1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 //      to indicate the weights of each edge coming out of the branch.
19 //      The weight of each edge is the weight of the target block for
20 //      that edge. The weight of a block B is computed as the maximum
21 //      number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/SampleProfile.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/InlineCost.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
34 #include "llvm/Analysis/PostDominators.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfo.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/InstIterator.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/MDBuilder.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/ValueSymbolTable.h"
50 #include "llvm/Pass.h"
51 #include "llvm/ProfileData/InstrProf.h"
52 #include "llvm/ProfileData/SampleProfReader.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorOr.h"
56 #include "llvm/Support/Format.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/IPO.h"
59 #include "llvm/Transforms/Instrumentation.h"
60 #include "llvm/Transforms/Utils/Cloning.h"
61 #include <cctype>
62 
63 using namespace llvm;
64 using namespace sampleprof;
65 
66 #define DEBUG_TYPE "sample-profile"
67 
68 // Command line option to specify the file to read samples from. This is
69 // mainly used for debugging.
70 static cl::opt<std::string> SampleProfileFile(
71     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
72     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
73 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
74     "sample-profile-max-propagate-iterations", cl::init(100),
75     cl::desc("Maximum number of iterations to go through when propagating "
76              "sample block/edge weights through the CFG."));
77 static cl::opt<unsigned> SampleProfileRecordCoverage(
78     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
79     cl::desc("Emit a warning if less than N% of records in the input profile "
80              "are matched to the IR."));
81 static cl::opt<unsigned> SampleProfileSampleCoverage(
82     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
83     cl::desc("Emit a warning if less than N% of samples in the input profile "
84              "are matched to the IR."));
85 static cl::opt<double> SampleProfileHotThreshold(
86     "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"),
87     cl::desc("Inlined functions that account for more than N% of all samples "
88              "collected in the parent function, will be inlined again."));
89 
90 namespace {
91 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap;
92 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap;
93 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge;
94 typedef DenseMap<Edge, uint64_t> EdgeWeightMap;
95 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>
96     BlockEdgeMap;
97 
98 class SampleCoverageTracker {
99 public:
100   SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {}
101 
102   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
103                        uint32_t Discriminator, uint64_t Samples);
104   unsigned computeCoverage(unsigned Used, unsigned Total) const;
105   unsigned countUsedRecords(const FunctionSamples *FS) const;
106   unsigned countBodyRecords(const FunctionSamples *FS) const;
107   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
108   uint64_t countBodySamples(const FunctionSamples *FS) const;
109   void clear() {
110     SampleCoverage.clear();
111     TotalUsedSamples = 0;
112   }
113 
114 private:
115   typedef std::map<LineLocation, unsigned> BodySampleCoverageMap;
116   typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap>
117       FunctionSamplesCoverageMap;
118 
119   /// Coverage map for sampling records.
120   ///
121   /// This map keeps a record of sampling records that have been matched to
122   /// an IR instruction. This is used to detect some form of staleness in
123   /// profiles (see flag -sample-profile-check-coverage).
124   ///
125   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
126   /// another map that counts how many times the sample record at the
127   /// given location has been used.
128   FunctionSamplesCoverageMap SampleCoverage;
129 
130   /// Number of samples used from the profile.
131   ///
132   /// When a sampling record is used for the first time, the samples from
133   /// that record are added to this accumulator.  Coverage is later computed
134   /// based on the total number of samples available in this function and
135   /// its callsites.
136   ///
137   /// Note that this accumulator tracks samples used from a single function
138   /// and all the inlined callsites. Strictly, we should have a map of counters
139   /// keyed by FunctionSamples pointers, but these stats are cleared after
140   /// every function, so we just need to keep a single counter.
141   uint64_t TotalUsedSamples;
142 };
143 
144 /// \brief Sample profile pass.
145 ///
146 /// This pass reads profile data from the file specified by
147 /// -sample-profile-file and annotates every affected function with the
148 /// profile information found in that file.
149 class SampleProfileLoader {
150 public:
151   SampleProfileLoader(
152       StringRef Name, bool IsThinLTOPreLink,
153       std::function<AssumptionCache &(Function &)> GetAssumptionCache,
154       std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
155       : DT(nullptr), PDT(nullptr), LI(nullptr), GetAC(GetAssumptionCache),
156         GetTTI(GetTargetTransformInfo), Reader(), Samples(nullptr),
157         Filename(Name), ProfileIsValid(false),
158         IsThinLTOPreLink(IsThinLTOPreLink),
159         TotalCollectedSamples(0), ORE(nullptr) {}
160 
161   bool doInitialization(Module &M);
162   bool runOnModule(Module &M, ModuleAnalysisManager *AM);
163 
164   void dump() { Reader->dump(); }
165 
166 protected:
167   bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
168   unsigned getFunctionLoc(Function &F);
169   bool emitAnnotations(Function &F);
170   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
171   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
172   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
173   std::vector<const FunctionSamples *>
174   findIndirectCallFunctionSamples(const Instruction &I) const;
175   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
176   bool inlineCallInstruction(Instruction *I);
177   bool inlineHotFunctions(Function &F,
178                           DenseSet<GlobalValue::GUID> &ImportGUIDs);
179   void printEdgeWeight(raw_ostream &OS, Edge E);
180   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
181   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
182   bool computeBlockWeights(Function &F);
183   void findEquivalenceClasses(Function &F);
184   template <bool IsPostDom>
185   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
186                            DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
187 
188   void propagateWeights(Function &F);
189   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
190   void buildEdges(Function &F);
191   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
192   void computeDominanceAndLoopInfo(Function &F);
193   unsigned getOffset(const DILocation *DIL) const;
194   void clearFunctionData();
195 
196   /// \brief Map basic blocks to their computed weights.
197   ///
198   /// The weight of a basic block is defined to be the maximum
199   /// of all the instruction weights in that block.
200   BlockWeightMap BlockWeights;
201 
202   /// \brief Map edges to their computed weights.
203   ///
204   /// Edge weights are computed by propagating basic block weights in
205   /// SampleProfile::propagateWeights.
206   EdgeWeightMap EdgeWeights;
207 
208   /// \brief Set of visited blocks during propagation.
209   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
210 
211   /// \brief Set of visited edges during propagation.
212   SmallSet<Edge, 32> VisitedEdges;
213 
214   /// \brief Equivalence classes for block weights.
215   ///
216   /// Two blocks BB1 and BB2 are in the same equivalence class if they
217   /// dominate and post-dominate each other, and they are in the same loop
218   /// nest. When this happens, the two blocks are guaranteed to execute
219   /// the same number of times.
220   EquivalenceClassMap EquivalenceClass;
221 
222   /// Map from function name to Function *. Used to find the function from
223   /// the function name. If the function name contains suffix, additional
224   /// entry is added to map from the stripped name to the function if there
225   /// is one-to-one mapping.
226   StringMap<Function *> SymbolMap;
227 
228   /// \brief Dominance, post-dominance and loop information.
229   std::unique_ptr<DominatorTree> DT;
230   std::unique_ptr<PostDomTreeBase<BasicBlock>> PDT;
231   std::unique_ptr<LoopInfo> LI;
232 
233   std::function<AssumptionCache &(Function &)> GetAC;
234   std::function<TargetTransformInfo &(Function &)> GetTTI;
235 
236   /// \brief Predecessors for each basic block in the CFG.
237   BlockEdgeMap Predecessors;
238 
239   /// \brief Successors for each basic block in the CFG.
240   BlockEdgeMap Successors;
241 
242   SampleCoverageTracker CoverageTracker;
243 
244   /// \brief Profile reader object.
245   std::unique_ptr<SampleProfileReader> Reader;
246 
247   /// \brief Samples collected for the body of this function.
248   FunctionSamples *Samples;
249 
250   /// \brief Name of the profile file to load.
251   std::string Filename;
252 
253   /// \brief Flag indicating whether the profile input loaded successfully.
254   bool ProfileIsValid;
255 
256   /// \brief Flag indicating if the pass is invoked in ThinLTO compile phase.
257   ///
258   /// In this phase, in annotation, we should not promote indirect calls.
259   /// Instead, we will mark GUIDs that needs to be annotated to the function.
260   bool IsThinLTOPreLink;
261 
262   /// \brief Total number of samples collected in this profile.
263   ///
264   /// This is the sum of all the samples collected in all the functions executed
265   /// at runtime.
266   uint64_t TotalCollectedSamples;
267 
268   /// \brief Optimization Remark Emitter used to emit diagnostic remarks.
269   OptimizationRemarkEmitter *ORE;
270 };
271 
272 class SampleProfileLoaderLegacyPass : public ModulePass {
273 public:
274   // Class identification, replacement for typeinfo
275   static char ID;
276 
277   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
278                                 bool IsThinLTOPreLink = false)
279       : ModulePass(ID), SampleLoader(Name, IsThinLTOPreLink,
280                                      [&](Function &F) -> AssumptionCache & {
281                                        return ACT->getAssumptionCache(F);
282                                      },
283                                      [&](Function &F) -> TargetTransformInfo & {
284                                        return TTIWP->getTTI(F);
285                                      }),
286         ACT(nullptr), TTIWP(nullptr) {
287     initializeSampleProfileLoaderLegacyPassPass(
288         *PassRegistry::getPassRegistry());
289   }
290 
291   void dump() { SampleLoader.dump(); }
292 
293   bool doInitialization(Module &M) override {
294     return SampleLoader.doInitialization(M);
295   }
296   StringRef getPassName() const override { return "Sample profile pass"; }
297   bool runOnModule(Module &M) override;
298 
299   void getAnalysisUsage(AnalysisUsage &AU) const override {
300     AU.addRequired<AssumptionCacheTracker>();
301     AU.addRequired<TargetTransformInfoWrapperPass>();
302   }
303 
304 private:
305   SampleProfileLoader SampleLoader;
306   AssumptionCacheTracker *ACT;
307   TargetTransformInfoWrapperPass *TTIWP;
308 };
309 
310 /// Return true if the given callsite is hot wrt to its caller.
311 ///
312 /// Functions that were inlined in the original binary will be represented
313 /// in the inline stack in the sample profile. If the profile shows that
314 /// the original inline decision was "good" (i.e., the callsite is executed
315 /// frequently), then we will recreate the inline decision and apply the
316 /// profile from the inlined callsite.
317 ///
318 /// To decide whether an inlined callsite is hot, we compute the fraction
319 /// of samples used by the callsite with respect to the total number of samples
320 /// collected in the caller.
321 ///
322 /// If that fraction is larger than the default given by
323 /// SampleProfileHotThreshold, the callsite will be inlined again.
324 bool callsiteIsHot(const FunctionSamples *CallerFS,
325                    const FunctionSamples *CallsiteFS) {
326   if (!CallsiteFS)
327     return false; // The callsite was not inlined in the original binary.
328 
329   uint64_t ParentTotalSamples = CallerFS->getTotalSamples();
330   if (ParentTotalSamples == 0)
331     return false; // Avoid division by zero.
332 
333   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
334   if (CallsiteTotalSamples == 0)
335     return false; // Callsite is trivially cold.
336 
337   double PercentSamples =
338       (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0;
339   return PercentSamples >= SampleProfileHotThreshold;
340 }
341 }
342 
343 /// Mark as used the sample record for the given function samples at
344 /// (LineOffset, Discriminator).
345 ///
346 /// \returns true if this is the first time we mark the given record.
347 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
348                                             uint32_t LineOffset,
349                                             uint32_t Discriminator,
350                                             uint64_t Samples) {
351   LineLocation Loc(LineOffset, Discriminator);
352   unsigned &Count = SampleCoverage[FS][Loc];
353   bool FirstTime = (++Count == 1);
354   if (FirstTime)
355     TotalUsedSamples += Samples;
356   return FirstTime;
357 }
358 
359 /// Return the number of sample records that were applied from this profile.
360 ///
361 /// This count does not include records from cold inlined callsites.
362 unsigned
363 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const {
364   auto I = SampleCoverage.find(FS);
365 
366   // The size of the coverage map for FS represents the number of records
367   // that were marked used at least once.
368   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
369 
370   // If there are inlined callsites in this function, count the samples found
371   // in the respective bodies. However, do not bother counting callees with 0
372   // total samples, these are callees that were never invoked at runtime.
373   for (const auto &I : FS->getCallsiteSamples())
374     for (const auto &J : I.second) {
375       const FunctionSamples *CalleeSamples = &J.second;
376       if (callsiteIsHot(FS, CalleeSamples))
377         Count += countUsedRecords(CalleeSamples);
378     }
379 
380   return Count;
381 }
382 
383 /// Return the number of sample records in the body of this profile.
384 ///
385 /// This count does not include records from cold inlined callsites.
386 unsigned
387 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const {
388   unsigned Count = FS->getBodySamples().size();
389 
390   // Only count records in hot callsites.
391   for (const auto &I : FS->getCallsiteSamples())
392     for (const auto &J : I.second) {
393       const FunctionSamples *CalleeSamples = &J.second;
394       if (callsiteIsHot(FS, CalleeSamples))
395         Count += countBodyRecords(CalleeSamples);
396     }
397 
398   return Count;
399 }
400 
401 /// Return the number of samples collected in the body of this profile.
402 ///
403 /// This count does not include samples from cold inlined callsites.
404 uint64_t
405 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const {
406   uint64_t Total = 0;
407   for (const auto &I : FS->getBodySamples())
408     Total += I.second.getSamples();
409 
410   // Only count samples in hot callsites.
411   for (const auto &I : FS->getCallsiteSamples())
412     for (const auto &J : I.second) {
413       const FunctionSamples *CalleeSamples = &J.second;
414       if (callsiteIsHot(FS, CalleeSamples))
415         Total += countBodySamples(CalleeSamples);
416     }
417 
418   return Total;
419 }
420 
421 /// Return the fraction of sample records used in this profile.
422 ///
423 /// The returned value is an unsigned integer in the range 0-100 indicating
424 /// the percentage of sample records that were used while applying this
425 /// profile to the associated function.
426 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
427                                                 unsigned Total) const {
428   assert(Used <= Total &&
429          "number of used records cannot exceed the total number of records");
430   return Total > 0 ? Used * 100 / Total : 100;
431 }
432 
433 /// Clear all the per-function data used to load samples and propagate weights.
434 void SampleProfileLoader::clearFunctionData() {
435   BlockWeights.clear();
436   EdgeWeights.clear();
437   VisitedBlocks.clear();
438   VisitedEdges.clear();
439   EquivalenceClass.clear();
440   DT = nullptr;
441   PDT = nullptr;
442   LI = nullptr;
443   Predecessors.clear();
444   Successors.clear();
445   CoverageTracker.clear();
446 }
447 
448 /// Returns the line offset to the start line of the subprogram.
449 /// We assume that a single function will not exceed 65535 LOC.
450 unsigned SampleProfileLoader::getOffset(const DILocation *DIL) const {
451   return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) &
452          0xffff;
453 }
454 
455 #ifndef NDEBUG
456 /// \brief Print the weight of edge \p E on stream \p OS.
457 ///
458 /// \param OS  Stream to emit the output to.
459 /// \param E  Edge to print.
460 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
461   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
462      << "]: " << EdgeWeights[E] << "\n";
463 }
464 
465 /// \brief Print the equivalence class of block \p BB on stream \p OS.
466 ///
467 /// \param OS  Stream to emit the output to.
468 /// \param BB  Block to print.
469 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
470                                                 const BasicBlock *BB) {
471   const BasicBlock *Equiv = EquivalenceClass[BB];
472   OS << "equivalence[" << BB->getName()
473      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
474 }
475 
476 /// \brief Print the weight of block \p BB on stream \p OS.
477 ///
478 /// \param OS  Stream to emit the output to.
479 /// \param BB  Block to print.
480 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
481                                            const BasicBlock *BB) const {
482   const auto &I = BlockWeights.find(BB);
483   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
484   OS << "weight[" << BB->getName() << "]: " << W << "\n";
485 }
486 #endif
487 
488 /// \brief Get the weight for an instruction.
489 ///
490 /// The "weight" of an instruction \p Inst is the number of samples
491 /// collected on that instruction at runtime. To retrieve it, we
492 /// need to compute the line number of \p Inst relative to the start of its
493 /// function. We use HeaderLineno to compute the offset. We then
494 /// look up the samples collected for \p Inst using BodySamples.
495 ///
496 /// \param Inst Instruction to query.
497 ///
498 /// \returns the weight of \p Inst.
499 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
500   const DebugLoc &DLoc = Inst.getDebugLoc();
501   if (!DLoc)
502     return std::error_code();
503 
504   const FunctionSamples *FS = findFunctionSamples(Inst);
505   if (!FS)
506     return std::error_code();
507 
508   // Ignore all intrinsics and branch instructions.
509   // Branch instruction usually contains debug info from sources outside of
510   // the residing basic block, thus we ignore them during annotation.
511   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst))
512     return std::error_code();
513 
514   // If a call/invoke instruction is inlined in profile, but not inlined here,
515   // it means that the inlined callsite has no sample, thus the call
516   // instruction should have 0 count.
517   if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
518       findCalleeFunctionSamples(Inst))
519     return 0;
520 
521   const DILocation *DIL = DLoc;
522   uint32_t LineOffset = getOffset(DIL);
523   uint32_t Discriminator = DIL->getBaseDiscriminator();
524   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
525   if (R) {
526     bool FirstMark =
527         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
528     if (FirstMark) {
529       if (Discriminator)
530         ORE->emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AppliedSamples", &Inst)
531                   << "Applied " << ore::NV("NumSamples", *R)
532                   << " samples from profile (offset: "
533                   << ore::NV("LineOffset", LineOffset) << "."
534                   << ore::NV("Discriminator", Discriminator) << ")");
535       else
536         ORE->emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AppliedSamples", &Inst)
537                   << "Applied " << ore::NV("NumSamples", *R)
538                   << " samples from profile (offset: "
539                   << ore::NV("LineOffset", LineOffset) << ")");
540     }
541     DEBUG(dbgs() << "    " << DLoc.getLine() << "."
542                  << DIL->getBaseDiscriminator() << ":" << Inst
543                  << " (line offset: " << LineOffset << "."
544                  << DIL->getBaseDiscriminator() << " - weight: " << R.get()
545                  << ")\n");
546   }
547   return R;
548 }
549 
550 /// \brief Compute the weight of a basic block.
551 ///
552 /// The weight of basic block \p BB is the maximum weight of all the
553 /// instructions in BB.
554 ///
555 /// \param BB The basic block to query.
556 ///
557 /// \returns the weight for \p BB.
558 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
559   uint64_t Max = 0;
560   bool HasWeight = false;
561   for (auto &I : BB->getInstList()) {
562     const ErrorOr<uint64_t> &R = getInstWeight(I);
563     if (R) {
564       Max = std::max(Max, R.get());
565       HasWeight = true;
566     }
567   }
568   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
569 }
570 
571 /// \brief Compute and store the weights of every basic block.
572 ///
573 /// This populates the BlockWeights map by computing
574 /// the weights of every basic block in the CFG.
575 ///
576 /// \param F The function to query.
577 bool SampleProfileLoader::computeBlockWeights(Function &F) {
578   bool Changed = false;
579   DEBUG(dbgs() << "Block weights\n");
580   for (const auto &BB : F) {
581     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
582     if (Weight) {
583       BlockWeights[&BB] = Weight.get();
584       VisitedBlocks.insert(&BB);
585       Changed = true;
586     }
587     DEBUG(printBlockWeight(dbgs(), &BB));
588   }
589 
590   return Changed;
591 }
592 
593 /// \brief Get the FunctionSamples for a call instruction.
594 ///
595 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
596 /// instance in which that call instruction is calling to. It contains
597 /// all samples that resides in the inlined instance. We first find the
598 /// inlined instance in which the call instruction is from, then we
599 /// traverse its children to find the callsite with the matching
600 /// location.
601 ///
602 /// \param Inst Call/Invoke instruction to query.
603 ///
604 /// \returns The FunctionSamples pointer to the inlined instance.
605 const FunctionSamples *
606 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
607   const DILocation *DIL = Inst.getDebugLoc();
608   if (!DIL) {
609     return nullptr;
610   }
611 
612   StringRef CalleeName;
613   if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
614     if (Function *Callee = CI->getCalledFunction())
615       CalleeName = Callee->getName();
616 
617   const FunctionSamples *FS = findFunctionSamples(Inst);
618   if (FS == nullptr)
619     return nullptr;
620 
621   return FS->findFunctionSamplesAt(
622       LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), CalleeName);
623 }
624 
625 /// Returns a vector of FunctionSamples that are the indirect call targets
626 /// of \p Inst. The vector is sorted by the total number of samples.
627 std::vector<const FunctionSamples *>
628 SampleProfileLoader::findIndirectCallFunctionSamples(
629     const Instruction &Inst) const {
630   const DILocation *DIL = Inst.getDebugLoc();
631   std::vector<const FunctionSamples *> R;
632 
633   if (!DIL) {
634     return R;
635   }
636 
637   const FunctionSamples *FS = findFunctionSamples(Inst);
638   if (FS == nullptr)
639     return R;
640 
641   if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(
642           LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()))) {
643     if (M->size() == 0)
644       return R;
645     for (const auto &NameFS : *M) {
646       R.push_back(&NameFS.second);
647     }
648     std::sort(R.begin(), R.end(),
649               [](const FunctionSamples *L, const FunctionSamples *R) {
650                 return L->getTotalSamples() > R->getTotalSamples();
651               });
652   }
653   return R;
654 }
655 
656 /// \brief Get the FunctionSamples for an instruction.
657 ///
658 /// The FunctionSamples of an instruction \p Inst is the inlined instance
659 /// in which that instruction is coming from. We traverse the inline stack
660 /// of that instruction, and match it with the tree nodes in the profile.
661 ///
662 /// \param Inst Instruction to query.
663 ///
664 /// \returns the FunctionSamples pointer to the inlined instance.
665 const FunctionSamples *
666 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
667   SmallVector<std::pair<LineLocation, StringRef>, 10> S;
668   const DILocation *DIL = Inst.getDebugLoc();
669   if (!DIL)
670     return Samples;
671 
672   const DILocation *PrevDIL = DIL;
673   for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) {
674     S.push_back(std::make_pair(
675         LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()),
676         PrevDIL->getScope()->getSubprogram()->getLinkageName()));
677     PrevDIL = DIL;
678   }
679   if (S.size() == 0)
680     return Samples;
681   const FunctionSamples *FS = Samples;
682   for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
683     FS = FS->findFunctionSamplesAt(S[i].first, S[i].second);
684   }
685   return FS;
686 }
687 
688 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
689   assert(isa<CallInst>(I) || isa<InvokeInst>(I));
690   CallSite CS(I);
691   Function *CalledFunction = CS.getCalledFunction();
692   assert(CalledFunction);
693   DebugLoc DLoc = I->getDebugLoc();
694   BasicBlock *BB = I->getParent();
695   InlineParams Params = getInlineParams();
696   Params.ComputeFullInlineCost = true;
697   // Checks if there is anything in the reachable portion of the callee at
698   // this callsite that makes this inlining potentially illegal. Need to
699   // set ComputeFullInlineCost, otherwise getInlineCost may return early
700   // when cost exceeds threshold without checking all IRs in the callee.
701   // The acutal cost does not matter because we only checks isNever() to
702   // see if it is legal to inline the callsite.
703   InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC,
704                                   None, nullptr, nullptr);
705   if (Cost.isNever()) {
706     ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB)
707               << "incompatible inlining");
708     return false;
709   }
710   InlineFunctionInfo IFI(nullptr, &GetAC);
711   if (InlineFunction(CS, IFI)) {
712     // The call to InlineFunction erases I, so we can't pass it here.
713     ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB)
714               << "inlined hot callee '" << ore::NV("Callee", CalledFunction)
715               << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
716     return true;
717   }
718   return false;
719 }
720 
721 /// \brief Iteratively inline hot callsites of a function.
722 ///
723 /// Iteratively traverse all callsites of the function \p F, and find if
724 /// the corresponding inlined instance exists and is hot in profile. If
725 /// it is hot enough, inline the callsites and adds new callsites of the
726 /// callee into the caller. If the call is an indirect call, first promote
727 /// it to direct call. Each indirect call is limited with a single target.
728 ///
729 /// \param F function to perform iterative inlining.
730 /// \param ImportGUIDs a set to be updated to include all GUIDs that come
731 ///     from a different module but inlined in the profiled binary.
732 ///
733 /// \returns True if there is any inline happened.
734 bool SampleProfileLoader::inlineHotFunctions(
735     Function &F, DenseSet<GlobalValue::GUID> &ImportGUIDs) {
736   DenseSet<Instruction *> PromotedInsns;
737   bool Changed = false;
738   while (true) {
739     bool LocalChanged = false;
740     SmallVector<Instruction *, 10> CIS;
741     for (auto &BB : F) {
742       bool Hot = false;
743       SmallVector<Instruction *, 10> Candidates;
744       for (auto &I : BB.getInstList()) {
745         const FunctionSamples *FS = nullptr;
746         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
747             !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
748           Candidates.push_back(&I);
749           if (callsiteIsHot(Samples, FS))
750             Hot = true;
751         }
752       }
753       if (Hot) {
754         CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
755       }
756     }
757     for (auto I : CIS) {
758       Function *CalledFunction = CallSite(I).getCalledFunction();
759       // Do not inline recursive calls.
760       if (CalledFunction == &F)
761         continue;
762       if (CallSite(I).isIndirectCall()) {
763         if (PromotedInsns.count(I))
764           continue;
765         for (const auto *FS : findIndirectCallFunctionSamples(*I)) {
766           if (IsThinLTOPreLink) {
767             FS->findImportedFunctions(ImportGUIDs, F.getParent(),
768                                       Samples->getTotalSamples() *
769                                           SampleProfileHotThreshold / 100);
770             continue;
771           }
772           auto CalleeFunctionName = FS->getName();
773           // If it is a recursive call, we do not inline it as it could bloat
774           // the code exponentially. There is way to better handle this, e.g.
775           // clone the caller first, and inline the cloned caller if it is
776           // recursive. As llvm does not inline recursive calls, we will
777           // simply ignore it instead of handling it explicitly.
778           if (CalleeFunctionName == F.getName())
779             continue;
780 
781           const char *Reason = "Callee function not available";
782           auto R = SymbolMap.find(CalleeFunctionName);
783           if (R != SymbolMap.end() && R->getValue() &&
784               !R->getValue()->isDeclaration() &&
785               R->getValue()->getSubprogram() &&
786               isLegalToPromote(I, R->getValue(), &Reason)) {
787             // The indirect target was promoted and inlined in the profile,
788             // as a result, we do not have profile info for the branch
789             // probability. We set the probability to 80% taken to indicate
790             // that the static call is likely taken.
791             Instruction *DI = dyn_cast<Instruction>(
792                 promoteIndirectCall(I, R->getValue(), 80, 100, false, ORE)
793                     ->stripPointerCasts());
794             PromotedInsns.insert(I);
795             // If profile mismatches, we should not attempt to inline DI.
796             if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
797                 inlineCallInstruction(DI))
798               LocalChanged = true;
799           } else {
800             DEBUG(dbgs()
801                   << "\nFailed to promote indirect call to "
802                   << CalleeFunctionName << " because " << Reason << "\n");
803           }
804         }
805       } else if (CalledFunction && CalledFunction->getSubprogram() &&
806                  !CalledFunction->isDeclaration()) {
807         if (inlineCallInstruction(I))
808           LocalChanged = true;
809       } else if (IsThinLTOPreLink) {
810         findCalleeFunctionSamples(*I)->findImportedFunctions(
811             ImportGUIDs, F.getParent(),
812             Samples->getTotalSamples() * SampleProfileHotThreshold / 100);
813       }
814     }
815     if (LocalChanged) {
816       Changed = true;
817     } else {
818       break;
819     }
820   }
821   return Changed;
822 }
823 
824 /// \brief Find equivalence classes for the given block.
825 ///
826 /// This finds all the blocks that are guaranteed to execute the same
827 /// number of times as \p BB1. To do this, it traverses all the
828 /// descendants of \p BB1 in the dominator or post-dominator tree.
829 ///
830 /// A block BB2 will be in the same equivalence class as \p BB1 if
831 /// the following holds:
832 ///
833 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
834 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
835 ///    dominate BB1 in the post-dominator tree.
836 ///
837 /// 2- Both BB2 and \p BB1 must be in the same loop.
838 ///
839 /// For every block BB2 that meets those two requirements, we set BB2's
840 /// equivalence class to \p BB1.
841 ///
842 /// \param BB1  Block to check.
843 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
844 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
845 ///                 with blocks from \p BB1's dominator tree, then
846 ///                 this is the post-dominator tree, and vice versa.
847 template <bool IsPostDom>
848 void SampleProfileLoader::findEquivalencesFor(
849     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
850     DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
851   const BasicBlock *EC = EquivalenceClass[BB1];
852   uint64_t Weight = BlockWeights[EC];
853   for (const auto *BB2 : Descendants) {
854     bool IsDomParent = DomTree->dominates(BB2, BB1);
855     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
856     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
857       EquivalenceClass[BB2] = EC;
858       // If BB2 is visited, then the entire EC should be marked as visited.
859       if (VisitedBlocks.count(BB2)) {
860         VisitedBlocks.insert(EC);
861       }
862 
863       // If BB2 is heavier than BB1, make BB2 have the same weight
864       // as BB1.
865       //
866       // Note that we don't worry about the opposite situation here
867       // (when BB2 is lighter than BB1). We will deal with this
868       // during the propagation phase. Right now, we just want to
869       // make sure that BB1 has the largest weight of all the
870       // members of its equivalence set.
871       Weight = std::max(Weight, BlockWeights[BB2]);
872     }
873   }
874   if (EC == &EC->getParent()->getEntryBlock()) {
875     BlockWeights[EC] = Samples->getHeadSamples() + 1;
876   } else {
877     BlockWeights[EC] = Weight;
878   }
879 }
880 
881 /// \brief Find equivalence classes.
882 ///
883 /// Since samples may be missing from blocks, we can fill in the gaps by setting
884 /// the weights of all the blocks in the same equivalence class to the same
885 /// weight. To compute the concept of equivalence, we use dominance and loop
886 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
887 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
888 ///
889 /// \param F The function to query.
890 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
891   SmallVector<BasicBlock *, 8> DominatedBBs;
892   DEBUG(dbgs() << "\nBlock equivalence classes\n");
893   // Find equivalence sets based on dominance and post-dominance information.
894   for (auto &BB : F) {
895     BasicBlock *BB1 = &BB;
896 
897     // Compute BB1's equivalence class once.
898     if (EquivalenceClass.count(BB1)) {
899       DEBUG(printBlockEquivalence(dbgs(), BB1));
900       continue;
901     }
902 
903     // By default, blocks are in their own equivalence class.
904     EquivalenceClass[BB1] = BB1;
905 
906     // Traverse all the blocks dominated by BB1. We are looking for
907     // every basic block BB2 such that:
908     //
909     // 1- BB1 dominates BB2.
910     // 2- BB2 post-dominates BB1.
911     // 3- BB1 and BB2 are in the same loop nest.
912     //
913     // If all those conditions hold, it means that BB2 is executed
914     // as many times as BB1, so they are placed in the same equivalence
915     // class by making BB2's equivalence class be BB1.
916     DominatedBBs.clear();
917     DT->getDescendants(BB1, DominatedBBs);
918     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
919 
920     DEBUG(printBlockEquivalence(dbgs(), BB1));
921   }
922 
923   // Assign weights to equivalence classes.
924   //
925   // All the basic blocks in the same equivalence class will execute
926   // the same number of times. Since we know that the head block in
927   // each equivalence class has the largest weight, assign that weight
928   // to all the blocks in that equivalence class.
929   DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
930   for (auto &BI : F) {
931     const BasicBlock *BB = &BI;
932     const BasicBlock *EquivBB = EquivalenceClass[BB];
933     if (BB != EquivBB)
934       BlockWeights[BB] = BlockWeights[EquivBB];
935     DEBUG(printBlockWeight(dbgs(), BB));
936   }
937 }
938 
939 /// \brief Visit the given edge to decide if it has a valid weight.
940 ///
941 /// If \p E has not been visited before, we copy to \p UnknownEdge
942 /// and increment the count of unknown edges.
943 ///
944 /// \param E  Edge to visit.
945 /// \param NumUnknownEdges  Current number of unknown edges.
946 /// \param UnknownEdge  Set if E has not been visited before.
947 ///
948 /// \returns E's weight, if known. Otherwise, return 0.
949 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
950                                         Edge *UnknownEdge) {
951   if (!VisitedEdges.count(E)) {
952     (*NumUnknownEdges)++;
953     *UnknownEdge = E;
954     return 0;
955   }
956 
957   return EdgeWeights[E];
958 }
959 
960 /// \brief Propagate weights through incoming/outgoing edges.
961 ///
962 /// If the weight of a basic block is known, and there is only one edge
963 /// with an unknown weight, we can calculate the weight of that edge.
964 ///
965 /// Similarly, if all the edges have a known count, we can calculate the
966 /// count of the basic block, if needed.
967 ///
968 /// \param F  Function to process.
969 /// \param UpdateBlockCount  Whether we should update basic block counts that
970 ///                          has already been annotated.
971 ///
972 /// \returns  True if new weights were assigned to edges or blocks.
973 bool SampleProfileLoader::propagateThroughEdges(Function &F,
974                                                 bool UpdateBlockCount) {
975   bool Changed = false;
976   DEBUG(dbgs() << "\nPropagation through edges\n");
977   for (const auto &BI : F) {
978     const BasicBlock *BB = &BI;
979     const BasicBlock *EC = EquivalenceClass[BB];
980 
981     // Visit all the predecessor and successor edges to determine
982     // which ones have a weight assigned already. Note that it doesn't
983     // matter that we only keep track of a single unknown edge. The
984     // only case we are interested in handling is when only a single
985     // edge is unknown (see setEdgeOrBlockWeight).
986     for (unsigned i = 0; i < 2; i++) {
987       uint64_t TotalWeight = 0;
988       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
989       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
990 
991       if (i == 0) {
992         // First, visit all predecessor edges.
993         NumTotalEdges = Predecessors[BB].size();
994         for (auto *Pred : Predecessors[BB]) {
995           Edge E = std::make_pair(Pred, BB);
996           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
997           if (E.first == E.second)
998             SelfReferentialEdge = E;
999         }
1000         if (NumTotalEdges == 1) {
1001           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1002         }
1003       } else {
1004         // On the second round, visit all successor edges.
1005         NumTotalEdges = Successors[BB].size();
1006         for (auto *Succ : Successors[BB]) {
1007           Edge E = std::make_pair(BB, Succ);
1008           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1009         }
1010         if (NumTotalEdges == 1) {
1011           SingleEdge = std::make_pair(BB, Successors[BB][0]);
1012         }
1013       }
1014 
1015       // After visiting all the edges, there are three cases that we
1016       // can handle immediately:
1017       //
1018       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1019       //   In this case, we simply check that the sum of all the edges
1020       //   is the same as BB's weight. If not, we change BB's weight
1021       //   to match. Additionally, if BB had not been visited before,
1022       //   we mark it visited.
1023       //
1024       // - Only one edge is unknown and BB has already been visited.
1025       //   In this case, we can compute the weight of the edge by
1026       //   subtracting the total block weight from all the known
1027       //   edge weights. If the edges weight more than BB, then the
1028       //   edge of the last remaining edge is set to zero.
1029       //
1030       // - There exists a self-referential edge and the weight of BB is
1031       //   known. In this case, this edge can be based on BB's weight.
1032       //   We add up all the other known edges and set the weight on
1033       //   the self-referential edge as we did in the previous case.
1034       //
1035       // In any other case, we must continue iterating. Eventually,
1036       // all edges will get a weight, or iteration will stop when
1037       // it reaches SampleProfileMaxPropagateIterations.
1038       if (NumUnknownEdges <= 1) {
1039         uint64_t &BBWeight = BlockWeights[EC];
1040         if (NumUnknownEdges == 0) {
1041           if (!VisitedBlocks.count(EC)) {
1042             // If we already know the weight of all edges, the weight of the
1043             // basic block can be computed. It should be no larger than the sum
1044             // of all edge weights.
1045             if (TotalWeight > BBWeight) {
1046               BBWeight = TotalWeight;
1047               Changed = true;
1048               DEBUG(dbgs() << "All edge weights for " << BB->getName()
1049                            << " known. Set weight for block: ";
1050                     printBlockWeight(dbgs(), BB););
1051             }
1052           } else if (NumTotalEdges == 1 &&
1053                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1054             // If there is only one edge for the visited basic block, use the
1055             // block weight to adjust edge weight if edge weight is smaller.
1056             EdgeWeights[SingleEdge] = BlockWeights[EC];
1057             Changed = true;
1058           }
1059         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1060           // If there is a single unknown edge and the block has been
1061           // visited, then we can compute E's weight.
1062           if (BBWeight >= TotalWeight)
1063             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1064           else
1065             EdgeWeights[UnknownEdge] = 0;
1066           const BasicBlock *OtherEC;
1067           if (i == 0)
1068             OtherEC = EquivalenceClass[UnknownEdge.first];
1069           else
1070             OtherEC = EquivalenceClass[UnknownEdge.second];
1071           // Edge weights should never exceed the BB weights it connects.
1072           if (VisitedBlocks.count(OtherEC) &&
1073               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1074             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1075           VisitedEdges.insert(UnknownEdge);
1076           Changed = true;
1077           DEBUG(dbgs() << "Set weight for edge: ";
1078                 printEdgeWeight(dbgs(), UnknownEdge));
1079         }
1080       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1081         // If a block Weights 0, all its in/out edges should weight 0.
1082         if (i == 0) {
1083           for (auto *Pred : Predecessors[BB]) {
1084             Edge E = std::make_pair(Pred, BB);
1085             EdgeWeights[E] = 0;
1086             VisitedEdges.insert(E);
1087           }
1088         } else {
1089           for (auto *Succ : Successors[BB]) {
1090             Edge E = std::make_pair(BB, Succ);
1091             EdgeWeights[E] = 0;
1092             VisitedEdges.insert(E);
1093           }
1094         }
1095       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1096         uint64_t &BBWeight = BlockWeights[BB];
1097         // We have a self-referential edge and the weight of BB is known.
1098         if (BBWeight >= TotalWeight)
1099           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1100         else
1101           EdgeWeights[SelfReferentialEdge] = 0;
1102         VisitedEdges.insert(SelfReferentialEdge);
1103         Changed = true;
1104         DEBUG(dbgs() << "Set self-referential edge weight to: ";
1105               printEdgeWeight(dbgs(), SelfReferentialEdge));
1106       }
1107       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1108         BlockWeights[EC] = TotalWeight;
1109         VisitedBlocks.insert(EC);
1110         Changed = true;
1111       }
1112     }
1113   }
1114 
1115   return Changed;
1116 }
1117 
1118 /// \brief Build in/out edge lists for each basic block in the CFG.
1119 ///
1120 /// We are interested in unique edges. If a block B1 has multiple
1121 /// edges to another block B2, we only add a single B1->B2 edge.
1122 void SampleProfileLoader::buildEdges(Function &F) {
1123   for (auto &BI : F) {
1124     BasicBlock *B1 = &BI;
1125 
1126     // Add predecessors for B1.
1127     SmallPtrSet<BasicBlock *, 16> Visited;
1128     if (!Predecessors[B1].empty())
1129       llvm_unreachable("Found a stale predecessors list in a basic block.");
1130     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1131       BasicBlock *B2 = *PI;
1132       if (Visited.insert(B2).second)
1133         Predecessors[B1].push_back(B2);
1134     }
1135 
1136     // Add successors for B1.
1137     Visited.clear();
1138     if (!Successors[B1].empty())
1139       llvm_unreachable("Found a stale successors list in a basic block.");
1140     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1141       BasicBlock *B2 = *SI;
1142       if (Visited.insert(B2).second)
1143         Successors[B1].push_back(B2);
1144     }
1145   }
1146 }
1147 
1148 /// Sorts the CallTargetMap \p M by count in descending order and stores the
1149 /// sorted result in \p Sorted. Returns the total counts.
1150 static uint64_t SortCallTargets(SmallVector<InstrProfValueData, 2> &Sorted,
1151                                 const SampleRecord::CallTargetMap &M) {
1152   Sorted.clear();
1153   uint64_t Sum = 0;
1154   for (auto I = M.begin(); I != M.end(); ++I) {
1155     Sum += I->getValue();
1156     Sorted.push_back({Function::getGUID(I->getKey()), I->getValue()});
1157   }
1158   std::sort(Sorted.begin(), Sorted.end(),
1159             [](const InstrProfValueData &L, const InstrProfValueData &R) {
1160               if (L.Count == R.Count)
1161                 return L.Value > R.Value;
1162               else
1163                 return L.Count > R.Count;
1164             });
1165   return Sum;
1166 }
1167 
1168 /// \brief Propagate weights into edges
1169 ///
1170 /// The following rules are applied to every block BB in the CFG:
1171 ///
1172 /// - If BB has a single predecessor/successor, then the weight
1173 ///   of that edge is the weight of the block.
1174 ///
1175 /// - If all incoming or outgoing edges are known except one, and the
1176 ///   weight of the block is already known, the weight of the unknown
1177 ///   edge will be the weight of the block minus the sum of all the known
1178 ///   edges. If the sum of all the known edges is larger than BB's weight,
1179 ///   we set the unknown edge weight to zero.
1180 ///
1181 /// - If there is a self-referential edge, and the weight of the block is
1182 ///   known, the weight for that edge is set to the weight of the block
1183 ///   minus the weight of the other incoming edges to that block (if
1184 ///   known).
1185 void SampleProfileLoader::propagateWeights(Function &F) {
1186   bool Changed = true;
1187   unsigned I = 0;
1188 
1189   // If BB weight is larger than its corresponding loop's header BB weight,
1190   // use the BB weight to replace the loop header BB weight.
1191   for (auto &BI : F) {
1192     BasicBlock *BB = &BI;
1193     Loop *L = LI->getLoopFor(BB);
1194     if (!L) {
1195       continue;
1196     }
1197     BasicBlock *Header = L->getHeader();
1198     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1199       BlockWeights[Header] = BlockWeights[BB];
1200     }
1201   }
1202 
1203   // Before propagation starts, build, for each block, a list of
1204   // unique predecessors and successors. This is necessary to handle
1205   // identical edges in multiway branches. Since we visit all blocks and all
1206   // edges of the CFG, it is cleaner to build these lists once at the start
1207   // of the pass.
1208   buildEdges(F);
1209 
1210   // Propagate until we converge or we go past the iteration limit.
1211   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1212     Changed = propagateThroughEdges(F, false);
1213   }
1214 
1215   // The first propagation propagates BB counts from annotated BBs to unknown
1216   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1217   // to propagate edge weights.
1218   VisitedEdges.clear();
1219   Changed = true;
1220   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1221     Changed = propagateThroughEdges(F, false);
1222   }
1223 
1224   // The 3rd propagation pass allows adjust annotated BB weights that are
1225   // obviously wrong.
1226   Changed = true;
1227   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1228     Changed = propagateThroughEdges(F, true);
1229   }
1230 
1231   // Generate MD_prof metadata for every branch instruction using the
1232   // edge weights computed during propagation.
1233   DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1234   LLVMContext &Ctx = F.getContext();
1235   MDBuilder MDB(Ctx);
1236   for (auto &BI : F) {
1237     BasicBlock *BB = &BI;
1238 
1239     if (BlockWeights[BB]) {
1240       for (auto &I : BB->getInstList()) {
1241         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1242           continue;
1243         CallSite CS(&I);
1244         if (!CS.getCalledFunction()) {
1245           const DebugLoc &DLoc = I.getDebugLoc();
1246           if (!DLoc)
1247             continue;
1248           const DILocation *DIL = DLoc;
1249           uint32_t LineOffset = getOffset(DIL);
1250           uint32_t Discriminator = DIL->getBaseDiscriminator();
1251 
1252           const FunctionSamples *FS = findFunctionSamples(I);
1253           if (!FS)
1254             continue;
1255           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1256           if (!T || T.get().size() == 0)
1257             continue;
1258           SmallVector<InstrProfValueData, 2> SortedCallTargets;
1259           uint64_t Sum = SortCallTargets(SortedCallTargets, T.get());
1260           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1261                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1262                             SortedCallTargets.size());
1263         } else if (!dyn_cast<IntrinsicInst>(&I)) {
1264           SmallVector<uint32_t, 1> Weights;
1265           Weights.push_back(BlockWeights[BB]);
1266           I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
1267         }
1268       }
1269     }
1270     TerminatorInst *TI = BB->getTerminator();
1271     if (TI->getNumSuccessors() == 1)
1272       continue;
1273     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1274       continue;
1275 
1276     DebugLoc BranchLoc = TI->getDebugLoc();
1277     DEBUG(dbgs() << "\nGetting weights for branch at line "
1278                  << ((BranchLoc) ? Twine(BranchLoc.getLine())
1279                                  : Twine("<UNKNOWN LOCATION>"))
1280                  << ".\n");
1281     SmallVector<uint32_t, 4> Weights;
1282     uint32_t MaxWeight = 0;
1283     Instruction *MaxDestInst;
1284     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1285       BasicBlock *Succ = TI->getSuccessor(I);
1286       Edge E = std::make_pair(BB, Succ);
1287       uint64_t Weight = EdgeWeights[E];
1288       DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1289       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1290       // if needed. Sample counts in profiles are 64-bit unsigned values,
1291       // but internally branch weights are expressed as 32-bit values.
1292       if (Weight > std::numeric_limits<uint32_t>::max()) {
1293         DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1294         Weight = std::numeric_limits<uint32_t>::max();
1295       }
1296       // Weight is added by one to avoid propagation errors introduced by
1297       // 0 weights.
1298       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1299       if (Weight != 0) {
1300         if (Weight > MaxWeight) {
1301           MaxWeight = Weight;
1302           MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1303         }
1304       }
1305     }
1306 
1307     uint64_t TempWeight;
1308     // Only set weights if there is at least one non-zero weight.
1309     // In any other case, let the analyzer set weights.
1310     // Do not set weights if the weights are present. In ThinLTO, the profile
1311     // annotation is done twice. If the first annotation already set the
1312     // weights, the second pass does not need to set it.
1313     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1314       DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1315       TI->setMetadata(llvm::LLVMContext::MD_prof,
1316                       MDB.createBranchWeights(Weights));
1317       ORE->emit(OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1318                 << "most popular destination for conditional branches at "
1319                 << ore::NV("CondBranchesLoc", BranchLoc));
1320     } else {
1321       DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1322     }
1323   }
1324 }
1325 
1326 /// \brief Get the line number for the function header.
1327 ///
1328 /// This looks up function \p F in the current compilation unit and
1329 /// retrieves the line number where the function is defined. This is
1330 /// line 0 for all the samples read from the profile file. Every line
1331 /// number is relative to this line.
1332 ///
1333 /// \param F  Function object to query.
1334 ///
1335 /// \returns the line number where \p F is defined. If it returns 0,
1336 ///          it means that there is no debug information available for \p F.
1337 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1338   if (DISubprogram *S = F.getSubprogram())
1339     return S->getLine();
1340 
1341   // If the start of \p F is missing, emit a diagnostic to inform the user
1342   // about the missed opportunity.
1343   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1344       "No debug information found in function " + F.getName() +
1345           ": Function profile not used",
1346       DS_Warning));
1347   return 0;
1348 }
1349 
1350 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1351   DT.reset(new DominatorTree);
1352   DT->recalculate(F);
1353 
1354   PDT.reset(new PostDomTreeBase<BasicBlock>());
1355   PDT->recalculate(F);
1356 
1357   LI.reset(new LoopInfo);
1358   LI->analyze(*DT);
1359 }
1360 
1361 /// \brief Generate branch weight metadata for all branches in \p F.
1362 ///
1363 /// Branch weights are computed out of instruction samples using a
1364 /// propagation heuristic. Propagation proceeds in 3 phases:
1365 ///
1366 /// 1- Assignment of block weights. All the basic blocks in the function
1367 ///    are initial assigned the same weight as their most frequently
1368 ///    executed instruction.
1369 ///
1370 /// 2- Creation of equivalence classes. Since samples may be missing from
1371 ///    blocks, we can fill in the gaps by setting the weights of all the
1372 ///    blocks in the same equivalence class to the same weight. To compute
1373 ///    the concept of equivalence, we use dominance and loop information.
1374 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1375 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1376 ///
1377 /// 3- Propagation of block weights into edges. This uses a simple
1378 ///    propagation heuristic. The following rules are applied to every
1379 ///    block BB in the CFG:
1380 ///
1381 ///    - If BB has a single predecessor/successor, then the weight
1382 ///      of that edge is the weight of the block.
1383 ///
1384 ///    - If all the edges are known except one, and the weight of the
1385 ///      block is already known, the weight of the unknown edge will
1386 ///      be the weight of the block minus the sum of all the known
1387 ///      edges. If the sum of all the known edges is larger than BB's weight,
1388 ///      we set the unknown edge weight to zero.
1389 ///
1390 ///    - If there is a self-referential edge, and the weight of the block is
1391 ///      known, the weight for that edge is set to the weight of the block
1392 ///      minus the weight of the other incoming edges to that block (if
1393 ///      known).
1394 ///
1395 /// Since this propagation is not guaranteed to finalize for every CFG, we
1396 /// only allow it to proceed for a limited number of iterations (controlled
1397 /// by -sample-profile-max-propagate-iterations).
1398 ///
1399 /// FIXME: Try to replace this propagation heuristic with a scheme
1400 /// that is guaranteed to finalize. A work-list approach similar to
1401 /// the standard value propagation algorithm used by SSA-CCP might
1402 /// work here.
1403 ///
1404 /// Once all the branch weights are computed, we emit the MD_prof
1405 /// metadata on BB using the computed values for each of its branches.
1406 ///
1407 /// \param F The function to query.
1408 ///
1409 /// \returns true if \p F was modified. Returns false, otherwise.
1410 bool SampleProfileLoader::emitAnnotations(Function &F) {
1411   bool Changed = false;
1412 
1413   if (getFunctionLoc(F) == 0)
1414     return false;
1415 
1416   DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
1417                << ": " << getFunctionLoc(F) << "\n");
1418 
1419   DenseSet<GlobalValue::GUID> ImportGUIDs;
1420   Changed |= inlineHotFunctions(F, ImportGUIDs);
1421 
1422   // Compute basic block weights.
1423   Changed |= computeBlockWeights(F);
1424 
1425   if (Changed) {
1426     // Add an entry count to the function using the samples gathered at the
1427     // function entry. Also sets the GUIDs that comes from a different
1428     // module but inlined in the profiled binary. This is aiming at making
1429     // the IR match the profiled binary before annotation.
1430     F.setEntryCount(Samples->getHeadSamples() + 1, &ImportGUIDs);
1431 
1432     // Compute dominance and loop info needed for propagation.
1433     computeDominanceAndLoopInfo(F);
1434 
1435     // Find equivalence classes.
1436     findEquivalenceClasses(F);
1437 
1438     // Propagate weights to all edges.
1439     propagateWeights(F);
1440   }
1441 
1442   // If coverage checking was requested, compute it now.
1443   if (SampleProfileRecordCoverage) {
1444     unsigned Used = CoverageTracker.countUsedRecords(Samples);
1445     unsigned Total = CoverageTracker.countBodyRecords(Samples);
1446     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1447     if (Coverage < SampleProfileRecordCoverage) {
1448       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1449           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1450           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1451               Twine(Coverage) + "%) were applied",
1452           DS_Warning));
1453     }
1454   }
1455 
1456   if (SampleProfileSampleCoverage) {
1457     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1458     uint64_t Total = CoverageTracker.countBodySamples(Samples);
1459     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1460     if (Coverage < SampleProfileSampleCoverage) {
1461       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1462           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1463           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1464               Twine(Coverage) + "%) were applied",
1465           DS_Warning));
1466     }
1467   }
1468   return Changed;
1469 }
1470 
1471 char SampleProfileLoaderLegacyPass::ID = 0;
1472 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1473                       "Sample Profile loader", false, false)
1474 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1475 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1476 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1477                     "Sample Profile loader", false, false)
1478 
1479 bool SampleProfileLoader::doInitialization(Module &M) {
1480   auto &Ctx = M.getContext();
1481   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1482   if (std::error_code EC = ReaderOrErr.getError()) {
1483     std::string Msg = "Could not open profile: " + EC.message();
1484     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1485     return false;
1486   }
1487   Reader = std::move(ReaderOrErr.get());
1488   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1489   return true;
1490 }
1491 
1492 ModulePass *llvm::createSampleProfileLoaderPass() {
1493   return new SampleProfileLoaderLegacyPass(SampleProfileFile);
1494 }
1495 
1496 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1497   return new SampleProfileLoaderLegacyPass(Name);
1498 }
1499 
1500 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM) {
1501   if (!ProfileIsValid)
1502     return false;
1503 
1504   // Compute the total number of samples collected in this profile.
1505   for (const auto &I : Reader->getProfiles())
1506     TotalCollectedSamples += I.second.getTotalSamples();
1507 
1508   // Populate the symbol map.
1509   for (const auto &N_F : M.getValueSymbolTable()) {
1510     std::string OrigName = N_F.getKey();
1511     Function *F = dyn_cast<Function>(N_F.getValue());
1512     if (F == nullptr)
1513       continue;
1514     SymbolMap[OrigName] = F;
1515     auto pos = OrigName.find('.');
1516     if (pos != std::string::npos) {
1517       std::string NewName = OrigName.substr(0, pos);
1518       auto r = SymbolMap.insert(std::make_pair(NewName, F));
1519       // Failiing to insert means there is already an entry in SymbolMap,
1520       // thus there are multiple functions that are mapped to the same
1521       // stripped name. In this case of name conflicting, set the value
1522       // to nullptr to avoid confusion.
1523       if (!r.second)
1524         r.first->second = nullptr;
1525     }
1526   }
1527 
1528   bool retval = false;
1529   for (auto &F : M)
1530     if (!F.isDeclaration()) {
1531       clearFunctionData();
1532       retval |= runOnFunction(F, AM);
1533     }
1534   if (M.getProfileSummary() == nullptr)
1535     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
1536   return retval;
1537 }
1538 
1539 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1540   ACT = &getAnalysis<AssumptionCacheTracker>();
1541   TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1542   return SampleLoader.runOnModule(M, nullptr);
1543 }
1544 
1545 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1546   F.setEntryCount(0);
1547   std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1548   if (AM) {
1549     auto &FAM =
1550         AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1551             .getManager();
1552     ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1553   } else {
1554     OwnedORE = make_unique<OptimizationRemarkEmitter>(&F);
1555     ORE = OwnedORE.get();
1556   }
1557   Samples = Reader->getSamplesFor(F);
1558   if (Samples && !Samples->empty())
1559     return emitAnnotations(F);
1560   return false;
1561 }
1562 
1563 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1564                                                ModuleAnalysisManager &AM) {
1565   FunctionAnalysisManager &FAM =
1566       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1567 
1568   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1569     return FAM.getResult<AssumptionAnalysis>(F);
1570   };
1571   auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1572     return FAM.getResult<TargetIRAnalysis>(F);
1573   };
1574 
1575   SampleProfileLoader SampleLoader(
1576       ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1577       IsThinLTOPreLink, GetAssumptionCache, GetTTI);
1578 
1579   SampleLoader.doInitialization(M);
1580 
1581   if (!SampleLoader.runOnModule(M, &AM))
1582     return PreservedAnalyses::all();
1583 
1584   return PreservedAnalyses::none();
1585 }
1586