1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/SampleProfile.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/PostDominators.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DebugInfo.h" 35 #include "llvm/IR/DiagnosticInfo.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/InstIterator.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Metadata.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/Pass.h" 47 #include "llvm/ProfileData/InstrProf.h" 48 #include "llvm/ProfileData/SampleProfReader.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorOr.h" 52 #include "llvm/Support/Format.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Transforms/IPO.h" 55 #include "llvm/Transforms/Instrumentation.h" 56 #include "llvm/Transforms/Utils/Cloning.h" 57 #include <cctype> 58 59 using namespace llvm; 60 using namespace sampleprof; 61 62 #define DEBUG_TYPE "sample-profile" 63 64 // Command line option to specify the file to read samples from. This is 65 // mainly used for debugging. 66 static cl::opt<std::string> SampleProfileFile( 67 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 68 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 69 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 70 "sample-profile-max-propagate-iterations", cl::init(100), 71 cl::desc("Maximum number of iterations to go through when propagating " 72 "sample block/edge weights through the CFG.")); 73 static cl::opt<unsigned> SampleProfileRecordCoverage( 74 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 75 cl::desc("Emit a warning if less than N% of records in the input profile " 76 "are matched to the IR.")); 77 static cl::opt<unsigned> SampleProfileSampleCoverage( 78 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 79 cl::desc("Emit a warning if less than N% of samples in the input profile " 80 "are matched to the IR.")); 81 static cl::opt<double> SampleProfileHotThreshold( 82 "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"), 83 cl::desc("Inlined functions that account for more than N% of all samples " 84 "collected in the parent function, will be inlined again.")); 85 86 namespace { 87 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap; 88 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap; 89 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge; 90 typedef DenseMap<Edge, uint64_t> EdgeWeightMap; 91 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>> 92 BlockEdgeMap; 93 94 class SampleCoverageTracker { 95 public: 96 SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {} 97 98 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 99 uint32_t Discriminator, uint64_t Samples); 100 unsigned computeCoverage(unsigned Used, unsigned Total) const; 101 unsigned countUsedRecords(const FunctionSamples *FS) const; 102 unsigned countBodyRecords(const FunctionSamples *FS) const; 103 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 104 uint64_t countBodySamples(const FunctionSamples *FS) const; 105 void clear() { 106 SampleCoverage.clear(); 107 TotalUsedSamples = 0; 108 } 109 110 private: 111 typedef std::map<LineLocation, unsigned> BodySampleCoverageMap; 112 typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap> 113 FunctionSamplesCoverageMap; 114 115 /// Coverage map for sampling records. 116 /// 117 /// This map keeps a record of sampling records that have been matched to 118 /// an IR instruction. This is used to detect some form of staleness in 119 /// profiles (see flag -sample-profile-check-coverage). 120 /// 121 /// Each entry in the map corresponds to a FunctionSamples instance. This is 122 /// another map that counts how many times the sample record at the 123 /// given location has been used. 124 FunctionSamplesCoverageMap SampleCoverage; 125 126 /// Number of samples used from the profile. 127 /// 128 /// When a sampling record is used for the first time, the samples from 129 /// that record are added to this accumulator. Coverage is later computed 130 /// based on the total number of samples available in this function and 131 /// its callsites. 132 /// 133 /// Note that this accumulator tracks samples used from a single function 134 /// and all the inlined callsites. Strictly, we should have a map of counters 135 /// keyed by FunctionSamples pointers, but these stats are cleared after 136 /// every function, so we just need to keep a single counter. 137 uint64_t TotalUsedSamples; 138 }; 139 140 /// \brief Sample profile pass. 141 /// 142 /// This pass reads profile data from the file specified by 143 /// -sample-profile-file and annotates every affected function with the 144 /// profile information found in that file. 145 class SampleProfileLoader { 146 public: 147 SampleProfileLoader(StringRef Name = SampleProfileFile) 148 : DT(nullptr), PDT(nullptr), LI(nullptr), ACT(nullptr), Reader(), 149 Samples(nullptr), Filename(Name), ProfileIsValid(false), 150 TotalCollectedSamples(0) {} 151 152 bool doInitialization(Module &M); 153 bool runOnModule(Module &M); 154 void setACT(AssumptionCacheTracker *A) { ACT = A; } 155 156 void dump() { Reader->dump(); } 157 158 protected: 159 bool runOnFunction(Function &F); 160 unsigned getFunctionLoc(Function &F); 161 bool emitAnnotations(Function &F); 162 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 163 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 164 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 165 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 166 bool inlineHotFunctions(Function &F); 167 void printEdgeWeight(raw_ostream &OS, Edge E); 168 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 169 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 170 bool computeBlockWeights(Function &F); 171 void findEquivalenceClasses(Function &F); 172 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 173 DominatorTreeBase<BasicBlock> *DomTree); 174 void propagateWeights(Function &F); 175 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 176 void buildEdges(Function &F); 177 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 178 void computeDominanceAndLoopInfo(Function &F); 179 unsigned getOffset(unsigned L, unsigned H) const; 180 void clearFunctionData(); 181 182 /// \brief Map basic blocks to their computed weights. 183 /// 184 /// The weight of a basic block is defined to be the maximum 185 /// of all the instruction weights in that block. 186 BlockWeightMap BlockWeights; 187 188 /// \brief Map edges to their computed weights. 189 /// 190 /// Edge weights are computed by propagating basic block weights in 191 /// SampleProfile::propagateWeights. 192 EdgeWeightMap EdgeWeights; 193 194 /// \brief Set of visited blocks during propagation. 195 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 196 197 /// \brief Set of visited edges during propagation. 198 SmallSet<Edge, 32> VisitedEdges; 199 200 /// \brief Equivalence classes for block weights. 201 /// 202 /// Two blocks BB1 and BB2 are in the same equivalence class if they 203 /// dominate and post-dominate each other, and they are in the same loop 204 /// nest. When this happens, the two blocks are guaranteed to execute 205 /// the same number of times. 206 EquivalenceClassMap EquivalenceClass; 207 208 /// \brief Dominance, post-dominance and loop information. 209 std::unique_ptr<DominatorTree> DT; 210 std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT; 211 std::unique_ptr<LoopInfo> LI; 212 213 AssumptionCacheTracker *ACT; 214 215 /// \brief Predecessors for each basic block in the CFG. 216 BlockEdgeMap Predecessors; 217 218 /// \brief Successors for each basic block in the CFG. 219 BlockEdgeMap Successors; 220 221 SampleCoverageTracker CoverageTracker; 222 223 /// \brief Profile reader object. 224 std::unique_ptr<SampleProfileReader> Reader; 225 226 /// \brief Samples collected for the body of this function. 227 FunctionSamples *Samples; 228 229 /// \brief Name of the profile file to load. 230 std::string Filename; 231 232 /// \brief Flag indicating whether the profile input loaded successfully. 233 bool ProfileIsValid; 234 235 /// \brief Total number of samples collected in this profile. 236 /// 237 /// This is the sum of all the samples collected in all the functions executed 238 /// at runtime. 239 uint64_t TotalCollectedSamples; 240 }; 241 242 class SampleProfileLoaderLegacyPass : public ModulePass { 243 public: 244 // Class identification, replacement for typeinfo 245 static char ID; 246 247 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile) 248 : ModulePass(ID), SampleLoader(Name) { 249 initializeSampleProfileLoaderLegacyPassPass( 250 *PassRegistry::getPassRegistry()); 251 } 252 253 void dump() { SampleLoader.dump(); } 254 255 bool doInitialization(Module &M) override { 256 return SampleLoader.doInitialization(M); 257 } 258 StringRef getPassName() const override { return "Sample profile pass"; } 259 bool runOnModule(Module &M) override; 260 261 void getAnalysisUsage(AnalysisUsage &AU) const override { 262 AU.addRequired<AssumptionCacheTracker>(); 263 } 264 265 private: 266 SampleProfileLoader SampleLoader; 267 }; 268 269 /// Return true if the given callsite is hot wrt to its caller. 270 /// 271 /// Functions that were inlined in the original binary will be represented 272 /// in the inline stack in the sample profile. If the profile shows that 273 /// the original inline decision was "good" (i.e., the callsite is executed 274 /// frequently), then we will recreate the inline decision and apply the 275 /// profile from the inlined callsite. 276 /// 277 /// To decide whether an inlined callsite is hot, we compute the fraction 278 /// of samples used by the callsite with respect to the total number of samples 279 /// collected in the caller. 280 /// 281 /// If that fraction is larger than the default given by 282 /// SampleProfileHotThreshold, the callsite will be inlined again. 283 bool callsiteIsHot(const FunctionSamples *CallerFS, 284 const FunctionSamples *CallsiteFS) { 285 if (!CallsiteFS) 286 return false; // The callsite was not inlined in the original binary. 287 288 uint64_t ParentTotalSamples = CallerFS->getTotalSamples(); 289 if (ParentTotalSamples == 0) 290 return false; // Avoid division by zero. 291 292 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 293 if (CallsiteTotalSamples == 0) 294 return false; // Callsite is trivially cold. 295 296 double PercentSamples = 297 (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0; 298 return PercentSamples >= SampleProfileHotThreshold; 299 } 300 } 301 302 /// Mark as used the sample record for the given function samples at 303 /// (LineOffset, Discriminator). 304 /// 305 /// \returns true if this is the first time we mark the given record. 306 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 307 uint32_t LineOffset, 308 uint32_t Discriminator, 309 uint64_t Samples) { 310 LineLocation Loc(LineOffset, Discriminator); 311 unsigned &Count = SampleCoverage[FS][Loc]; 312 bool FirstTime = (++Count == 1); 313 if (FirstTime) 314 TotalUsedSamples += Samples; 315 return FirstTime; 316 } 317 318 /// Return the number of sample records that were applied from this profile. 319 /// 320 /// This count does not include records from cold inlined callsites. 321 unsigned 322 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const { 323 auto I = SampleCoverage.find(FS); 324 325 // The size of the coverage map for FS represents the number of records 326 // that were marked used at least once. 327 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 328 329 // If there are inlined callsites in this function, count the samples found 330 // in the respective bodies. However, do not bother counting callees with 0 331 // total samples, these are callees that were never invoked at runtime. 332 for (const auto &I : FS->getCallsiteSamples()) { 333 const FunctionSamples *CalleeSamples = &I.second; 334 if (callsiteIsHot(FS, CalleeSamples)) 335 Count += countUsedRecords(CalleeSamples); 336 } 337 338 return Count; 339 } 340 341 /// Return the number of sample records in the body of this profile. 342 /// 343 /// This count does not include records from cold inlined callsites. 344 unsigned 345 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const { 346 unsigned Count = FS->getBodySamples().size(); 347 348 // Only count records in hot callsites. 349 for (const auto &I : FS->getCallsiteSamples()) { 350 const FunctionSamples *CalleeSamples = &I.second; 351 if (callsiteIsHot(FS, CalleeSamples)) 352 Count += countBodyRecords(CalleeSamples); 353 } 354 355 return Count; 356 } 357 358 /// Return the number of samples collected in the body of this profile. 359 /// 360 /// This count does not include samples from cold inlined callsites. 361 uint64_t 362 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const { 363 uint64_t Total = 0; 364 for (const auto &I : FS->getBodySamples()) 365 Total += I.second.getSamples(); 366 367 // Only count samples in hot callsites. 368 for (const auto &I : FS->getCallsiteSamples()) { 369 const FunctionSamples *CalleeSamples = &I.second; 370 if (callsiteIsHot(FS, CalleeSamples)) 371 Total += countBodySamples(CalleeSamples); 372 } 373 374 return Total; 375 } 376 377 /// Return the fraction of sample records used in this profile. 378 /// 379 /// The returned value is an unsigned integer in the range 0-100 indicating 380 /// the percentage of sample records that were used while applying this 381 /// profile to the associated function. 382 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 383 unsigned Total) const { 384 assert(Used <= Total && 385 "number of used records cannot exceed the total number of records"); 386 return Total > 0 ? Used * 100 / Total : 100; 387 } 388 389 /// Clear all the per-function data used to load samples and propagate weights. 390 void SampleProfileLoader::clearFunctionData() { 391 BlockWeights.clear(); 392 EdgeWeights.clear(); 393 VisitedBlocks.clear(); 394 VisitedEdges.clear(); 395 EquivalenceClass.clear(); 396 DT = nullptr; 397 PDT = nullptr; 398 LI = nullptr; 399 Predecessors.clear(); 400 Successors.clear(); 401 CoverageTracker.clear(); 402 } 403 404 /// \brief Returns the offset of lineno \p L to head_lineno \p H 405 /// 406 /// \param L Lineno 407 /// \param H Header lineno of the function 408 /// 409 /// \returns offset to the header lineno. 16 bits are used to represent offset. 410 /// We assume that a single function will not exceed 65535 LOC. 411 unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const { 412 return (L - H) & 0xffff; 413 } 414 415 /// \brief Print the weight of edge \p E on stream \p OS. 416 /// 417 /// \param OS Stream to emit the output to. 418 /// \param E Edge to print. 419 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 420 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 421 << "]: " << EdgeWeights[E] << "\n"; 422 } 423 424 /// \brief Print the equivalence class of block \p BB on stream \p OS. 425 /// 426 /// \param OS Stream to emit the output to. 427 /// \param BB Block to print. 428 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 429 const BasicBlock *BB) { 430 const BasicBlock *Equiv = EquivalenceClass[BB]; 431 OS << "equivalence[" << BB->getName() 432 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 433 } 434 435 /// \brief Print the weight of block \p BB on stream \p OS. 436 /// 437 /// \param OS Stream to emit the output to. 438 /// \param BB Block to print. 439 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 440 const BasicBlock *BB) const { 441 const auto &I = BlockWeights.find(BB); 442 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 443 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 444 } 445 446 /// \brief Get the weight for an instruction. 447 /// 448 /// The "weight" of an instruction \p Inst is the number of samples 449 /// collected on that instruction at runtime. To retrieve it, we 450 /// need to compute the line number of \p Inst relative to the start of its 451 /// function. We use HeaderLineno to compute the offset. We then 452 /// look up the samples collected for \p Inst using BodySamples. 453 /// 454 /// \param Inst Instruction to query. 455 /// 456 /// \returns the weight of \p Inst. 457 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 458 const DebugLoc &DLoc = Inst.getDebugLoc(); 459 if (!DLoc) 460 return std::error_code(); 461 462 const FunctionSamples *FS = findFunctionSamples(Inst); 463 if (!FS) 464 return std::error_code(); 465 466 // Ignore all intrinsics and branch instructions. 467 // Branch instruction usually contains debug info from sources outside of 468 // the residing basic block, thus we ignore them during annotation. 469 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst)) 470 return std::error_code(); 471 472 // If a call/invoke instruction is inlined in profile, but not inlined here, 473 // it means that the inlined callsite has no sample, thus the call 474 // instruction should have 0 count. 475 bool IsCall = isa<CallInst>(Inst) || isa<InvokeInst>(Inst); 476 if (IsCall && findCalleeFunctionSamples(Inst)) 477 return 0; 478 479 const DILocation *DIL = DLoc; 480 unsigned Lineno = DLoc.getLine(); 481 unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine(); 482 483 uint32_t LineOffset = getOffset(Lineno, HeaderLineno); 484 uint32_t Discriminator = DIL->getDiscriminator(); 485 ErrorOr<uint64_t> R = IsCall 486 ? FS->findCallSamplesAt(LineOffset, Discriminator) 487 : FS->findSamplesAt(LineOffset, Discriminator); 488 if (R) { 489 bool FirstMark = 490 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 491 if (FirstMark) { 492 const Function *F = Inst.getParent()->getParent(); 493 LLVMContext &Ctx = F->getContext(); 494 emitOptimizationRemark( 495 Ctx, DEBUG_TYPE, *F, DLoc, 496 Twine("Applied ") + Twine(*R) + 497 " samples from profile (offset: " + Twine(LineOffset) + 498 ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")"); 499 } 500 DEBUG(dbgs() << " " << Lineno << "." << DIL->getDiscriminator() << ":" 501 << Inst << " (line offset: " << Lineno - HeaderLineno << "." 502 << DIL->getDiscriminator() << " - weight: " << R.get() 503 << ")\n"); 504 } 505 return R; 506 } 507 508 /// \brief Compute the weight of a basic block. 509 /// 510 /// The weight of basic block \p BB is the maximum weight of all the 511 /// instructions in BB. 512 /// 513 /// \param BB The basic block to query. 514 /// 515 /// \returns the weight for \p BB. 516 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 517 uint64_t Max = 0; 518 bool HasWeight = false; 519 for (auto &I : BB->getInstList()) { 520 const ErrorOr<uint64_t> &R = getInstWeight(I); 521 if (R) { 522 Max = std::max(Max, R.get()); 523 HasWeight = true; 524 } 525 } 526 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 527 } 528 529 /// \brief Compute and store the weights of every basic block. 530 /// 531 /// This populates the BlockWeights map by computing 532 /// the weights of every basic block in the CFG. 533 /// 534 /// \param F The function to query. 535 bool SampleProfileLoader::computeBlockWeights(Function &F) { 536 bool Changed = false; 537 DEBUG(dbgs() << "Block weights\n"); 538 for (const auto &BB : F) { 539 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 540 if (Weight) { 541 BlockWeights[&BB] = Weight.get(); 542 VisitedBlocks.insert(&BB); 543 Changed = true; 544 } 545 DEBUG(printBlockWeight(dbgs(), &BB)); 546 } 547 548 return Changed; 549 } 550 551 /// \brief Get the FunctionSamples for a call instruction. 552 /// 553 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 554 /// instance in which that call instruction is calling to. It contains 555 /// all samples that resides in the inlined instance. We first find the 556 /// inlined instance in which the call instruction is from, then we 557 /// traverse its children to find the callsite with the matching 558 /// location. 559 /// 560 /// \param Inst Call/Invoke instruction to query. 561 /// 562 /// \returns The FunctionSamples pointer to the inlined instance. 563 const FunctionSamples * 564 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 565 const DILocation *DIL = Inst.getDebugLoc(); 566 if (!DIL) { 567 return nullptr; 568 } 569 DISubprogram *SP = DIL->getScope()->getSubprogram(); 570 if (!SP) 571 return nullptr; 572 573 const FunctionSamples *FS = findFunctionSamples(Inst); 574 if (FS == nullptr) 575 return nullptr; 576 577 return FS->findFunctionSamplesAt(LineLocation( 578 getOffset(DIL->getLine(), SP->getLine()), DIL->getDiscriminator())); 579 } 580 581 /// \brief Get the FunctionSamples for an instruction. 582 /// 583 /// The FunctionSamples of an instruction \p Inst is the inlined instance 584 /// in which that instruction is coming from. We traverse the inline stack 585 /// of that instruction, and match it with the tree nodes in the profile. 586 /// 587 /// \param Inst Instruction to query. 588 /// 589 /// \returns the FunctionSamples pointer to the inlined instance. 590 const FunctionSamples * 591 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 592 SmallVector<LineLocation, 10> S; 593 const DILocation *DIL = Inst.getDebugLoc(); 594 if (!DIL) { 595 return Samples; 596 } 597 for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) { 598 DISubprogram *SP = DIL->getScope()->getSubprogram(); 599 if (!SP) 600 return nullptr; 601 S.push_back(LineLocation(getOffset(DIL->getLine(), SP->getLine()), 602 DIL->getDiscriminator())); 603 } 604 if (S.size() == 0) 605 return Samples; 606 const FunctionSamples *FS = Samples; 607 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 608 FS = FS->findFunctionSamplesAt(S[i]); 609 } 610 return FS; 611 } 612 613 /// \brief Iteratively inline hot callsites of a function. 614 /// 615 /// Iteratively traverse all callsites of the function \p F, and find if 616 /// the corresponding inlined instance exists and is hot in profile. If 617 /// it is hot enough, inline the callsites and adds new callsites of the 618 /// callee into the caller. If the call is an indirect call, first promote 619 /// it to direct call. Each indirect call is limited with a single target. 620 /// 621 /// \param F function to perform iterative inlining. 622 /// 623 /// \returns True if there is any inline happened. 624 bool SampleProfileLoader::inlineHotFunctions(Function &F) { 625 DenseSet<Instruction *> PromotedInsns; 626 bool Changed = false; 627 LLVMContext &Ctx = F.getContext(); 628 std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&]( 629 Function &F) -> AssumptionCache & { return ACT->getAssumptionCache(F); }; 630 while (true) { 631 bool LocalChanged = false; 632 SmallVector<Instruction *, 10> CIS; 633 for (auto &BB : F) { 634 bool Hot = false; 635 SmallVector<Instruction *, 10> Candidates; 636 for (auto &I : BB.getInstList()) { 637 const FunctionSamples *FS = nullptr; 638 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 639 (FS = findCalleeFunctionSamples(I))) { 640 Candidates.push_back(&I); 641 if (callsiteIsHot(Samples, FS)) 642 Hot = true; 643 } 644 } 645 if (Hot) { 646 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); 647 } 648 } 649 for (auto I : CIS) { 650 InlineFunctionInfo IFI(nullptr, ACT ? &GetAssumptionCache : nullptr); 651 Function *CalledFunction = CallSite(I).getCalledFunction(); 652 Instruction *DI = I; 653 if (!CalledFunction && !PromotedInsns.count(I)) { 654 CalledFunction = F.getParent()->getFunction( 655 findCalleeFunctionSamples(*I)->getName()); 656 if (CalledFunction) { 657 // The indirect target was promoted and inlined in the profile, as a 658 // result, we do not have profile info for the branch probability. 659 // We set the probability to 80% taken to indicate that the static 660 // call is likely taken. 661 DI = promoteIndirectCall(I, CalledFunction, 80, 100); 662 PromotedInsns.insert(I); 663 } 664 } 665 if (!CalledFunction || !CalledFunction->getSubprogram()) 666 continue; 667 CallSite CS(DI); 668 DebugLoc DLoc = I->getDebugLoc(); 669 uint64_t NumSamples = findCalleeFunctionSamples(*I)->getTotalSamples(); 670 if (InlineFunction(CS, IFI)) { 671 LocalChanged = true; 672 emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc, 673 Twine("inlined hot callee '") + 674 CalledFunction->getName() + "' with " + 675 Twine(NumSamples) + " samples into '" + 676 F.getName() + "'"); 677 } 678 } 679 if (LocalChanged) { 680 Changed = true; 681 } else { 682 break; 683 } 684 } 685 return Changed; 686 } 687 688 /// \brief Find equivalence classes for the given block. 689 /// 690 /// This finds all the blocks that are guaranteed to execute the same 691 /// number of times as \p BB1. To do this, it traverses all the 692 /// descendants of \p BB1 in the dominator or post-dominator tree. 693 /// 694 /// A block BB2 will be in the same equivalence class as \p BB1 if 695 /// the following holds: 696 /// 697 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 698 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 699 /// dominate BB1 in the post-dominator tree. 700 /// 701 /// 2- Both BB2 and \p BB1 must be in the same loop. 702 /// 703 /// For every block BB2 that meets those two requirements, we set BB2's 704 /// equivalence class to \p BB1. 705 /// 706 /// \param BB1 Block to check. 707 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 708 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 709 /// with blocks from \p BB1's dominator tree, then 710 /// this is the post-dominator tree, and vice versa. 711 void SampleProfileLoader::findEquivalencesFor( 712 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 713 DominatorTreeBase<BasicBlock> *DomTree) { 714 const BasicBlock *EC = EquivalenceClass[BB1]; 715 uint64_t Weight = BlockWeights[EC]; 716 for (const auto *BB2 : Descendants) { 717 bool IsDomParent = DomTree->dominates(BB2, BB1); 718 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 719 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 720 EquivalenceClass[BB2] = EC; 721 // If BB2 is visited, then the entire EC should be marked as visited. 722 if (VisitedBlocks.count(BB2)) { 723 VisitedBlocks.insert(EC); 724 } 725 726 // If BB2 is heavier than BB1, make BB2 have the same weight 727 // as BB1. 728 // 729 // Note that we don't worry about the opposite situation here 730 // (when BB2 is lighter than BB1). We will deal with this 731 // during the propagation phase. Right now, we just want to 732 // make sure that BB1 has the largest weight of all the 733 // members of its equivalence set. 734 Weight = std::max(Weight, BlockWeights[BB2]); 735 } 736 } 737 if (EC == &EC->getParent()->getEntryBlock()) { 738 BlockWeights[EC] = Samples->getHeadSamples() + 1; 739 } else { 740 BlockWeights[EC] = Weight; 741 } 742 } 743 744 /// \brief Find equivalence classes. 745 /// 746 /// Since samples may be missing from blocks, we can fill in the gaps by setting 747 /// the weights of all the blocks in the same equivalence class to the same 748 /// weight. To compute the concept of equivalence, we use dominance and loop 749 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 750 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 751 /// 752 /// \param F The function to query. 753 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 754 SmallVector<BasicBlock *, 8> DominatedBBs; 755 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 756 // Find equivalence sets based on dominance and post-dominance information. 757 for (auto &BB : F) { 758 BasicBlock *BB1 = &BB; 759 760 // Compute BB1's equivalence class once. 761 if (EquivalenceClass.count(BB1)) { 762 DEBUG(printBlockEquivalence(dbgs(), BB1)); 763 continue; 764 } 765 766 // By default, blocks are in their own equivalence class. 767 EquivalenceClass[BB1] = BB1; 768 769 // Traverse all the blocks dominated by BB1. We are looking for 770 // every basic block BB2 such that: 771 // 772 // 1- BB1 dominates BB2. 773 // 2- BB2 post-dominates BB1. 774 // 3- BB1 and BB2 are in the same loop nest. 775 // 776 // If all those conditions hold, it means that BB2 is executed 777 // as many times as BB1, so they are placed in the same equivalence 778 // class by making BB2's equivalence class be BB1. 779 DominatedBBs.clear(); 780 DT->getDescendants(BB1, DominatedBBs); 781 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 782 783 DEBUG(printBlockEquivalence(dbgs(), BB1)); 784 } 785 786 // Assign weights to equivalence classes. 787 // 788 // All the basic blocks in the same equivalence class will execute 789 // the same number of times. Since we know that the head block in 790 // each equivalence class has the largest weight, assign that weight 791 // to all the blocks in that equivalence class. 792 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 793 for (auto &BI : F) { 794 const BasicBlock *BB = &BI; 795 const BasicBlock *EquivBB = EquivalenceClass[BB]; 796 if (BB != EquivBB) 797 BlockWeights[BB] = BlockWeights[EquivBB]; 798 DEBUG(printBlockWeight(dbgs(), BB)); 799 } 800 } 801 802 /// \brief Visit the given edge to decide if it has a valid weight. 803 /// 804 /// If \p E has not been visited before, we copy to \p UnknownEdge 805 /// and increment the count of unknown edges. 806 /// 807 /// \param E Edge to visit. 808 /// \param NumUnknownEdges Current number of unknown edges. 809 /// \param UnknownEdge Set if E has not been visited before. 810 /// 811 /// \returns E's weight, if known. Otherwise, return 0. 812 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 813 Edge *UnknownEdge) { 814 if (!VisitedEdges.count(E)) { 815 (*NumUnknownEdges)++; 816 *UnknownEdge = E; 817 return 0; 818 } 819 820 return EdgeWeights[E]; 821 } 822 823 /// \brief Propagate weights through incoming/outgoing edges. 824 /// 825 /// If the weight of a basic block is known, and there is only one edge 826 /// with an unknown weight, we can calculate the weight of that edge. 827 /// 828 /// Similarly, if all the edges have a known count, we can calculate the 829 /// count of the basic block, if needed. 830 /// 831 /// \param F Function to process. 832 /// \param UpdateBlockCount Whether we should update basic block counts that 833 /// has already been annotated. 834 /// 835 /// \returns True if new weights were assigned to edges or blocks. 836 bool SampleProfileLoader::propagateThroughEdges(Function &F, 837 bool UpdateBlockCount) { 838 bool Changed = false; 839 DEBUG(dbgs() << "\nPropagation through edges\n"); 840 for (const auto &BI : F) { 841 const BasicBlock *BB = &BI; 842 const BasicBlock *EC = EquivalenceClass[BB]; 843 844 // Visit all the predecessor and successor edges to determine 845 // which ones have a weight assigned already. Note that it doesn't 846 // matter that we only keep track of a single unknown edge. The 847 // only case we are interested in handling is when only a single 848 // edge is unknown (see setEdgeOrBlockWeight). 849 for (unsigned i = 0; i < 2; i++) { 850 uint64_t TotalWeight = 0; 851 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 852 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 853 854 if (i == 0) { 855 // First, visit all predecessor edges. 856 NumTotalEdges = Predecessors[BB].size(); 857 for (auto *Pred : Predecessors[BB]) { 858 Edge E = std::make_pair(Pred, BB); 859 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 860 if (E.first == E.second) 861 SelfReferentialEdge = E; 862 } 863 if (NumTotalEdges == 1) { 864 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 865 } 866 } else { 867 // On the second round, visit all successor edges. 868 NumTotalEdges = Successors[BB].size(); 869 for (auto *Succ : Successors[BB]) { 870 Edge E = std::make_pair(BB, Succ); 871 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 872 } 873 if (NumTotalEdges == 1) { 874 SingleEdge = std::make_pair(BB, Successors[BB][0]); 875 } 876 } 877 878 // After visiting all the edges, there are three cases that we 879 // can handle immediately: 880 // 881 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 882 // In this case, we simply check that the sum of all the edges 883 // is the same as BB's weight. If not, we change BB's weight 884 // to match. Additionally, if BB had not been visited before, 885 // we mark it visited. 886 // 887 // - Only one edge is unknown and BB has already been visited. 888 // In this case, we can compute the weight of the edge by 889 // subtracting the total block weight from all the known 890 // edge weights. If the edges weight more than BB, then the 891 // edge of the last remaining edge is set to zero. 892 // 893 // - There exists a self-referential edge and the weight of BB is 894 // known. In this case, this edge can be based on BB's weight. 895 // We add up all the other known edges and set the weight on 896 // the self-referential edge as we did in the previous case. 897 // 898 // In any other case, we must continue iterating. Eventually, 899 // all edges will get a weight, or iteration will stop when 900 // it reaches SampleProfileMaxPropagateIterations. 901 if (NumUnknownEdges <= 1) { 902 uint64_t &BBWeight = BlockWeights[EC]; 903 if (NumUnknownEdges == 0) { 904 if (!VisitedBlocks.count(EC)) { 905 // If we already know the weight of all edges, the weight of the 906 // basic block can be computed. It should be no larger than the sum 907 // of all edge weights. 908 if (TotalWeight > BBWeight) { 909 BBWeight = TotalWeight; 910 Changed = true; 911 DEBUG(dbgs() << "All edge weights for " << BB->getName() 912 << " known. Set weight for block: "; 913 printBlockWeight(dbgs(), BB);); 914 } 915 } else if (NumTotalEdges == 1 && 916 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 917 // If there is only one edge for the visited basic block, use the 918 // block weight to adjust edge weight if edge weight is smaller. 919 EdgeWeights[SingleEdge] = BlockWeights[EC]; 920 Changed = true; 921 } 922 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 923 // If there is a single unknown edge and the block has been 924 // visited, then we can compute E's weight. 925 if (BBWeight >= TotalWeight) 926 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 927 else 928 EdgeWeights[UnknownEdge] = 0; 929 const BasicBlock *OtherEC; 930 if (i == 0) 931 OtherEC = EquivalenceClass[UnknownEdge.first]; 932 else 933 OtherEC = EquivalenceClass[UnknownEdge.second]; 934 // Edge weights should never exceed the BB weights it connects. 935 if (VisitedBlocks.count(OtherEC) && 936 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 937 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 938 VisitedEdges.insert(UnknownEdge); 939 Changed = true; 940 DEBUG(dbgs() << "Set weight for edge: "; 941 printEdgeWeight(dbgs(), UnknownEdge)); 942 } 943 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 944 // If a block Weights 0, all its in/out edges should weight 0. 945 if (i == 0) { 946 for (auto *Pred : Predecessors[BB]) { 947 Edge E = std::make_pair(Pred, BB); 948 EdgeWeights[E] = 0; 949 VisitedEdges.insert(E); 950 } 951 } else { 952 for (auto *Succ : Successors[BB]) { 953 Edge E = std::make_pair(BB, Succ); 954 EdgeWeights[E] = 0; 955 VisitedEdges.insert(E); 956 } 957 } 958 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 959 uint64_t &BBWeight = BlockWeights[BB]; 960 // We have a self-referential edge and the weight of BB is known. 961 if (BBWeight >= TotalWeight) 962 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 963 else 964 EdgeWeights[SelfReferentialEdge] = 0; 965 VisitedEdges.insert(SelfReferentialEdge); 966 Changed = true; 967 DEBUG(dbgs() << "Set self-referential edge weight to: "; 968 printEdgeWeight(dbgs(), SelfReferentialEdge)); 969 } 970 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 971 BlockWeights[EC] = TotalWeight; 972 VisitedBlocks.insert(EC); 973 Changed = true; 974 } 975 } 976 } 977 978 return Changed; 979 } 980 981 /// \brief Build in/out edge lists for each basic block in the CFG. 982 /// 983 /// We are interested in unique edges. If a block B1 has multiple 984 /// edges to another block B2, we only add a single B1->B2 edge. 985 void SampleProfileLoader::buildEdges(Function &F) { 986 for (auto &BI : F) { 987 BasicBlock *B1 = &BI; 988 989 // Add predecessors for B1. 990 SmallPtrSet<BasicBlock *, 16> Visited; 991 if (!Predecessors[B1].empty()) 992 llvm_unreachable("Found a stale predecessors list in a basic block."); 993 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 994 BasicBlock *B2 = *PI; 995 if (Visited.insert(B2).second) 996 Predecessors[B1].push_back(B2); 997 } 998 999 // Add successors for B1. 1000 Visited.clear(); 1001 if (!Successors[B1].empty()) 1002 llvm_unreachable("Found a stale successors list in a basic block."); 1003 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1004 BasicBlock *B2 = *SI; 1005 if (Visited.insert(B2).second) 1006 Successors[B1].push_back(B2); 1007 } 1008 } 1009 } 1010 1011 /// Sorts the CallTargetMap \p M by count in descending order and stores the 1012 /// sorted result in \p Sorted. Returns the total counts. 1013 static uint64_t SortCallTargets(SmallVector<InstrProfValueData, 2> &Sorted, 1014 const SampleRecord::CallTargetMap &M) { 1015 Sorted.clear(); 1016 uint64_t Sum = 0; 1017 for (auto I = M.begin(); I != M.end(); ++I) { 1018 Sum += I->getValue(); 1019 Sorted.push_back({Function::getGUID(I->getKey()), I->getValue()}); 1020 } 1021 std::sort(Sorted.begin(), Sorted.end(), 1022 [](const InstrProfValueData &L, const InstrProfValueData &R) { 1023 if (L.Count == R.Count) 1024 return L.Value > R.Value; 1025 else 1026 return L.Count > R.Count; 1027 }); 1028 return Sum; 1029 } 1030 1031 /// \brief Propagate weights into edges 1032 /// 1033 /// The following rules are applied to every block BB in the CFG: 1034 /// 1035 /// - If BB has a single predecessor/successor, then the weight 1036 /// of that edge is the weight of the block. 1037 /// 1038 /// - If all incoming or outgoing edges are known except one, and the 1039 /// weight of the block is already known, the weight of the unknown 1040 /// edge will be the weight of the block minus the sum of all the known 1041 /// edges. If the sum of all the known edges is larger than BB's weight, 1042 /// we set the unknown edge weight to zero. 1043 /// 1044 /// - If there is a self-referential edge, and the weight of the block is 1045 /// known, the weight for that edge is set to the weight of the block 1046 /// minus the weight of the other incoming edges to that block (if 1047 /// known). 1048 void SampleProfileLoader::propagateWeights(Function &F) { 1049 bool Changed = true; 1050 unsigned I = 0; 1051 1052 // Add an entry count to the function using the samples gathered 1053 // at the function entry. 1054 F.setEntryCount(Samples->getHeadSamples() + 1); 1055 1056 // If BB weight is larger than its corresponding loop's header BB weight, 1057 // use the BB weight to replace the loop header BB weight. 1058 for (auto &BI : F) { 1059 BasicBlock *BB = &BI; 1060 Loop *L = LI->getLoopFor(BB); 1061 if (!L) { 1062 continue; 1063 } 1064 BasicBlock *Header = L->getHeader(); 1065 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1066 BlockWeights[Header] = BlockWeights[BB]; 1067 } 1068 } 1069 1070 // Before propagation starts, build, for each block, a list of 1071 // unique predecessors and successors. This is necessary to handle 1072 // identical edges in multiway branches. Since we visit all blocks and all 1073 // edges of the CFG, it is cleaner to build these lists once at the start 1074 // of the pass. 1075 buildEdges(F); 1076 1077 // Propagate until we converge or we go past the iteration limit. 1078 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1079 Changed = propagateThroughEdges(F, false); 1080 } 1081 1082 // The first propagation propagates BB counts from annotated BBs to unknown 1083 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1084 // to propagate edge weights. 1085 VisitedEdges.clear(); 1086 Changed = true; 1087 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1088 Changed = propagateThroughEdges(F, false); 1089 } 1090 1091 // The 3rd propagation pass allows adjust annotated BB weights that are 1092 // obviously wrong. 1093 Changed = true; 1094 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1095 Changed = propagateThroughEdges(F, true); 1096 } 1097 1098 // Generate MD_prof metadata for every branch instruction using the 1099 // edge weights computed during propagation. 1100 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1101 LLVMContext &Ctx = F.getContext(); 1102 MDBuilder MDB(Ctx); 1103 for (auto &BI : F) { 1104 BasicBlock *BB = &BI; 1105 1106 if (BlockWeights[BB]) { 1107 for (auto &I : BB->getInstList()) { 1108 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1109 continue; 1110 CallSite CS(&I); 1111 if (!CS.getCalledFunction()) { 1112 const DebugLoc &DLoc = I.getDebugLoc(); 1113 if (!DLoc) 1114 continue; 1115 const DILocation *DIL = DLoc; 1116 uint32_t LineOffset = getOffset( 1117 DLoc.getLine(), DIL->getScope()->getSubprogram()->getLine()); 1118 uint32_t Discriminator = DIL->getDiscriminator(); 1119 1120 const FunctionSamples *FS = findFunctionSamples(I); 1121 if (!FS) 1122 continue; 1123 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1124 if (!T || T.get().size() == 0) 1125 continue; 1126 SmallVector<InstrProfValueData, 2> SortedCallTargets; 1127 uint64_t Sum = SortCallTargets(SortedCallTargets, T.get()); 1128 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1129 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1130 SortedCallTargets.size()); 1131 } else if (!dyn_cast<IntrinsicInst>(&I)) { 1132 SmallVector<uint32_t, 1> Weights; 1133 Weights.push_back(BlockWeights[BB]); 1134 I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); 1135 } 1136 } 1137 } 1138 TerminatorInst *TI = BB->getTerminator(); 1139 if (TI->getNumSuccessors() == 1) 1140 continue; 1141 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1142 continue; 1143 1144 DEBUG(dbgs() << "\nGetting weights for branch at line " 1145 << TI->getDebugLoc().getLine() << ".\n"); 1146 SmallVector<uint32_t, 4> Weights; 1147 uint32_t MaxWeight = 0; 1148 DebugLoc MaxDestLoc; 1149 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1150 BasicBlock *Succ = TI->getSuccessor(I); 1151 Edge E = std::make_pair(BB, Succ); 1152 uint64_t Weight = EdgeWeights[E]; 1153 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1154 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1155 // if needed. Sample counts in profiles are 64-bit unsigned values, 1156 // but internally branch weights are expressed as 32-bit values. 1157 if (Weight > std::numeric_limits<uint32_t>::max()) { 1158 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1159 Weight = std::numeric_limits<uint32_t>::max(); 1160 } 1161 // Weight is added by one to avoid propagation errors introduced by 1162 // 0 weights. 1163 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1164 if (Weight != 0) { 1165 if (Weight > MaxWeight) { 1166 MaxWeight = Weight; 1167 MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc(); 1168 } 1169 } 1170 } 1171 1172 // Only set weights if there is at least one non-zero weight. 1173 // In any other case, let the analyzer set weights. 1174 if (MaxWeight > 0) { 1175 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1176 TI->setMetadata(llvm::LLVMContext::MD_prof, 1177 MDB.createBranchWeights(Weights)); 1178 DebugLoc BranchLoc = TI->getDebugLoc(); 1179 emitOptimizationRemark( 1180 Ctx, DEBUG_TYPE, F, MaxDestLoc, 1181 Twine("most popular destination for conditional branches at ") + 1182 ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" + 1183 Twine(BranchLoc.getLine()) + ":" + 1184 Twine(BranchLoc.getCol())) 1185 : Twine("<UNKNOWN LOCATION>"))); 1186 } else { 1187 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1188 } 1189 } 1190 } 1191 1192 /// \brief Get the line number for the function header. 1193 /// 1194 /// This looks up function \p F in the current compilation unit and 1195 /// retrieves the line number where the function is defined. This is 1196 /// line 0 for all the samples read from the profile file. Every line 1197 /// number is relative to this line. 1198 /// 1199 /// \param F Function object to query. 1200 /// 1201 /// \returns the line number where \p F is defined. If it returns 0, 1202 /// it means that there is no debug information available for \p F. 1203 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1204 if (DISubprogram *S = F.getSubprogram()) 1205 return S->getLine(); 1206 1207 // If the start of \p F is missing, emit a diagnostic to inform the user 1208 // about the missed opportunity. 1209 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1210 "No debug information found in function " + F.getName() + 1211 ": Function profile not used", 1212 DS_Warning)); 1213 return 0; 1214 } 1215 1216 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1217 DT.reset(new DominatorTree); 1218 DT->recalculate(F); 1219 1220 PDT.reset(new DominatorTreeBase<BasicBlock>(true)); 1221 PDT->recalculate(F); 1222 1223 LI.reset(new LoopInfo); 1224 LI->analyze(*DT); 1225 } 1226 1227 /// \brief Generate branch weight metadata for all branches in \p F. 1228 /// 1229 /// Branch weights are computed out of instruction samples using a 1230 /// propagation heuristic. Propagation proceeds in 3 phases: 1231 /// 1232 /// 1- Assignment of block weights. All the basic blocks in the function 1233 /// are initial assigned the same weight as their most frequently 1234 /// executed instruction. 1235 /// 1236 /// 2- Creation of equivalence classes. Since samples may be missing from 1237 /// blocks, we can fill in the gaps by setting the weights of all the 1238 /// blocks in the same equivalence class to the same weight. To compute 1239 /// the concept of equivalence, we use dominance and loop information. 1240 /// Two blocks B1 and B2 are in the same equivalence class if B1 1241 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1242 /// 1243 /// 3- Propagation of block weights into edges. This uses a simple 1244 /// propagation heuristic. The following rules are applied to every 1245 /// block BB in the CFG: 1246 /// 1247 /// - If BB has a single predecessor/successor, then the weight 1248 /// of that edge is the weight of the block. 1249 /// 1250 /// - If all the edges are known except one, and the weight of the 1251 /// block is already known, the weight of the unknown edge will 1252 /// be the weight of the block minus the sum of all the known 1253 /// edges. If the sum of all the known edges is larger than BB's weight, 1254 /// we set the unknown edge weight to zero. 1255 /// 1256 /// - If there is a self-referential edge, and the weight of the block is 1257 /// known, the weight for that edge is set to the weight of the block 1258 /// minus the weight of the other incoming edges to that block (if 1259 /// known). 1260 /// 1261 /// Since this propagation is not guaranteed to finalize for every CFG, we 1262 /// only allow it to proceed for a limited number of iterations (controlled 1263 /// by -sample-profile-max-propagate-iterations). 1264 /// 1265 /// FIXME: Try to replace this propagation heuristic with a scheme 1266 /// that is guaranteed to finalize. A work-list approach similar to 1267 /// the standard value propagation algorithm used by SSA-CCP might 1268 /// work here. 1269 /// 1270 /// Once all the branch weights are computed, we emit the MD_prof 1271 /// metadata on BB using the computed values for each of its branches. 1272 /// 1273 /// \param F The function to query. 1274 /// 1275 /// \returns true if \p F was modified. Returns false, otherwise. 1276 bool SampleProfileLoader::emitAnnotations(Function &F) { 1277 bool Changed = false; 1278 1279 if (getFunctionLoc(F) == 0) 1280 return false; 1281 1282 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 1283 << ": " << getFunctionLoc(F) << "\n"); 1284 1285 Changed |= inlineHotFunctions(F); 1286 1287 // Compute basic block weights. 1288 Changed |= computeBlockWeights(F); 1289 1290 if (Changed) { 1291 // Compute dominance and loop info needed for propagation. 1292 computeDominanceAndLoopInfo(F); 1293 1294 // Find equivalence classes. 1295 findEquivalenceClasses(F); 1296 1297 // Propagate weights to all edges. 1298 propagateWeights(F); 1299 } 1300 1301 // If coverage checking was requested, compute it now. 1302 if (SampleProfileRecordCoverage) { 1303 unsigned Used = CoverageTracker.countUsedRecords(Samples); 1304 unsigned Total = CoverageTracker.countBodyRecords(Samples); 1305 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1306 if (Coverage < SampleProfileRecordCoverage) { 1307 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1308 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1309 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1310 Twine(Coverage) + "%) were applied", 1311 DS_Warning)); 1312 } 1313 } 1314 1315 if (SampleProfileSampleCoverage) { 1316 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1317 uint64_t Total = CoverageTracker.countBodySamples(Samples); 1318 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1319 if (Coverage < SampleProfileSampleCoverage) { 1320 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1321 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1322 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1323 Twine(Coverage) + "%) were applied", 1324 DS_Warning)); 1325 } 1326 } 1327 return Changed; 1328 } 1329 1330 char SampleProfileLoaderLegacyPass::ID = 0; 1331 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1332 "Sample Profile loader", false, false) 1333 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1334 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1335 "Sample Profile loader", false, false) 1336 1337 bool SampleProfileLoader::doInitialization(Module &M) { 1338 auto &Ctx = M.getContext(); 1339 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1340 if (std::error_code EC = ReaderOrErr.getError()) { 1341 std::string Msg = "Could not open profile: " + EC.message(); 1342 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1343 return false; 1344 } 1345 Reader = std::move(ReaderOrErr.get()); 1346 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1347 return true; 1348 } 1349 1350 ModulePass *llvm::createSampleProfileLoaderPass() { 1351 return new SampleProfileLoaderLegacyPass(SampleProfileFile); 1352 } 1353 1354 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1355 return new SampleProfileLoaderLegacyPass(Name); 1356 } 1357 1358 bool SampleProfileLoader::runOnModule(Module &M) { 1359 if (!ProfileIsValid) 1360 return false; 1361 1362 // Compute the total number of samples collected in this profile. 1363 for (const auto &I : Reader->getProfiles()) 1364 TotalCollectedSamples += I.second.getTotalSamples(); 1365 1366 bool retval = false; 1367 for (auto &F : M) 1368 if (!F.isDeclaration()) { 1369 clearFunctionData(); 1370 retval |= runOnFunction(F); 1371 } 1372 if (M.getProfileSummary() == nullptr) 1373 M.setProfileSummary(Reader->getSummary().getMD(M.getContext())); 1374 return retval; 1375 } 1376 1377 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1378 // FIXME: pass in AssumptionCache correctly for the new pass manager. 1379 SampleLoader.setACT(&getAnalysis<AssumptionCacheTracker>()); 1380 return SampleLoader.runOnModule(M); 1381 } 1382 1383 bool SampleProfileLoader::runOnFunction(Function &F) { 1384 F.setEntryCount(0); 1385 Samples = Reader->getSamplesFor(F); 1386 if (!Samples->empty()) 1387 return emitAnnotations(F); 1388 return false; 1389 } 1390 1391 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1392 ModuleAnalysisManager &AM) { 1393 1394 SampleProfileLoader SampleLoader(SampleProfileFile); 1395 1396 SampleLoader.doInitialization(M); 1397 1398 if (!SampleLoader.runOnModule(M)) 1399 return PreservedAnalyses::all(); 1400 1401 return PreservedAnalyses::none(); 1402 } 1403