1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/SampleProfile.h" 26 #include "llvm/ADT/ArrayRef.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/StringMap.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/ADT/Twine.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/InlineCost.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 40 #include "llvm/Analysis/TargetTransformInfo.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/CallSite.h" 44 #include "llvm/IR/DebugInfoMetadata.h" 45 #include "llvm/IR/DebugLoc.h" 46 #include "llvm/IR/DiagnosticInfo.h" 47 #include "llvm/IR/Dominators.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/MDBuilder.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/PassManager.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/Pass.h" 60 #include "llvm/ProfileData/InstrProf.h" 61 #include "llvm/ProfileData/SampleProf.h" 62 #include "llvm/ProfileData/SampleProfReader.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/ErrorOr.h" 68 #include "llvm/Support/GenericDomTree.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Transforms/IPO.h" 71 #include "llvm/Transforms/Instrumentation.h" 72 #include "llvm/Transforms/Utils/Cloning.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <functional> 77 #include <limits> 78 #include <map> 79 #include <memory> 80 #include <string> 81 #include <system_error> 82 #include <utility> 83 #include <vector> 84 85 using namespace llvm; 86 using namespace sampleprof; 87 88 #define DEBUG_TYPE "sample-profile" 89 90 // Command line option to specify the file to read samples from. This is 91 // mainly used for debugging. 92 static cl::opt<std::string> SampleProfileFile( 93 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 94 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 95 96 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 97 "sample-profile-max-propagate-iterations", cl::init(100), 98 cl::desc("Maximum number of iterations to go through when propagating " 99 "sample block/edge weights through the CFG.")); 100 101 static cl::opt<unsigned> SampleProfileRecordCoverage( 102 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 103 cl::desc("Emit a warning if less than N% of records in the input profile " 104 "are matched to the IR.")); 105 106 static cl::opt<unsigned> SampleProfileSampleCoverage( 107 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 108 cl::desc("Emit a warning if less than N% of samples in the input profile " 109 "are matched to the IR.")); 110 111 static cl::opt<double> SampleProfileHotThreshold( 112 "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"), 113 cl::desc("Inlined functions that account for more than N% of all samples " 114 "collected in the parent function, will be inlined again.")); 115 116 namespace { 117 118 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 119 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 120 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 121 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 122 using BlockEdgeMap = 123 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 124 125 class SampleCoverageTracker { 126 public: 127 SampleCoverageTracker() = default; 128 129 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 130 uint32_t Discriminator, uint64_t Samples); 131 unsigned computeCoverage(unsigned Used, unsigned Total) const; 132 unsigned countUsedRecords(const FunctionSamples *FS) const; 133 unsigned countBodyRecords(const FunctionSamples *FS) const; 134 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 135 uint64_t countBodySamples(const FunctionSamples *FS) const; 136 137 void clear() { 138 SampleCoverage.clear(); 139 TotalUsedSamples = 0; 140 } 141 142 private: 143 using BodySampleCoverageMap = std::map<LineLocation, unsigned>; 144 using FunctionSamplesCoverageMap = 145 DenseMap<const FunctionSamples *, BodySampleCoverageMap>; 146 147 /// Coverage map for sampling records. 148 /// 149 /// This map keeps a record of sampling records that have been matched to 150 /// an IR instruction. This is used to detect some form of staleness in 151 /// profiles (see flag -sample-profile-check-coverage). 152 /// 153 /// Each entry in the map corresponds to a FunctionSamples instance. This is 154 /// another map that counts how many times the sample record at the 155 /// given location has been used. 156 FunctionSamplesCoverageMap SampleCoverage; 157 158 /// Number of samples used from the profile. 159 /// 160 /// When a sampling record is used for the first time, the samples from 161 /// that record are added to this accumulator. Coverage is later computed 162 /// based on the total number of samples available in this function and 163 /// its callsites. 164 /// 165 /// Note that this accumulator tracks samples used from a single function 166 /// and all the inlined callsites. Strictly, we should have a map of counters 167 /// keyed by FunctionSamples pointers, but these stats are cleared after 168 /// every function, so we just need to keep a single counter. 169 uint64_t TotalUsedSamples = 0; 170 }; 171 172 /// \brief Sample profile pass. 173 /// 174 /// This pass reads profile data from the file specified by 175 /// -sample-profile-file and annotates every affected function with the 176 /// profile information found in that file. 177 class SampleProfileLoader { 178 public: 179 SampleProfileLoader( 180 StringRef Name, bool IsThinLTOPreLink, 181 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 182 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo) 183 : GetAC(GetAssumptionCache), GetTTI(GetTargetTransformInfo), 184 Filename(Name), IsThinLTOPreLink(IsThinLTOPreLink) {} 185 186 bool doInitialization(Module &M); 187 bool runOnModule(Module &M, ModuleAnalysisManager *AM); 188 189 void dump() { Reader->dump(); } 190 191 protected: 192 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 193 unsigned getFunctionLoc(Function &F); 194 bool emitAnnotations(Function &F); 195 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 196 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 197 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 198 std::vector<const FunctionSamples *> 199 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 200 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 201 bool inlineCallInstruction(Instruction *I); 202 bool inlineHotFunctions(Function &F, 203 DenseSet<GlobalValue::GUID> &ImportGUIDs); 204 void printEdgeWeight(raw_ostream &OS, Edge E); 205 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 206 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 207 bool computeBlockWeights(Function &F); 208 void findEquivalenceClasses(Function &F); 209 template <bool IsPostDom> 210 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 211 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 212 213 void propagateWeights(Function &F); 214 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 215 void buildEdges(Function &F); 216 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 217 void computeDominanceAndLoopInfo(Function &F); 218 unsigned getOffset(const DILocation *DIL) const; 219 void clearFunctionData(); 220 221 /// \brief Map basic blocks to their computed weights. 222 /// 223 /// The weight of a basic block is defined to be the maximum 224 /// of all the instruction weights in that block. 225 BlockWeightMap BlockWeights; 226 227 /// \brief Map edges to their computed weights. 228 /// 229 /// Edge weights are computed by propagating basic block weights in 230 /// SampleProfile::propagateWeights. 231 EdgeWeightMap EdgeWeights; 232 233 /// \brief Set of visited blocks during propagation. 234 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 235 236 /// \brief Set of visited edges during propagation. 237 SmallSet<Edge, 32> VisitedEdges; 238 239 /// \brief Equivalence classes for block weights. 240 /// 241 /// Two blocks BB1 and BB2 are in the same equivalence class if they 242 /// dominate and post-dominate each other, and they are in the same loop 243 /// nest. When this happens, the two blocks are guaranteed to execute 244 /// the same number of times. 245 EquivalenceClassMap EquivalenceClass; 246 247 /// Map from function name to Function *. Used to find the function from 248 /// the function name. If the function name contains suffix, additional 249 /// entry is added to map from the stripped name to the function if there 250 /// is one-to-one mapping. 251 StringMap<Function *> SymbolMap; 252 253 /// \brief Dominance, post-dominance and loop information. 254 std::unique_ptr<DominatorTree> DT; 255 std::unique_ptr<PostDomTreeBase<BasicBlock>> PDT; 256 std::unique_ptr<LoopInfo> LI; 257 258 std::function<AssumptionCache &(Function &)> GetAC; 259 std::function<TargetTransformInfo &(Function &)> GetTTI; 260 261 /// \brief Predecessors for each basic block in the CFG. 262 BlockEdgeMap Predecessors; 263 264 /// \brief Successors for each basic block in the CFG. 265 BlockEdgeMap Successors; 266 267 SampleCoverageTracker CoverageTracker; 268 269 /// \brief Profile reader object. 270 std::unique_ptr<SampleProfileReader> Reader; 271 272 /// \brief Samples collected for the body of this function. 273 FunctionSamples *Samples = nullptr; 274 275 /// \brief Name of the profile file to load. 276 std::string Filename; 277 278 /// \brief Flag indicating whether the profile input loaded successfully. 279 bool ProfileIsValid = false; 280 281 /// \brief Flag indicating if the pass is invoked in ThinLTO compile phase. 282 /// 283 /// In this phase, in annotation, we should not promote indirect calls. 284 /// Instead, we will mark GUIDs that needs to be annotated to the function. 285 bool IsThinLTOPreLink; 286 287 /// \brief Total number of samples collected in this profile. 288 /// 289 /// This is the sum of all the samples collected in all the functions executed 290 /// at runtime. 291 uint64_t TotalCollectedSamples = 0; 292 293 /// \brief Optimization Remark Emitter used to emit diagnostic remarks. 294 OptimizationRemarkEmitter *ORE = nullptr; 295 }; 296 297 class SampleProfileLoaderLegacyPass : public ModulePass { 298 public: 299 // Class identification, replacement for typeinfo 300 static char ID; 301 302 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, 303 bool IsThinLTOPreLink = false) 304 : ModulePass(ID), SampleLoader(Name, IsThinLTOPreLink, 305 [&](Function &F) -> AssumptionCache & { 306 return ACT->getAssumptionCache(F); 307 }, 308 [&](Function &F) -> TargetTransformInfo & { 309 return TTIWP->getTTI(F); 310 }) { 311 initializeSampleProfileLoaderLegacyPassPass( 312 *PassRegistry::getPassRegistry()); 313 } 314 315 void dump() { SampleLoader.dump(); } 316 317 bool doInitialization(Module &M) override { 318 return SampleLoader.doInitialization(M); 319 } 320 321 StringRef getPassName() const override { return "Sample profile pass"; } 322 bool runOnModule(Module &M) override; 323 324 void getAnalysisUsage(AnalysisUsage &AU) const override { 325 AU.addRequired<AssumptionCacheTracker>(); 326 AU.addRequired<TargetTransformInfoWrapperPass>(); 327 } 328 329 private: 330 SampleProfileLoader SampleLoader; 331 AssumptionCacheTracker *ACT = nullptr; 332 TargetTransformInfoWrapperPass *TTIWP = nullptr; 333 }; 334 335 } // end anonymous namespace 336 337 /// Return true if the given callsite is hot wrt to its caller. 338 /// 339 /// Functions that were inlined in the original binary will be represented 340 /// in the inline stack in the sample profile. If the profile shows that 341 /// the original inline decision was "good" (i.e., the callsite is executed 342 /// frequently), then we will recreate the inline decision and apply the 343 /// profile from the inlined callsite. 344 /// 345 /// To decide whether an inlined callsite is hot, we compute the fraction 346 /// of samples used by the callsite with respect to the total number of samples 347 /// collected in the caller. 348 /// 349 /// If that fraction is larger than the default given by 350 /// SampleProfileHotThreshold, the callsite will be inlined again. 351 static bool callsiteIsHot(const FunctionSamples *CallerFS, 352 const FunctionSamples *CallsiteFS) { 353 if (!CallsiteFS) 354 return false; // The callsite was not inlined in the original binary. 355 356 uint64_t ParentTotalSamples = CallerFS->getTotalSamples(); 357 if (ParentTotalSamples == 0) 358 return false; // Avoid division by zero. 359 360 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 361 if (CallsiteTotalSamples == 0) 362 return false; // Callsite is trivially cold. 363 364 double PercentSamples = 365 (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0; 366 return PercentSamples >= SampleProfileHotThreshold; 367 } 368 369 /// Mark as used the sample record for the given function samples at 370 /// (LineOffset, Discriminator). 371 /// 372 /// \returns true if this is the first time we mark the given record. 373 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 374 uint32_t LineOffset, 375 uint32_t Discriminator, 376 uint64_t Samples) { 377 LineLocation Loc(LineOffset, Discriminator); 378 unsigned &Count = SampleCoverage[FS][Loc]; 379 bool FirstTime = (++Count == 1); 380 if (FirstTime) 381 TotalUsedSamples += Samples; 382 return FirstTime; 383 } 384 385 /// Return the number of sample records that were applied from this profile. 386 /// 387 /// This count does not include records from cold inlined callsites. 388 unsigned 389 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const { 390 auto I = SampleCoverage.find(FS); 391 392 // The size of the coverage map for FS represents the number of records 393 // that were marked used at least once. 394 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 395 396 // If there are inlined callsites in this function, count the samples found 397 // in the respective bodies. However, do not bother counting callees with 0 398 // total samples, these are callees that were never invoked at runtime. 399 for (const auto &I : FS->getCallsiteSamples()) 400 for (const auto &J : I.second) { 401 const FunctionSamples *CalleeSamples = &J.second; 402 if (callsiteIsHot(FS, CalleeSamples)) 403 Count += countUsedRecords(CalleeSamples); 404 } 405 406 return Count; 407 } 408 409 /// Return the number of sample records in the body of this profile. 410 /// 411 /// This count does not include records from cold inlined callsites. 412 unsigned 413 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const { 414 unsigned Count = FS->getBodySamples().size(); 415 416 // Only count records in hot callsites. 417 for (const auto &I : FS->getCallsiteSamples()) 418 for (const auto &J : I.second) { 419 const FunctionSamples *CalleeSamples = &J.second; 420 if (callsiteIsHot(FS, CalleeSamples)) 421 Count += countBodyRecords(CalleeSamples); 422 } 423 424 return Count; 425 } 426 427 /// Return the number of samples collected in the body of this profile. 428 /// 429 /// This count does not include samples from cold inlined callsites. 430 uint64_t 431 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const { 432 uint64_t Total = 0; 433 for (const auto &I : FS->getBodySamples()) 434 Total += I.second.getSamples(); 435 436 // Only count samples in hot callsites. 437 for (const auto &I : FS->getCallsiteSamples()) 438 for (const auto &J : I.second) { 439 const FunctionSamples *CalleeSamples = &J.second; 440 if (callsiteIsHot(FS, CalleeSamples)) 441 Total += countBodySamples(CalleeSamples); 442 } 443 444 return Total; 445 } 446 447 /// Return the fraction of sample records used in this profile. 448 /// 449 /// The returned value is an unsigned integer in the range 0-100 indicating 450 /// the percentage of sample records that were used while applying this 451 /// profile to the associated function. 452 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 453 unsigned Total) const { 454 assert(Used <= Total && 455 "number of used records cannot exceed the total number of records"); 456 return Total > 0 ? Used * 100 / Total : 100; 457 } 458 459 /// Clear all the per-function data used to load samples and propagate weights. 460 void SampleProfileLoader::clearFunctionData() { 461 BlockWeights.clear(); 462 EdgeWeights.clear(); 463 VisitedBlocks.clear(); 464 VisitedEdges.clear(); 465 EquivalenceClass.clear(); 466 DT = nullptr; 467 PDT = nullptr; 468 LI = nullptr; 469 Predecessors.clear(); 470 Successors.clear(); 471 CoverageTracker.clear(); 472 } 473 474 /// Returns the line offset to the start line of the subprogram. 475 /// We assume that a single function will not exceed 65535 LOC. 476 unsigned SampleProfileLoader::getOffset(const DILocation *DIL) const { 477 return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) & 478 0xffff; 479 } 480 481 #ifndef NDEBUG 482 /// \brief Print the weight of edge \p E on stream \p OS. 483 /// 484 /// \param OS Stream to emit the output to. 485 /// \param E Edge to print. 486 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 487 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 488 << "]: " << EdgeWeights[E] << "\n"; 489 } 490 491 /// \brief Print the equivalence class of block \p BB on stream \p OS. 492 /// 493 /// \param OS Stream to emit the output to. 494 /// \param BB Block to print. 495 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 496 const BasicBlock *BB) { 497 const BasicBlock *Equiv = EquivalenceClass[BB]; 498 OS << "equivalence[" << BB->getName() 499 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 500 } 501 502 /// \brief Print the weight of block \p BB on stream \p OS. 503 /// 504 /// \param OS Stream to emit the output to. 505 /// \param BB Block to print. 506 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 507 const BasicBlock *BB) const { 508 const auto &I = BlockWeights.find(BB); 509 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 510 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 511 } 512 #endif 513 514 /// \brief Get the weight for an instruction. 515 /// 516 /// The "weight" of an instruction \p Inst is the number of samples 517 /// collected on that instruction at runtime. To retrieve it, we 518 /// need to compute the line number of \p Inst relative to the start of its 519 /// function. We use HeaderLineno to compute the offset. We then 520 /// look up the samples collected for \p Inst using BodySamples. 521 /// 522 /// \param Inst Instruction to query. 523 /// 524 /// \returns the weight of \p Inst. 525 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 526 const DebugLoc &DLoc = Inst.getDebugLoc(); 527 if (!DLoc) 528 return std::error_code(); 529 530 const FunctionSamples *FS = findFunctionSamples(Inst); 531 if (!FS) 532 return std::error_code(); 533 534 // Ignore all intrinsics and branch instructions. 535 // Branch instruction usually contains debug info from sources outside of 536 // the residing basic block, thus we ignore them during annotation. 537 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst)) 538 return std::error_code(); 539 540 // If a direct call/invoke instruction is inlined in profile 541 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 542 // it means that the inlined callsite has no sample, thus the call 543 // instruction should have 0 count. 544 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && 545 !ImmutableCallSite(&Inst).isIndirectCall() && 546 findCalleeFunctionSamples(Inst)) 547 return 0; 548 549 const DILocation *DIL = DLoc; 550 uint32_t LineOffset = getOffset(DIL); 551 uint32_t Discriminator = DIL->getBaseDiscriminator(); 552 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 553 if (R) { 554 bool FirstMark = 555 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 556 if (FirstMark) { 557 ORE->emit([&]() { 558 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 559 Remark << "Applied " << ore::NV("NumSamples", *R); 560 Remark << " samples from profile (offset: "; 561 Remark << ore::NV("LineOffset", LineOffset); 562 if (Discriminator) { 563 Remark << "."; 564 Remark << ore::NV("Discriminator", Discriminator); 565 } 566 Remark << ")"; 567 return Remark; 568 }); 569 } 570 DEBUG(dbgs() << " " << DLoc.getLine() << "." 571 << DIL->getBaseDiscriminator() << ":" << Inst 572 << " (line offset: " << LineOffset << "." 573 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 574 << ")\n"); 575 } 576 return R; 577 } 578 579 /// \brief Compute the weight of a basic block. 580 /// 581 /// The weight of basic block \p BB is the maximum weight of all the 582 /// instructions in BB. 583 /// 584 /// \param BB The basic block to query. 585 /// 586 /// \returns the weight for \p BB. 587 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 588 uint64_t Max = 0; 589 bool HasWeight = false; 590 for (auto &I : BB->getInstList()) { 591 const ErrorOr<uint64_t> &R = getInstWeight(I); 592 if (R) { 593 Max = std::max(Max, R.get()); 594 HasWeight = true; 595 } 596 } 597 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 598 } 599 600 /// \brief Compute and store the weights of every basic block. 601 /// 602 /// This populates the BlockWeights map by computing 603 /// the weights of every basic block in the CFG. 604 /// 605 /// \param F The function to query. 606 bool SampleProfileLoader::computeBlockWeights(Function &F) { 607 bool Changed = false; 608 DEBUG(dbgs() << "Block weights\n"); 609 for (const auto &BB : F) { 610 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 611 if (Weight) { 612 BlockWeights[&BB] = Weight.get(); 613 VisitedBlocks.insert(&BB); 614 Changed = true; 615 } 616 DEBUG(printBlockWeight(dbgs(), &BB)); 617 } 618 619 return Changed; 620 } 621 622 /// \brief Get the FunctionSamples for a call instruction. 623 /// 624 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 625 /// instance in which that call instruction is calling to. It contains 626 /// all samples that resides in the inlined instance. We first find the 627 /// inlined instance in which the call instruction is from, then we 628 /// traverse its children to find the callsite with the matching 629 /// location. 630 /// 631 /// \param Inst Call/Invoke instruction to query. 632 /// 633 /// \returns The FunctionSamples pointer to the inlined instance. 634 const FunctionSamples * 635 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 636 const DILocation *DIL = Inst.getDebugLoc(); 637 if (!DIL) { 638 return nullptr; 639 } 640 641 StringRef CalleeName; 642 if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) 643 if (Function *Callee = CI->getCalledFunction()) 644 CalleeName = Callee->getName(); 645 646 const FunctionSamples *FS = findFunctionSamples(Inst); 647 if (FS == nullptr) 648 return nullptr; 649 650 return FS->findFunctionSamplesAt( 651 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), CalleeName); 652 } 653 654 /// Returns a vector of FunctionSamples that are the indirect call targets 655 /// of \p Inst. The vector is sorted by the total number of samples. Stores 656 /// the total call count of the indirect call in \p Sum. 657 std::vector<const FunctionSamples *> 658 SampleProfileLoader::findIndirectCallFunctionSamples( 659 const Instruction &Inst, uint64_t &Sum) const { 660 const DILocation *DIL = Inst.getDebugLoc(); 661 std::vector<const FunctionSamples *> R; 662 663 if (!DIL) { 664 return R; 665 } 666 667 const FunctionSamples *FS = findFunctionSamples(Inst); 668 if (FS == nullptr) 669 return R; 670 671 uint32_t LineOffset = getOffset(DIL); 672 uint32_t Discriminator = DIL->getBaseDiscriminator(); 673 674 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 675 Sum = 0; 676 if (T) 677 for (const auto &T_C : T.get()) 678 Sum += T_C.second; 679 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt( 680 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()))) { 681 if (M->empty()) 682 return R; 683 for (const auto &NameFS : *M) { 684 Sum += NameFS.second.getEntrySamples(); 685 R.push_back(&NameFS.second); 686 } 687 std::sort(R.begin(), R.end(), 688 [](const FunctionSamples *L, const FunctionSamples *R) { 689 return L->getEntrySamples() > R->getEntrySamples(); 690 }); 691 } 692 return R; 693 } 694 695 /// \brief Get the FunctionSamples for an instruction. 696 /// 697 /// The FunctionSamples of an instruction \p Inst is the inlined instance 698 /// in which that instruction is coming from. We traverse the inline stack 699 /// of that instruction, and match it with the tree nodes in the profile. 700 /// 701 /// \param Inst Instruction to query. 702 /// 703 /// \returns the FunctionSamples pointer to the inlined instance. 704 const FunctionSamples * 705 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 706 SmallVector<std::pair<LineLocation, StringRef>, 10> S; 707 const DILocation *DIL = Inst.getDebugLoc(); 708 if (!DIL) 709 return Samples; 710 711 const DILocation *PrevDIL = DIL; 712 for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) { 713 S.push_back(std::make_pair( 714 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), 715 PrevDIL->getScope()->getSubprogram()->getLinkageName())); 716 PrevDIL = DIL; 717 } 718 if (S.size() == 0) 719 return Samples; 720 const FunctionSamples *FS = Samples; 721 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 722 FS = FS->findFunctionSamplesAt(S[i].first, S[i].second); 723 } 724 return FS; 725 } 726 727 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) { 728 assert(isa<CallInst>(I) || isa<InvokeInst>(I)); 729 CallSite CS(I); 730 Function *CalledFunction = CS.getCalledFunction(); 731 assert(CalledFunction); 732 DebugLoc DLoc = I->getDebugLoc(); 733 BasicBlock *BB = I->getParent(); 734 InlineParams Params = getInlineParams(); 735 Params.ComputeFullInlineCost = true; 736 // Checks if there is anything in the reachable portion of the callee at 737 // this callsite that makes this inlining potentially illegal. Need to 738 // set ComputeFullInlineCost, otherwise getInlineCost may return early 739 // when cost exceeds threshold without checking all IRs in the callee. 740 // The acutal cost does not matter because we only checks isNever() to 741 // see if it is legal to inline the callsite. 742 InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC, 743 None, nullptr, nullptr); 744 if (Cost.isNever()) { 745 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB) 746 << "incompatible inlining"); 747 return false; 748 } 749 InlineFunctionInfo IFI(nullptr, &GetAC); 750 if (InlineFunction(CS, IFI)) { 751 // The call to InlineFunction erases I, so we can't pass it here. 752 ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB) 753 << "inlined hot callee '" << ore::NV("Callee", CalledFunction) 754 << "' into '" << ore::NV("Caller", BB->getParent()) << "'"); 755 return true; 756 } 757 return false; 758 } 759 760 /// \brief Iteratively inline hot callsites of a function. 761 /// 762 /// Iteratively traverse all callsites of the function \p F, and find if 763 /// the corresponding inlined instance exists and is hot in profile. If 764 /// it is hot enough, inline the callsites and adds new callsites of the 765 /// callee into the caller. If the call is an indirect call, first promote 766 /// it to direct call. Each indirect call is limited with a single target. 767 /// 768 /// \param F function to perform iterative inlining. 769 /// \param ImportGUIDs a set to be updated to include all GUIDs that come 770 /// from a different module but inlined in the profiled binary. 771 /// 772 /// \returns True if there is any inline happened. 773 bool SampleProfileLoader::inlineHotFunctions( 774 Function &F, DenseSet<GlobalValue::GUID> &ImportGUIDs) { 775 DenseSet<Instruction *> PromotedInsns; 776 bool Changed = false; 777 while (true) { 778 bool LocalChanged = false; 779 SmallVector<Instruction *, 10> CIS; 780 for (auto &BB : F) { 781 bool Hot = false; 782 SmallVector<Instruction *, 10> Candidates; 783 for (auto &I : BB.getInstList()) { 784 const FunctionSamples *FS = nullptr; 785 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 786 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { 787 Candidates.push_back(&I); 788 if (callsiteIsHot(Samples, FS)) 789 Hot = true; 790 } 791 } 792 if (Hot) { 793 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); 794 } 795 } 796 for (auto I : CIS) { 797 Function *CalledFunction = CallSite(I).getCalledFunction(); 798 // Do not inline recursive calls. 799 if (CalledFunction == &F) 800 continue; 801 if (CallSite(I).isIndirectCall()) { 802 if (PromotedInsns.count(I)) 803 continue; 804 uint64_t Sum; 805 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 806 if (IsThinLTOPreLink) { 807 FS->findImportedFunctions(ImportGUIDs, F.getParent(), 808 Samples->getTotalSamples() * 809 SampleProfileHotThreshold / 100); 810 continue; 811 } 812 auto CalleeFunctionName = FS->getName(); 813 // If it is a recursive call, we do not inline it as it could bloat 814 // the code exponentially. There is way to better handle this, e.g. 815 // clone the caller first, and inline the cloned caller if it is 816 // recursive. As llvm does not inline recursive calls, we will 817 // simply ignore it instead of handling it explicitly. 818 if (CalleeFunctionName == F.getName()) 819 continue; 820 821 const char *Reason = "Callee function not available"; 822 auto R = SymbolMap.find(CalleeFunctionName); 823 if (R != SymbolMap.end() && R->getValue() && 824 !R->getValue()->isDeclaration() && 825 R->getValue()->getSubprogram() && 826 isLegalToPromote(I, R->getValue(), &Reason)) { 827 uint64_t C = FS->getEntrySamples(); 828 Instruction *DI = promoteIndirectCall( 829 I, R->getValue(), C, Sum, false, ORE); 830 Sum -= C; 831 PromotedInsns.insert(I); 832 // If profile mismatches, we should not attempt to inline DI. 833 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && 834 inlineCallInstruction(DI)) 835 LocalChanged = true; 836 } else { 837 DEBUG(dbgs() 838 << "\nFailed to promote indirect call to " 839 << CalleeFunctionName << " because " << Reason << "\n"); 840 } 841 } 842 } else if (CalledFunction && CalledFunction->getSubprogram() && 843 !CalledFunction->isDeclaration()) { 844 if (inlineCallInstruction(I)) 845 LocalChanged = true; 846 } else if (IsThinLTOPreLink) { 847 findCalleeFunctionSamples(*I)->findImportedFunctions( 848 ImportGUIDs, F.getParent(), 849 Samples->getTotalSamples() * SampleProfileHotThreshold / 100); 850 } 851 } 852 if (LocalChanged) { 853 Changed = true; 854 } else { 855 break; 856 } 857 } 858 return Changed; 859 } 860 861 /// \brief Find equivalence classes for the given block. 862 /// 863 /// This finds all the blocks that are guaranteed to execute the same 864 /// number of times as \p BB1. To do this, it traverses all the 865 /// descendants of \p BB1 in the dominator or post-dominator tree. 866 /// 867 /// A block BB2 will be in the same equivalence class as \p BB1 if 868 /// the following holds: 869 /// 870 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 871 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 872 /// dominate BB1 in the post-dominator tree. 873 /// 874 /// 2- Both BB2 and \p BB1 must be in the same loop. 875 /// 876 /// For every block BB2 that meets those two requirements, we set BB2's 877 /// equivalence class to \p BB1. 878 /// 879 /// \param BB1 Block to check. 880 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 881 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 882 /// with blocks from \p BB1's dominator tree, then 883 /// this is the post-dominator tree, and vice versa. 884 template <bool IsPostDom> 885 void SampleProfileLoader::findEquivalencesFor( 886 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 887 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 888 const BasicBlock *EC = EquivalenceClass[BB1]; 889 uint64_t Weight = BlockWeights[EC]; 890 for (const auto *BB2 : Descendants) { 891 bool IsDomParent = DomTree->dominates(BB2, BB1); 892 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 893 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 894 EquivalenceClass[BB2] = EC; 895 // If BB2 is visited, then the entire EC should be marked as visited. 896 if (VisitedBlocks.count(BB2)) { 897 VisitedBlocks.insert(EC); 898 } 899 900 // If BB2 is heavier than BB1, make BB2 have the same weight 901 // as BB1. 902 // 903 // Note that we don't worry about the opposite situation here 904 // (when BB2 is lighter than BB1). We will deal with this 905 // during the propagation phase. Right now, we just want to 906 // make sure that BB1 has the largest weight of all the 907 // members of its equivalence set. 908 Weight = std::max(Weight, BlockWeights[BB2]); 909 } 910 } 911 if (EC == &EC->getParent()->getEntryBlock()) { 912 BlockWeights[EC] = Samples->getHeadSamples() + 1; 913 } else { 914 BlockWeights[EC] = Weight; 915 } 916 } 917 918 /// \brief Find equivalence classes. 919 /// 920 /// Since samples may be missing from blocks, we can fill in the gaps by setting 921 /// the weights of all the blocks in the same equivalence class to the same 922 /// weight. To compute the concept of equivalence, we use dominance and loop 923 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 924 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 925 /// 926 /// \param F The function to query. 927 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 928 SmallVector<BasicBlock *, 8> DominatedBBs; 929 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 930 // Find equivalence sets based on dominance and post-dominance information. 931 for (auto &BB : F) { 932 BasicBlock *BB1 = &BB; 933 934 // Compute BB1's equivalence class once. 935 if (EquivalenceClass.count(BB1)) { 936 DEBUG(printBlockEquivalence(dbgs(), BB1)); 937 continue; 938 } 939 940 // By default, blocks are in their own equivalence class. 941 EquivalenceClass[BB1] = BB1; 942 943 // Traverse all the blocks dominated by BB1. We are looking for 944 // every basic block BB2 such that: 945 // 946 // 1- BB1 dominates BB2. 947 // 2- BB2 post-dominates BB1. 948 // 3- BB1 and BB2 are in the same loop nest. 949 // 950 // If all those conditions hold, it means that BB2 is executed 951 // as many times as BB1, so they are placed in the same equivalence 952 // class by making BB2's equivalence class be BB1. 953 DominatedBBs.clear(); 954 DT->getDescendants(BB1, DominatedBBs); 955 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 956 957 DEBUG(printBlockEquivalence(dbgs(), BB1)); 958 } 959 960 // Assign weights to equivalence classes. 961 // 962 // All the basic blocks in the same equivalence class will execute 963 // the same number of times. Since we know that the head block in 964 // each equivalence class has the largest weight, assign that weight 965 // to all the blocks in that equivalence class. 966 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 967 for (auto &BI : F) { 968 const BasicBlock *BB = &BI; 969 const BasicBlock *EquivBB = EquivalenceClass[BB]; 970 if (BB != EquivBB) 971 BlockWeights[BB] = BlockWeights[EquivBB]; 972 DEBUG(printBlockWeight(dbgs(), BB)); 973 } 974 } 975 976 /// \brief Visit the given edge to decide if it has a valid weight. 977 /// 978 /// If \p E has not been visited before, we copy to \p UnknownEdge 979 /// and increment the count of unknown edges. 980 /// 981 /// \param E Edge to visit. 982 /// \param NumUnknownEdges Current number of unknown edges. 983 /// \param UnknownEdge Set if E has not been visited before. 984 /// 985 /// \returns E's weight, if known. Otherwise, return 0. 986 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 987 Edge *UnknownEdge) { 988 if (!VisitedEdges.count(E)) { 989 (*NumUnknownEdges)++; 990 *UnknownEdge = E; 991 return 0; 992 } 993 994 return EdgeWeights[E]; 995 } 996 997 /// \brief Propagate weights through incoming/outgoing edges. 998 /// 999 /// If the weight of a basic block is known, and there is only one edge 1000 /// with an unknown weight, we can calculate the weight of that edge. 1001 /// 1002 /// Similarly, if all the edges have a known count, we can calculate the 1003 /// count of the basic block, if needed. 1004 /// 1005 /// \param F Function to process. 1006 /// \param UpdateBlockCount Whether we should update basic block counts that 1007 /// has already been annotated. 1008 /// 1009 /// \returns True if new weights were assigned to edges or blocks. 1010 bool SampleProfileLoader::propagateThroughEdges(Function &F, 1011 bool UpdateBlockCount) { 1012 bool Changed = false; 1013 DEBUG(dbgs() << "\nPropagation through edges\n"); 1014 for (const auto &BI : F) { 1015 const BasicBlock *BB = &BI; 1016 const BasicBlock *EC = EquivalenceClass[BB]; 1017 1018 // Visit all the predecessor and successor edges to determine 1019 // which ones have a weight assigned already. Note that it doesn't 1020 // matter that we only keep track of a single unknown edge. The 1021 // only case we are interested in handling is when only a single 1022 // edge is unknown (see setEdgeOrBlockWeight). 1023 for (unsigned i = 0; i < 2; i++) { 1024 uint64_t TotalWeight = 0; 1025 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 1026 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 1027 1028 if (i == 0) { 1029 // First, visit all predecessor edges. 1030 NumTotalEdges = Predecessors[BB].size(); 1031 for (auto *Pred : Predecessors[BB]) { 1032 Edge E = std::make_pair(Pred, BB); 1033 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1034 if (E.first == E.second) 1035 SelfReferentialEdge = E; 1036 } 1037 if (NumTotalEdges == 1) { 1038 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 1039 } 1040 } else { 1041 // On the second round, visit all successor edges. 1042 NumTotalEdges = Successors[BB].size(); 1043 for (auto *Succ : Successors[BB]) { 1044 Edge E = std::make_pair(BB, Succ); 1045 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1046 } 1047 if (NumTotalEdges == 1) { 1048 SingleEdge = std::make_pair(BB, Successors[BB][0]); 1049 } 1050 } 1051 1052 // After visiting all the edges, there are three cases that we 1053 // can handle immediately: 1054 // 1055 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 1056 // In this case, we simply check that the sum of all the edges 1057 // is the same as BB's weight. If not, we change BB's weight 1058 // to match. Additionally, if BB had not been visited before, 1059 // we mark it visited. 1060 // 1061 // - Only one edge is unknown and BB has already been visited. 1062 // In this case, we can compute the weight of the edge by 1063 // subtracting the total block weight from all the known 1064 // edge weights. If the edges weight more than BB, then the 1065 // edge of the last remaining edge is set to zero. 1066 // 1067 // - There exists a self-referential edge and the weight of BB is 1068 // known. In this case, this edge can be based on BB's weight. 1069 // We add up all the other known edges and set the weight on 1070 // the self-referential edge as we did in the previous case. 1071 // 1072 // In any other case, we must continue iterating. Eventually, 1073 // all edges will get a weight, or iteration will stop when 1074 // it reaches SampleProfileMaxPropagateIterations. 1075 if (NumUnknownEdges <= 1) { 1076 uint64_t &BBWeight = BlockWeights[EC]; 1077 if (NumUnknownEdges == 0) { 1078 if (!VisitedBlocks.count(EC)) { 1079 // If we already know the weight of all edges, the weight of the 1080 // basic block can be computed. It should be no larger than the sum 1081 // of all edge weights. 1082 if (TotalWeight > BBWeight) { 1083 BBWeight = TotalWeight; 1084 Changed = true; 1085 DEBUG(dbgs() << "All edge weights for " << BB->getName() 1086 << " known. Set weight for block: "; 1087 printBlockWeight(dbgs(), BB);); 1088 } 1089 } else if (NumTotalEdges == 1 && 1090 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1091 // If there is only one edge for the visited basic block, use the 1092 // block weight to adjust edge weight if edge weight is smaller. 1093 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1094 Changed = true; 1095 } 1096 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1097 // If there is a single unknown edge and the block has been 1098 // visited, then we can compute E's weight. 1099 if (BBWeight >= TotalWeight) 1100 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1101 else 1102 EdgeWeights[UnknownEdge] = 0; 1103 const BasicBlock *OtherEC; 1104 if (i == 0) 1105 OtherEC = EquivalenceClass[UnknownEdge.first]; 1106 else 1107 OtherEC = EquivalenceClass[UnknownEdge.second]; 1108 // Edge weights should never exceed the BB weights it connects. 1109 if (VisitedBlocks.count(OtherEC) && 1110 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1111 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1112 VisitedEdges.insert(UnknownEdge); 1113 Changed = true; 1114 DEBUG(dbgs() << "Set weight for edge: "; 1115 printEdgeWeight(dbgs(), UnknownEdge)); 1116 } 1117 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1118 // If a block Weights 0, all its in/out edges should weight 0. 1119 if (i == 0) { 1120 for (auto *Pred : Predecessors[BB]) { 1121 Edge E = std::make_pair(Pred, BB); 1122 EdgeWeights[E] = 0; 1123 VisitedEdges.insert(E); 1124 } 1125 } else { 1126 for (auto *Succ : Successors[BB]) { 1127 Edge E = std::make_pair(BB, Succ); 1128 EdgeWeights[E] = 0; 1129 VisitedEdges.insert(E); 1130 } 1131 } 1132 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1133 uint64_t &BBWeight = BlockWeights[BB]; 1134 // We have a self-referential edge and the weight of BB is known. 1135 if (BBWeight >= TotalWeight) 1136 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1137 else 1138 EdgeWeights[SelfReferentialEdge] = 0; 1139 VisitedEdges.insert(SelfReferentialEdge); 1140 Changed = true; 1141 DEBUG(dbgs() << "Set self-referential edge weight to: "; 1142 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1143 } 1144 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1145 BlockWeights[EC] = TotalWeight; 1146 VisitedBlocks.insert(EC); 1147 Changed = true; 1148 } 1149 } 1150 } 1151 1152 return Changed; 1153 } 1154 1155 /// \brief Build in/out edge lists for each basic block in the CFG. 1156 /// 1157 /// We are interested in unique edges. If a block B1 has multiple 1158 /// edges to another block B2, we only add a single B1->B2 edge. 1159 void SampleProfileLoader::buildEdges(Function &F) { 1160 for (auto &BI : F) { 1161 BasicBlock *B1 = &BI; 1162 1163 // Add predecessors for B1. 1164 SmallPtrSet<BasicBlock *, 16> Visited; 1165 if (!Predecessors[B1].empty()) 1166 llvm_unreachable("Found a stale predecessors list in a basic block."); 1167 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1168 BasicBlock *B2 = *PI; 1169 if (Visited.insert(B2).second) 1170 Predecessors[B1].push_back(B2); 1171 } 1172 1173 // Add successors for B1. 1174 Visited.clear(); 1175 if (!Successors[B1].empty()) 1176 llvm_unreachable("Found a stale successors list in a basic block."); 1177 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1178 BasicBlock *B2 = *SI; 1179 if (Visited.insert(B2).second) 1180 Successors[B1].push_back(B2); 1181 } 1182 } 1183 } 1184 1185 /// Sorts the CallTargetMap \p M by count in descending order and stores the 1186 /// sorted result in \p Sorted. Returns the total counts. 1187 static uint64_t SortCallTargets(SmallVector<InstrProfValueData, 2> &Sorted, 1188 const SampleRecord::CallTargetMap &M) { 1189 Sorted.clear(); 1190 uint64_t Sum = 0; 1191 for (auto I = M.begin(); I != M.end(); ++I) { 1192 Sum += I->getValue(); 1193 Sorted.push_back({Function::getGUID(I->getKey()), I->getValue()}); 1194 } 1195 std::sort(Sorted.begin(), Sorted.end(), 1196 [](const InstrProfValueData &L, const InstrProfValueData &R) { 1197 if (L.Count == R.Count) 1198 return L.Value > R.Value; 1199 else 1200 return L.Count > R.Count; 1201 }); 1202 return Sum; 1203 } 1204 1205 /// \brief Propagate weights into edges 1206 /// 1207 /// The following rules are applied to every block BB in the CFG: 1208 /// 1209 /// - If BB has a single predecessor/successor, then the weight 1210 /// of that edge is the weight of the block. 1211 /// 1212 /// - If all incoming or outgoing edges are known except one, and the 1213 /// weight of the block is already known, the weight of the unknown 1214 /// edge will be the weight of the block minus the sum of all the known 1215 /// edges. If the sum of all the known edges is larger than BB's weight, 1216 /// we set the unknown edge weight to zero. 1217 /// 1218 /// - If there is a self-referential edge, and the weight of the block is 1219 /// known, the weight for that edge is set to the weight of the block 1220 /// minus the weight of the other incoming edges to that block (if 1221 /// known). 1222 void SampleProfileLoader::propagateWeights(Function &F) { 1223 bool Changed = true; 1224 unsigned I = 0; 1225 1226 // If BB weight is larger than its corresponding loop's header BB weight, 1227 // use the BB weight to replace the loop header BB weight. 1228 for (auto &BI : F) { 1229 BasicBlock *BB = &BI; 1230 Loop *L = LI->getLoopFor(BB); 1231 if (!L) { 1232 continue; 1233 } 1234 BasicBlock *Header = L->getHeader(); 1235 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1236 BlockWeights[Header] = BlockWeights[BB]; 1237 } 1238 } 1239 1240 // Before propagation starts, build, for each block, a list of 1241 // unique predecessors and successors. This is necessary to handle 1242 // identical edges in multiway branches. Since we visit all blocks and all 1243 // edges of the CFG, it is cleaner to build these lists once at the start 1244 // of the pass. 1245 buildEdges(F); 1246 1247 // Propagate until we converge or we go past the iteration limit. 1248 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1249 Changed = propagateThroughEdges(F, false); 1250 } 1251 1252 // The first propagation propagates BB counts from annotated BBs to unknown 1253 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1254 // to propagate edge weights. 1255 VisitedEdges.clear(); 1256 Changed = true; 1257 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1258 Changed = propagateThroughEdges(F, false); 1259 } 1260 1261 // The 3rd propagation pass allows adjust annotated BB weights that are 1262 // obviously wrong. 1263 Changed = true; 1264 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1265 Changed = propagateThroughEdges(F, true); 1266 } 1267 1268 // Generate MD_prof metadata for every branch instruction using the 1269 // edge weights computed during propagation. 1270 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1271 LLVMContext &Ctx = F.getContext(); 1272 MDBuilder MDB(Ctx); 1273 for (auto &BI : F) { 1274 BasicBlock *BB = &BI; 1275 1276 if (BlockWeights[BB]) { 1277 for (auto &I : BB->getInstList()) { 1278 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1279 continue; 1280 CallSite CS(&I); 1281 if (!CS.getCalledFunction()) { 1282 const DebugLoc &DLoc = I.getDebugLoc(); 1283 if (!DLoc) 1284 continue; 1285 const DILocation *DIL = DLoc; 1286 uint32_t LineOffset = getOffset(DIL); 1287 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1288 1289 const FunctionSamples *FS = findFunctionSamples(I); 1290 if (!FS) 1291 continue; 1292 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1293 if (!T || T.get().empty()) 1294 continue; 1295 SmallVector<InstrProfValueData, 2> SortedCallTargets; 1296 uint64_t Sum = SortCallTargets(SortedCallTargets, T.get()); 1297 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1298 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1299 SortedCallTargets.size()); 1300 } else if (!dyn_cast<IntrinsicInst>(&I)) { 1301 SmallVector<uint32_t, 1> Weights; 1302 Weights.push_back(BlockWeights[BB]); 1303 I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); 1304 } 1305 } 1306 } 1307 TerminatorInst *TI = BB->getTerminator(); 1308 if (TI->getNumSuccessors() == 1) 1309 continue; 1310 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1311 continue; 1312 1313 DebugLoc BranchLoc = TI->getDebugLoc(); 1314 DEBUG(dbgs() << "\nGetting weights for branch at line " 1315 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1316 : Twine("<UNKNOWN LOCATION>")) 1317 << ".\n"); 1318 SmallVector<uint32_t, 4> Weights; 1319 uint32_t MaxWeight = 0; 1320 Instruction *MaxDestInst; 1321 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1322 BasicBlock *Succ = TI->getSuccessor(I); 1323 Edge E = std::make_pair(BB, Succ); 1324 uint64_t Weight = EdgeWeights[E]; 1325 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1326 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1327 // if needed. Sample counts in profiles are 64-bit unsigned values, 1328 // but internally branch weights are expressed as 32-bit values. 1329 if (Weight > std::numeric_limits<uint32_t>::max()) { 1330 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1331 Weight = std::numeric_limits<uint32_t>::max(); 1332 } 1333 // Weight is added by one to avoid propagation errors introduced by 1334 // 0 weights. 1335 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1336 if (Weight != 0) { 1337 if (Weight > MaxWeight) { 1338 MaxWeight = Weight; 1339 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1340 } 1341 } 1342 } 1343 1344 uint64_t TempWeight; 1345 // Only set weights if there is at least one non-zero weight. 1346 // In any other case, let the analyzer set weights. 1347 // Do not set weights if the weights are present. In ThinLTO, the profile 1348 // annotation is done twice. If the first annotation already set the 1349 // weights, the second pass does not need to set it. 1350 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1351 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1352 TI->setMetadata(LLVMContext::MD_prof, 1353 MDB.createBranchWeights(Weights)); 1354 ORE->emit([&]() { 1355 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1356 << "most popular destination for conditional branches at " 1357 << ore::NV("CondBranchesLoc", BranchLoc); 1358 }); 1359 } else { 1360 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1361 } 1362 } 1363 } 1364 1365 /// \brief Get the line number for the function header. 1366 /// 1367 /// This looks up function \p F in the current compilation unit and 1368 /// retrieves the line number where the function is defined. This is 1369 /// line 0 for all the samples read from the profile file. Every line 1370 /// number is relative to this line. 1371 /// 1372 /// \param F Function object to query. 1373 /// 1374 /// \returns the line number where \p F is defined. If it returns 0, 1375 /// it means that there is no debug information available for \p F. 1376 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1377 if (DISubprogram *S = F.getSubprogram()) 1378 return S->getLine(); 1379 1380 // If the start of \p F is missing, emit a diagnostic to inform the user 1381 // about the missed opportunity. 1382 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1383 "No debug information found in function " + F.getName() + 1384 ": Function profile not used", 1385 DS_Warning)); 1386 return 0; 1387 } 1388 1389 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1390 DT.reset(new DominatorTree); 1391 DT->recalculate(F); 1392 1393 PDT.reset(new PostDomTreeBase<BasicBlock>()); 1394 PDT->recalculate(F); 1395 1396 LI.reset(new LoopInfo); 1397 LI->analyze(*DT); 1398 } 1399 1400 /// \brief Generate branch weight metadata for all branches in \p F. 1401 /// 1402 /// Branch weights are computed out of instruction samples using a 1403 /// propagation heuristic. Propagation proceeds in 3 phases: 1404 /// 1405 /// 1- Assignment of block weights. All the basic blocks in the function 1406 /// are initial assigned the same weight as their most frequently 1407 /// executed instruction. 1408 /// 1409 /// 2- Creation of equivalence classes. Since samples may be missing from 1410 /// blocks, we can fill in the gaps by setting the weights of all the 1411 /// blocks in the same equivalence class to the same weight. To compute 1412 /// the concept of equivalence, we use dominance and loop information. 1413 /// Two blocks B1 and B2 are in the same equivalence class if B1 1414 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1415 /// 1416 /// 3- Propagation of block weights into edges. This uses a simple 1417 /// propagation heuristic. The following rules are applied to every 1418 /// block BB in the CFG: 1419 /// 1420 /// - If BB has a single predecessor/successor, then the weight 1421 /// of that edge is the weight of the block. 1422 /// 1423 /// - If all the edges are known except one, and the weight of the 1424 /// block is already known, the weight of the unknown edge will 1425 /// be the weight of the block minus the sum of all the known 1426 /// edges. If the sum of all the known edges is larger than BB's weight, 1427 /// we set the unknown edge weight to zero. 1428 /// 1429 /// - If there is a self-referential edge, and the weight of the block is 1430 /// known, the weight for that edge is set to the weight of the block 1431 /// minus the weight of the other incoming edges to that block (if 1432 /// known). 1433 /// 1434 /// Since this propagation is not guaranteed to finalize for every CFG, we 1435 /// only allow it to proceed for a limited number of iterations (controlled 1436 /// by -sample-profile-max-propagate-iterations). 1437 /// 1438 /// FIXME: Try to replace this propagation heuristic with a scheme 1439 /// that is guaranteed to finalize. A work-list approach similar to 1440 /// the standard value propagation algorithm used by SSA-CCP might 1441 /// work here. 1442 /// 1443 /// Once all the branch weights are computed, we emit the MD_prof 1444 /// metadata on BB using the computed values for each of its branches. 1445 /// 1446 /// \param F The function to query. 1447 /// 1448 /// \returns true if \p F was modified. Returns false, otherwise. 1449 bool SampleProfileLoader::emitAnnotations(Function &F) { 1450 bool Changed = false; 1451 1452 if (getFunctionLoc(F) == 0) 1453 return false; 1454 1455 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 1456 << ": " << getFunctionLoc(F) << "\n"); 1457 1458 DenseSet<GlobalValue::GUID> ImportGUIDs; 1459 Changed |= inlineHotFunctions(F, ImportGUIDs); 1460 1461 // Compute basic block weights. 1462 Changed |= computeBlockWeights(F); 1463 1464 if (Changed) { 1465 // Add an entry count to the function using the samples gathered at the 1466 // function entry. Also sets the GUIDs that comes from a different 1467 // module but inlined in the profiled binary. This is aiming at making 1468 // the IR match the profiled binary before annotation. 1469 F.setEntryCount(Samples->getHeadSamples() + 1, &ImportGUIDs); 1470 1471 // Compute dominance and loop info needed for propagation. 1472 computeDominanceAndLoopInfo(F); 1473 1474 // Find equivalence classes. 1475 findEquivalenceClasses(F); 1476 1477 // Propagate weights to all edges. 1478 propagateWeights(F); 1479 } 1480 1481 // If coverage checking was requested, compute it now. 1482 if (SampleProfileRecordCoverage) { 1483 unsigned Used = CoverageTracker.countUsedRecords(Samples); 1484 unsigned Total = CoverageTracker.countBodyRecords(Samples); 1485 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1486 if (Coverage < SampleProfileRecordCoverage) { 1487 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1488 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1489 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1490 Twine(Coverage) + "%) were applied", 1491 DS_Warning)); 1492 } 1493 } 1494 1495 if (SampleProfileSampleCoverage) { 1496 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1497 uint64_t Total = CoverageTracker.countBodySamples(Samples); 1498 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1499 if (Coverage < SampleProfileSampleCoverage) { 1500 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1501 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1502 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1503 Twine(Coverage) + "%) were applied", 1504 DS_Warning)); 1505 } 1506 } 1507 return Changed; 1508 } 1509 1510 char SampleProfileLoaderLegacyPass::ID = 0; 1511 1512 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1513 "Sample Profile loader", false, false) 1514 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1515 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1516 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1517 "Sample Profile loader", false, false) 1518 1519 bool SampleProfileLoader::doInitialization(Module &M) { 1520 auto &Ctx = M.getContext(); 1521 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1522 if (std::error_code EC = ReaderOrErr.getError()) { 1523 std::string Msg = "Could not open profile: " + EC.message(); 1524 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1525 return false; 1526 } 1527 Reader = std::move(ReaderOrErr.get()); 1528 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1529 return true; 1530 } 1531 1532 ModulePass *llvm::createSampleProfileLoaderPass() { 1533 return new SampleProfileLoaderLegacyPass(SampleProfileFile); 1534 } 1535 1536 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1537 return new SampleProfileLoaderLegacyPass(Name); 1538 } 1539 1540 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM) { 1541 if (!ProfileIsValid) 1542 return false; 1543 1544 // Compute the total number of samples collected in this profile. 1545 for (const auto &I : Reader->getProfiles()) 1546 TotalCollectedSamples += I.second.getTotalSamples(); 1547 1548 // Populate the symbol map. 1549 for (const auto &N_F : M.getValueSymbolTable()) { 1550 std::string OrigName = N_F.getKey(); 1551 Function *F = dyn_cast<Function>(N_F.getValue()); 1552 if (F == nullptr) 1553 continue; 1554 SymbolMap[OrigName] = F; 1555 auto pos = OrigName.find('.'); 1556 if (pos != std::string::npos) { 1557 std::string NewName = OrigName.substr(0, pos); 1558 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1559 // Failiing to insert means there is already an entry in SymbolMap, 1560 // thus there are multiple functions that are mapped to the same 1561 // stripped name. In this case of name conflicting, set the value 1562 // to nullptr to avoid confusion. 1563 if (!r.second) 1564 r.first->second = nullptr; 1565 } 1566 } 1567 1568 bool retval = false; 1569 for (auto &F : M) 1570 if (!F.isDeclaration()) { 1571 clearFunctionData(); 1572 retval |= runOnFunction(F, AM); 1573 } 1574 if (M.getProfileSummary() == nullptr) 1575 M.setProfileSummary(Reader->getSummary().getMD(M.getContext())); 1576 return retval; 1577 } 1578 1579 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1580 ACT = &getAnalysis<AssumptionCacheTracker>(); 1581 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 1582 return SampleLoader.runOnModule(M, nullptr); 1583 } 1584 1585 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 1586 F.setEntryCount(0); 1587 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 1588 if (AM) { 1589 auto &FAM = 1590 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 1591 .getManager(); 1592 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1593 } else { 1594 OwnedORE = make_unique<OptimizationRemarkEmitter>(&F); 1595 ORE = OwnedORE.get(); 1596 } 1597 Samples = Reader->getSamplesFor(F); 1598 if (Samples && !Samples->empty()) 1599 return emitAnnotations(F); 1600 return false; 1601 } 1602 1603 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1604 ModuleAnalysisManager &AM) { 1605 FunctionAnalysisManager &FAM = 1606 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1607 1608 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 1609 return FAM.getResult<AssumptionAnalysis>(F); 1610 }; 1611 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 1612 return FAM.getResult<TargetIRAnalysis>(F); 1613 }; 1614 1615 SampleProfileLoader SampleLoader( 1616 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 1617 IsThinLTOPreLink, GetAssumptionCache, GetTTI); 1618 1619 SampleLoader.doInitialization(M); 1620 1621 if (!SampleLoader.runOnModule(M, &AM)) 1622 return PreservedAnalyses::all(); 1623 1624 return PreservedAnalyses::none(); 1625 } 1626