1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 //      to indicate the weights of each edge coming out of the branch.
19 //      The weight of each edge is the weight of the target block for
20 //      that edge. The weight of a block B is computed as the maximum
21 //      number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/SampleProfile.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringMap.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/AssumptionCache.h"
37 #include "llvm/Analysis/InlineCost.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
40 #include "llvm/Analysis/TargetTransformInfo.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/DiagnosticInfo.h"
47 #include "llvm/IR/Dominators.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/PassManager.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/Pass.h"
60 #include "llvm/ProfileData/InstrProf.h"
61 #include "llvm/ProfileData/SampleProf.h"
62 #include "llvm/ProfileData/SampleProfReader.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/ErrorOr.h"
68 #include "llvm/Support/GenericDomTree.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Transforms/IPO.h"
71 #include "llvm/Transforms/Instrumentation.h"
72 #include "llvm/Transforms/Utils/Cloning.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <functional>
77 #include <limits>
78 #include <map>
79 #include <memory>
80 #include <string>
81 #include <system_error>
82 #include <utility>
83 #include <vector>
84 
85 using namespace llvm;
86 using namespace sampleprof;
87 
88 #define DEBUG_TYPE "sample-profile"
89 
90 // Command line option to specify the file to read samples from. This is
91 // mainly used for debugging.
92 static cl::opt<std::string> SampleProfileFile(
93     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
94     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
95 
96 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
97     "sample-profile-max-propagate-iterations", cl::init(100),
98     cl::desc("Maximum number of iterations to go through when propagating "
99              "sample block/edge weights through the CFG."));
100 
101 static cl::opt<unsigned> SampleProfileRecordCoverage(
102     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
103     cl::desc("Emit a warning if less than N% of records in the input profile "
104              "are matched to the IR."));
105 
106 static cl::opt<unsigned> SampleProfileSampleCoverage(
107     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
108     cl::desc("Emit a warning if less than N% of samples in the input profile "
109              "are matched to the IR."));
110 
111 static cl::opt<double> SampleProfileHotThreshold(
112     "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"),
113     cl::desc("Inlined functions that account for more than N% of all samples "
114              "collected in the parent function, will be inlined again."));
115 
116 namespace {
117 
118 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
119 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
120 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
121 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
122 using BlockEdgeMap =
123     DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
124 
125 class SampleCoverageTracker {
126 public:
127   SampleCoverageTracker() = default;
128 
129   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
130                        uint32_t Discriminator, uint64_t Samples);
131   unsigned computeCoverage(unsigned Used, unsigned Total) const;
132   unsigned countUsedRecords(const FunctionSamples *FS) const;
133   unsigned countBodyRecords(const FunctionSamples *FS) const;
134   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
135   uint64_t countBodySamples(const FunctionSamples *FS) const;
136 
137   void clear() {
138     SampleCoverage.clear();
139     TotalUsedSamples = 0;
140   }
141 
142 private:
143   using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
144   using FunctionSamplesCoverageMap =
145       DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
146 
147   /// Coverage map for sampling records.
148   ///
149   /// This map keeps a record of sampling records that have been matched to
150   /// an IR instruction. This is used to detect some form of staleness in
151   /// profiles (see flag -sample-profile-check-coverage).
152   ///
153   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
154   /// another map that counts how many times the sample record at the
155   /// given location has been used.
156   FunctionSamplesCoverageMap SampleCoverage;
157 
158   /// Number of samples used from the profile.
159   ///
160   /// When a sampling record is used for the first time, the samples from
161   /// that record are added to this accumulator.  Coverage is later computed
162   /// based on the total number of samples available in this function and
163   /// its callsites.
164   ///
165   /// Note that this accumulator tracks samples used from a single function
166   /// and all the inlined callsites. Strictly, we should have a map of counters
167   /// keyed by FunctionSamples pointers, but these stats are cleared after
168   /// every function, so we just need to keep a single counter.
169   uint64_t TotalUsedSamples = 0;
170 };
171 
172 /// \brief Sample profile pass.
173 ///
174 /// This pass reads profile data from the file specified by
175 /// -sample-profile-file and annotates every affected function with the
176 /// profile information found in that file.
177 class SampleProfileLoader {
178 public:
179   SampleProfileLoader(
180       StringRef Name, bool IsThinLTOPreLink,
181       std::function<AssumptionCache &(Function &)> GetAssumptionCache,
182       std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
183       : GetAC(GetAssumptionCache), GetTTI(GetTargetTransformInfo),
184         Filename(Name), IsThinLTOPreLink(IsThinLTOPreLink) {}
185 
186   bool doInitialization(Module &M);
187   bool runOnModule(Module &M, ModuleAnalysisManager *AM);
188 
189   void dump() { Reader->dump(); }
190 
191 protected:
192   bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
193   unsigned getFunctionLoc(Function &F);
194   bool emitAnnotations(Function &F);
195   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
196   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
197   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
198   std::vector<const FunctionSamples *>
199   findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
200   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
201   bool inlineCallInstruction(Instruction *I);
202   bool inlineHotFunctions(Function &F,
203                           DenseSet<GlobalValue::GUID> &ImportGUIDs);
204   void printEdgeWeight(raw_ostream &OS, Edge E);
205   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
206   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
207   bool computeBlockWeights(Function &F);
208   void findEquivalenceClasses(Function &F);
209   template <bool IsPostDom>
210   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
211                            DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
212 
213   void propagateWeights(Function &F);
214   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
215   void buildEdges(Function &F);
216   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
217   void computeDominanceAndLoopInfo(Function &F);
218   unsigned getOffset(const DILocation *DIL) const;
219   void clearFunctionData();
220 
221   /// \brief Map basic blocks to their computed weights.
222   ///
223   /// The weight of a basic block is defined to be the maximum
224   /// of all the instruction weights in that block.
225   BlockWeightMap BlockWeights;
226 
227   /// \brief Map edges to their computed weights.
228   ///
229   /// Edge weights are computed by propagating basic block weights in
230   /// SampleProfile::propagateWeights.
231   EdgeWeightMap EdgeWeights;
232 
233   /// \brief Set of visited blocks during propagation.
234   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
235 
236   /// \brief Set of visited edges during propagation.
237   SmallSet<Edge, 32> VisitedEdges;
238 
239   /// \brief Equivalence classes for block weights.
240   ///
241   /// Two blocks BB1 and BB2 are in the same equivalence class if they
242   /// dominate and post-dominate each other, and they are in the same loop
243   /// nest. When this happens, the two blocks are guaranteed to execute
244   /// the same number of times.
245   EquivalenceClassMap EquivalenceClass;
246 
247   /// Map from function name to Function *. Used to find the function from
248   /// the function name. If the function name contains suffix, additional
249   /// entry is added to map from the stripped name to the function if there
250   /// is one-to-one mapping.
251   StringMap<Function *> SymbolMap;
252 
253   /// \brief Dominance, post-dominance and loop information.
254   std::unique_ptr<DominatorTree> DT;
255   std::unique_ptr<PostDomTreeBase<BasicBlock>> PDT;
256   std::unique_ptr<LoopInfo> LI;
257 
258   std::function<AssumptionCache &(Function &)> GetAC;
259   std::function<TargetTransformInfo &(Function &)> GetTTI;
260 
261   /// \brief Predecessors for each basic block in the CFG.
262   BlockEdgeMap Predecessors;
263 
264   /// \brief Successors for each basic block in the CFG.
265   BlockEdgeMap Successors;
266 
267   SampleCoverageTracker CoverageTracker;
268 
269   /// \brief Profile reader object.
270   std::unique_ptr<SampleProfileReader> Reader;
271 
272   /// \brief Samples collected for the body of this function.
273   FunctionSamples *Samples = nullptr;
274 
275   /// \brief Name of the profile file to load.
276   std::string Filename;
277 
278   /// \brief Flag indicating whether the profile input loaded successfully.
279   bool ProfileIsValid = false;
280 
281   /// \brief Flag indicating if the pass is invoked in ThinLTO compile phase.
282   ///
283   /// In this phase, in annotation, we should not promote indirect calls.
284   /// Instead, we will mark GUIDs that needs to be annotated to the function.
285   bool IsThinLTOPreLink;
286 
287   /// \brief Total number of samples collected in this profile.
288   ///
289   /// This is the sum of all the samples collected in all the functions executed
290   /// at runtime.
291   uint64_t TotalCollectedSamples = 0;
292 
293   /// \brief Optimization Remark Emitter used to emit diagnostic remarks.
294   OptimizationRemarkEmitter *ORE = nullptr;
295 };
296 
297 class SampleProfileLoaderLegacyPass : public ModulePass {
298 public:
299   // Class identification, replacement for typeinfo
300   static char ID;
301 
302   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
303                                 bool IsThinLTOPreLink = false)
304       : ModulePass(ID), SampleLoader(Name, IsThinLTOPreLink,
305                                      [&](Function &F) -> AssumptionCache & {
306                                        return ACT->getAssumptionCache(F);
307                                      },
308                                      [&](Function &F) -> TargetTransformInfo & {
309                                        return TTIWP->getTTI(F);
310                                      }) {
311     initializeSampleProfileLoaderLegacyPassPass(
312         *PassRegistry::getPassRegistry());
313   }
314 
315   void dump() { SampleLoader.dump(); }
316 
317   bool doInitialization(Module &M) override {
318     return SampleLoader.doInitialization(M);
319   }
320 
321   StringRef getPassName() const override { return "Sample profile pass"; }
322   bool runOnModule(Module &M) override;
323 
324   void getAnalysisUsage(AnalysisUsage &AU) const override {
325     AU.addRequired<AssumptionCacheTracker>();
326     AU.addRequired<TargetTransformInfoWrapperPass>();
327   }
328 
329 private:
330   SampleProfileLoader SampleLoader;
331   AssumptionCacheTracker *ACT = nullptr;
332   TargetTransformInfoWrapperPass *TTIWP = nullptr;
333 };
334 
335 } // end anonymous namespace
336 
337 /// Return true if the given callsite is hot wrt to its caller.
338 ///
339 /// Functions that were inlined in the original binary will be represented
340 /// in the inline stack in the sample profile. If the profile shows that
341 /// the original inline decision was "good" (i.e., the callsite is executed
342 /// frequently), then we will recreate the inline decision and apply the
343 /// profile from the inlined callsite.
344 ///
345 /// To decide whether an inlined callsite is hot, we compute the fraction
346 /// of samples used by the callsite with respect to the total number of samples
347 /// collected in the caller.
348 ///
349 /// If that fraction is larger than the default given by
350 /// SampleProfileHotThreshold, the callsite will be inlined again.
351 static bool callsiteIsHot(const FunctionSamples *CallerFS,
352                           const FunctionSamples *CallsiteFS) {
353   if (!CallsiteFS)
354     return false; // The callsite was not inlined in the original binary.
355 
356   uint64_t ParentTotalSamples = CallerFS->getTotalSamples();
357   if (ParentTotalSamples == 0)
358     return false; // Avoid division by zero.
359 
360   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
361   if (CallsiteTotalSamples == 0)
362     return false; // Callsite is trivially cold.
363 
364   double PercentSamples =
365       (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0;
366   return PercentSamples >= SampleProfileHotThreshold;
367 }
368 
369 /// Mark as used the sample record for the given function samples at
370 /// (LineOffset, Discriminator).
371 ///
372 /// \returns true if this is the first time we mark the given record.
373 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
374                                             uint32_t LineOffset,
375                                             uint32_t Discriminator,
376                                             uint64_t Samples) {
377   LineLocation Loc(LineOffset, Discriminator);
378   unsigned &Count = SampleCoverage[FS][Loc];
379   bool FirstTime = (++Count == 1);
380   if (FirstTime)
381     TotalUsedSamples += Samples;
382   return FirstTime;
383 }
384 
385 /// Return the number of sample records that were applied from this profile.
386 ///
387 /// This count does not include records from cold inlined callsites.
388 unsigned
389 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const {
390   auto I = SampleCoverage.find(FS);
391 
392   // The size of the coverage map for FS represents the number of records
393   // that were marked used at least once.
394   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
395 
396   // If there are inlined callsites in this function, count the samples found
397   // in the respective bodies. However, do not bother counting callees with 0
398   // total samples, these are callees that were never invoked at runtime.
399   for (const auto &I : FS->getCallsiteSamples())
400     for (const auto &J : I.second) {
401       const FunctionSamples *CalleeSamples = &J.second;
402       if (callsiteIsHot(FS, CalleeSamples))
403         Count += countUsedRecords(CalleeSamples);
404     }
405 
406   return Count;
407 }
408 
409 /// Return the number of sample records in the body of this profile.
410 ///
411 /// This count does not include records from cold inlined callsites.
412 unsigned
413 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const {
414   unsigned Count = FS->getBodySamples().size();
415 
416   // Only count records in hot callsites.
417   for (const auto &I : FS->getCallsiteSamples())
418     for (const auto &J : I.second) {
419       const FunctionSamples *CalleeSamples = &J.second;
420       if (callsiteIsHot(FS, CalleeSamples))
421         Count += countBodyRecords(CalleeSamples);
422     }
423 
424   return Count;
425 }
426 
427 /// Return the number of samples collected in the body of this profile.
428 ///
429 /// This count does not include samples from cold inlined callsites.
430 uint64_t
431 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const {
432   uint64_t Total = 0;
433   for (const auto &I : FS->getBodySamples())
434     Total += I.second.getSamples();
435 
436   // Only count samples in hot callsites.
437   for (const auto &I : FS->getCallsiteSamples())
438     for (const auto &J : I.second) {
439       const FunctionSamples *CalleeSamples = &J.second;
440       if (callsiteIsHot(FS, CalleeSamples))
441         Total += countBodySamples(CalleeSamples);
442     }
443 
444   return Total;
445 }
446 
447 /// Return the fraction of sample records used in this profile.
448 ///
449 /// The returned value is an unsigned integer in the range 0-100 indicating
450 /// the percentage of sample records that were used while applying this
451 /// profile to the associated function.
452 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
453                                                 unsigned Total) const {
454   assert(Used <= Total &&
455          "number of used records cannot exceed the total number of records");
456   return Total > 0 ? Used * 100 / Total : 100;
457 }
458 
459 /// Clear all the per-function data used to load samples and propagate weights.
460 void SampleProfileLoader::clearFunctionData() {
461   BlockWeights.clear();
462   EdgeWeights.clear();
463   VisitedBlocks.clear();
464   VisitedEdges.clear();
465   EquivalenceClass.clear();
466   DT = nullptr;
467   PDT = nullptr;
468   LI = nullptr;
469   Predecessors.clear();
470   Successors.clear();
471   CoverageTracker.clear();
472 }
473 
474 /// Returns the line offset to the start line of the subprogram.
475 /// We assume that a single function will not exceed 65535 LOC.
476 unsigned SampleProfileLoader::getOffset(const DILocation *DIL) const {
477   return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) &
478          0xffff;
479 }
480 
481 #ifndef NDEBUG
482 /// \brief Print the weight of edge \p E on stream \p OS.
483 ///
484 /// \param OS  Stream to emit the output to.
485 /// \param E  Edge to print.
486 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
487   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
488      << "]: " << EdgeWeights[E] << "\n";
489 }
490 
491 /// \brief Print the equivalence class of block \p BB on stream \p OS.
492 ///
493 /// \param OS  Stream to emit the output to.
494 /// \param BB  Block to print.
495 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
496                                                 const BasicBlock *BB) {
497   const BasicBlock *Equiv = EquivalenceClass[BB];
498   OS << "equivalence[" << BB->getName()
499      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
500 }
501 
502 /// \brief Print the weight of block \p BB on stream \p OS.
503 ///
504 /// \param OS  Stream to emit the output to.
505 /// \param BB  Block to print.
506 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
507                                            const BasicBlock *BB) const {
508   const auto &I = BlockWeights.find(BB);
509   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
510   OS << "weight[" << BB->getName() << "]: " << W << "\n";
511 }
512 #endif
513 
514 /// \brief Get the weight for an instruction.
515 ///
516 /// The "weight" of an instruction \p Inst is the number of samples
517 /// collected on that instruction at runtime. To retrieve it, we
518 /// need to compute the line number of \p Inst relative to the start of its
519 /// function. We use HeaderLineno to compute the offset. We then
520 /// look up the samples collected for \p Inst using BodySamples.
521 ///
522 /// \param Inst Instruction to query.
523 ///
524 /// \returns the weight of \p Inst.
525 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
526   const DebugLoc &DLoc = Inst.getDebugLoc();
527   if (!DLoc)
528     return std::error_code();
529 
530   const FunctionSamples *FS = findFunctionSamples(Inst);
531   if (!FS)
532     return std::error_code();
533 
534   // Ignore all intrinsics and branch instructions.
535   // Branch instruction usually contains debug info from sources outside of
536   // the residing basic block, thus we ignore them during annotation.
537   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst))
538     return std::error_code();
539 
540   // If a direct call/invoke instruction is inlined in profile
541   // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
542   // it means that the inlined callsite has no sample, thus the call
543   // instruction should have 0 count.
544   if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
545       !ImmutableCallSite(&Inst).isIndirectCall() &&
546       findCalleeFunctionSamples(Inst))
547     return 0;
548 
549   const DILocation *DIL = DLoc;
550   uint32_t LineOffset = getOffset(DIL);
551   uint32_t Discriminator = DIL->getBaseDiscriminator();
552   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
553   if (R) {
554     bool FirstMark =
555         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
556     if (FirstMark) {
557       ORE->emit([&]() {
558         OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
559         Remark << "Applied " << ore::NV("NumSamples", *R);
560         Remark << " samples from profile (offset: ";
561         Remark << ore::NV("LineOffset", LineOffset);
562         if (Discriminator) {
563           Remark << ".";
564           Remark << ore::NV("Discriminator", Discriminator);
565         }
566         Remark << ")";
567         return Remark;
568       });
569     }
570     DEBUG(dbgs() << "    " << DLoc.getLine() << "."
571                  << DIL->getBaseDiscriminator() << ":" << Inst
572                  << " (line offset: " << LineOffset << "."
573                  << DIL->getBaseDiscriminator() << " - weight: " << R.get()
574                  << ")\n");
575   }
576   return R;
577 }
578 
579 /// \brief Compute the weight of a basic block.
580 ///
581 /// The weight of basic block \p BB is the maximum weight of all the
582 /// instructions in BB.
583 ///
584 /// \param BB The basic block to query.
585 ///
586 /// \returns the weight for \p BB.
587 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
588   uint64_t Max = 0;
589   bool HasWeight = false;
590   for (auto &I : BB->getInstList()) {
591     const ErrorOr<uint64_t> &R = getInstWeight(I);
592     if (R) {
593       Max = std::max(Max, R.get());
594       HasWeight = true;
595     }
596   }
597   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
598 }
599 
600 /// \brief Compute and store the weights of every basic block.
601 ///
602 /// This populates the BlockWeights map by computing
603 /// the weights of every basic block in the CFG.
604 ///
605 /// \param F The function to query.
606 bool SampleProfileLoader::computeBlockWeights(Function &F) {
607   bool Changed = false;
608   DEBUG(dbgs() << "Block weights\n");
609   for (const auto &BB : F) {
610     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
611     if (Weight) {
612       BlockWeights[&BB] = Weight.get();
613       VisitedBlocks.insert(&BB);
614       Changed = true;
615     }
616     DEBUG(printBlockWeight(dbgs(), &BB));
617   }
618 
619   return Changed;
620 }
621 
622 /// \brief Get the FunctionSamples for a call instruction.
623 ///
624 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
625 /// instance in which that call instruction is calling to. It contains
626 /// all samples that resides in the inlined instance. We first find the
627 /// inlined instance in which the call instruction is from, then we
628 /// traverse its children to find the callsite with the matching
629 /// location.
630 ///
631 /// \param Inst Call/Invoke instruction to query.
632 ///
633 /// \returns The FunctionSamples pointer to the inlined instance.
634 const FunctionSamples *
635 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
636   const DILocation *DIL = Inst.getDebugLoc();
637   if (!DIL) {
638     return nullptr;
639   }
640 
641   StringRef CalleeName;
642   if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
643     if (Function *Callee = CI->getCalledFunction())
644       CalleeName = Callee->getName();
645 
646   const FunctionSamples *FS = findFunctionSamples(Inst);
647   if (FS == nullptr)
648     return nullptr;
649 
650   return FS->findFunctionSamplesAt(
651       LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), CalleeName);
652 }
653 
654 /// Returns a vector of FunctionSamples that are the indirect call targets
655 /// of \p Inst. The vector is sorted by the total number of samples. Stores
656 /// the total call count of the indirect call in \p Sum.
657 std::vector<const FunctionSamples *>
658 SampleProfileLoader::findIndirectCallFunctionSamples(
659     const Instruction &Inst, uint64_t &Sum) const {
660   const DILocation *DIL = Inst.getDebugLoc();
661   std::vector<const FunctionSamples *> R;
662 
663   if (!DIL) {
664     return R;
665   }
666 
667   const FunctionSamples *FS = findFunctionSamples(Inst);
668   if (FS == nullptr)
669     return R;
670 
671   uint32_t LineOffset = getOffset(DIL);
672   uint32_t Discriminator = DIL->getBaseDiscriminator();
673 
674   auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
675   Sum = 0;
676   if (T)
677     for (const auto &T_C : T.get())
678       Sum += T_C.second;
679   if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(
680           LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()))) {
681     if (M->empty())
682       return R;
683     for (const auto &NameFS : *M) {
684       Sum += NameFS.second.getEntrySamples();
685       R.push_back(&NameFS.second);
686     }
687     std::sort(R.begin(), R.end(),
688               [](const FunctionSamples *L, const FunctionSamples *R) {
689                 return L->getEntrySamples() > R->getEntrySamples();
690               });
691   }
692   return R;
693 }
694 
695 /// \brief Get the FunctionSamples for an instruction.
696 ///
697 /// The FunctionSamples of an instruction \p Inst is the inlined instance
698 /// in which that instruction is coming from. We traverse the inline stack
699 /// of that instruction, and match it with the tree nodes in the profile.
700 ///
701 /// \param Inst Instruction to query.
702 ///
703 /// \returns the FunctionSamples pointer to the inlined instance.
704 const FunctionSamples *
705 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
706   SmallVector<std::pair<LineLocation, StringRef>, 10> S;
707   const DILocation *DIL = Inst.getDebugLoc();
708   if (!DIL)
709     return Samples;
710 
711   const DILocation *PrevDIL = DIL;
712   for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) {
713     S.push_back(std::make_pair(
714         LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()),
715         PrevDIL->getScope()->getSubprogram()->getLinkageName()));
716     PrevDIL = DIL;
717   }
718   if (S.size() == 0)
719     return Samples;
720   const FunctionSamples *FS = Samples;
721   for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
722     FS = FS->findFunctionSamplesAt(S[i].first, S[i].second);
723   }
724   return FS;
725 }
726 
727 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
728   assert(isa<CallInst>(I) || isa<InvokeInst>(I));
729   CallSite CS(I);
730   Function *CalledFunction = CS.getCalledFunction();
731   assert(CalledFunction);
732   DebugLoc DLoc = I->getDebugLoc();
733   BasicBlock *BB = I->getParent();
734   InlineParams Params = getInlineParams();
735   Params.ComputeFullInlineCost = true;
736   // Checks if there is anything in the reachable portion of the callee at
737   // this callsite that makes this inlining potentially illegal. Need to
738   // set ComputeFullInlineCost, otherwise getInlineCost may return early
739   // when cost exceeds threshold without checking all IRs in the callee.
740   // The acutal cost does not matter because we only checks isNever() to
741   // see if it is legal to inline the callsite.
742   InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC,
743                                   None, nullptr, nullptr);
744   if (Cost.isNever()) {
745     ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB)
746               << "incompatible inlining");
747     return false;
748   }
749   InlineFunctionInfo IFI(nullptr, &GetAC);
750   if (InlineFunction(CS, IFI)) {
751     // The call to InlineFunction erases I, so we can't pass it here.
752     ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB)
753               << "inlined hot callee '" << ore::NV("Callee", CalledFunction)
754               << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
755     return true;
756   }
757   return false;
758 }
759 
760 /// \brief Iteratively inline hot callsites of a function.
761 ///
762 /// Iteratively traverse all callsites of the function \p F, and find if
763 /// the corresponding inlined instance exists and is hot in profile. If
764 /// it is hot enough, inline the callsites and adds new callsites of the
765 /// callee into the caller. If the call is an indirect call, first promote
766 /// it to direct call. Each indirect call is limited with a single target.
767 ///
768 /// \param F function to perform iterative inlining.
769 /// \param ImportGUIDs a set to be updated to include all GUIDs that come
770 ///     from a different module but inlined in the profiled binary.
771 ///
772 /// \returns True if there is any inline happened.
773 bool SampleProfileLoader::inlineHotFunctions(
774     Function &F, DenseSet<GlobalValue::GUID> &ImportGUIDs) {
775   DenseSet<Instruction *> PromotedInsns;
776   bool Changed = false;
777   while (true) {
778     bool LocalChanged = false;
779     SmallVector<Instruction *, 10> CIS;
780     for (auto &BB : F) {
781       bool Hot = false;
782       SmallVector<Instruction *, 10> Candidates;
783       for (auto &I : BB.getInstList()) {
784         const FunctionSamples *FS = nullptr;
785         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
786             !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
787           Candidates.push_back(&I);
788           if (callsiteIsHot(Samples, FS))
789             Hot = true;
790         }
791       }
792       if (Hot) {
793         CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
794       }
795     }
796     for (auto I : CIS) {
797       Function *CalledFunction = CallSite(I).getCalledFunction();
798       // Do not inline recursive calls.
799       if (CalledFunction == &F)
800         continue;
801       if (CallSite(I).isIndirectCall()) {
802         if (PromotedInsns.count(I))
803           continue;
804         uint64_t Sum;
805         for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
806           if (IsThinLTOPreLink) {
807             FS->findImportedFunctions(ImportGUIDs, F.getParent(),
808                                       Samples->getTotalSamples() *
809                                           SampleProfileHotThreshold / 100);
810             continue;
811           }
812           auto CalleeFunctionName = FS->getName();
813           // If it is a recursive call, we do not inline it as it could bloat
814           // the code exponentially. There is way to better handle this, e.g.
815           // clone the caller first, and inline the cloned caller if it is
816           // recursive. As llvm does not inline recursive calls, we will
817           // simply ignore it instead of handling it explicitly.
818           if (CalleeFunctionName == F.getName())
819             continue;
820 
821           const char *Reason = "Callee function not available";
822           auto R = SymbolMap.find(CalleeFunctionName);
823           if (R != SymbolMap.end() && R->getValue() &&
824               !R->getValue()->isDeclaration() &&
825               R->getValue()->getSubprogram() &&
826               isLegalToPromote(I, R->getValue(), &Reason)) {
827             uint64_t C = FS->getEntrySamples();
828             Instruction *DI = promoteIndirectCall(
829                 I, R->getValue(), C, Sum, false, ORE);
830             Sum -= C;
831             PromotedInsns.insert(I);
832             // If profile mismatches, we should not attempt to inline DI.
833             if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
834                 inlineCallInstruction(DI))
835               LocalChanged = true;
836           } else {
837             DEBUG(dbgs()
838                   << "\nFailed to promote indirect call to "
839                   << CalleeFunctionName << " because " << Reason << "\n");
840           }
841         }
842       } else if (CalledFunction && CalledFunction->getSubprogram() &&
843                  !CalledFunction->isDeclaration()) {
844         if (inlineCallInstruction(I))
845           LocalChanged = true;
846       } else if (IsThinLTOPreLink) {
847         findCalleeFunctionSamples(*I)->findImportedFunctions(
848             ImportGUIDs, F.getParent(),
849             Samples->getTotalSamples() * SampleProfileHotThreshold / 100);
850       }
851     }
852     if (LocalChanged) {
853       Changed = true;
854     } else {
855       break;
856     }
857   }
858   return Changed;
859 }
860 
861 /// \brief Find equivalence classes for the given block.
862 ///
863 /// This finds all the blocks that are guaranteed to execute the same
864 /// number of times as \p BB1. To do this, it traverses all the
865 /// descendants of \p BB1 in the dominator or post-dominator tree.
866 ///
867 /// A block BB2 will be in the same equivalence class as \p BB1 if
868 /// the following holds:
869 ///
870 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
871 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
872 ///    dominate BB1 in the post-dominator tree.
873 ///
874 /// 2- Both BB2 and \p BB1 must be in the same loop.
875 ///
876 /// For every block BB2 that meets those two requirements, we set BB2's
877 /// equivalence class to \p BB1.
878 ///
879 /// \param BB1  Block to check.
880 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
881 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
882 ///                 with blocks from \p BB1's dominator tree, then
883 ///                 this is the post-dominator tree, and vice versa.
884 template <bool IsPostDom>
885 void SampleProfileLoader::findEquivalencesFor(
886     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
887     DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
888   const BasicBlock *EC = EquivalenceClass[BB1];
889   uint64_t Weight = BlockWeights[EC];
890   for (const auto *BB2 : Descendants) {
891     bool IsDomParent = DomTree->dominates(BB2, BB1);
892     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
893     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
894       EquivalenceClass[BB2] = EC;
895       // If BB2 is visited, then the entire EC should be marked as visited.
896       if (VisitedBlocks.count(BB2)) {
897         VisitedBlocks.insert(EC);
898       }
899 
900       // If BB2 is heavier than BB1, make BB2 have the same weight
901       // as BB1.
902       //
903       // Note that we don't worry about the opposite situation here
904       // (when BB2 is lighter than BB1). We will deal with this
905       // during the propagation phase. Right now, we just want to
906       // make sure that BB1 has the largest weight of all the
907       // members of its equivalence set.
908       Weight = std::max(Weight, BlockWeights[BB2]);
909     }
910   }
911   if (EC == &EC->getParent()->getEntryBlock()) {
912     BlockWeights[EC] = Samples->getHeadSamples() + 1;
913   } else {
914     BlockWeights[EC] = Weight;
915   }
916 }
917 
918 /// \brief Find equivalence classes.
919 ///
920 /// Since samples may be missing from blocks, we can fill in the gaps by setting
921 /// the weights of all the blocks in the same equivalence class to the same
922 /// weight. To compute the concept of equivalence, we use dominance and loop
923 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
924 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
925 ///
926 /// \param F The function to query.
927 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
928   SmallVector<BasicBlock *, 8> DominatedBBs;
929   DEBUG(dbgs() << "\nBlock equivalence classes\n");
930   // Find equivalence sets based on dominance and post-dominance information.
931   for (auto &BB : F) {
932     BasicBlock *BB1 = &BB;
933 
934     // Compute BB1's equivalence class once.
935     if (EquivalenceClass.count(BB1)) {
936       DEBUG(printBlockEquivalence(dbgs(), BB1));
937       continue;
938     }
939 
940     // By default, blocks are in their own equivalence class.
941     EquivalenceClass[BB1] = BB1;
942 
943     // Traverse all the blocks dominated by BB1. We are looking for
944     // every basic block BB2 such that:
945     //
946     // 1- BB1 dominates BB2.
947     // 2- BB2 post-dominates BB1.
948     // 3- BB1 and BB2 are in the same loop nest.
949     //
950     // If all those conditions hold, it means that BB2 is executed
951     // as many times as BB1, so they are placed in the same equivalence
952     // class by making BB2's equivalence class be BB1.
953     DominatedBBs.clear();
954     DT->getDescendants(BB1, DominatedBBs);
955     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
956 
957     DEBUG(printBlockEquivalence(dbgs(), BB1));
958   }
959 
960   // Assign weights to equivalence classes.
961   //
962   // All the basic blocks in the same equivalence class will execute
963   // the same number of times. Since we know that the head block in
964   // each equivalence class has the largest weight, assign that weight
965   // to all the blocks in that equivalence class.
966   DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
967   for (auto &BI : F) {
968     const BasicBlock *BB = &BI;
969     const BasicBlock *EquivBB = EquivalenceClass[BB];
970     if (BB != EquivBB)
971       BlockWeights[BB] = BlockWeights[EquivBB];
972     DEBUG(printBlockWeight(dbgs(), BB));
973   }
974 }
975 
976 /// \brief Visit the given edge to decide if it has a valid weight.
977 ///
978 /// If \p E has not been visited before, we copy to \p UnknownEdge
979 /// and increment the count of unknown edges.
980 ///
981 /// \param E  Edge to visit.
982 /// \param NumUnknownEdges  Current number of unknown edges.
983 /// \param UnknownEdge  Set if E has not been visited before.
984 ///
985 /// \returns E's weight, if known. Otherwise, return 0.
986 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
987                                         Edge *UnknownEdge) {
988   if (!VisitedEdges.count(E)) {
989     (*NumUnknownEdges)++;
990     *UnknownEdge = E;
991     return 0;
992   }
993 
994   return EdgeWeights[E];
995 }
996 
997 /// \brief Propagate weights through incoming/outgoing edges.
998 ///
999 /// If the weight of a basic block is known, and there is only one edge
1000 /// with an unknown weight, we can calculate the weight of that edge.
1001 ///
1002 /// Similarly, if all the edges have a known count, we can calculate the
1003 /// count of the basic block, if needed.
1004 ///
1005 /// \param F  Function to process.
1006 /// \param UpdateBlockCount  Whether we should update basic block counts that
1007 ///                          has already been annotated.
1008 ///
1009 /// \returns  True if new weights were assigned to edges or blocks.
1010 bool SampleProfileLoader::propagateThroughEdges(Function &F,
1011                                                 bool UpdateBlockCount) {
1012   bool Changed = false;
1013   DEBUG(dbgs() << "\nPropagation through edges\n");
1014   for (const auto &BI : F) {
1015     const BasicBlock *BB = &BI;
1016     const BasicBlock *EC = EquivalenceClass[BB];
1017 
1018     // Visit all the predecessor and successor edges to determine
1019     // which ones have a weight assigned already. Note that it doesn't
1020     // matter that we only keep track of a single unknown edge. The
1021     // only case we are interested in handling is when only a single
1022     // edge is unknown (see setEdgeOrBlockWeight).
1023     for (unsigned i = 0; i < 2; i++) {
1024       uint64_t TotalWeight = 0;
1025       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1026       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1027 
1028       if (i == 0) {
1029         // First, visit all predecessor edges.
1030         NumTotalEdges = Predecessors[BB].size();
1031         for (auto *Pred : Predecessors[BB]) {
1032           Edge E = std::make_pair(Pred, BB);
1033           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1034           if (E.first == E.second)
1035             SelfReferentialEdge = E;
1036         }
1037         if (NumTotalEdges == 1) {
1038           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1039         }
1040       } else {
1041         // On the second round, visit all successor edges.
1042         NumTotalEdges = Successors[BB].size();
1043         for (auto *Succ : Successors[BB]) {
1044           Edge E = std::make_pair(BB, Succ);
1045           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1046         }
1047         if (NumTotalEdges == 1) {
1048           SingleEdge = std::make_pair(BB, Successors[BB][0]);
1049         }
1050       }
1051 
1052       // After visiting all the edges, there are three cases that we
1053       // can handle immediately:
1054       //
1055       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1056       //   In this case, we simply check that the sum of all the edges
1057       //   is the same as BB's weight. If not, we change BB's weight
1058       //   to match. Additionally, if BB had not been visited before,
1059       //   we mark it visited.
1060       //
1061       // - Only one edge is unknown and BB has already been visited.
1062       //   In this case, we can compute the weight of the edge by
1063       //   subtracting the total block weight from all the known
1064       //   edge weights. If the edges weight more than BB, then the
1065       //   edge of the last remaining edge is set to zero.
1066       //
1067       // - There exists a self-referential edge and the weight of BB is
1068       //   known. In this case, this edge can be based on BB's weight.
1069       //   We add up all the other known edges and set the weight on
1070       //   the self-referential edge as we did in the previous case.
1071       //
1072       // In any other case, we must continue iterating. Eventually,
1073       // all edges will get a weight, or iteration will stop when
1074       // it reaches SampleProfileMaxPropagateIterations.
1075       if (NumUnknownEdges <= 1) {
1076         uint64_t &BBWeight = BlockWeights[EC];
1077         if (NumUnknownEdges == 0) {
1078           if (!VisitedBlocks.count(EC)) {
1079             // If we already know the weight of all edges, the weight of the
1080             // basic block can be computed. It should be no larger than the sum
1081             // of all edge weights.
1082             if (TotalWeight > BBWeight) {
1083               BBWeight = TotalWeight;
1084               Changed = true;
1085               DEBUG(dbgs() << "All edge weights for " << BB->getName()
1086                            << " known. Set weight for block: ";
1087                     printBlockWeight(dbgs(), BB););
1088             }
1089           } else if (NumTotalEdges == 1 &&
1090                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1091             // If there is only one edge for the visited basic block, use the
1092             // block weight to adjust edge weight if edge weight is smaller.
1093             EdgeWeights[SingleEdge] = BlockWeights[EC];
1094             Changed = true;
1095           }
1096         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1097           // If there is a single unknown edge and the block has been
1098           // visited, then we can compute E's weight.
1099           if (BBWeight >= TotalWeight)
1100             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1101           else
1102             EdgeWeights[UnknownEdge] = 0;
1103           const BasicBlock *OtherEC;
1104           if (i == 0)
1105             OtherEC = EquivalenceClass[UnknownEdge.first];
1106           else
1107             OtherEC = EquivalenceClass[UnknownEdge.second];
1108           // Edge weights should never exceed the BB weights it connects.
1109           if (VisitedBlocks.count(OtherEC) &&
1110               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1111             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1112           VisitedEdges.insert(UnknownEdge);
1113           Changed = true;
1114           DEBUG(dbgs() << "Set weight for edge: ";
1115                 printEdgeWeight(dbgs(), UnknownEdge));
1116         }
1117       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1118         // If a block Weights 0, all its in/out edges should weight 0.
1119         if (i == 0) {
1120           for (auto *Pred : Predecessors[BB]) {
1121             Edge E = std::make_pair(Pred, BB);
1122             EdgeWeights[E] = 0;
1123             VisitedEdges.insert(E);
1124           }
1125         } else {
1126           for (auto *Succ : Successors[BB]) {
1127             Edge E = std::make_pair(BB, Succ);
1128             EdgeWeights[E] = 0;
1129             VisitedEdges.insert(E);
1130           }
1131         }
1132       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1133         uint64_t &BBWeight = BlockWeights[BB];
1134         // We have a self-referential edge and the weight of BB is known.
1135         if (BBWeight >= TotalWeight)
1136           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1137         else
1138           EdgeWeights[SelfReferentialEdge] = 0;
1139         VisitedEdges.insert(SelfReferentialEdge);
1140         Changed = true;
1141         DEBUG(dbgs() << "Set self-referential edge weight to: ";
1142               printEdgeWeight(dbgs(), SelfReferentialEdge));
1143       }
1144       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1145         BlockWeights[EC] = TotalWeight;
1146         VisitedBlocks.insert(EC);
1147         Changed = true;
1148       }
1149     }
1150   }
1151 
1152   return Changed;
1153 }
1154 
1155 /// \brief Build in/out edge lists for each basic block in the CFG.
1156 ///
1157 /// We are interested in unique edges. If a block B1 has multiple
1158 /// edges to another block B2, we only add a single B1->B2 edge.
1159 void SampleProfileLoader::buildEdges(Function &F) {
1160   for (auto &BI : F) {
1161     BasicBlock *B1 = &BI;
1162 
1163     // Add predecessors for B1.
1164     SmallPtrSet<BasicBlock *, 16> Visited;
1165     if (!Predecessors[B1].empty())
1166       llvm_unreachable("Found a stale predecessors list in a basic block.");
1167     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1168       BasicBlock *B2 = *PI;
1169       if (Visited.insert(B2).second)
1170         Predecessors[B1].push_back(B2);
1171     }
1172 
1173     // Add successors for B1.
1174     Visited.clear();
1175     if (!Successors[B1].empty())
1176       llvm_unreachable("Found a stale successors list in a basic block.");
1177     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1178       BasicBlock *B2 = *SI;
1179       if (Visited.insert(B2).second)
1180         Successors[B1].push_back(B2);
1181     }
1182   }
1183 }
1184 
1185 /// Sorts the CallTargetMap \p M by count in descending order and stores the
1186 /// sorted result in \p Sorted. Returns the total counts.
1187 static uint64_t SortCallTargets(SmallVector<InstrProfValueData, 2> &Sorted,
1188                                 const SampleRecord::CallTargetMap &M) {
1189   Sorted.clear();
1190   uint64_t Sum = 0;
1191   for (auto I = M.begin(); I != M.end(); ++I) {
1192     Sum += I->getValue();
1193     Sorted.push_back({Function::getGUID(I->getKey()), I->getValue()});
1194   }
1195   std::sort(Sorted.begin(), Sorted.end(),
1196             [](const InstrProfValueData &L, const InstrProfValueData &R) {
1197               if (L.Count == R.Count)
1198                 return L.Value > R.Value;
1199               else
1200                 return L.Count > R.Count;
1201             });
1202   return Sum;
1203 }
1204 
1205 /// \brief Propagate weights into edges
1206 ///
1207 /// The following rules are applied to every block BB in the CFG:
1208 ///
1209 /// - If BB has a single predecessor/successor, then the weight
1210 ///   of that edge is the weight of the block.
1211 ///
1212 /// - If all incoming or outgoing edges are known except one, and the
1213 ///   weight of the block is already known, the weight of the unknown
1214 ///   edge will be the weight of the block minus the sum of all the known
1215 ///   edges. If the sum of all the known edges is larger than BB's weight,
1216 ///   we set the unknown edge weight to zero.
1217 ///
1218 /// - If there is a self-referential edge, and the weight of the block is
1219 ///   known, the weight for that edge is set to the weight of the block
1220 ///   minus the weight of the other incoming edges to that block (if
1221 ///   known).
1222 void SampleProfileLoader::propagateWeights(Function &F) {
1223   bool Changed = true;
1224   unsigned I = 0;
1225 
1226   // If BB weight is larger than its corresponding loop's header BB weight,
1227   // use the BB weight to replace the loop header BB weight.
1228   for (auto &BI : F) {
1229     BasicBlock *BB = &BI;
1230     Loop *L = LI->getLoopFor(BB);
1231     if (!L) {
1232       continue;
1233     }
1234     BasicBlock *Header = L->getHeader();
1235     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1236       BlockWeights[Header] = BlockWeights[BB];
1237     }
1238   }
1239 
1240   // Before propagation starts, build, for each block, a list of
1241   // unique predecessors and successors. This is necessary to handle
1242   // identical edges in multiway branches. Since we visit all blocks and all
1243   // edges of the CFG, it is cleaner to build these lists once at the start
1244   // of the pass.
1245   buildEdges(F);
1246 
1247   // Propagate until we converge or we go past the iteration limit.
1248   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1249     Changed = propagateThroughEdges(F, false);
1250   }
1251 
1252   // The first propagation propagates BB counts from annotated BBs to unknown
1253   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1254   // to propagate edge weights.
1255   VisitedEdges.clear();
1256   Changed = true;
1257   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1258     Changed = propagateThroughEdges(F, false);
1259   }
1260 
1261   // The 3rd propagation pass allows adjust annotated BB weights that are
1262   // obviously wrong.
1263   Changed = true;
1264   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1265     Changed = propagateThroughEdges(F, true);
1266   }
1267 
1268   // Generate MD_prof metadata for every branch instruction using the
1269   // edge weights computed during propagation.
1270   DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1271   LLVMContext &Ctx = F.getContext();
1272   MDBuilder MDB(Ctx);
1273   for (auto &BI : F) {
1274     BasicBlock *BB = &BI;
1275 
1276     if (BlockWeights[BB]) {
1277       for (auto &I : BB->getInstList()) {
1278         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1279           continue;
1280         CallSite CS(&I);
1281         if (!CS.getCalledFunction()) {
1282           const DebugLoc &DLoc = I.getDebugLoc();
1283           if (!DLoc)
1284             continue;
1285           const DILocation *DIL = DLoc;
1286           uint32_t LineOffset = getOffset(DIL);
1287           uint32_t Discriminator = DIL->getBaseDiscriminator();
1288 
1289           const FunctionSamples *FS = findFunctionSamples(I);
1290           if (!FS)
1291             continue;
1292           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1293           if (!T || T.get().empty())
1294             continue;
1295           SmallVector<InstrProfValueData, 2> SortedCallTargets;
1296           uint64_t Sum = SortCallTargets(SortedCallTargets, T.get());
1297           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1298                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1299                             SortedCallTargets.size());
1300         } else if (!dyn_cast<IntrinsicInst>(&I)) {
1301           SmallVector<uint32_t, 1> Weights;
1302           Weights.push_back(BlockWeights[BB]);
1303           I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
1304         }
1305       }
1306     }
1307     TerminatorInst *TI = BB->getTerminator();
1308     if (TI->getNumSuccessors() == 1)
1309       continue;
1310     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1311       continue;
1312 
1313     DebugLoc BranchLoc = TI->getDebugLoc();
1314     DEBUG(dbgs() << "\nGetting weights for branch at line "
1315                  << ((BranchLoc) ? Twine(BranchLoc.getLine())
1316                                  : Twine("<UNKNOWN LOCATION>"))
1317                  << ".\n");
1318     SmallVector<uint32_t, 4> Weights;
1319     uint32_t MaxWeight = 0;
1320     Instruction *MaxDestInst;
1321     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1322       BasicBlock *Succ = TI->getSuccessor(I);
1323       Edge E = std::make_pair(BB, Succ);
1324       uint64_t Weight = EdgeWeights[E];
1325       DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1326       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1327       // if needed. Sample counts in profiles are 64-bit unsigned values,
1328       // but internally branch weights are expressed as 32-bit values.
1329       if (Weight > std::numeric_limits<uint32_t>::max()) {
1330         DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1331         Weight = std::numeric_limits<uint32_t>::max();
1332       }
1333       // Weight is added by one to avoid propagation errors introduced by
1334       // 0 weights.
1335       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1336       if (Weight != 0) {
1337         if (Weight > MaxWeight) {
1338           MaxWeight = Weight;
1339           MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1340         }
1341       }
1342     }
1343 
1344     uint64_t TempWeight;
1345     // Only set weights if there is at least one non-zero weight.
1346     // In any other case, let the analyzer set weights.
1347     // Do not set weights if the weights are present. In ThinLTO, the profile
1348     // annotation is done twice. If the first annotation already set the
1349     // weights, the second pass does not need to set it.
1350     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1351       DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1352       TI->setMetadata(LLVMContext::MD_prof,
1353                       MDB.createBranchWeights(Weights));
1354       ORE->emit([&]() {
1355         return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1356                << "most popular destination for conditional branches at "
1357                << ore::NV("CondBranchesLoc", BranchLoc);
1358       });
1359     } else {
1360       DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1361     }
1362   }
1363 }
1364 
1365 /// \brief Get the line number for the function header.
1366 ///
1367 /// This looks up function \p F in the current compilation unit and
1368 /// retrieves the line number where the function is defined. This is
1369 /// line 0 for all the samples read from the profile file. Every line
1370 /// number is relative to this line.
1371 ///
1372 /// \param F  Function object to query.
1373 ///
1374 /// \returns the line number where \p F is defined. If it returns 0,
1375 ///          it means that there is no debug information available for \p F.
1376 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1377   if (DISubprogram *S = F.getSubprogram())
1378     return S->getLine();
1379 
1380   // If the start of \p F is missing, emit a diagnostic to inform the user
1381   // about the missed opportunity.
1382   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1383       "No debug information found in function " + F.getName() +
1384           ": Function profile not used",
1385       DS_Warning));
1386   return 0;
1387 }
1388 
1389 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1390   DT.reset(new DominatorTree);
1391   DT->recalculate(F);
1392 
1393   PDT.reset(new PostDomTreeBase<BasicBlock>());
1394   PDT->recalculate(F);
1395 
1396   LI.reset(new LoopInfo);
1397   LI->analyze(*DT);
1398 }
1399 
1400 /// \brief Generate branch weight metadata for all branches in \p F.
1401 ///
1402 /// Branch weights are computed out of instruction samples using a
1403 /// propagation heuristic. Propagation proceeds in 3 phases:
1404 ///
1405 /// 1- Assignment of block weights. All the basic blocks in the function
1406 ///    are initial assigned the same weight as their most frequently
1407 ///    executed instruction.
1408 ///
1409 /// 2- Creation of equivalence classes. Since samples may be missing from
1410 ///    blocks, we can fill in the gaps by setting the weights of all the
1411 ///    blocks in the same equivalence class to the same weight. To compute
1412 ///    the concept of equivalence, we use dominance and loop information.
1413 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1414 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1415 ///
1416 /// 3- Propagation of block weights into edges. This uses a simple
1417 ///    propagation heuristic. The following rules are applied to every
1418 ///    block BB in the CFG:
1419 ///
1420 ///    - If BB has a single predecessor/successor, then the weight
1421 ///      of that edge is the weight of the block.
1422 ///
1423 ///    - If all the edges are known except one, and the weight of the
1424 ///      block is already known, the weight of the unknown edge will
1425 ///      be the weight of the block minus the sum of all the known
1426 ///      edges. If the sum of all the known edges is larger than BB's weight,
1427 ///      we set the unknown edge weight to zero.
1428 ///
1429 ///    - If there is a self-referential edge, and the weight of the block is
1430 ///      known, the weight for that edge is set to the weight of the block
1431 ///      minus the weight of the other incoming edges to that block (if
1432 ///      known).
1433 ///
1434 /// Since this propagation is not guaranteed to finalize for every CFG, we
1435 /// only allow it to proceed for a limited number of iterations (controlled
1436 /// by -sample-profile-max-propagate-iterations).
1437 ///
1438 /// FIXME: Try to replace this propagation heuristic with a scheme
1439 /// that is guaranteed to finalize. A work-list approach similar to
1440 /// the standard value propagation algorithm used by SSA-CCP might
1441 /// work here.
1442 ///
1443 /// Once all the branch weights are computed, we emit the MD_prof
1444 /// metadata on BB using the computed values for each of its branches.
1445 ///
1446 /// \param F The function to query.
1447 ///
1448 /// \returns true if \p F was modified. Returns false, otherwise.
1449 bool SampleProfileLoader::emitAnnotations(Function &F) {
1450   bool Changed = false;
1451 
1452   if (getFunctionLoc(F) == 0)
1453     return false;
1454 
1455   DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
1456                << ": " << getFunctionLoc(F) << "\n");
1457 
1458   DenseSet<GlobalValue::GUID> ImportGUIDs;
1459   Changed |= inlineHotFunctions(F, ImportGUIDs);
1460 
1461   // Compute basic block weights.
1462   Changed |= computeBlockWeights(F);
1463 
1464   if (Changed) {
1465     // Add an entry count to the function using the samples gathered at the
1466     // function entry. Also sets the GUIDs that comes from a different
1467     // module but inlined in the profiled binary. This is aiming at making
1468     // the IR match the profiled binary before annotation.
1469     F.setEntryCount(Samples->getHeadSamples() + 1, &ImportGUIDs);
1470 
1471     // Compute dominance and loop info needed for propagation.
1472     computeDominanceAndLoopInfo(F);
1473 
1474     // Find equivalence classes.
1475     findEquivalenceClasses(F);
1476 
1477     // Propagate weights to all edges.
1478     propagateWeights(F);
1479   }
1480 
1481   // If coverage checking was requested, compute it now.
1482   if (SampleProfileRecordCoverage) {
1483     unsigned Used = CoverageTracker.countUsedRecords(Samples);
1484     unsigned Total = CoverageTracker.countBodyRecords(Samples);
1485     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1486     if (Coverage < SampleProfileRecordCoverage) {
1487       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1488           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1489           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1490               Twine(Coverage) + "%) were applied",
1491           DS_Warning));
1492     }
1493   }
1494 
1495   if (SampleProfileSampleCoverage) {
1496     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1497     uint64_t Total = CoverageTracker.countBodySamples(Samples);
1498     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1499     if (Coverage < SampleProfileSampleCoverage) {
1500       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1501           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1502           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1503               Twine(Coverage) + "%) were applied",
1504           DS_Warning));
1505     }
1506   }
1507   return Changed;
1508 }
1509 
1510 char SampleProfileLoaderLegacyPass::ID = 0;
1511 
1512 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1513                       "Sample Profile loader", false, false)
1514 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1515 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1516 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1517                     "Sample Profile loader", false, false)
1518 
1519 bool SampleProfileLoader::doInitialization(Module &M) {
1520   auto &Ctx = M.getContext();
1521   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1522   if (std::error_code EC = ReaderOrErr.getError()) {
1523     std::string Msg = "Could not open profile: " + EC.message();
1524     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1525     return false;
1526   }
1527   Reader = std::move(ReaderOrErr.get());
1528   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1529   return true;
1530 }
1531 
1532 ModulePass *llvm::createSampleProfileLoaderPass() {
1533   return new SampleProfileLoaderLegacyPass(SampleProfileFile);
1534 }
1535 
1536 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1537   return new SampleProfileLoaderLegacyPass(Name);
1538 }
1539 
1540 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM) {
1541   if (!ProfileIsValid)
1542     return false;
1543 
1544   // Compute the total number of samples collected in this profile.
1545   for (const auto &I : Reader->getProfiles())
1546     TotalCollectedSamples += I.second.getTotalSamples();
1547 
1548   // Populate the symbol map.
1549   for (const auto &N_F : M.getValueSymbolTable()) {
1550     std::string OrigName = N_F.getKey();
1551     Function *F = dyn_cast<Function>(N_F.getValue());
1552     if (F == nullptr)
1553       continue;
1554     SymbolMap[OrigName] = F;
1555     auto pos = OrigName.find('.');
1556     if (pos != std::string::npos) {
1557       std::string NewName = OrigName.substr(0, pos);
1558       auto r = SymbolMap.insert(std::make_pair(NewName, F));
1559       // Failiing to insert means there is already an entry in SymbolMap,
1560       // thus there are multiple functions that are mapped to the same
1561       // stripped name. In this case of name conflicting, set the value
1562       // to nullptr to avoid confusion.
1563       if (!r.second)
1564         r.first->second = nullptr;
1565     }
1566   }
1567 
1568   bool retval = false;
1569   for (auto &F : M)
1570     if (!F.isDeclaration()) {
1571       clearFunctionData();
1572       retval |= runOnFunction(F, AM);
1573     }
1574   if (M.getProfileSummary() == nullptr)
1575     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
1576   return retval;
1577 }
1578 
1579 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1580   ACT = &getAnalysis<AssumptionCacheTracker>();
1581   TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1582   return SampleLoader.runOnModule(M, nullptr);
1583 }
1584 
1585 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1586   F.setEntryCount(0);
1587   std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1588   if (AM) {
1589     auto &FAM =
1590         AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1591             .getManager();
1592     ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1593   } else {
1594     OwnedORE = make_unique<OptimizationRemarkEmitter>(&F);
1595     ORE = OwnedORE.get();
1596   }
1597   Samples = Reader->getSamplesFor(F);
1598   if (Samples && !Samples->empty())
1599     return emitAnnotations(F);
1600   return false;
1601 }
1602 
1603 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1604                                                ModuleAnalysisManager &AM) {
1605   FunctionAnalysisManager &FAM =
1606       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1607 
1608   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1609     return FAM.getResult<AssumptionAnalysis>(F);
1610   };
1611   auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1612     return FAM.getResult<TargetIRAnalysis>(F);
1613   };
1614 
1615   SampleProfileLoader SampleLoader(
1616       ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1617       IsThinLTOPreLink, GetAssumptionCache, GetTTI);
1618 
1619   SampleLoader.doInitialization(M);
1620 
1621   if (!SampleLoader.runOnModule(M, &AM))
1622     return PreservedAnalyses::all();
1623 
1624   return PreservedAnalyses::none();
1625 }
1626