1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/PostDominators.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/InstIterator.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Metadata.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/Pass.h" 43 #include "llvm/ProfileData/SampleProfReader.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorOr.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Transforms/IPO.h" 49 #include "llvm/Transforms/Utils/Cloning.h" 50 #include <cctype> 51 52 using namespace llvm; 53 using namespace sampleprof; 54 55 #define DEBUG_TYPE "sample-profile" 56 57 // Command line option to specify the file to read samples from. This is 58 // mainly used for debugging. 59 static cl::opt<std::string> SampleProfileFile( 60 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 61 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 62 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 63 "sample-profile-max-propagate-iterations", cl::init(100), 64 cl::desc("Maximum number of iterations to go through when propagating " 65 "sample block/edge weights through the CFG.")); 66 static cl::opt<unsigned> SampleProfileCoverage( 67 "sample-profile-check-coverage", cl::init(0), cl::value_desc("N"), 68 cl::desc("Emit a warning if less than N% of samples in the input profile " 69 "are matched to the IR.")); 70 71 namespace { 72 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap; 73 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap; 74 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge; 75 typedef DenseMap<Edge, uint64_t> EdgeWeightMap; 76 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>> 77 BlockEdgeMap; 78 79 /// \brief Sample profile pass. 80 /// 81 /// This pass reads profile data from the file specified by 82 /// -sample-profile-file and annotates every affected function with the 83 /// profile information found in that file. 84 class SampleProfileLoader : public ModulePass { 85 public: 86 // Class identification, replacement for typeinfo 87 static char ID; 88 89 SampleProfileLoader(StringRef Name = SampleProfileFile) 90 : ModulePass(ID), DT(nullptr), PDT(nullptr), LI(nullptr), Reader(), 91 Samples(nullptr), Filename(Name), ProfileIsValid(false) { 92 initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry()); 93 } 94 95 bool doInitialization(Module &M) override; 96 97 void dump() { Reader->dump(); } 98 99 const char *getPassName() const override { return "Sample profile pass"; } 100 101 bool runOnModule(Module &M) override; 102 103 void getAnalysisUsage(AnalysisUsage &AU) const override { 104 AU.setPreservesCFG(); 105 } 106 107 protected: 108 bool runOnFunction(Function &F); 109 unsigned getFunctionLoc(Function &F); 110 bool emitAnnotations(Function &F); 111 ErrorOr<uint64_t> getInstWeight(const Instruction &I) const; 112 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB) const; 113 const FunctionSamples *findCalleeFunctionSamples(const CallInst &I) const; 114 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 115 bool inlineHotFunctions(Function &F); 116 void printEdgeWeight(raw_ostream &OS, Edge E); 117 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 118 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 119 bool computeBlockWeights(Function &F); 120 void findEquivalenceClasses(Function &F); 121 void findEquivalencesFor(BasicBlock *BB1, 122 SmallVector<BasicBlock *, 8> Descendants, 123 DominatorTreeBase<BasicBlock> *DomTree); 124 void propagateWeights(Function &F); 125 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 126 void buildEdges(Function &F); 127 bool propagateThroughEdges(Function &F); 128 void computeDominanceAndLoopInfo(Function &F); 129 unsigned getOffset(unsigned L, unsigned H) const; 130 void clearFunctionData(); 131 132 /// \brief Map basic blocks to their computed weights. 133 /// 134 /// The weight of a basic block is defined to be the maximum 135 /// of all the instruction weights in that block. 136 BlockWeightMap BlockWeights; 137 138 /// \brief Map edges to their computed weights. 139 /// 140 /// Edge weights are computed by propagating basic block weights in 141 /// SampleProfile::propagateWeights. 142 EdgeWeightMap EdgeWeights; 143 144 /// \brief Set of visited blocks during propagation. 145 SmallPtrSet<const BasicBlock *, 128> VisitedBlocks; 146 147 /// \brief Set of visited edges during propagation. 148 SmallSet<Edge, 128> VisitedEdges; 149 150 /// \brief Equivalence classes for block weights. 151 /// 152 /// Two blocks BB1 and BB2 are in the same equivalence class if they 153 /// dominate and post-dominate each other, and they are in the same loop 154 /// nest. When this happens, the two blocks are guaranteed to execute 155 /// the same number of times. 156 EquivalenceClassMap EquivalenceClass; 157 158 /// \brief Dominance, post-dominance and loop information. 159 std::unique_ptr<DominatorTree> DT; 160 std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT; 161 std::unique_ptr<LoopInfo> LI; 162 163 /// \brief Predecessors for each basic block in the CFG. 164 BlockEdgeMap Predecessors; 165 166 /// \brief Successors for each basic block in the CFG. 167 BlockEdgeMap Successors; 168 169 /// \brief Profile reader object. 170 std::unique_ptr<SampleProfileReader> Reader; 171 172 /// \brief Samples collected for the body of this function. 173 FunctionSamples *Samples; 174 175 /// \brief Name of the profile file to load. 176 StringRef Filename; 177 178 /// \brief Flag indicating whether the profile input loaded successfully. 179 bool ProfileIsValid; 180 }; 181 182 class SampleCoverageTracker { 183 public: 184 SampleCoverageTracker() : SampleCoverage() {} 185 186 bool markSamplesUsed(const FunctionSamples *Samples, uint32_t LineOffset, 187 uint32_t Discriminator); 188 unsigned computeCoverage(unsigned Used, unsigned Total) const; 189 unsigned countUsedSamples(const FunctionSamples *Samples) const; 190 unsigned countBodySamples(const FunctionSamples *Samples) const; 191 192 private: 193 typedef DenseMap<LineLocation, unsigned> BodySampleCoverageMap; 194 typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap> 195 FunctionSamplesCoverageMap; 196 197 /// Coverage map for sampling records. 198 /// 199 /// This map keeps a record of sampling records that have been matched to 200 /// an IR instruction. This is used to detect some form of staleness in 201 /// profiles (see flag -sample-profile-check-coverage). 202 /// 203 /// Each entry in the map corresponds to a FunctionSamples instance. This is 204 /// another map that counts how many times the sample record at the 205 /// given location has been used. 206 FunctionSamplesCoverageMap SampleCoverage; 207 }; 208 209 SampleCoverageTracker CoverageTracker; 210 } 211 212 /// Mark as used the sample record for the given function samples at 213 /// (LineOffset, Discriminator). 214 /// 215 /// \returns true if this is the first time we mark the given record. 216 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *Samples, 217 uint32_t LineOffset, 218 uint32_t Discriminator) { 219 LineLocation Loc(LineOffset, Discriminator); 220 unsigned &Count = SampleCoverage[Samples][Loc]; 221 return ++Count == 1; 222 } 223 224 /// Return the number of sample records that were applied from this profile. 225 unsigned 226 SampleCoverageTracker::countUsedSamples(const FunctionSamples *Samples) const { 227 auto I = SampleCoverage.find(Samples); 228 229 // The size of the coverage map for Samples represents the number of records 230 // that were marked used at least once. 231 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 232 233 // If there are inlined callsites in this function, count the samples found 234 // in the respective bodies. However, do not bother counting callees with 0 235 // total samples, these are callees that were never invoked at runtime. 236 for (const auto &I : Samples->getCallsiteSamples()) { 237 const FunctionSamples *CalleeSamples = &I.second; 238 if (CalleeSamples->getTotalSamples() > 0) 239 Count += countUsedSamples(&I.second); 240 } 241 242 return Count; 243 } 244 245 /// Return the number of sample records in the body of this profile. 246 /// 247 /// The count includes all the samples in inlined callees. However, callsites 248 /// with 0 samples indicate inlined function calls that were never actually 249 /// invoked at runtime. Ignore these callsites for coverage purposes. 250 unsigned 251 SampleCoverageTracker::countBodySamples(const FunctionSamples *Samples) const { 252 unsigned Count = Samples->getBodySamples().size(); 253 254 // Count all the callsites with non-zero samples. 255 for (const auto &I : Samples->getCallsiteSamples()) { 256 const FunctionSamples *CalleeSamples = &I.second; 257 if (CalleeSamples->getTotalSamples() > 0) 258 Count += countBodySamples(&I.second); 259 } 260 261 return Count; 262 } 263 264 /// Return the fraction of sample records used in this profile. 265 /// 266 /// The returned value is an unsigned integer in the range 0-100 indicating 267 /// the percentage of sample records that were used while applying this 268 /// profile to the associated function. 269 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 270 unsigned Total) const { 271 assert(Used <= Total && 272 "number of used records cannot exceed the total number of records"); 273 return Total > 0 ? Used * 100 / Total : 100; 274 } 275 276 /// Clear all the per-function data used to load samples and propagate weights. 277 void SampleProfileLoader::clearFunctionData() { 278 BlockWeights.clear(); 279 EdgeWeights.clear(); 280 VisitedBlocks.clear(); 281 VisitedEdges.clear(); 282 EquivalenceClass.clear(); 283 DT = nullptr; 284 PDT = nullptr; 285 LI = nullptr; 286 Predecessors.clear(); 287 Successors.clear(); 288 } 289 290 /// \brief Returns the offset of lineno \p L to head_lineno \p H 291 /// 292 /// \param L Lineno 293 /// \param H Header lineno of the function 294 /// 295 /// \returns offset to the header lineno. 16 bits are used to represent offset. 296 /// We assume that a single function will not exceed 65535 LOC. 297 unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const { 298 return (L - H) & 0xffff; 299 } 300 301 /// \brief Print the weight of edge \p E on stream \p OS. 302 /// 303 /// \param OS Stream to emit the output to. 304 /// \param E Edge to print. 305 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 306 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 307 << "]: " << EdgeWeights[E] << "\n"; 308 } 309 310 /// \brief Print the equivalence class of block \p BB on stream \p OS. 311 /// 312 /// \param OS Stream to emit the output to. 313 /// \param BB Block to print. 314 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 315 const BasicBlock *BB) { 316 const BasicBlock *Equiv = EquivalenceClass[BB]; 317 OS << "equivalence[" << BB->getName() 318 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 319 } 320 321 /// \brief Print the weight of block \p BB on stream \p OS. 322 /// 323 /// \param OS Stream to emit the output to. 324 /// \param BB Block to print. 325 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 326 const BasicBlock *BB) const { 327 const auto &I = BlockWeights.find(BB); 328 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 329 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 330 } 331 332 /// \brief Get the weight for an instruction. 333 /// 334 /// The "weight" of an instruction \p Inst is the number of samples 335 /// collected on that instruction at runtime. To retrieve it, we 336 /// need to compute the line number of \p Inst relative to the start of its 337 /// function. We use HeaderLineno to compute the offset. We then 338 /// look up the samples collected for \p Inst using BodySamples. 339 /// 340 /// \param Inst Instruction to query. 341 /// 342 /// \returns the weight of \p Inst. 343 ErrorOr<uint64_t> 344 SampleProfileLoader::getInstWeight(const Instruction &Inst) const { 345 DebugLoc DLoc = Inst.getDebugLoc(); 346 if (!DLoc) 347 return std::error_code(); 348 349 const FunctionSamples *FS = findFunctionSamples(Inst); 350 if (!FS) 351 return std::error_code(); 352 353 const DILocation *DIL = DLoc; 354 unsigned Lineno = DLoc.getLine(); 355 unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine(); 356 357 uint32_t LineOffset = getOffset(Lineno, HeaderLineno); 358 uint32_t Discriminator = DIL->getDiscriminator(); 359 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 360 if (R) { 361 bool FirstMark = 362 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator); 363 if (FirstMark) { 364 const Function *F = Inst.getParent()->getParent(); 365 LLVMContext &Ctx = F->getContext(); 366 emitOptimizationRemark( 367 Ctx, DEBUG_TYPE, *F, DLoc, 368 Twine("Applied ") + Twine(*R) + " samples from profile (offset: " + 369 Twine(LineOffset) + 370 ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")"); 371 } 372 DEBUG(dbgs() << " " << Lineno << "." << DIL->getDiscriminator() << ":" 373 << Inst << " (line offset: " << Lineno - HeaderLineno << "." 374 << DIL->getDiscriminator() << " - weight: " << R.get() 375 << ")\n"); 376 } 377 return R; 378 } 379 380 /// \brief Compute the weight of a basic block. 381 /// 382 /// The weight of basic block \p BB is the maximum weight of all the 383 /// instructions in BB. 384 /// 385 /// \param BB The basic block to query. 386 /// 387 /// \returns the weight for \p BB. 388 ErrorOr<uint64_t> 389 SampleProfileLoader::getBlockWeight(const BasicBlock *BB) const { 390 bool Found = false; 391 uint64_t Weight = 0; 392 for (auto &I : BB->getInstList()) { 393 const ErrorOr<uint64_t> &R = getInstWeight(I); 394 if (R && R.get() >= Weight) { 395 Weight = R.get(); 396 Found = true; 397 } 398 } 399 if (Found) 400 return Weight; 401 else 402 return std::error_code(); 403 } 404 405 /// \brief Compute and store the weights of every basic block. 406 /// 407 /// This populates the BlockWeights map by computing 408 /// the weights of every basic block in the CFG. 409 /// 410 /// \param F The function to query. 411 bool SampleProfileLoader::computeBlockWeights(Function &F) { 412 bool Changed = false; 413 DEBUG(dbgs() << "Block weights\n"); 414 for (const auto &BB : F) { 415 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 416 if (Weight) { 417 BlockWeights[&BB] = Weight.get(); 418 VisitedBlocks.insert(&BB); 419 Changed = true; 420 } 421 DEBUG(printBlockWeight(dbgs(), &BB)); 422 } 423 424 return Changed; 425 } 426 427 /// \brief Get the FunctionSamples for a call instruction. 428 /// 429 /// The FunctionSamples of a call instruction \p Inst is the inlined 430 /// instance in which that call instruction is calling to. It contains 431 /// all samples that resides in the inlined instance. We first find the 432 /// inlined instance in which the call instruction is from, then we 433 /// traverse its children to find the callsite with the matching 434 /// location and callee function name. 435 /// 436 /// \param Inst Call instruction to query. 437 /// 438 /// \returns The FunctionSamples pointer to the inlined instance. 439 const FunctionSamples * 440 SampleProfileLoader::findCalleeFunctionSamples(const CallInst &Inst) const { 441 const DILocation *DIL = Inst.getDebugLoc(); 442 if (!DIL) { 443 return nullptr; 444 } 445 DISubprogram *SP = DIL->getScope()->getSubprogram(); 446 if (!SP) 447 return nullptr; 448 449 Function *CalleeFunc = Inst.getCalledFunction(); 450 if (!CalleeFunc) { 451 return nullptr; 452 } 453 454 StringRef CalleeName = CalleeFunc->getName(); 455 const FunctionSamples *FS = findFunctionSamples(Inst); 456 if (FS == nullptr) 457 return nullptr; 458 459 return FS->findFunctionSamplesAt( 460 CallsiteLocation(getOffset(DIL->getLine(), SP->getLine()), 461 DIL->getDiscriminator(), CalleeName)); 462 } 463 464 /// \brief Get the FunctionSamples for an instruction. 465 /// 466 /// The FunctionSamples of an instruction \p Inst is the inlined instance 467 /// in which that instruction is coming from. We traverse the inline stack 468 /// of that instruction, and match it with the tree nodes in the profile. 469 /// 470 /// \param Inst Instruction to query. 471 /// 472 /// \returns the FunctionSamples pointer to the inlined instance. 473 const FunctionSamples * 474 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 475 SmallVector<CallsiteLocation, 10> S; 476 const DILocation *DIL = Inst.getDebugLoc(); 477 if (!DIL) { 478 return Samples; 479 } 480 StringRef CalleeName; 481 for (const DILocation *DIL = Inst.getDebugLoc(); DIL; 482 DIL = DIL->getInlinedAt()) { 483 DISubprogram *SP = DIL->getScope()->getSubprogram(); 484 if (!SP) 485 return nullptr; 486 if (!CalleeName.empty()) { 487 S.push_back(CallsiteLocation(getOffset(DIL->getLine(), SP->getLine()), 488 DIL->getDiscriminator(), CalleeName)); 489 } 490 CalleeName = SP->getLinkageName(); 491 } 492 if (S.size() == 0) 493 return Samples; 494 const FunctionSamples *FS = Samples; 495 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 496 FS = FS->findFunctionSamplesAt(S[i]); 497 } 498 return FS; 499 } 500 501 /// \brief Iteratively inline hot callsites of a function. 502 /// 503 /// Iteratively traverse all callsites of the function \p F, and find if 504 /// the corresponding inlined instance exists and is hot in profile. If 505 /// it is hot enough, inline the callsites and adds new callsites of the 506 /// callee into the caller. 507 /// 508 /// TODO: investigate the possibility of not invoking InlineFunction directly. 509 /// 510 /// \param F function to perform iterative inlining. 511 /// 512 /// \returns True if there is any inline happened. 513 bool SampleProfileLoader::inlineHotFunctions(Function &F) { 514 bool Changed = false; 515 LLVMContext &Ctx = F.getContext(); 516 while (true) { 517 bool LocalChanged = false; 518 SmallVector<CallInst *, 10> CIS; 519 for (auto &BB : F) { 520 for (auto &I : BB.getInstList()) { 521 CallInst *CI = dyn_cast<CallInst>(&I); 522 if (CI) { 523 const FunctionSamples *FS = findCalleeFunctionSamples(*CI); 524 if (FS && FS->getTotalSamples() > 0) { 525 CIS.push_back(CI); 526 } 527 } 528 } 529 } 530 for (auto CI : CIS) { 531 InlineFunctionInfo IFI; 532 Function *CalledFunction = CI->getCalledFunction(); 533 DebugLoc DLoc = CI->getDebugLoc(); 534 uint64_t NumSamples = findCalleeFunctionSamples(*CI)->getTotalSamples(); 535 if (InlineFunction(CI, IFI)) { 536 LocalChanged = true; 537 emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc, 538 Twine("inlined hot callee '") + 539 CalledFunction->getName() + "' with " + 540 Twine(NumSamples) + " samples into '" + 541 F.getName() + "'"); 542 } 543 } 544 if (LocalChanged) { 545 Changed = true; 546 } else { 547 break; 548 } 549 } 550 return Changed; 551 } 552 553 /// \brief Find equivalence classes for the given block. 554 /// 555 /// This finds all the blocks that are guaranteed to execute the same 556 /// number of times as \p BB1. To do this, it traverses all the 557 /// descendants of \p BB1 in the dominator or post-dominator tree. 558 /// 559 /// A block BB2 will be in the same equivalence class as \p BB1 if 560 /// the following holds: 561 /// 562 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 563 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 564 /// dominate BB1 in the post-dominator tree. 565 /// 566 /// 2- Both BB2 and \p BB1 must be in the same loop. 567 /// 568 /// For every block BB2 that meets those two requirements, we set BB2's 569 /// equivalence class to \p BB1. 570 /// 571 /// \param BB1 Block to check. 572 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 573 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 574 /// with blocks from \p BB1's dominator tree, then 575 /// this is the post-dominator tree, and vice versa. 576 void SampleProfileLoader::findEquivalencesFor( 577 BasicBlock *BB1, SmallVector<BasicBlock *, 8> Descendants, 578 DominatorTreeBase<BasicBlock> *DomTree) { 579 const BasicBlock *EC = EquivalenceClass[BB1]; 580 uint64_t Weight = BlockWeights[EC]; 581 for (const auto *BB2 : Descendants) { 582 bool IsDomParent = DomTree->dominates(BB2, BB1); 583 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 584 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 585 EquivalenceClass[BB2] = EC; 586 587 // If BB2 is heavier than BB1, make BB2 have the same weight 588 // as BB1. 589 // 590 // Note that we don't worry about the opposite situation here 591 // (when BB2 is lighter than BB1). We will deal with this 592 // during the propagation phase. Right now, we just want to 593 // make sure that BB1 has the largest weight of all the 594 // members of its equivalence set. 595 Weight = std::max(Weight, BlockWeights[BB2]); 596 } 597 } 598 BlockWeights[EC] = Weight; 599 } 600 601 /// \brief Find equivalence classes. 602 /// 603 /// Since samples may be missing from blocks, we can fill in the gaps by setting 604 /// the weights of all the blocks in the same equivalence class to the same 605 /// weight. To compute the concept of equivalence, we use dominance and loop 606 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 607 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 608 /// 609 /// \param F The function to query. 610 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 611 SmallVector<BasicBlock *, 8> DominatedBBs; 612 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 613 // Find equivalence sets based on dominance and post-dominance information. 614 for (auto &BB : F) { 615 BasicBlock *BB1 = &BB; 616 617 // Compute BB1's equivalence class once. 618 if (EquivalenceClass.count(BB1)) { 619 DEBUG(printBlockEquivalence(dbgs(), BB1)); 620 continue; 621 } 622 623 // By default, blocks are in their own equivalence class. 624 EquivalenceClass[BB1] = BB1; 625 626 // Traverse all the blocks dominated by BB1. We are looking for 627 // every basic block BB2 such that: 628 // 629 // 1- BB1 dominates BB2. 630 // 2- BB2 post-dominates BB1. 631 // 3- BB1 and BB2 are in the same loop nest. 632 // 633 // If all those conditions hold, it means that BB2 is executed 634 // as many times as BB1, so they are placed in the same equivalence 635 // class by making BB2's equivalence class be BB1. 636 DominatedBBs.clear(); 637 DT->getDescendants(BB1, DominatedBBs); 638 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 639 640 DEBUG(printBlockEquivalence(dbgs(), BB1)); 641 } 642 643 // Assign weights to equivalence classes. 644 // 645 // All the basic blocks in the same equivalence class will execute 646 // the same number of times. Since we know that the head block in 647 // each equivalence class has the largest weight, assign that weight 648 // to all the blocks in that equivalence class. 649 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 650 for (auto &BI : F) { 651 const BasicBlock *BB = &BI; 652 const BasicBlock *EquivBB = EquivalenceClass[BB]; 653 if (BB != EquivBB) 654 BlockWeights[BB] = BlockWeights[EquivBB]; 655 DEBUG(printBlockWeight(dbgs(), BB)); 656 } 657 } 658 659 /// \brief Visit the given edge to decide if it has a valid weight. 660 /// 661 /// If \p E has not been visited before, we copy to \p UnknownEdge 662 /// and increment the count of unknown edges. 663 /// 664 /// \param E Edge to visit. 665 /// \param NumUnknownEdges Current number of unknown edges. 666 /// \param UnknownEdge Set if E has not been visited before. 667 /// 668 /// \returns E's weight, if known. Otherwise, return 0. 669 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 670 Edge *UnknownEdge) { 671 if (!VisitedEdges.count(E)) { 672 (*NumUnknownEdges)++; 673 *UnknownEdge = E; 674 return 0; 675 } 676 677 return EdgeWeights[E]; 678 } 679 680 /// \brief Propagate weights through incoming/outgoing edges. 681 /// 682 /// If the weight of a basic block is known, and there is only one edge 683 /// with an unknown weight, we can calculate the weight of that edge. 684 /// 685 /// Similarly, if all the edges have a known count, we can calculate the 686 /// count of the basic block, if needed. 687 /// 688 /// \param F Function to process. 689 /// 690 /// \returns True if new weights were assigned to edges or blocks. 691 bool SampleProfileLoader::propagateThroughEdges(Function &F) { 692 bool Changed = false; 693 DEBUG(dbgs() << "\nPropagation through edges\n"); 694 for (const auto &BI : F) { 695 const BasicBlock *BB = &BI; 696 const BasicBlock *EC = EquivalenceClass[BB]; 697 698 // Visit all the predecessor and successor edges to determine 699 // which ones have a weight assigned already. Note that it doesn't 700 // matter that we only keep track of a single unknown edge. The 701 // only case we are interested in handling is when only a single 702 // edge is unknown (see setEdgeOrBlockWeight). 703 for (unsigned i = 0; i < 2; i++) { 704 uint64_t TotalWeight = 0; 705 unsigned NumUnknownEdges = 0; 706 Edge UnknownEdge, SelfReferentialEdge; 707 708 if (i == 0) { 709 // First, visit all predecessor edges. 710 for (auto *Pred : Predecessors[BB]) { 711 Edge E = std::make_pair(Pred, BB); 712 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 713 if (E.first == E.second) 714 SelfReferentialEdge = E; 715 } 716 } else { 717 // On the second round, visit all successor edges. 718 for (auto *Succ : Successors[BB]) { 719 Edge E = std::make_pair(BB, Succ); 720 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 721 } 722 } 723 724 // After visiting all the edges, there are three cases that we 725 // can handle immediately: 726 // 727 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 728 // In this case, we simply check that the sum of all the edges 729 // is the same as BB's weight. If not, we change BB's weight 730 // to match. Additionally, if BB had not been visited before, 731 // we mark it visited. 732 // 733 // - Only one edge is unknown and BB has already been visited. 734 // In this case, we can compute the weight of the edge by 735 // subtracting the total block weight from all the known 736 // edge weights. If the edges weight more than BB, then the 737 // edge of the last remaining edge is set to zero. 738 // 739 // - There exists a self-referential edge and the weight of BB is 740 // known. In this case, this edge can be based on BB's weight. 741 // We add up all the other known edges and set the weight on 742 // the self-referential edge as we did in the previous case. 743 // 744 // In any other case, we must continue iterating. Eventually, 745 // all edges will get a weight, or iteration will stop when 746 // it reaches SampleProfileMaxPropagateIterations. 747 if (NumUnknownEdges <= 1) { 748 uint64_t &BBWeight = BlockWeights[EC]; 749 if (NumUnknownEdges == 0) { 750 // If we already know the weight of all edges, the weight of the 751 // basic block can be computed. It should be no larger than the sum 752 // of all edge weights. 753 if (TotalWeight > BBWeight) { 754 BBWeight = TotalWeight; 755 Changed = true; 756 DEBUG(dbgs() << "All edge weights for " << BB->getName() 757 << " known. Set weight for block: "; 758 printBlockWeight(dbgs(), BB);); 759 } 760 if (VisitedBlocks.insert(EC).second) 761 Changed = true; 762 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 763 // If there is a single unknown edge and the block has been 764 // visited, then we can compute E's weight. 765 if (BBWeight >= TotalWeight) 766 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 767 else 768 EdgeWeights[UnknownEdge] = 0; 769 VisitedEdges.insert(UnknownEdge); 770 Changed = true; 771 DEBUG(dbgs() << "Set weight for edge: "; 772 printEdgeWeight(dbgs(), UnknownEdge)); 773 } 774 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 775 uint64_t &BBWeight = BlockWeights[BB]; 776 // We have a self-referential edge and the weight of BB is known. 777 if (BBWeight >= TotalWeight) 778 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 779 else 780 EdgeWeights[SelfReferentialEdge] = 0; 781 VisitedEdges.insert(SelfReferentialEdge); 782 Changed = true; 783 DEBUG(dbgs() << "Set self-referential edge weight to: "; 784 printEdgeWeight(dbgs(), SelfReferentialEdge)); 785 } 786 } 787 } 788 789 return Changed; 790 } 791 792 /// \brief Build in/out edge lists for each basic block in the CFG. 793 /// 794 /// We are interested in unique edges. If a block B1 has multiple 795 /// edges to another block B2, we only add a single B1->B2 edge. 796 void SampleProfileLoader::buildEdges(Function &F) { 797 for (auto &BI : F) { 798 BasicBlock *B1 = &BI; 799 800 // Add predecessors for B1. 801 SmallPtrSet<BasicBlock *, 16> Visited; 802 if (!Predecessors[B1].empty()) 803 llvm_unreachable("Found a stale predecessors list in a basic block."); 804 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 805 BasicBlock *B2 = *PI; 806 if (Visited.insert(B2).second) 807 Predecessors[B1].push_back(B2); 808 } 809 810 // Add successors for B1. 811 Visited.clear(); 812 if (!Successors[B1].empty()) 813 llvm_unreachable("Found a stale successors list in a basic block."); 814 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 815 BasicBlock *B2 = *SI; 816 if (Visited.insert(B2).second) 817 Successors[B1].push_back(B2); 818 } 819 } 820 } 821 822 /// \brief Propagate weights into edges 823 /// 824 /// The following rules are applied to every block BB in the CFG: 825 /// 826 /// - If BB has a single predecessor/successor, then the weight 827 /// of that edge is the weight of the block. 828 /// 829 /// - If all incoming or outgoing edges are known except one, and the 830 /// weight of the block is already known, the weight of the unknown 831 /// edge will be the weight of the block minus the sum of all the known 832 /// edges. If the sum of all the known edges is larger than BB's weight, 833 /// we set the unknown edge weight to zero. 834 /// 835 /// - If there is a self-referential edge, and the weight of the block is 836 /// known, the weight for that edge is set to the weight of the block 837 /// minus the weight of the other incoming edges to that block (if 838 /// known). 839 void SampleProfileLoader::propagateWeights(Function &F) { 840 bool Changed = true; 841 unsigned I = 0; 842 843 // Add an entry count to the function using the samples gathered 844 // at the function entry. 845 F.setEntryCount(Samples->getHeadSamples()); 846 847 // Before propagation starts, build, for each block, a list of 848 // unique predecessors and successors. This is necessary to handle 849 // identical edges in multiway branches. Since we visit all blocks and all 850 // edges of the CFG, it is cleaner to build these lists once at the start 851 // of the pass. 852 buildEdges(F); 853 854 // Propagate until we converge or we go past the iteration limit. 855 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 856 Changed = propagateThroughEdges(F); 857 } 858 859 // Generate MD_prof metadata for every branch instruction using the 860 // edge weights computed during propagation. 861 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 862 LLVMContext &Ctx = F.getContext(); 863 MDBuilder MDB(Ctx); 864 for (auto &BI : F) { 865 BasicBlock *BB = &BI; 866 TerminatorInst *TI = BB->getTerminator(); 867 if (TI->getNumSuccessors() == 1) 868 continue; 869 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 870 continue; 871 872 DEBUG(dbgs() << "\nGetting weights for branch at line " 873 << TI->getDebugLoc().getLine() << ".\n"); 874 SmallVector<uint32_t, 4> Weights; 875 uint32_t MaxWeight = 0; 876 DebugLoc MaxDestLoc; 877 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 878 BasicBlock *Succ = TI->getSuccessor(I); 879 Edge E = std::make_pair(BB, Succ); 880 uint64_t Weight = EdgeWeights[E]; 881 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 882 // Use uint32_t saturated arithmetic to adjust the incoming weights, 883 // if needed. Sample counts in profiles are 64-bit unsigned values, 884 // but internally branch weights are expressed as 32-bit values. 885 if (Weight > std::numeric_limits<uint32_t>::max()) { 886 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 887 Weight = std::numeric_limits<uint32_t>::max(); 888 } 889 Weights.push_back(static_cast<uint32_t>(Weight)); 890 if (Weight != 0) { 891 if (Weight > MaxWeight) { 892 MaxWeight = Weight; 893 MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc(); 894 } 895 } 896 } 897 898 // Only set weights if there is at least one non-zero weight. 899 // In any other case, let the analyzer set weights. 900 if (MaxWeight > 0) { 901 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 902 TI->setMetadata(llvm::LLVMContext::MD_prof, 903 MDB.createBranchWeights(Weights)); 904 DebugLoc BranchLoc = TI->getDebugLoc(); 905 emitOptimizationRemark( 906 Ctx, DEBUG_TYPE, F, MaxDestLoc, 907 Twine("most popular destination for conditional branches at ") + 908 ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" + 909 Twine(BranchLoc.getLine()) + ":" + 910 Twine(BranchLoc.getCol())) 911 : Twine("<UNKNOWN LOCATION>"))); 912 } else { 913 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 914 } 915 } 916 } 917 918 /// \brief Get the line number for the function header. 919 /// 920 /// This looks up function \p F in the current compilation unit and 921 /// retrieves the line number where the function is defined. This is 922 /// line 0 for all the samples read from the profile file. Every line 923 /// number is relative to this line. 924 /// 925 /// \param F Function object to query. 926 /// 927 /// \returns the line number where \p F is defined. If it returns 0, 928 /// it means that there is no debug information available for \p F. 929 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 930 if (DISubprogram *S = getDISubprogram(&F)) 931 return S->getLine(); 932 933 // If the start of \p F is missing, emit a diagnostic to inform the user 934 // about the missed opportunity. 935 F.getContext().diagnose(DiagnosticInfoSampleProfile( 936 "No debug information found in function " + F.getName() + 937 ": Function profile not used", 938 DS_Warning)); 939 return 0; 940 } 941 942 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 943 DT.reset(new DominatorTree); 944 DT->recalculate(F); 945 946 PDT.reset(new DominatorTreeBase<BasicBlock>(true)); 947 PDT->recalculate(F); 948 949 LI.reset(new LoopInfo); 950 LI->analyze(*DT); 951 } 952 953 /// \brief Generate branch weight metadata for all branches in \p F. 954 /// 955 /// Branch weights are computed out of instruction samples using a 956 /// propagation heuristic. Propagation proceeds in 3 phases: 957 /// 958 /// 1- Assignment of block weights. All the basic blocks in the function 959 /// are initial assigned the same weight as their most frequently 960 /// executed instruction. 961 /// 962 /// 2- Creation of equivalence classes. Since samples may be missing from 963 /// blocks, we can fill in the gaps by setting the weights of all the 964 /// blocks in the same equivalence class to the same weight. To compute 965 /// the concept of equivalence, we use dominance and loop information. 966 /// Two blocks B1 and B2 are in the same equivalence class if B1 967 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 968 /// 969 /// 3- Propagation of block weights into edges. This uses a simple 970 /// propagation heuristic. The following rules are applied to every 971 /// block BB in the CFG: 972 /// 973 /// - If BB has a single predecessor/successor, then the weight 974 /// of that edge is the weight of the block. 975 /// 976 /// - If all the edges are known except one, and the weight of the 977 /// block is already known, the weight of the unknown edge will 978 /// be the weight of the block minus the sum of all the known 979 /// edges. If the sum of all the known edges is larger than BB's weight, 980 /// we set the unknown edge weight to zero. 981 /// 982 /// - If there is a self-referential edge, and the weight of the block is 983 /// known, the weight for that edge is set to the weight of the block 984 /// minus the weight of the other incoming edges to that block (if 985 /// known). 986 /// 987 /// Since this propagation is not guaranteed to finalize for every CFG, we 988 /// only allow it to proceed for a limited number of iterations (controlled 989 /// by -sample-profile-max-propagate-iterations). 990 /// 991 /// FIXME: Try to replace this propagation heuristic with a scheme 992 /// that is guaranteed to finalize. A work-list approach similar to 993 /// the standard value propagation algorithm used by SSA-CCP might 994 /// work here. 995 /// 996 /// Once all the branch weights are computed, we emit the MD_prof 997 /// metadata on BB using the computed values for each of its branches. 998 /// 999 /// \param F The function to query. 1000 /// 1001 /// \returns true if \p F was modified. Returns false, otherwise. 1002 bool SampleProfileLoader::emitAnnotations(Function &F) { 1003 bool Changed = false; 1004 1005 if (getFunctionLoc(F) == 0) 1006 return false; 1007 1008 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 1009 << ": " << getFunctionLoc(F) << "\n"); 1010 1011 Changed |= inlineHotFunctions(F); 1012 1013 // Compute basic block weights. 1014 Changed |= computeBlockWeights(F); 1015 1016 if (Changed) { 1017 // Compute dominance and loop info needed for propagation. 1018 computeDominanceAndLoopInfo(F); 1019 1020 // Find equivalence classes. 1021 findEquivalenceClasses(F); 1022 1023 // Propagate weights to all edges. 1024 propagateWeights(F); 1025 } 1026 1027 // If coverage checking was requested, compute it now. 1028 if (SampleProfileCoverage) { 1029 unsigned Used = CoverageTracker.countUsedSamples(Samples); 1030 unsigned Total = CoverageTracker.countBodySamples(Samples); 1031 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1032 if (Coverage < SampleProfileCoverage) { 1033 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1034 getDISubprogram(&F)->getFilename(), getFunctionLoc(F), 1035 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1036 Twine(Coverage) + "%) were applied", 1037 DS_Warning)); 1038 } 1039 } 1040 1041 return Changed; 1042 } 1043 1044 char SampleProfileLoader::ID = 0; 1045 INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile", 1046 "Sample Profile loader", false, false) 1047 INITIALIZE_PASS_DEPENDENCY(AddDiscriminators) 1048 INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile", 1049 "Sample Profile loader", false, false) 1050 1051 bool SampleProfileLoader::doInitialization(Module &M) { 1052 auto &Ctx = M.getContext(); 1053 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1054 if (std::error_code EC = ReaderOrErr.getError()) { 1055 std::string Msg = "Could not open profile: " + EC.message(); 1056 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1057 return false; 1058 } 1059 Reader = std::move(ReaderOrErr.get()); 1060 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1061 return true; 1062 } 1063 1064 ModulePass *llvm::createSampleProfileLoaderPass() { 1065 return new SampleProfileLoader(SampleProfileFile); 1066 } 1067 1068 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1069 return new SampleProfileLoader(Name); 1070 } 1071 1072 bool SampleProfileLoader::runOnModule(Module &M) { 1073 if (!ProfileIsValid) 1074 return false; 1075 1076 bool retval = false; 1077 for (auto &F : M) 1078 if (!F.isDeclaration()) { 1079 clearFunctionData(); 1080 retval |= runOnFunction(F); 1081 } 1082 return retval; 1083 } 1084 1085 bool SampleProfileLoader::runOnFunction(Function &F) { 1086 Samples = Reader->getSamplesFor(F); 1087 if (!Samples->empty()) 1088 return emitAnnotations(F); 1089 return false; 1090 } 1091