1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/PostDominators.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/InstIterator.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Metadata.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/Pass.h" 43 #include "llvm/ProfileData/SampleProfReader.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorOr.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Transforms/IPO.h" 49 #include "llvm/Transforms/Utils/Cloning.h" 50 #include <cctype> 51 52 using namespace llvm; 53 using namespace sampleprof; 54 55 #define DEBUG_TYPE "sample-profile" 56 57 // Command line option to specify the file to read samples from. This is 58 // mainly used for debugging. 59 static cl::opt<std::string> SampleProfileFile( 60 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 61 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 62 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 63 "sample-profile-max-propagate-iterations", cl::init(100), 64 cl::desc("Maximum number of iterations to go through when propagating " 65 "sample block/edge weights through the CFG.")); 66 static cl::opt<unsigned> SampleProfileCoverage( 67 "sample-profile-check-coverage", cl::init(0), cl::value_desc("N"), 68 cl::desc("Emit a warning if less than N% of samples in the input profile " 69 "are matched to the IR.")); 70 71 namespace { 72 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap; 73 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap; 74 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge; 75 typedef DenseMap<Edge, uint64_t> EdgeWeightMap; 76 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>> 77 BlockEdgeMap; 78 79 /// \brief Sample profile pass. 80 /// 81 /// This pass reads profile data from the file specified by 82 /// -sample-profile-file and annotates every affected function with the 83 /// profile information found in that file. 84 class SampleProfileLoader : public ModulePass { 85 public: 86 // Class identification, replacement for typeinfo 87 static char ID; 88 89 SampleProfileLoader(StringRef Name = SampleProfileFile) 90 : ModulePass(ID), DT(nullptr), PDT(nullptr), LI(nullptr), Reader(), 91 Samples(nullptr), Filename(Name), ProfileIsValid(false) { 92 initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry()); 93 } 94 95 bool doInitialization(Module &M) override; 96 97 void dump() { Reader->dump(); } 98 99 const char *getPassName() const override { return "Sample profile pass"; } 100 101 bool runOnModule(Module &M) override; 102 103 void getAnalysisUsage(AnalysisUsage &AU) const override { 104 AU.setPreservesCFG(); 105 } 106 107 protected: 108 bool runOnFunction(Function &F); 109 unsigned getFunctionLoc(Function &F); 110 bool emitAnnotations(Function &F); 111 ErrorOr<uint64_t> getInstWeight(const Instruction &I) const; 112 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB) const; 113 const FunctionSamples *findCalleeFunctionSamples(const CallInst &I) const; 114 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 115 bool inlineHotFunctions(Function &F); 116 void printEdgeWeight(raw_ostream &OS, Edge E); 117 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 118 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 119 bool computeBlockWeights(Function &F); 120 void findEquivalenceClasses(Function &F); 121 void findEquivalencesFor(BasicBlock *BB1, 122 SmallVector<BasicBlock *, 8> Descendants, 123 DominatorTreeBase<BasicBlock> *DomTree); 124 void propagateWeights(Function &F); 125 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 126 void buildEdges(Function &F); 127 bool propagateThroughEdges(Function &F); 128 void computeDominanceAndLoopInfo(Function &F); 129 unsigned getOffset(unsigned L, unsigned H) const; 130 void clearFunctionData(); 131 132 /// \brief Map basic blocks to their computed weights. 133 /// 134 /// The weight of a basic block is defined to be the maximum 135 /// of all the instruction weights in that block. 136 BlockWeightMap BlockWeights; 137 138 /// \brief Map edges to their computed weights. 139 /// 140 /// Edge weights are computed by propagating basic block weights in 141 /// SampleProfile::propagateWeights. 142 EdgeWeightMap EdgeWeights; 143 144 /// \brief Set of visited blocks during propagation. 145 SmallPtrSet<const BasicBlock *, 128> VisitedBlocks; 146 147 /// \brief Set of visited edges during propagation. 148 SmallSet<Edge, 128> VisitedEdges; 149 150 /// \brief Equivalence classes for block weights. 151 /// 152 /// Two blocks BB1 and BB2 are in the same equivalence class if they 153 /// dominate and post-dominate each other, and they are in the same loop 154 /// nest. When this happens, the two blocks are guaranteed to execute 155 /// the same number of times. 156 EquivalenceClassMap EquivalenceClass; 157 158 /// \brief Dominance, post-dominance and loop information. 159 std::unique_ptr<DominatorTree> DT; 160 std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT; 161 std::unique_ptr<LoopInfo> LI; 162 163 /// \brief Predecessors for each basic block in the CFG. 164 BlockEdgeMap Predecessors; 165 166 /// \brief Successors for each basic block in the CFG. 167 BlockEdgeMap Successors; 168 169 /// \brief Profile reader object. 170 std::unique_ptr<SampleProfileReader> Reader; 171 172 /// \brief Samples collected for the body of this function. 173 FunctionSamples *Samples; 174 175 /// \brief Name of the profile file to load. 176 StringRef Filename; 177 178 /// \brief Flag indicating whether the profile input loaded successfully. 179 bool ProfileIsValid; 180 }; 181 182 class SampleCoverageTracker { 183 public: 184 SampleCoverageTracker() : SampleCoverage() {} 185 186 void markSamplesUsed(const FunctionSamples *Samples, uint32_t LineOffset, 187 uint32_t Discriminator); 188 unsigned computeCoverage(const FunctionSamples *Samples) const; 189 unsigned getNumUsedSamples(const FunctionSamples *Samples) const; 190 191 private: 192 typedef DenseMap<LineLocation, unsigned> BodySampleCoverageMap; 193 typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap> 194 FunctionSamplesCoverageMap; 195 196 /// Coverage map for sampling records. 197 /// 198 /// This map keeps a record of sampling records that have been matched to 199 /// an IR instruction. This is used to detect some form of staleness in 200 /// profiles (see flag -sample-profile-check-coverage). 201 /// 202 /// Each entry in the map corresponds to a FunctionSamples instance. This is 203 /// another map that counts how many times the sample record at the 204 /// given location has been used. 205 FunctionSamplesCoverageMap SampleCoverage; 206 }; 207 208 SampleCoverageTracker CoverageTracker; 209 } 210 211 /// Mark as used the sample record for the given function samples at 212 /// (LineOffset, Discriminator). 213 void SampleCoverageTracker::markSamplesUsed(const FunctionSamples *Samples, 214 uint32_t LineOffset, 215 uint32_t Discriminator) { 216 BodySampleCoverageMap &Coverage = SampleCoverage[Samples]; 217 Coverage[LineLocation(LineOffset, Discriminator)]++; 218 } 219 220 /// Return the number of sample records that were applied from this profile. 221 unsigned 222 SampleCoverageTracker::getNumUsedSamples(const FunctionSamples *Samples) const { 223 auto I = SampleCoverage.find(Samples); 224 return (I != SampleCoverage.end()) ? I->second.size() : 0; 225 } 226 227 /// Return the fraction of sample records used in this profile. 228 /// 229 /// The returned value is an unsigned integer in the range 0-100 indicating 230 /// the percentage of sample records that were used while applying this 231 /// profile to the associated function. 232 unsigned 233 SampleCoverageTracker::computeCoverage(const FunctionSamples *Samples) const { 234 uint32_t NumTotalRecords = Samples->getBodySamples().size(); 235 uint32_t NumUsedRecords = getNumUsedSamples(Samples); 236 assert(NumUsedRecords <= NumTotalRecords && 237 "number of used records cannot exceed the total number of records"); 238 return NumTotalRecords > 0 ? NumUsedRecords * 100 / NumTotalRecords : 100; 239 } 240 241 /// Clear all the per-function data used to load samples and propagate weights. 242 void SampleProfileLoader::clearFunctionData() { 243 BlockWeights.clear(); 244 EdgeWeights.clear(); 245 VisitedBlocks.clear(); 246 VisitedEdges.clear(); 247 EquivalenceClass.clear(); 248 DT = nullptr; 249 PDT = nullptr; 250 LI = nullptr; 251 Predecessors.clear(); 252 Successors.clear(); 253 } 254 255 /// \brief Returns the offset of lineno \p L to head_lineno \p H 256 /// 257 /// \param L Lineno 258 /// \param H Header lineno of the function 259 /// 260 /// \returns offset to the header lineno. 16 bits are used to represent offset. 261 /// We assume that a single function will not exceed 65535 LOC. 262 unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const { 263 return (L - H) & 0xffff; 264 } 265 266 /// \brief Print the weight of edge \p E on stream \p OS. 267 /// 268 /// \param OS Stream to emit the output to. 269 /// \param E Edge to print. 270 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 271 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 272 << "]: " << EdgeWeights[E] << "\n"; 273 } 274 275 /// \brief Print the equivalence class of block \p BB on stream \p OS. 276 /// 277 /// \param OS Stream to emit the output to. 278 /// \param BB Block to print. 279 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 280 const BasicBlock *BB) { 281 const BasicBlock *Equiv = EquivalenceClass[BB]; 282 OS << "equivalence[" << BB->getName() 283 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 284 } 285 286 /// \brief Print the weight of block \p BB on stream \p OS. 287 /// 288 /// \param OS Stream to emit the output to. 289 /// \param BB Block to print. 290 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 291 const BasicBlock *BB) const { 292 const auto &I = BlockWeights.find(BB); 293 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 294 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 295 } 296 297 /// \brief Get the weight for an instruction. 298 /// 299 /// The "weight" of an instruction \p Inst is the number of samples 300 /// collected on that instruction at runtime. To retrieve it, we 301 /// need to compute the line number of \p Inst relative to the start of its 302 /// function. We use HeaderLineno to compute the offset. We then 303 /// look up the samples collected for \p Inst using BodySamples. 304 /// 305 /// \param Inst Instruction to query. 306 /// 307 /// \returns the weight of \p Inst. 308 ErrorOr<uint64_t> 309 SampleProfileLoader::getInstWeight(const Instruction &Inst) const { 310 DebugLoc DLoc = Inst.getDebugLoc(); 311 if (!DLoc) 312 return std::error_code(); 313 314 const FunctionSamples *FS = findFunctionSamples(Inst); 315 if (!FS) 316 return std::error_code(); 317 318 const DILocation *DIL = DLoc; 319 unsigned Lineno = DLoc.getLine(); 320 unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine(); 321 322 uint32_t LineOffset = getOffset(Lineno, HeaderLineno); 323 uint32_t Discriminator = DIL->getDiscriminator(); 324 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 325 if (R) { 326 if (SampleProfileCoverage) 327 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator); 328 DEBUG(dbgs() << " " << Lineno << "." << DIL->getDiscriminator() << ":" 329 << Inst << " (line offset: " << Lineno - HeaderLineno << "." 330 << DIL->getDiscriminator() << " - weight: " << R.get() 331 << ")\n"); 332 } 333 return R; 334 } 335 336 /// \brief Compute the weight of a basic block. 337 /// 338 /// The weight of basic block \p BB is the maximum weight of all the 339 /// instructions in BB. 340 /// 341 /// \param BB The basic block to query. 342 /// 343 /// \returns the weight for \p BB. 344 ErrorOr<uint64_t> 345 SampleProfileLoader::getBlockWeight(const BasicBlock *BB) const { 346 bool Found = false; 347 uint64_t Weight = 0; 348 for (auto &I : BB->getInstList()) { 349 const ErrorOr<uint64_t> &R = getInstWeight(I); 350 if (R && R.get() >= Weight) { 351 Weight = R.get(); 352 Found = true; 353 } 354 } 355 if (Found) 356 return Weight; 357 else 358 return std::error_code(); 359 } 360 361 /// \brief Compute and store the weights of every basic block. 362 /// 363 /// This populates the BlockWeights map by computing 364 /// the weights of every basic block in the CFG. 365 /// 366 /// \param F The function to query. 367 bool SampleProfileLoader::computeBlockWeights(Function &F) { 368 bool Changed = false; 369 DEBUG(dbgs() << "Block weights\n"); 370 for (const auto &BB : F) { 371 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 372 if (Weight) { 373 BlockWeights[&BB] = Weight.get(); 374 VisitedBlocks.insert(&BB); 375 Changed = true; 376 } 377 DEBUG(printBlockWeight(dbgs(), &BB)); 378 } 379 380 if (SampleProfileCoverage) { 381 unsigned Coverage = CoverageTracker.computeCoverage(Samples); 382 if (Coverage < SampleProfileCoverage) { 383 const char *Filename = getDISubprogram(&F)->getFilename().str().c_str(); 384 F.getContext().diagnose(DiagnosticInfoSampleProfile( 385 Filename, getFunctionLoc(F), 386 Twine(CoverageTracker.getNumUsedSamples(Samples)) + " of " + 387 Twine(Samples->getBodySamples().size()) + 388 " available profile records (" + Twine(Coverage) + 389 "%) were applied", 390 DS_Warning)); 391 } 392 } 393 394 return Changed; 395 } 396 397 /// \brief Get the FunctionSamples for a call instruction. 398 /// 399 /// The FunctionSamples of a call instruction \p Inst is the inlined 400 /// instance in which that call instruction is calling to. It contains 401 /// all samples that resides in the inlined instance. We first find the 402 /// inlined instance in which the call instruction is from, then we 403 /// traverse its children to find the callsite with the matching 404 /// location and callee function name. 405 /// 406 /// \param Inst Call instruction to query. 407 /// 408 /// \returns The FunctionSamples pointer to the inlined instance. 409 const FunctionSamples * 410 SampleProfileLoader::findCalleeFunctionSamples(const CallInst &Inst) const { 411 const DILocation *DIL = Inst.getDebugLoc(); 412 if (!DIL) { 413 return nullptr; 414 } 415 DISubprogram *SP = DIL->getScope()->getSubprogram(); 416 if (!SP) 417 return nullptr; 418 419 Function *CalleeFunc = Inst.getCalledFunction(); 420 if (!CalleeFunc) { 421 return nullptr; 422 } 423 424 StringRef CalleeName = CalleeFunc->getName(); 425 const FunctionSamples *FS = findFunctionSamples(Inst); 426 if (FS == nullptr) 427 return nullptr; 428 429 return FS->findFunctionSamplesAt( 430 CallsiteLocation(getOffset(DIL->getLine(), SP->getLine()), 431 DIL->getDiscriminator(), CalleeName)); 432 } 433 434 /// \brief Get the FunctionSamples for an instruction. 435 /// 436 /// The FunctionSamples of an instruction \p Inst is the inlined instance 437 /// in which that instruction is coming from. We traverse the inline stack 438 /// of that instruction, and match it with the tree nodes in the profile. 439 /// 440 /// \param Inst Instruction to query. 441 /// 442 /// \returns the FunctionSamples pointer to the inlined instance. 443 const FunctionSamples * 444 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 445 SmallVector<CallsiteLocation, 10> S; 446 const DILocation *DIL = Inst.getDebugLoc(); 447 if (!DIL) { 448 return Samples; 449 } 450 StringRef CalleeName; 451 for (const DILocation *DIL = Inst.getDebugLoc(); DIL; 452 DIL = DIL->getInlinedAt()) { 453 DISubprogram *SP = DIL->getScope()->getSubprogram(); 454 if (!SP) 455 return nullptr; 456 if (!CalleeName.empty()) { 457 S.push_back(CallsiteLocation(getOffset(DIL->getLine(), SP->getLine()), 458 DIL->getDiscriminator(), CalleeName)); 459 } 460 CalleeName = SP->getLinkageName(); 461 } 462 if (S.size() == 0) 463 return Samples; 464 const FunctionSamples *FS = Samples; 465 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 466 FS = FS->findFunctionSamplesAt(S[i]); 467 } 468 return FS; 469 } 470 471 /// \brief Iteratively inline hot callsites of a function. 472 /// 473 /// Iteratively traverse all callsites of the function \p F, and find if 474 /// the corresponding inlined instance exists and is hot in profile. If 475 /// it is hot enough, inline the callsites and adds new callsites of the 476 /// callee into the caller. 477 /// 478 /// TODO: investigate the possibility of not invoking InlineFunction directly. 479 /// 480 /// \param F function to perform iterative inlining. 481 /// 482 /// \returns True if there is any inline happened. 483 bool SampleProfileLoader::inlineHotFunctions(Function &F) { 484 bool Changed = false; 485 LLVMContext &Ctx = F.getContext(); 486 while (true) { 487 bool LocalChanged = false; 488 SmallVector<CallInst *, 10> CIS; 489 for (auto &BB : F) { 490 for (auto &I : BB.getInstList()) { 491 CallInst *CI = dyn_cast<CallInst>(&I); 492 if (CI) { 493 const FunctionSamples *FS = findCalleeFunctionSamples(*CI); 494 if (FS && FS->getTotalSamples() > 0) { 495 CIS.push_back(CI); 496 } 497 } 498 } 499 } 500 for (auto CI : CIS) { 501 InlineFunctionInfo IFI; 502 Function *CalledFunction = CI->getCalledFunction(); 503 DebugLoc DLoc = CI->getDebugLoc(); 504 uint64_t NumSamples = findCalleeFunctionSamples(*CI)->getTotalSamples(); 505 if (InlineFunction(CI, IFI)) { 506 LocalChanged = true; 507 emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc, 508 Twine("inlined hot callee '") + 509 CalledFunction->getName() + "' with " + 510 Twine(NumSamples) + " samples into '" + 511 F.getName() + "'"); 512 } 513 } 514 if (LocalChanged) { 515 Changed = true; 516 } else { 517 break; 518 } 519 } 520 return Changed; 521 } 522 523 /// \brief Find equivalence classes for the given block. 524 /// 525 /// This finds all the blocks that are guaranteed to execute the same 526 /// number of times as \p BB1. To do this, it traverses all the 527 /// descendants of \p BB1 in the dominator or post-dominator tree. 528 /// 529 /// A block BB2 will be in the same equivalence class as \p BB1 if 530 /// the following holds: 531 /// 532 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 533 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 534 /// dominate BB1 in the post-dominator tree. 535 /// 536 /// 2- Both BB2 and \p BB1 must be in the same loop. 537 /// 538 /// For every block BB2 that meets those two requirements, we set BB2's 539 /// equivalence class to \p BB1. 540 /// 541 /// \param BB1 Block to check. 542 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 543 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 544 /// with blocks from \p BB1's dominator tree, then 545 /// this is the post-dominator tree, and vice versa. 546 void SampleProfileLoader::findEquivalencesFor( 547 BasicBlock *BB1, SmallVector<BasicBlock *, 8> Descendants, 548 DominatorTreeBase<BasicBlock> *DomTree) { 549 const BasicBlock *EC = EquivalenceClass[BB1]; 550 uint64_t Weight = BlockWeights[EC]; 551 for (const auto *BB2 : Descendants) { 552 bool IsDomParent = DomTree->dominates(BB2, BB1); 553 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 554 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 555 EquivalenceClass[BB2] = EC; 556 557 // If BB2 is heavier than BB1, make BB2 have the same weight 558 // as BB1. 559 // 560 // Note that we don't worry about the opposite situation here 561 // (when BB2 is lighter than BB1). We will deal with this 562 // during the propagation phase. Right now, we just want to 563 // make sure that BB1 has the largest weight of all the 564 // members of its equivalence set. 565 Weight = std::max(Weight, BlockWeights[BB2]); 566 } 567 } 568 BlockWeights[EC] = Weight; 569 } 570 571 /// \brief Find equivalence classes. 572 /// 573 /// Since samples may be missing from blocks, we can fill in the gaps by setting 574 /// the weights of all the blocks in the same equivalence class to the same 575 /// weight. To compute the concept of equivalence, we use dominance and loop 576 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 577 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 578 /// 579 /// \param F The function to query. 580 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 581 SmallVector<BasicBlock *, 8> DominatedBBs; 582 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 583 // Find equivalence sets based on dominance and post-dominance information. 584 for (auto &BB : F) { 585 BasicBlock *BB1 = &BB; 586 587 // Compute BB1's equivalence class once. 588 if (EquivalenceClass.count(BB1)) { 589 DEBUG(printBlockEquivalence(dbgs(), BB1)); 590 continue; 591 } 592 593 // By default, blocks are in their own equivalence class. 594 EquivalenceClass[BB1] = BB1; 595 596 // Traverse all the blocks dominated by BB1. We are looking for 597 // every basic block BB2 such that: 598 // 599 // 1- BB1 dominates BB2. 600 // 2- BB2 post-dominates BB1. 601 // 3- BB1 and BB2 are in the same loop nest. 602 // 603 // If all those conditions hold, it means that BB2 is executed 604 // as many times as BB1, so they are placed in the same equivalence 605 // class by making BB2's equivalence class be BB1. 606 DominatedBBs.clear(); 607 DT->getDescendants(BB1, DominatedBBs); 608 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 609 610 DEBUG(printBlockEquivalence(dbgs(), BB1)); 611 } 612 613 // Assign weights to equivalence classes. 614 // 615 // All the basic blocks in the same equivalence class will execute 616 // the same number of times. Since we know that the head block in 617 // each equivalence class has the largest weight, assign that weight 618 // to all the blocks in that equivalence class. 619 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 620 for (auto &BI : F) { 621 const BasicBlock *BB = &BI; 622 const BasicBlock *EquivBB = EquivalenceClass[BB]; 623 if (BB != EquivBB) 624 BlockWeights[BB] = BlockWeights[EquivBB]; 625 DEBUG(printBlockWeight(dbgs(), BB)); 626 } 627 } 628 629 /// \brief Visit the given edge to decide if it has a valid weight. 630 /// 631 /// If \p E has not been visited before, we copy to \p UnknownEdge 632 /// and increment the count of unknown edges. 633 /// 634 /// \param E Edge to visit. 635 /// \param NumUnknownEdges Current number of unknown edges. 636 /// \param UnknownEdge Set if E has not been visited before. 637 /// 638 /// \returns E's weight, if known. Otherwise, return 0. 639 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 640 Edge *UnknownEdge) { 641 if (!VisitedEdges.count(E)) { 642 (*NumUnknownEdges)++; 643 *UnknownEdge = E; 644 return 0; 645 } 646 647 return EdgeWeights[E]; 648 } 649 650 /// \brief Propagate weights through incoming/outgoing edges. 651 /// 652 /// If the weight of a basic block is known, and there is only one edge 653 /// with an unknown weight, we can calculate the weight of that edge. 654 /// 655 /// Similarly, if all the edges have a known count, we can calculate the 656 /// count of the basic block, if needed. 657 /// 658 /// \param F Function to process. 659 /// 660 /// \returns True if new weights were assigned to edges or blocks. 661 bool SampleProfileLoader::propagateThroughEdges(Function &F) { 662 bool Changed = false; 663 DEBUG(dbgs() << "\nPropagation through edges\n"); 664 for (const auto &BI : F) { 665 const BasicBlock *BB = &BI; 666 const BasicBlock *EC = EquivalenceClass[BB]; 667 668 // Visit all the predecessor and successor edges to determine 669 // which ones have a weight assigned already. Note that it doesn't 670 // matter that we only keep track of a single unknown edge. The 671 // only case we are interested in handling is when only a single 672 // edge is unknown (see setEdgeOrBlockWeight). 673 for (unsigned i = 0; i < 2; i++) { 674 uint64_t TotalWeight = 0; 675 unsigned NumUnknownEdges = 0; 676 Edge UnknownEdge, SelfReferentialEdge; 677 678 if (i == 0) { 679 // First, visit all predecessor edges. 680 for (auto *Pred : Predecessors[BB]) { 681 Edge E = std::make_pair(Pred, BB); 682 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 683 if (E.first == E.second) 684 SelfReferentialEdge = E; 685 } 686 } else { 687 // On the second round, visit all successor edges. 688 for (auto *Succ : Successors[BB]) { 689 Edge E = std::make_pair(BB, Succ); 690 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 691 } 692 } 693 694 // After visiting all the edges, there are three cases that we 695 // can handle immediately: 696 // 697 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 698 // In this case, we simply check that the sum of all the edges 699 // is the same as BB's weight. If not, we change BB's weight 700 // to match. Additionally, if BB had not been visited before, 701 // we mark it visited. 702 // 703 // - Only one edge is unknown and BB has already been visited. 704 // In this case, we can compute the weight of the edge by 705 // subtracting the total block weight from all the known 706 // edge weights. If the edges weight more than BB, then the 707 // edge of the last remaining edge is set to zero. 708 // 709 // - There exists a self-referential edge and the weight of BB is 710 // known. In this case, this edge can be based on BB's weight. 711 // We add up all the other known edges and set the weight on 712 // the self-referential edge as we did in the previous case. 713 // 714 // In any other case, we must continue iterating. Eventually, 715 // all edges will get a weight, or iteration will stop when 716 // it reaches SampleProfileMaxPropagateIterations. 717 if (NumUnknownEdges <= 1) { 718 uint64_t &BBWeight = BlockWeights[EC]; 719 if (NumUnknownEdges == 0) { 720 // If we already know the weight of all edges, the weight of the 721 // basic block can be computed. It should be no larger than the sum 722 // of all edge weights. 723 if (TotalWeight > BBWeight) { 724 BBWeight = TotalWeight; 725 Changed = true; 726 DEBUG(dbgs() << "All edge weights for " << BB->getName() 727 << " known. Set weight for block: "; 728 printBlockWeight(dbgs(), BB);); 729 } 730 if (VisitedBlocks.insert(EC).second) 731 Changed = true; 732 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 733 // If there is a single unknown edge and the block has been 734 // visited, then we can compute E's weight. 735 if (BBWeight >= TotalWeight) 736 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 737 else 738 EdgeWeights[UnknownEdge] = 0; 739 VisitedEdges.insert(UnknownEdge); 740 Changed = true; 741 DEBUG(dbgs() << "Set weight for edge: "; 742 printEdgeWeight(dbgs(), UnknownEdge)); 743 } 744 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 745 uint64_t &BBWeight = BlockWeights[BB]; 746 // We have a self-referential edge and the weight of BB is known. 747 if (BBWeight >= TotalWeight) 748 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 749 else 750 EdgeWeights[SelfReferentialEdge] = 0; 751 VisitedEdges.insert(SelfReferentialEdge); 752 Changed = true; 753 DEBUG(dbgs() << "Set self-referential edge weight to: "; 754 printEdgeWeight(dbgs(), SelfReferentialEdge)); 755 } 756 } 757 } 758 759 return Changed; 760 } 761 762 /// \brief Build in/out edge lists for each basic block in the CFG. 763 /// 764 /// We are interested in unique edges. If a block B1 has multiple 765 /// edges to another block B2, we only add a single B1->B2 edge. 766 void SampleProfileLoader::buildEdges(Function &F) { 767 for (auto &BI : F) { 768 BasicBlock *B1 = &BI; 769 770 // Add predecessors for B1. 771 SmallPtrSet<BasicBlock *, 16> Visited; 772 if (!Predecessors[B1].empty()) 773 llvm_unreachable("Found a stale predecessors list in a basic block."); 774 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 775 BasicBlock *B2 = *PI; 776 if (Visited.insert(B2).second) 777 Predecessors[B1].push_back(B2); 778 } 779 780 // Add successors for B1. 781 Visited.clear(); 782 if (!Successors[B1].empty()) 783 llvm_unreachable("Found a stale successors list in a basic block."); 784 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 785 BasicBlock *B2 = *SI; 786 if (Visited.insert(B2).second) 787 Successors[B1].push_back(B2); 788 } 789 } 790 } 791 792 /// \brief Propagate weights into edges 793 /// 794 /// The following rules are applied to every block BB in the CFG: 795 /// 796 /// - If BB has a single predecessor/successor, then the weight 797 /// of that edge is the weight of the block. 798 /// 799 /// - If all incoming or outgoing edges are known except one, and the 800 /// weight of the block is already known, the weight of the unknown 801 /// edge will be the weight of the block minus the sum of all the known 802 /// edges. If the sum of all the known edges is larger than BB's weight, 803 /// we set the unknown edge weight to zero. 804 /// 805 /// - If there is a self-referential edge, and the weight of the block is 806 /// known, the weight for that edge is set to the weight of the block 807 /// minus the weight of the other incoming edges to that block (if 808 /// known). 809 void SampleProfileLoader::propagateWeights(Function &F) { 810 bool Changed = true; 811 unsigned I = 0; 812 813 // Add an entry count to the function using the samples gathered 814 // at the function entry. 815 F.setEntryCount(Samples->getHeadSamples()); 816 817 // Before propagation starts, build, for each block, a list of 818 // unique predecessors and successors. This is necessary to handle 819 // identical edges in multiway branches. Since we visit all blocks and all 820 // edges of the CFG, it is cleaner to build these lists once at the start 821 // of the pass. 822 buildEdges(F); 823 824 // Propagate until we converge or we go past the iteration limit. 825 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 826 Changed = propagateThroughEdges(F); 827 } 828 829 // Generate MD_prof metadata for every branch instruction using the 830 // edge weights computed during propagation. 831 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 832 LLVMContext &Ctx = F.getContext(); 833 MDBuilder MDB(Ctx); 834 for (auto &BI : F) { 835 BasicBlock *BB = &BI; 836 TerminatorInst *TI = BB->getTerminator(); 837 if (TI->getNumSuccessors() == 1) 838 continue; 839 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 840 continue; 841 842 DEBUG(dbgs() << "\nGetting weights for branch at line " 843 << TI->getDebugLoc().getLine() << ".\n"); 844 SmallVector<uint32_t, 4> Weights; 845 uint32_t MaxWeight = 0; 846 DebugLoc MaxDestLoc; 847 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 848 BasicBlock *Succ = TI->getSuccessor(I); 849 Edge E = std::make_pair(BB, Succ); 850 uint64_t Weight = EdgeWeights[E]; 851 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 852 // Use uint32_t saturated arithmetic to adjust the incoming weights, 853 // if needed. Sample counts in profiles are 64-bit unsigned values, 854 // but internally branch weights are expressed as 32-bit values. 855 if (Weight > std::numeric_limits<uint32_t>::max()) { 856 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 857 Weight = std::numeric_limits<uint32_t>::max(); 858 } 859 Weights.push_back(static_cast<uint32_t>(Weight)); 860 if (Weight != 0) { 861 if (Weight > MaxWeight) { 862 MaxWeight = Weight; 863 MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc(); 864 } 865 } 866 } 867 868 // Only set weights if there is at least one non-zero weight. 869 // In any other case, let the analyzer set weights. 870 if (MaxWeight > 0) { 871 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 872 TI->setMetadata(llvm::LLVMContext::MD_prof, 873 MDB.createBranchWeights(Weights)); 874 DebugLoc BranchLoc = TI->getDebugLoc(); 875 emitOptimizationRemark( 876 Ctx, DEBUG_TYPE, F, MaxDestLoc, 877 Twine("most popular destination for conditional branches at ") + 878 ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" + 879 Twine(BranchLoc.getLine()) + ":" + 880 Twine(BranchLoc.getCol())) 881 : Twine("<UNKNOWN LOCATION>"))); 882 } else { 883 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 884 } 885 } 886 } 887 888 /// \brief Get the line number for the function header. 889 /// 890 /// This looks up function \p F in the current compilation unit and 891 /// retrieves the line number where the function is defined. This is 892 /// line 0 for all the samples read from the profile file. Every line 893 /// number is relative to this line. 894 /// 895 /// \param F Function object to query. 896 /// 897 /// \returns the line number where \p F is defined. If it returns 0, 898 /// it means that there is no debug information available for \p F. 899 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 900 if (DISubprogram *S = getDISubprogram(&F)) 901 return S->getLine(); 902 903 // If the start of \p F is missing, emit a diagnostic to inform the user 904 // about the missed opportunity. 905 F.getContext().diagnose(DiagnosticInfoSampleProfile( 906 "No debug information found in function " + F.getName() + 907 ": Function profile not used", 908 DS_Warning)); 909 return 0; 910 } 911 912 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 913 DT.reset(new DominatorTree); 914 DT->recalculate(F); 915 916 PDT.reset(new DominatorTreeBase<BasicBlock>(true)); 917 PDT->recalculate(F); 918 919 LI.reset(new LoopInfo); 920 LI->analyze(*DT); 921 } 922 923 /// \brief Generate branch weight metadata for all branches in \p F. 924 /// 925 /// Branch weights are computed out of instruction samples using a 926 /// propagation heuristic. Propagation proceeds in 3 phases: 927 /// 928 /// 1- Assignment of block weights. All the basic blocks in the function 929 /// are initial assigned the same weight as their most frequently 930 /// executed instruction. 931 /// 932 /// 2- Creation of equivalence classes. Since samples may be missing from 933 /// blocks, we can fill in the gaps by setting the weights of all the 934 /// blocks in the same equivalence class to the same weight. To compute 935 /// the concept of equivalence, we use dominance and loop information. 936 /// Two blocks B1 and B2 are in the same equivalence class if B1 937 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 938 /// 939 /// 3- Propagation of block weights into edges. This uses a simple 940 /// propagation heuristic. The following rules are applied to every 941 /// block BB in the CFG: 942 /// 943 /// - If BB has a single predecessor/successor, then the weight 944 /// of that edge is the weight of the block. 945 /// 946 /// - If all the edges are known except one, and the weight of the 947 /// block is already known, the weight of the unknown edge will 948 /// be the weight of the block minus the sum of all the known 949 /// edges. If the sum of all the known edges is larger than BB's weight, 950 /// we set the unknown edge weight to zero. 951 /// 952 /// - If there is a self-referential edge, and the weight of the block is 953 /// known, the weight for that edge is set to the weight of the block 954 /// minus the weight of the other incoming edges to that block (if 955 /// known). 956 /// 957 /// Since this propagation is not guaranteed to finalize for every CFG, we 958 /// only allow it to proceed for a limited number of iterations (controlled 959 /// by -sample-profile-max-propagate-iterations). 960 /// 961 /// FIXME: Try to replace this propagation heuristic with a scheme 962 /// that is guaranteed to finalize. A work-list approach similar to 963 /// the standard value propagation algorithm used by SSA-CCP might 964 /// work here. 965 /// 966 /// Once all the branch weights are computed, we emit the MD_prof 967 /// metadata on BB using the computed values for each of its branches. 968 /// 969 /// \param F The function to query. 970 /// 971 /// \returns true if \p F was modified. Returns false, otherwise. 972 bool SampleProfileLoader::emitAnnotations(Function &F) { 973 bool Changed = false; 974 975 if (getFunctionLoc(F) == 0) 976 return false; 977 978 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 979 << ": " << getFunctionLoc(F) << "\n"); 980 981 Changed |= inlineHotFunctions(F); 982 983 // Compute basic block weights. 984 Changed |= computeBlockWeights(F); 985 986 if (Changed) { 987 // Compute dominance and loop info needed for propagation. 988 computeDominanceAndLoopInfo(F); 989 990 // Find equivalence classes. 991 findEquivalenceClasses(F); 992 993 // Propagate weights to all edges. 994 propagateWeights(F); 995 } 996 997 return Changed; 998 } 999 1000 char SampleProfileLoader::ID = 0; 1001 INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile", 1002 "Sample Profile loader", false, false) 1003 INITIALIZE_PASS_DEPENDENCY(AddDiscriminators) 1004 INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile", 1005 "Sample Profile loader", false, false) 1006 1007 bool SampleProfileLoader::doInitialization(Module &M) { 1008 auto &Ctx = M.getContext(); 1009 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1010 if (std::error_code EC = ReaderOrErr.getError()) { 1011 std::string Msg = "Could not open profile: " + EC.message(); 1012 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename.data(), Msg)); 1013 return false; 1014 } 1015 Reader = std::move(ReaderOrErr.get()); 1016 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1017 return true; 1018 } 1019 1020 ModulePass *llvm::createSampleProfileLoaderPass() { 1021 return new SampleProfileLoader(SampleProfileFile); 1022 } 1023 1024 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1025 return new SampleProfileLoader(Name); 1026 } 1027 1028 bool SampleProfileLoader::runOnModule(Module &M) { 1029 if (!ProfileIsValid) 1030 return false; 1031 1032 bool retval = false; 1033 for (auto &F : M) 1034 if (!F.isDeclaration()) { 1035 clearFunctionData(); 1036 retval |= runOnFunction(F); 1037 } 1038 return retval; 1039 } 1040 1041 bool SampleProfileLoader::runOnFunction(Function &F) { 1042 Samples = Reader->getSamplesFor(F); 1043 if (!Samples->empty()) 1044 return emitAnnotations(F); 1045 return false; 1046 } 1047