed as the maximum
21 //      number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/SampleProfile.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/PostDominators.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DebugInfo.h"
35 #include "llvm/IR/DiagnosticInfo.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/InstIterator.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/ValueSymbolTable.h"
47 #include "llvm/Pass.h"
48 #include "llvm/ProfileData/InstrProf.h"
49 #include "llvm/ProfileData/SampleProfReader.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorOr.h"
53 #include "llvm/Support/Format.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/IPO.h"
56 #include "llvm/Transforms/Instrumentation.h"
57 #include "llvm/Transforms/Utils/Cloning.h"
58 #include <cctype>
59 
60 using namespace llvm;
61 using namespace sampleprof;
62 
63 #define DEBUG_TYPE "sample-profile"
64 
65 // Command line option to specify the file to read samples from. This is
66 // mainly used for debugging.
67 static cl::opt<std::string> SampleProfileFile(
68     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
69     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
70 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
71     "sample-profile-max-propagate-iterations", cl::init(100),
72     cl::desc("Maximum number of iterations to go through when propagating "
73              "sample block/edge weights through the CFG."));
74 static cl::opt<unsigned> SampleProfileRecordCoverage(
75     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
76     cl::desc("Emit a warning if less than N% of records in the input profile "
77              "are matched to the IR."));
78 static cl::opt<unsigned> SampleProfileSampleCoverage(
79     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
80     cl::desc("Emit a warning if less than N% of samples in the input profile "
81              "are matched to the IR."));
82 static cl::opt<double> SampleProfileHotThreshold(
83     "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"),
84     cl::desc("Inlined functions that account for more than N% of all samples "
85              "collected in the parent function, will be inlined again."));
86 
87 namespace {
88 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap;
89 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap;
90 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge;
91 typedef DenseMap<Edge, uint64_t> EdgeWeightMap;
92 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>
93     BlockEdgeMap;
94 
95 class SampleCoverageTracker {
96 public:
97   SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {}
98 
99   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
100                        uint32_t Discriminator, uint64_t Samples);
101   unsigned computeCoverage(unsigned Used, unsigned Total) const;
102   unsigned countUsedRecords(const FunctionSamples *FS) const;
103   unsigned countBodyRecords(const FunctionSamples *FS) const;
104   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
105   uint64_t countBodySamples(const FunctionSamples *FS) const;
106   void clear() {
107     SampleCoverage.clear();
108     TotalUsedSamples = 0;
109   }
110 
111 private:
112   typedef std::map<LineLocation, unsigned> BodySampleCoverageMap;
113   typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap>
114       FunctionSamplesCoverageMap;
115 
116   /// Coverage map for sampling records.
117   ///
118   /// This map keeps a record of sampling records that have been matched to
119   /// an IR instruction. This is used to detect some form of staleness in
120   /// profiles (see flag -sample-profile-check-coverage).
121   ///
122   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
123   /// another map that counts how many times the sample record at the
124   /// given location has been used.
125   FunctionSamplesCoverageMap SampleCoverage;
126 
127   /// Number of samples used from the profile.
128   ///
129   /// When a sampling record is used for the first time, the samples from
130   /// that record are added to this accumulator.  Coverage is later computed
131   /// based on the total number of samples available in this function and
132   /// its callsites.
133   ///
134   /// Note that this accumulator tracks samples used from a single function
135   /// and all the inlined callsites. Strictly, we should have a map of counters
136   /// keyed by FunctionSamples pointers, but these stats are cleared after
137   /// every function, so we just need to keep a single counter.
138   uint64_t TotalUsedSamples;
139 };
140 
141 /// \brief Sample profile pass.
142 ///
143 /// This pass reads profile data from the file specified by
144 /// -sample-profile-file and annotates every affected function with the
145 /// profile information found in that file.
146 class SampleProfileLoader {
147 public:
148   SampleProfileLoader(StringRef Name = SampleProfileFile)
149       : DT(nullptr), PDT(nullptr), LI(nullptr), ACT(nullptr), Reader(),
150         Samples(nullptr), Filename(Name), ProfileIsValid(false),
151         TotalCollectedSamples(0) {}
152 
153   bool doInitialization(Module &M);
154   bool runOnModule(Module &M);
155   void setACT(AssumptionCacheTracker *A) { ACT = A; }
156 
157   void dump() { Reader->dump(); }
158 
159 protected:
160   bool runOnFunction(Function &F);
161   unsigned getFunctionLoc(Function &F);
162   bool emitAnnotations(Function &F);
163   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
164   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
165   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
166   std::vector<const FunctionSamples *>
167   findIndirectCallFunctionSamples(const Instruction &I) const;
168   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
169   bool inlineHotFunctions(Function &F,
170                           DenseSet<GlobalValue::GUID> &ImportGUIDs);
171   void printEdgeWeight(raw_ostream &OS, Edge E);
172   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
173   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
174   bool computeBlockWeights(Function &F);
175   void findEquivalenceClasses(Function &F);
176   template <bool IsPostDom>
177   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
178                            DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
179 
180   void propagateWeights(Function &F);
181   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
182   void buildEdges(Function &F);
183   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
184   void computeDominanceAndLoopInfo(Function &F);
185   unsigned getOffset(const DILocation *DIL) const;
186   void clearFunctionData();
187 
188   /// \brief Map basic blocks to their computed weights.
189   ///
190   /// The weight of a basic block is defined to be the maximum
191   /// of all the instruction weights in that block.
192   BlockWeightMap BlockWeights;
193 
194   /// \brief Map edges to their computed weights.
195   ///
196   /// Edge weights are computed by propagating basic block weights in
197   /// SampleProfile::propagateWeights.
198   EdgeWeightMap EdgeWeights;
199 
200   /// \brief Set of visited blocks during propagation.
201   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
202 
203   /// \brief Set of visited edges during propagation.
204   SmallSet<Edge, 32> VisitedEdges;
205 
206   /// \brief Equivalence classes for block weights.
207   ///
208   /// Two blocks BB1 and BB2 are in the same equivalence class if they
209   /// dominate and post-dominate each other, and they are in the same loop
210   /// nest. When this happens, the two blocks are guaranteed to execute
211   /// the same number of times.
212   EquivalenceClassMap EquivalenceClass;
213 
214   /// Map from function name to Function *. Used to find the function from
215   /// the function name. If the function name contains suffix, additional
216   /// entry is added to map from the stripped name to the function if there
217   /// is one-to-one mapping.
218   StringMap<Function *> SymbolMap;
219 
220   /// \brief Dominance, post-dominance and loop information.
221   std::unique_ptr<DominatorTree> DT;
222   std::unique_ptr<PostDomTreeBase<BasicBlock>> PDT;
223   std::unique_ptr<LoopInfo> LI;
224 
225   AssumptionCacheTracker *ACT;
226 
227   /// \brief Predecessors for each basic block in the CFG.
228   BlockEdgeMap Predecessors;
229 
230   /// \brief Successors for each basic block in the CFG.
231   BlockEdgeMap Successors;
232 
233   SampleCoverageTracker CoverageTracker;
234 
235   /// \brief Profile reader object.
236   std::unique_ptr<SampleProfileReader> Reader;
237 
238   /// \brief Samples collected for the body of this function.
239   FunctionSamples *Samples;
240 
241   /// \brief Name of the profile file to load.
242   std::string Filename;
243 
244   /// \brief Flag indicating whether the profile input loaded successfully.
245   bool ProfileIsValid;
246 
247   /// \brief Total number of samples collected in this profile.
248   ///
249   /// This is the sum of all the samples collected in all the functions executed
250   /// at runtime.
251   uint64_t TotalCollectedSamples;
252 };
253 
254 class SampleProfileLoaderLegacyPass : public ModulePass {
255 public:
256   // Class identification, replacement for typeinfo
257   static char ID;
258 
259   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile)
260       : ModulePass(ID), SampleLoader(Name) {
261     initializeSampleProfileLoaderLegacyPassPass(
262         *PassRegistry::getPassRegistry());
263   }
264 
265   void dump() { SampleLoader.dump(); }
266 
267   bool doInitialization(Module &M) override {
268     return SampleLoader.doInitialization(M);
269   }
270   StringRef getPassName() const override { return "Sample profile pass"; }
271   bool runOnModule(Module &M) override;
272 
273   void getAnalysisUsage(AnalysisUsage &AU) const override {
274     AU.addRequired<AssumptionCacheTracker>();
275   }
276 
277 private:
278   SampleProfileLoader SampleLoader;
279 };
280 
281 /// Return true if the given callsite is hot wrt to its caller.
282 ///
283 /// Functions that were inlined in the original binary will be represented
284 /// in the inline stack in the sample profile. If the profile shows that
285 /// the original inline decision was "good" (i.e., the callsite is executed
286 /// frequently), then we will recreate the inline decision and apply the
287 /// profile from the inlined callsite.
288 ///
289 /// To decide whether an inlined callsite is hot, we compute the fraction
290 /// of samples used by the callsite with respect to the total number of samples
291 /// collected in the caller.
292 ///
293 /// If that fraction is larger than the default given by
294 /// SampleProfileHotThreshold, the callsite will be inlined again.
295 bool callsiteIsHot(const FunctionSamples *CallerFS,
296                    const FunctionSamples *CallsiteFS) {
297   if (!CallsiteFS)
298     return false; // The callsite was not inlined in the original binary.
299 
300   uint64_t ParentTotalSamples = CallerFS->getTotalSamples();
301   if (ParentTotalSamples == 0)
302     return false; // Avoid division by zero.
303 
304   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
305   if (CallsiteTotalSamples == 0)
306     return false; // Callsite is trivially cold.
307 
308   double PercentSamples =
309       (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0;
310   return PercentSamples >= SampleProfileHotThreshold;
311 }
312 }
313 
314 /// Mark as used the sample record for the given function samples at
315 /// (LineOffset, Discriminator).
316 ///
317 /// \returns true if this is the first time we mark the given record.
318 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
319                                             uint32_t LineOffset,
320                                             uint32_t Discriminator,
321                                             uint64_t Samples) {
322   LineLocation Loc(LineOffset, Discriminator);
323   unsigned &Count = SampleCoverage[FS][Loc];
324   bool FirstTime = (++Count == 1);
325   if (FirstTime)
326     TotalUsedSamples += Samples;
327   return FirstTime;
328 }
329 
330 /// Return the number of sample records that were applied from this profile.
331 ///
332 /// This count does not include records from cold inlined callsites.
333 unsigned
334 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const {
335   auto I = SampleCoverage.find(FS);
336 
337   // The size of the coverage map for FS represents the number of records
338   // that were marked used at least once.
339   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
340 
341   // If there are inlined callsites in this function, count the samples found
342   // in the respective bodies. However, do not bother counting callees with 0
343   // total samples, these are callees that were never invoked at runtime.
344   for (const auto &I : FS->getCallsiteSamples())
345     for (const auto &J : I.second) {
346       const FunctionSamples *CalleeSamples = &J.second;
347       if (callsiteIsHot(FS, CalleeSamples))
348         Count += countUsedRecords(CalleeSamples);
349     }
350 
351   return Count;
352 }
353 
354 /// Return the number of sample records in the body of this profile.
355 ///
356 /// This count does not include records from cold inlined callsites.
357 unsigned
358 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const {
359   unsigned Count = FS->getBodySamples().size();
360 
361   // Only count records in hot callsites.
362   for (const auto &I : FS->getCallsiteSamples())
363     for (const auto &J : I.second) {
364       const FunctionSamples *CalleeSamples = &J.second;
365       if (callsiteIsHot(FS, CalleeSamples))
366         Count += countBodyRecords(CalleeSamples);
367     }
368 
369   return Count;
370 }
371 
372 /// Return the number of samples collected in the body of this profile.
373 ///
374 /// This count does not include samples from cold inlined callsites.
375 uint64_t
376 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const {
377   uint64_t Total = 0;
378   for (const auto &I : FS->getBodySamples())
379     Total += I.second.getSamples();
380 
381   // Only count samples in hot callsites.
382   for (const auto &I : FS->getCallsiteSamples())
383     for (const auto &J : I.second) {
384       const FunctionSamples *CalleeSamples = &J.second;
385       if (callsiteIsHot(FS, CalleeSamples))
386         Total += countBodySamples(CalleeSamples);
387     }
388 
389   return Total;
390 }
391 
392 /// Return the fraction of sample records used in this profile.
393 ///
394 /// The returned value is an unsigned integer in the range 0-100 indicating
395 /// the percentage of sample records that were used while applying this
396 /// profile to the associated function.
397 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
398                                                 unsigned Total) const {
399   assert(Used <= Total &&
400          "number of used records cannot exceed the total number of records");
401   return Total > 0 ? Used * 100 / Total : 100;
402 }
403 
404 /// Clear all the per-function data used to load samples and propagate weights.
405 void SampleProfileLoader::clearFunctionData() {
406   BlockWeights.clear();
407   EdgeWeights.clear();
408   VisitedBlocks.clear();
409   VisitedEdges.clear();
410   EquivalenceClass.clear();
411   DT = nullptr;
412   PDT = nullptr;
413   LI = nullptr;
414   Predecessors.clear();
415   Successors.clear();
416   CoverageTracker.clear();
417 }
418 
419 /// Returns the line offset to the start line of the subprogram.
420 /// We assume that a single function will not exceed 65535 LOC.
421 unsigned SampleProfileLoader::getOffset(const DILocation *DIL) const {
422   return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) &
423          0xffff;
424 }
425 
426 #ifndef NDEBUG
427 /// \brief Print the weight of edge \p E on stream \p OS.
428 ///
429 /// \param OS  Stream to emit the output to.
430 /// \param E  Edge to print.
431 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
432   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
433      << "]: " << EdgeWeights[E] << "\n";
434 }
435 
436 /// \brief Print the equivalence class of block \p BB on stream \p OS.
437 ///
438 /// \param OS  Stream to emit the output to.
439 /// \param BB  Block to print.
440 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
441                                                 const BasicBlock *BB) {
442   const BasicBlock *Equiv = EquivalenceClass[BB];
443   OS << "equivalence[" << BB->getName()
444      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
445 }
446 
447 /// \brief Print the weight of block \p BB on stream \p OS.
448 ///
449 /// \param OS  Stream to emit the output to.
450 /// \param BB  Block to print.
451 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
452                                            const BasicBlock *BB) const {
453   const auto &I = BlockWeights.find(BB);
454   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
455   OS << "weight[" << BB->getName() << "]: " << W << "\n";
456 }
457 #endif
458 
459 /// \brief Get the weight for an instruction.
460 ///
461 /// The "weight" of an instruction \p Inst is the number of samples
462 /// collected on that instruction at runtime. To retrieve it, we
463 /// need to compute the line number of \p Inst relative to the start of its
464 /// function. We use HeaderLineno to compute the offset. We then
465 /// look up the samples collected for \p Inst using BodySamples.
466 ///
467 /// \param Inst Instruction to query.
468 ///
469 /// \returns the weight of \p Inst.
470 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
471   const DebugLoc &DLoc = Inst.getDebugLoc();
472   if (!DLoc)
473     return std::error_code();
474 
475   const FunctionSamples *FS = findFunctionSamples(Inst);
476   if (!FS)
477     return std::error_code();
478 
479   // Ignore all intrinsics and branch instructions.
480   // Branch instruction usually contains debug info from sources outside of
481   // the residing basic block, thus we ignore them during annotation.
482   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst))
483     return std::error_code();
484 
485   // If a call/invoke instruction is inlined in profile, but not inlined here,
486   // it means that the inlined callsite has no sample, thus the call
487   // instruction should have 0 count.
488   if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
489       findCalleeFunctionSamples(Inst))
490     return 0;
491 
492   const DILocation *DIL = DLoc;
493   uint32_t LineOffset = getOffset(DIL);
494   uint32_t Discriminator = DIL->getBaseDiscriminator();
495   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
496   if (R) {
497     bool FirstMark =
498         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
499     if (FirstMark) {
500       const Function *F = Inst.getParent()->getParent();
501       LLVMContext &Ctx = F->getContext();
502       emitOptimizationRemark(
503           Ctx, DEBUG_TYPE, *F, DLoc,
504           Twine("Applied ") + Twine(*R) +
505               " samples from profile (offset: " + Twine(LineOffset) +
506               ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")");
507     }
508     DEBUG(dbgs() << "    " << DLoc.getLine() << "."
509                  << DIL->getBaseDiscriminator() << ":" << Inst
510                  << " (line offset: " << LineOffset << "."
511                  << DIL->getBaseDiscriminator() << " - weight: " << R.get()
512                  << ")\n");
513   }
514   return R;
515 }
516 
517 /// \brief Compute the weight of a basic block.
518 ///
519 /// The weight of basic block \p BB is the maximum weight of all the
520 /// instructions in BB.
521 ///
522 /// \param BB The basic block to query.
523 ///
524 /// \returns the weight for \p BB.
525 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
526   uint64_t Max = 0;
527   bool HasWeight = false;
528   for (auto &I : BB->getInstList()) {
529     const ErrorOr<uint64_t> &R = getInstWeight(I);
530     if (R) {
531       Max = std::max(Max, R.get());
532       HasWeight = true;
533     }
534   }
535   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
536 }
537 
538 /// \brief Compute and store the weights of every basic block.
539 ///
540 /// This populates the BlockWeights map by computing
541 /// the weights of every basic block in the CFG.
542 ///
543 /// \param F The function to query.
544 bool SampleProfileLoader::computeBlockWeights(Function &F) {
545   bool Changed = false;
546   DEBUG(dbgs() << "Block weights\n");
547   for (const auto &BB : F) {
548     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
549     if (Weight) {
550       BlockWeights[&BB] = Weight.get();
551       VisitedBlocks.insert(&BB);
552       Changed = true;
553     }
554     DEBUG(printBlockWeight(dbgs(), &BB));
555   }
556 
557   return Changed;
558 }
559 
560 /// \brief Get the FunctionSamples for a call instruction.
561 ///
562 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
563 /// instance in which that call instruction is calling to. It contains
564 /// all samples that resides in the inlined instance. We first find the
565 /// inlined instance in which the call instruction is from, then we
566 /// traverse its children to find the callsite with the matching
567 /// location.
568 ///
569 /// \param Inst Call/Invoke instruction to query.
570 ///
571 /// \returns The FunctionSamples pointer to the inlined instance.
572 const FunctionSamples *
573 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
574   const DILocation *DIL = Inst.getDebugLoc();
575   if (!DIL) {
576     return nullptr;
577   }
578 
579   StringRef CalleeName;
580   if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
581     if (Function *Callee = CI->getCalledFunction())
582       CalleeName = Callee->getName();
583 
584   const FunctionSamples *FS = findFunctionSamples(Inst);
585   if (FS == nullptr)
586     return nullptr;
587 
588   return FS->findFunctionSamplesAt(
589       LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), CalleeName);
590 }
591 
592 /// Returns a vector of FunctionSamples that are the indirect call targets
593 /// of \p Inst. The vector is sorted by the total number of samples.
594 std::vector<const FunctionSamples *>
595 SampleProfileLoader::findIndirectCallFunctionSamples(
596     const Instruction &Inst) const {
597   const DILocation *DIL = Inst.getDebugLoc();
598   std::vector<const FunctionSamples *> R;
599 
600   if (!DIL) {
601     return R;
602   }
603 
604   const FunctionSamples *FS = findFunctionSamples(Inst);
605   if (FS == nullptr)
606     return R;
607 
608   if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(
609           LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()))) {
610     if (M->size() == 0)
611       return R;
612     for (const auto &NameFS : *M) {
613       R.push_back(&NameFS.second);
614     }
615     std::sort(R.begin(), R.end(),
616               [](const FunctionSamples *L, const FunctionSamples *R) {
617                 return L->getTotalSamples() > R->getTotalSamples();
618               });
619   }
620   return R;
621 }
622 
623 /// \brief Get the FunctionSamples for an instruction.
624 ///
625 /// The FunctionSamples of an instruction \p Inst is the inlined instance
626 /// in which that instruction is coming from. We traverse the inline stack
627 /// of that instruction, and match it with the tree nodes in the profile.
628 ///
629 /// \param Inst Instruction to query.
630 ///
631 /// \returns the FunctionSamples pointer to the inlined instance.
632 const FunctionSamples *
633 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
634   SmallVector<std::pair<LineLocation, StringRef>, 10> S;
635   const DILocation *DIL = Inst.getDebugLoc();
636   if (!DIL)
637     return Samples;
638 
639   const DILocation *PrevDIL = DIL;
640   for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) {
641     S.push_back(std::make_pair(
642         LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()),
643         PrevDIL->getScope()->getSubprogram()->getLinkageName()));
644     PrevDIL = DIL;
645   }
646   if (S.size() == 0)
647     return Samples;
648   const FunctionSamples *FS = Samples;
649   for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
650     FS = FS->findFunctionSamplesAt(S[i].first, S[i].second);
651   }
652   return FS;
653 }
654 
655 /// \brief Iteratively inline hot callsites of a function.
656 ///
657 /// Iteratively traverse all callsites of the function \p F, and find if
658 /// the corresponding inlined instance exists and is hot in profile. If
659 /// it is hot enough, inline the callsites and adds new callsites of the
660 /// callee into the caller. If the call is an indirect call, first promote
661 /// it to direct call. Each indirect call is limited with a single target.
662 ///
663 /// \param F function to perform iterative inlining.
664 /// \param ImportGUIDs a set to be updated to include all GUIDs that come
665 ///     from a different module but inlined in the profiled binary.
666 ///
667 /// \returns True if there is any inline happened.
668 bool SampleProfileLoader::inlineHotFunctions(
669     Function &F, DenseSet<GlobalValue::GUID> &ImportGUIDs) {
670   DenseSet<Instruction *> PromotedInsns;
671   bool Changed = false;
672   LLVMContext &Ctx = F.getContext();
673   std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&](
674       Function &F) -> AssumptionCache & { return ACT->getAssumptionCache(F); };
675   while (true) {
676     bool LocalChanged = false;
677     SmallVector<Instruction *, 10> CIS;
678     for (auto &BB : F) {
679       bool Hot = false;
680       SmallVector<Instruction *, 10> Candidates;
681       for (auto &I : BB.getInstList()) {
682         const FunctionSamples *FS = nullptr;
683         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
684             !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
685           Candidates.push_back(&I);
686           if (callsiteIsHot(Samples, FS))
687             Hot = true;
688         }
689       }
690       if (Hot) {
691         CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
692       }
693     }
694     for (auto I : CIS) {
695       InlineFunctionInfo IFI(nullptr, ACT ? &GetAssumptionCache : nullptr);
696       Function *CalledFunction = CallSite(I).getCalledFunction();
697       // Do not inline recursive calls.
698       if (CalledFunction == &F)
699         continue;
700       Instruction *DI = I;
701       if (!CalledFunction && !PromotedInsns.count(I) &&
702           CallSite(I).isIndirectCall())
703         for (const auto *FS : findIndirectCallFunctionSamples(*I)) {
704           auto CalleeFunctionName = FS->getName();
705           // If it is a recursive call, we do not inline it as it could bloat
706           // the code exponentially. There is way to better handle this, e.g.
707           // clone the caller first, and inline the cloned caller if it is
708           // recursive. As llvm does not inline recursive calls, we will simply
709           // ignore it instead of handling it explicitly.
710           if (CalleeFunctionName == F.getName())
711             continue;
712           const char *Reason = "Callee function not available";
713           auto R = SymbolMap.find(CalleeFunctionName);
714           if (R == SymbolMap.end())
715             continue;
716           CalledFunction = R->getValue();
717           if (CalledFunction && isLegalToPromote(I, CalledFunction, &Reason)) {
718             // The indirect target was promoted and inlined in the profile, as a
719             // result, we do not have profile info for the branch probability.
720             // We set the probability to 80% taken to indicate that the static
721             // call is likely taken.
722             DI = dyn_cast<Instruction>(
723                 promoteIndirectCall(I, CalledFunction, 80, 100, false)
724                     ->stripPointerCasts());
725             PromotedInsns.insert(I);
726           } else {
727             DEBUG(dbgs() << "\nFailed to promote indirect call to "
728                          << CalleeFunctionName << " because " << Reason
729                          << "\n");
730             continue;
731           }
732         }
733       if (!CalledFunction || !CalledFunction->getSubprogram()) {
734         findCalleeFunctionSamples(*I)->findImportedFunctions(
735             ImportGUIDs, F.getParent(),
736             Samples->getTotalSamples() * SampleProfileHotThreshold / 100);
737         continue;
738       }
739       DebugLoc DLoc = I->getDebugLoc();
740       if (InlineFunction(CallSite(DI), IFI)) {
741         LocalChanged = true;
742         emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc,
743                                Twine("inlined hot callee '") +
744                                    CalledFunction->getName() + "' into '" +
745                                    F.getName() + "'");
746       }
747     }
748     if (LocalChanged) {
749       Changed = true;
750     } else {
751       break;
752     }
753   }
754   return Changed;
755 }
756 
757 /// \brief Find equivalence classes for the given block.
758 ///
759 /// This finds all the blocks that are guaranteed to execute the same
760 /// number of times as \p BB1. To do this, it traverses all the
761 /// descendants of \p BB1 in the dominator or post-dominator tree.
762 ///
763 /// A block BB2 will be in the same equivalence class as \p BB1 if
764 /// the following holds:
765 ///
766 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
767 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
768 ///    dominate BB1 in the post-dominator tree.
769 ///
770 /// 2- Both BB2 and \p BB1 must be in the same loop.
771 ///
772 /// For every block BB2 that meets those two requirements, we set BB2's
773 /// equivalence class to \p BB1.
774 ///
775 /// \param BB1  Block to check.
776 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
777 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
778 ///                 with blocks from \p BB1's dominator tree, then
779 ///                 this is the post-dominator tree, and vice versa.
780 template <bool IsPostDom>
781 void SampleProfileLoader::findEquivalencesFor(
782     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
783     DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
784   const BasicBlock *EC = EquivalenceClass[BB1];
785   uint64_t Weight = BlockWeights[EC];
786   for (const auto *BB2 : Descendants) {
787     bool IsDomParent = DomTree->dominates(BB2, BB1);
788     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
789     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
790       EquivalenceClass[BB2] = EC;
791       // If BB2 is visited, then the entire EC should be marked as visited.
792       if (VisitedBlocks.count(BB2)) {
793         VisitedBlocks.insert(EC);
794       }
795 
796       // If BB2 is heavier than BB1, make BB2 have the same weight
797       // as BB1.
798       //
799       // Note that we don't worry about the opposite situation here
800       // (when BB2 is lighter than BB1). We will deal with this
801       // during the propagation phase. Right now, we just want to
802       // make sure that BB1 has the largest weight of all the
803       // members of its equivalence set.
804       Weight = std::max(Weight, BlockWeights[BB2]);
805     }
806   }
807   if (EC == &EC->getParent()->getEntryBlock()) {
808     BlockWeights[EC] = Samples->getHeadSamples() + 1;
809   } else {
810     BlockWeights[EC] = Weight;
811   }
812 }
813 
814 /// \brief Find equivalence classes.
815 ///
816 /// Since samples may be missing from blocks, we can fill in the gaps by setting
817 /// the weights of all the blocks in the same equivalence class to the same
818 /// weight. To compute the concept of equivalence, we use dominance and loop
819 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
820 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
821 ///
822 /// \param F The function to query.
823 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
824   SmallVector<BasicBlock *, 8> DominatedBBs;
825   DEBUG(dbgs() << "\nBlock equivalence classes\n");
826   // Find equivalence sets based on dominance and post-dominance information.
827   for (auto &BB : F) {
828     BasicBlock *BB1 = &BB;
829 
830     // Compute BB1's equivalence class once.
831     if (EquivalenceClass.count(BB1)) {
832       DEBUG(printBlockEquivalence(dbgs(), BB1));
833       continue;
834     }
835 
836     // By default, blocks are in their own equivalence class.
837     EquivalenceClass[BB1] = BB1;
838 
839     // Traverse all the blocks dominated by BB1. We are looking for
840     // every basic block BB2 such that:
841     //
842     // 1- BB1 dominates BB2.
843     // 2- BB2 post-dominates BB1.
844     // 3- BB1 and BB2 are in the same loop nest.
845     //
846     // If all those conditions hold, it means that BB2 is executed
847     // as many times as BB1, so they are placed in the same equivalence
848     // class by making BB2's equivalence class be BB1.
849     DominatedBBs.clear();
850     DT->getDescendants(BB1, DominatedBBs);
851     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
852 
853     DEBUG(printBlockEquivalence(dbgs(), BB1));
854   }
855 
856   // Assign weights to equivalence classes.
857   //
858   // All the basic blocks in the same equivalence class will execute
859   // the same number of times. Since we know that the head block in
860   // each equivalence class has the largest weight, assign that weight
861   // to all the blocks in that equivalence class.
862   DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
863   for (auto &BI : F) {
864     const BasicBlock *BB = &BI;
865     const BasicBlock *EquivBB = EquivalenceClass[BB];
866     if (BB != EquivBB)
867       BlockWeights[BB] = BlockWeights[EquivBB];
868     DEBUG(printBlockWeight(dbgs(), BB));
869   }
870 }
871 
872 /// \brief Visit the given edge to decide if it has a valid weight.
873 ///
874 /// If \p E has not been visited before, we copy to \p UnknownEdge
875 /// and increment the count of unknown edges.
876 ///
877 /// \param E  Edge to visit.
878 /// \param NumUnknownEdges  Current number of unknown edges.
879 /// \param UnknownEdge  Set if E has not been visited before.
880 ///
881 /// \returns E's weight, if known. Otherwise, return 0.
882 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
883                                         Edge *UnknownEdge) {
884   if (!VisitedEdges.count(E)) {
885     (*NumUnknownEdges)++;
886     *UnknownEdge = E;
887     return 0;
888   }
889 
890   return EdgeWeights[E];
891 }
892 
893 /// \brief Propagate weights through incoming/outgoing edges.
894 ///
895 /// If the weight of a basic block is known, and there is only one edge
896 /// with an unknown weight, we can calculate the weight of that edge.
897 ///
898 /// Similarly, if all the edges have a known count, we can calculate the
899 /// count of the basic block, if needed.
900 ///
901 /// \param F  Function to process.
902 /// \param UpdateBlockCount  Whether we should update basic block counts that
903 ///                          has already been annotated.
904 ///
905 /// \returns  True if new weights were assigned to edges or blocks.
906 bool SampleProfileLoader::propagateThroughEdges(Function &F,
907                                                 bool UpdateBlockCount) {
908   bool Changed = false;
909   DEBUG(dbgs() << "\nPropagation through edges\n");
910   for (const auto &BI : F) {
911     const BasicBlock *BB = &BI;
912     const BasicBlock *EC = EquivalenceClass[BB];
913 
914     // Visit all the predecessor and successor edges to determine
915     // which ones have a weight assigned already. Note that it doesn't
916     // matter that we only keep track of a single unknown edge. The
917     // only case we are interested in handling is when only a single
918     // edge is unknown (see setEdgeOrBlockWeight).
919     for (unsigned i = 0; i < 2; i++) {
920       uint64_t TotalWeight = 0;
921       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
922       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
923 
924       if (i == 0) {
925         // First, visit all predecessor edges.
926         NumTotalEdges = Predecessors[BB].size();
927         for (auto *Pred : Predecessors[BB]) {
928           Edge E = std::make_pair(Pred, BB);
929           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
930           if (E.first == E.second)
931             SelfReferentialEdge = E;
932         }
933         if (NumTotalEdges == 1) {
934           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
935         }
936       } else {
937         // On the second round, visit all successor edges.
938         NumTotalEdges = Successors[BB].size();
939         for (auto *Succ : Successors[BB]) {
940           Edge E = std::make_pair(BB, Succ);
941           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
942         }
943         if (NumTotalEdges == 1) {
944           SingleEdge = std::make_pair(BB, Successors[BB][0]);
945         }
946       }
947 
948       // After visiting all the edges, there are three cases that we
949       // can handle immediately:
950       //
951       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
952       //   In this case, we simply check that the sum of all the edges
953       //   is the same as BB's weight. If not, we change BB's weight
954       //   to match. Additionally, if BB had not been visited before,
955       //   we mark it visited.
956       //
957       // - Only one edge is unknown and BB has already been visited.
958       //   In this case, we can compute the weight of the edge by
959       //   subtracting the total block weight from all the known
960       //   edge weights. If the edges weight more than BB, then the
961       //   edge of the last remaining edge is set to zero.
962       //
963       // - There exists a self-referential edge and the weight of BB is
964       //   known. In this case, this edge can be based on BB's weight.
965       //   We add up all the other known edges and set the weight on
966       //   the self-referential edge as we did in the previous case.
967       //
968       // In any other case, we must continue iterating. Eventually,
969       // all edges will get a weight, or iteration will stop when
970       // it reaches SampleProfileMaxPropagateIterations.
971       if (NumUnknownEdges <= 1) {
972         uint64_t &BBWeight = BlockWeights[EC];
973         if (NumUnknownEdges == 0) {
974           if (!VisitedBlocks.count(EC)) {
975             // If we already know the weight of all edges, the weight of the
976             // basic block can be computed. It should be no larger than the sum
977             // of all edge weights.
978             if (TotalWeight > BBWeight) {
979               BBWeight = TotalWeight;
980               Changed = true;
981               DEBUG(dbgs() << "All edge weights for " << BB->getName()
982                            << " known. Set weight for block: ";
983                     printBlockWeight(dbgs(), BB););
984             }
985           } else if (NumTotalEdges == 1 &&
986                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
987             // If there is only one edge for the visited basic block, use the
988             // block weight to adjust edge weight if edge weight is smaller.
989             EdgeWeights[SingleEdge] = BlockWeights[EC];
990             Changed = true;
991           }
992         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
993           // If there is a single unknown edge and the block has been
994           // visited, then we can compute E's weight.
995           if (BBWeight >= TotalWeight)
996             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
997           else
998             EdgeWeights[UnknownEdge] = 0;
999           const BasicBlock *OtherEC;
1000           if (i == 0)
1001             OtherEC = EquivalenceClass[UnknownEdge.first];
1002           else
1003             OtherEC = EquivalenceClass[UnknownEdge.second];
1004           // Edge weights should never exceed the BB weights it connects.
1005           if (VisitedBlocks.count(OtherEC) &&
1006               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1007             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1008           VisitedEdges.insert(UnknownEdge);
1009           Changed = true;
1010           DEBUG(dbgs() << "Set weight for edge: ";
1011                 printEdgeWeight(dbgs(), UnknownEdge));
1012         }
1013       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1014         // If a block Weights 0, all its in/out edges should weight 0.
1015         if (i == 0) {
1016           for (auto *Pred : Predecessors[BB]) {
1017             Edge E = std::make_pair(Pred, BB);
1018             EdgeWeights[E] = 0;
1019             VisitedEdges.insert(E);
1020           }
1021         } else {
1022           for (auto *Succ : Successors[BB]) {
1023             Edge E = std::make_pair(BB, Succ);
1024             EdgeWeights[E] = 0;
1025             VisitedEdges.insert(E);
1026           }
1027         }
1028       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1029         uint64_t &BBWeight = BlockWeights[BB];
1030         // We have a self-referential edge and the weight of BB is known.
1031         if (BBWeight >= TotalWeight)
1032           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1033         else
1034           EdgeWeights[SelfReferentialEdge] = 0;
1035         VisitedEdges.insert(SelfReferentialEdge);
1036         Changed = true;
1037         DEBUG(dbgs() << "Set self-referential edge weight to: ";
1038               printEdgeWeight(dbgs(), SelfReferentialEdge));
1039       }
1040       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1041         BlockWeights[EC] = TotalWeight;
1042         VisitedBlocks.insert(EC);
1043         Changed = true;
1044       }
1045     }
1046   }
1047 
1048   return Changed;
1049 }
1050 
1051 /// \brief Build in/out edge lists for each basic block in the CFG.
1052 ///
1053 /// We are interested in unique edges. If a block B1 has multiple
1054 /// edges to another block B2, we only add a single B1->B2 edge.
1055 void SampleProfileLoader::buildEdges(Function &F) {
1056   for (auto &BI : F) {
1057     BasicBlock *B1 = &BI;
1058 
1059     // Add predecessors for B1.
1060     SmallPtrSet<BasicBlock *, 16> Visited;
1061     if (!Predecessors[B1].empty())
1062       llvm_unreachable("Found a stale predecessors list in a basic block.");
1063     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1064       BasicBlock *B2 = *PI;
1065       if (Visited.insert(B2).second)
1066         Predecessors[B1].push_back(B2);
1067     }
1068 
1069     // Add successors for B1.
1070     Visited.clear();
1071     if (!Successors[B1].empty())
1072       llvm_unreachable("Found a stale successors list in a basic block.");
1073     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1074       BasicBlock *B2 = *SI;
1075       if (Visited.insert(B2).second)
1076         Successors[B1].push_back(B2);
1077     }
1078   }
1079 }
1080 
1081 /// Sorts the CallTargetMap \p M by count in descending order and stores the
1082 /// sorted result in \p Sorted. Returns the total counts.
1083 static uint64_t SortCallTargets(SmallVector<InstrProfValueData, 2> &Sorted,
1084                                 const SampleRecord::CallTargetMap &M) {
1085   Sorted.clear();
1086   uint64_t Sum = 0;
1087   for (auto I = M.begin(); I != M.end(); ++I) {
1088     Sum += I->getValue();
1089     Sorted.push_back({Function::getGUID(I->getKey()), I->getValue()});
1090   }
1091   std::sort(Sorted.begin(), Sorted.end(),
1092             [](const InstrProfValueData &L, const InstrProfValueData &R) {
1093               if (L.Count == R.Count)
1094                 return L.Value > R.Value;
1095               else
1096                 return L.Count > R.Count;
1097             });
1098   return Sum;
1099 }
1100 
1101 /// \brief Propagate weights into edges
1102 ///
1103 /// The following rules are applied to every block BB in the CFG:
1104 ///
1105 /// - If BB has a single predecessor/successor, then the weight
1106 ///   of that edge is the weight of the block.
1107 ///
1108 /// - If all incoming or outgoing edges are known except one, and the
1109 ///   weight of the block is already known, the weight of the unknown
1110 ///   edge will be the weight of the block minus the sum of all the known
1111 ///   edges. If the sum of all the known edges is larger than BB's weight,
1112 ///   we set the unknown edge weight to zero.
1113 ///
1114 /// - If there is a self-referential edge, and the weight of the block is
1115 ///   known, the weight for that edge is set to the weight of the block
1116 ///   minus the weight of the other incoming edges to that block (if
1117 ///   known).
1118 void SampleProfileLoader::propagateWeights(Function &F) {
1119   bool Changed = true;
1120   unsigned I = 0;
1121 
1122   // If BB weight is larger than its corresponding loop's header BB weight,
1123   // use the BB weight to replace the loop header BB weight.
1124   for (auto &BI : F) {
1125     BasicBlock *BB = &BI;
1126     Loop *L = LI->getLoopFor(BB);
1127     if (!L) {
1128       continue;
1129     }
1130     BasicBlock *Header = L->getHeader();
1131     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1132       BlockWeights[Header] = BlockWeights[BB];
1133     }
1134   }
1135 
1136   // Before propagation starts, build, for each block, a list of
1137   // unique predecessors and successors. This is necessary to handle
1138   // identical edges in multiway branches. Since we visit all blocks and all
1139   // edges of the CFG, it is cleaner to build these lists once at the start
1140   // of the pass.
1141   buildEdges(F);
1142 
1143   // Propagate until we converge or we go past the iteration limit.
1144   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1145     Changed = propagateThroughEdges(F, false);
1146   }
1147 
1148   // The first propagation propagates BB counts from annotated BBs to unknown
1149   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1150   // to propagate edge weights.
1151   VisitedEdges.clear();
1152   Changed = true;
1153   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1154     Changed = propagateThroughEdges(F, false);
1155   }
1156 
1157   // The 3rd propagation pass allows adjust annotated BB weights that are
1158   // obviously wrong.
1159   Changed = true;
1160   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1161     Changed = propagateThroughEdges(F, true);
1162   }
1163 
1164   // Generate MD_prof metadata for every branch instruction using the
1165   // edge weights computed during propagation.
1166   DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1167   LLVMContext &Ctx = F.getContext();
1168   MDBuilder MDB(Ctx);
1169   for (auto &BI : F) {
1170     BasicBlock *BB = &BI;
1171 
1172     if (BlockWeights[BB]) {
1173       for (auto &I : BB->getInstList()) {
1174         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1175           continue;
1176         CallSite CS(&I);
1177         if (!CS.getCalledFunction()) {
1178           const DebugLoc &DLoc = I.getDebugLoc();
1179           if (!DLoc)
1180             continue;
1181           const DILocation *DIL = DLoc;
1182           uint32_t LineOffset = getOffset(DIL);
1183           uint32_t Discriminator = DIL->getBaseDiscriminator();
1184 
1185           const FunctionSamples *FS = findFunctionSamples(I);
1186           if (!FS)
1187             continue;
1188           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1189           if (!T || T.get().size() == 0)
1190             continue;
1191           SmallVector<InstrProfValueData, 2> SortedCallTargets;
1192           uint64_t Sum = SortCallTargets(SortedCallTargets, T.get());
1193           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1194                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1195                             SortedCallTargets.size());
1196         } else if (!dyn_cast<IntrinsicInst>(&I)) {
1197           SmallVector<uint32_t, 1> Weights;
1198           Weights.push_back(BlockWeights[BB]);
1199           I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
1200         }
1201       }
1202     }
1203     TerminatorInst *TI = BB->getTerminator();
1204     if (TI->getNumSuccessors() == 1)
1205       continue;
1206     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1207       continue;
1208 
1209     DebugLoc BranchLoc = TI->getDebugLoc();
1210     DEBUG(dbgs() << "\nGetting weights for branch at line "
1211                  << ((BranchLoc) ? Twine(BranchLoc.getLine())
1212                                  : Twine("<UNKNOWN LOCATION>"))
1213                  << ".\n");
1214     SmallVector<uint32_t, 4> Weights;
1215     uint32_t MaxWeight = 0;
1216     DebugLoc MaxDestLoc;
1217     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1218       BasicBlock *Succ = TI->getSuccessor(I);
1219       Edge E = std::make_pair(BB, Succ);
1220       uint64_t Weight = EdgeWeights[E];
1221       DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1222       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1223       // if needed. Sample counts in profiles are 64-bit unsigned values,
1224       // but internally branch weights are expressed as 32-bit values.
1225       if (Weight > std::numeric_limits<uint32_t>::max()) {
1226         DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1227         Weight = std::numeric_limits<uint32_t>::max();
1228       }
1229       // Weight is added by one to avoid propagation errors introduced by
1230       // 0 weights.
1231       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1232       if (Weight != 0) {
1233         if (Weight > MaxWeight) {
1234           MaxWeight = Weight;
1235           MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc();
1236         }
1237       }
1238     }
1239 
1240     uint64_t TempWeight;
1241     // Only set weights if there is at least one non-zero weight.
1242     // In any other case, let the analyzer set weights.
1243     // Do not set weights if the weights are present. In ThinLTO, the profile
1244     // annotation is done twice. If the first annotation already set the
1245     // weights, the second pass does not need to set it.
1246     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1247       DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1248       TI->setMetadata(llvm::LLVMContext::MD_prof,
1249                       MDB.createBranchWeights(Weights));
1250       emitOptimizationRemark(
1251           Ctx, DEBUG_TYPE, F, MaxDestLoc,
1252           Twine("most popular destination for conditional branches at ") +
1253               ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" +
1254                                    Twine(BranchLoc.getLine()) + ":" +
1255                                    Twine(BranchLoc.getCol()))
1256                            : Twine("<UNKNOWN LOCATION>")));
1257     } else {
1258       DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1259     }
1260   }
1261 }
1262 
1263 /// \brief Get the line number for the function header.
1264 ///
1265 /// This looks up function \p F in the current compilation unit and
1266 /// retrieves the line number where the function is defined. This is
1267 /// line 0 for all the samples read from the profile file. Every line
1268 /// number is relative to this line.
1269 ///
1270 /// \param F  Function object to query.
1271 ///
1272 /// \returns the line number where \p F is defined. If it returns 0,
1273 ///          it means that there is no debug information available for \p F.
1274 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1275   if (DISubprogram *S = F.getSubprogram())
1276     return S->getLine();
1277 
1278   // If the start of \p F is missing, emit a diagnostic to inform the user
1279   // about the missed opportunity.
1280   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1281       "No debug information found in function " + F.getName() +
1282           ": Function profile not used",
1283       DS_Warning));
1284   return 0;
1285 }
1286 
1287 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1288   DT.reset(new DominatorTree);
1289   DT->recalculate(F);
1290 
1291   PDT.reset(new PostDomTreeBase<BasicBlock>());
1292   PDT->recalculate(F);
1293 
1294   LI.reset(new LoopInfo);
1295   LI->analyze(*DT);
1296 }
1297 
1298 /// \brief Generate branch weight metadata for all branches in \p F.
1299 ///
1300 /// Branch weights are computed out of instruction samples using a
1301 /// propagation heuristic. Propagation proceeds in 3 phases:
1302 ///
1303 /// 1- Assignment of block weights. All the basic blocks in the function
1304 ///    are initial assigned the same weight as their most frequently
1305 ///    executed instruction.
1306 ///
1307 /// 2- Creation of equivalence classes. Since samples may be missing from
1308 ///    blocks, we can fill in the gaps by setting the weights of all the
1309 ///    blocks in the same equivalence class to the same weight. To compute
1310 ///    the concept of equivalence, we use dominance and loop information.
1311 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1312 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1313 ///
1314 /// 3- Propagation of block weights into edges. This uses a simple
1315 ///    propagation heuristic. The following rules are applied to every
1316 ///    block BB in the CFG:
1317 ///
1318 ///    - If BB has a single predecessor/successor, then the weight
1319 ///      of that edge is the weight of the block.
1320 ///
1321 ///    - If all the edges are known except one, and the weight of the
1322 ///      block is already known, the weight of the unknown edge will
1323 ///      be the weight of the block minus the sum of all the known
1324 ///      edges. If the sum of all the known edges is larger than BB's weight,
1325 ///      we set the unknown edge weight to zero.
1326 ///
1327 ///    - If there is a self-referential edge, and the weight of the block is
1328 ///      known, the weight for that edge is set to the weight of the block
1329 ///      minus the weight of the other incoming edges to that block (if
1330 ///      known).
1331 ///
1332 /// Since this propagation is not guaranteed to finalize for every CFG, we
1333 /// only allow it to proceed for a limited number of iterations (controlled
1334 /// by -sample-profile-max-propagate-iterations).
1335 ///
1336 /// FIXME: Try to replace this propagation heuristic with a scheme
1337 /// that is guaranteed to finalize. A work-list approach similar to
1338 /// the standard value propagation algorithm used by SSA-CCP might
1339 /// work here.
1340 ///
1341 /// Once all the branch weights are computed, we emit the MD_prof
1342 /// metadata on BB using the computed values for each of its branches.
1343 ///
1344 /// \param F The function to query.
1345 ///
1346 /// \returns true if \p F was modified. Returns false, otherwise.
1347 bool SampleProfileLoader::emitAnnotations(Function &F) {
1348   bool Changed = false;
1349 
1350   if (getFunctionLoc(F) == 0)
1351     return false;
1352 
1353   DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
1354                << ": " << getFunctionLoc(F) << "\n");
1355 
1356   DenseSet<GlobalValue::GUID> ImportGUIDs;
1357   Changed |= inlineHotFunctions(F, ImportGUIDs);
1358 
1359   // Compute basic block weights.
1360   Changed |= computeBlockWeights(F);
1361 
1362   if (Changed) {
1363     // Add an entry count to the function using the samples gathered at the
1364     // function entry. Also sets the GUIDs that comes from a different
1365     // module but inlined in the profiled binary. This is aiming at making
1366     // the IR match the profiled binary before annotation.
1367     F.setEntryCount(Samples->getHeadSamples() + 1, &ImportGUIDs);
1368 
1369     // Compute dominance and loop info needed for propagation.
1370     computeDominanceAndLoopInfo(F);
1371 
1372     // Find equivalence classes.
1373     findEquivalenceClasses(F);
1374 
1375     // Propagate weights to all edges.
1376     propagateWeights(F);
1377   }
1378 
1379   // If coverage checking was requested, compute it now.
1380   if (SampleProfileRecordCoverage) {
1381     unsigned Used = CoverageTracker.countUsedRecords(Samples);
1382     unsigned Total = CoverageTracker.countBodyRecords(Samples);
1383     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1384     if (Coverage < SampleProfileRecordCoverage) {
1385       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1386           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1387           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1388               Twine(Coverage) + "%) were applied",
1389           DS_Warning));
1390     }
1391   }
1392 
1393   if (SampleProfileSampleCoverage) {
1394     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1395     uint64_t Total = CoverageTracker.countBodySamples(Samples);
1396     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1397     if (Coverage < SampleProfileSampleCoverage) {
1398       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1399           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1400           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1401               Twine(Coverage) + "%) were applied",
1402           DS_Warning));
1403     }
1404   }
1405   return Changed;
1406 }
1407 
1408 char SampleProfileLoaderLegacyPass::ID = 0;
1409 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1410                       "Sample Profile loader", false, false)
1411 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1412 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1413                     "Sample Profile loader", false, false)
1414 
1415 bool SampleProfileLoader::doInitialization(Module &M) {
1416   auto &Ctx = M.getContext();
1417   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1418   if (std::error_code EC = ReaderOrErr.getError()) {
1419     std::string Msg = "Could not open profile: " + EC.message();
1420     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1421     return false;
1422   }
1423   Reader = std::move(ReaderOrErr.get());
1424   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1425   return true;
1426 }
1427 
1428 ModulePass *llvm::createSampleProfileLoaderPass() {
1429   return new SampleProfileLoaderLegacyPass(SampleProfileFile);
1430 }
1431 
1432 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1433   return new SampleProfileLoaderLegacyPass(Name);
1434 }
1435 
1436 bool SampleProfileLoader::runOnModule(Module &M) {
1437   if (!ProfileIsValid)
1438     return false;
1439 
1440   // Compute the total number of samples collected in this profile.
1441   for (const auto &I : Reader->getProfiles())
1442     TotalCollectedSamples += I.second.getTotalSamples();
1443 
1444   // Populate the symbol map.
1445   for (const auto &N_F : M.getValueSymbolTable()) {
1446     std::string OrigName = N_F.getKey();
1447     Function *F = dyn_cast<Function>(N_F.getValue());
1448     if (F == nullptr)
1449       continue;
1450     SymbolMap[OrigName] = F;
1451     auto pos = OrigName.find('.');
1452     if (pos != std::string::npos) {
1453       std::string NewName = OrigName.substr(0, pos);
1454       auto r = SymbolMap.insert(std::make_pair(NewName, F));
1455       // Failiing to insert means there is already an entry in SymbolMap,
1456       // thus there are multiple functions that are mapped to the same
1457       // stripped name. In this case of name conflicting, set the value
1458       // to nullptr to avoid confusion.
1459       if (!r.second)
1460         r.first->second = nullptr;
1461     }
1462   }
1463 
1464   bool retval = false;
1465   for (auto &F : M)
1466     if (!F.isDeclaration()) {
1467       clearFunctionData();
1468       retval |= runOnFunction(F);
1469     }
1470   if (M.getProfileSummary() == nullptr)
1471     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
1472   return retval;
1473 }
1474 
1475 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1476   // FIXME: pass in AssumptionCache correctly for the new pass manager.
1477   SampleLoader.setACT(&getAnalysis<AssumptionCacheTracker>());
1478   return SampleLoader.runOnModule(M);
1479 }
1480 
1481 bool SampleProfileLoader::runOnFunction(Function &F) {
1482   F.setEntryCount(0);
1483   Samples = Reader->getSamplesFor(F);
1484   if (Samples && !Samples->empty())
1485     return emitAnnotations(F);
1486   return false;
1487 }
1488 
1489 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1490                                                ModuleAnalysisManager &AM) {
1491 
1492   SampleProfileLoader SampleLoader(
1493       ProfileFileName.empty() ? SampleProfileFile : ProfileFileName);
1494 
1495   SampleLoader.doInitialization(M);
1496 
1497   if (!SampleLoader.runOnModule(M))
1498     return PreservedAnalyses::all();
1499 
1500   return PreservedAnalyses::none();
1501 }
1502