1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/SampleProfile.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/InlineCost.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 34 #include "llvm/Analysis/PostDominators.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfo.h" 38 #include "llvm/IR/DiagnosticInfo.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalValue.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/MDBuilder.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/ValueSymbolTable.h" 50 #include "llvm/Pass.h" 51 #include "llvm/ProfileData/InstrProf.h" 52 #include "llvm/ProfileData/SampleProfReader.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorOr.h" 56 #include "llvm/Support/Format.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Transforms/IPO.h" 59 #include "llvm/Transforms/Instrumentation.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include <cctype> 62 63 using namespace llvm; 64 using namespace sampleprof; 65 66 #define DEBUG_TYPE "sample-profile" 67 68 // Command line option to specify the file to read samples from. This is 69 // mainly used for debugging. 70 static cl::opt<std::string> SampleProfileFile( 71 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 72 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 73 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 74 "sample-profile-max-propagate-iterations", cl::init(100), 75 cl::desc("Maximum number of iterations to go through when propagating " 76 "sample block/edge weights through the CFG.")); 77 static cl::opt<unsigned> SampleProfileRecordCoverage( 78 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 79 cl::desc("Emit a warning if less than N% of records in the input profile " 80 "are matched to the IR.")); 81 static cl::opt<unsigned> SampleProfileSampleCoverage( 82 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 83 cl::desc("Emit a warning if less than N% of samples in the input profile " 84 "are matched to the IR.")); 85 static cl::opt<double> SampleProfileHotThreshold( 86 "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"), 87 cl::desc("Inlined functions that account for more than N% of all samples " 88 "collected in the parent function, will be inlined again.")); 89 90 namespace { 91 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap; 92 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap; 93 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge; 94 typedef DenseMap<Edge, uint64_t> EdgeWeightMap; 95 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>> 96 BlockEdgeMap; 97 98 class SampleCoverageTracker { 99 public: 100 SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {} 101 102 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 103 uint32_t Discriminator, uint64_t Samples); 104 unsigned computeCoverage(unsigned Used, unsigned Total) const; 105 unsigned countUsedRecords(const FunctionSamples *FS) const; 106 unsigned countBodyRecords(const FunctionSamples *FS) const; 107 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 108 uint64_t countBodySamples(const FunctionSamples *FS) const; 109 void clear() { 110 SampleCoverage.clear(); 111 TotalUsedSamples = 0; 112 } 113 114 private: 115 typedef std::map<LineLocation, unsigned> BodySampleCoverageMap; 116 typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap> 117 FunctionSamplesCoverageMap; 118 119 /// Coverage map for sampling records. 120 /// 121 /// This map keeps a record of sampling records that have been matched to 122 /// an IR instruction. This is used to detect some form of staleness in 123 /// profiles (see flag -sample-profile-check-coverage). 124 /// 125 /// Each entry in the map corresponds to a FunctionSamples instance. This is 126 /// another map that counts how many times the sample record at the 127 /// given location has been used. 128 FunctionSamplesCoverageMap SampleCoverage; 129 130 /// Number of samples used from the profile. 131 /// 132 /// When a sampling record is used for the first time, the samples from 133 /// that record are added to this accumulator. Coverage is later computed 134 /// based on the total number of samples available in this function and 135 /// its callsites. 136 /// 137 /// Note that this accumulator tracks samples used from a single function 138 /// and all the inlined callsites. Strictly, we should have a map of counters 139 /// keyed by FunctionSamples pointers, but these stats are cleared after 140 /// every function, so we just need to keep a single counter. 141 uint64_t TotalUsedSamples; 142 }; 143 144 /// \brief Sample profile pass. 145 /// 146 /// This pass reads profile data from the file specified by 147 /// -sample-profile-file and annotates every affected function with the 148 /// profile information found in that file. 149 class SampleProfileLoader { 150 public: 151 SampleProfileLoader( 152 StringRef Name, bool IsThinLTOPreLink, 153 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 154 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo) 155 : DT(nullptr), PDT(nullptr), LI(nullptr), GetAC(GetAssumptionCache), 156 GetTTI(GetTargetTransformInfo), Reader(), Samples(nullptr), 157 Filename(Name), ProfileIsValid(false), 158 IsThinLTOPreLink(IsThinLTOPreLink), 159 TotalCollectedSamples(0), ORE(nullptr) {} 160 161 bool doInitialization(Module &M); 162 bool runOnModule(Module &M, ModuleAnalysisManager *AM); 163 164 void dump() { Reader->dump(); } 165 166 protected: 167 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 168 unsigned getFunctionLoc(Function &F); 169 bool emitAnnotations(Function &F); 170 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 171 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 172 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 173 std::vector<const FunctionSamples *> 174 findIndirectCallFunctionSamples(const Instruction &I) const; 175 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 176 bool inlineCallInstruction(Instruction *I); 177 bool inlineHotFunctions(Function &F, 178 DenseSet<GlobalValue::GUID> &ImportGUIDs); 179 void printEdgeWeight(raw_ostream &OS, Edge E); 180 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 181 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 182 bool computeBlockWeights(Function &F); 183 void findEquivalenceClasses(Function &F); 184 template <bool IsPostDom> 185 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 186 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 187 188 void propagateWeights(Function &F); 189 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 190 void buildEdges(Function &F); 191 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 192 void computeDominanceAndLoopInfo(Function &F); 193 unsigned getOffset(const DILocation *DIL) const; 194 void clearFunctionData(); 195 196 /// \brief Map basic blocks to their computed weights. 197 /// 198 /// The weight of a basic block is defined to be the maximum 199 /// of all the instruction weights in that block. 200 BlockWeightMap BlockWeights; 201 202 /// \brief Map edges to their computed weights. 203 /// 204 /// Edge weights are computed by propagating basic block weights in 205 /// SampleProfile::propagateWeights. 206 EdgeWeightMap EdgeWeights; 207 208 /// \brief Set of visited blocks during propagation. 209 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 210 211 /// \brief Set of visited edges during propagation. 212 SmallSet<Edge, 32> VisitedEdges; 213 214 /// \brief Equivalence classes for block weights. 215 /// 216 /// Two blocks BB1 and BB2 are in the same equivalence class if they 217 /// dominate and post-dominate each other, and they are in the same loop 218 /// nest. When this happens, the two blocks are guaranteed to execute 219 /// the same number of times. 220 EquivalenceClassMap EquivalenceClass; 221 222 /// Map from function name to Function *. Used to find the function from 223 /// the function name. If the function name contains suffix, additional 224 /// entry is added to map from the stripped name to the function if there 225 /// is one-to-one mapping. 226 StringMap<Function *> SymbolMap; 227 228 /// \brief Dominance, post-dominance and loop information. 229 std::unique_ptr<DominatorTree> DT; 230 std::unique_ptr<PostDomTreeBase<BasicBlock>> PDT; 231 std::unique_ptr<LoopInfo> LI; 232 233 std::function<AssumptionCache &(Function &)> GetAC; 234 std::function<TargetTransformInfo &(Function &)> GetTTI; 235 236 /// \brief Predecessors for each basic block in the CFG. 237 BlockEdgeMap Predecessors; 238 239 /// \brief Successors for each basic block in the CFG. 240 BlockEdgeMap Successors; 241 242 SampleCoverageTracker CoverageTracker; 243 244 /// \brief Profile reader object. 245 std::unique_ptr<SampleProfileReader> Reader; 246 247 /// \brief Samples collected for the body of this function. 248 FunctionSamples *Samples; 249 250 /// \brief Name of the profile file to load. 251 std::string Filename; 252 253 /// \brief Flag indicating whether the profile input loaded successfully. 254 bool ProfileIsValid; 255 256 /// \brief Flag indicating if the pass is invoked in ThinLTO compile phase. 257 /// 258 /// In this phase, in annotation, we should not promote indirect calls. 259 /// Instead, we will mark GUIDs that needs to be annotated to the function. 260 bool IsThinLTOPreLink; 261 262 /// \brief Total number of samples collected in this profile. 263 /// 264 /// This is the sum of all the samples collected in all the functions executed 265 /// at runtime. 266 uint64_t TotalCollectedSamples; 267 268 /// \brief Optimization Remark Emitter used to emit diagnostic remarks. 269 OptimizationRemarkEmitter *ORE; 270 }; 271 272 class SampleProfileLoaderLegacyPass : public ModulePass { 273 public: 274 // Class identification, replacement for typeinfo 275 static char ID; 276 277 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, 278 bool IsThinLTOPreLink = false) 279 : ModulePass(ID), SampleLoader(Name, IsThinLTOPreLink, 280 [&](Function &F) -> AssumptionCache & { 281 return ACT->getAssumptionCache(F); 282 }, 283 [&](Function &F) -> TargetTransformInfo & { 284 return TTIWP->getTTI(F); 285 }), 286 ACT(nullptr), TTIWP(nullptr) { 287 initializeSampleProfileLoaderLegacyPassPass( 288 *PassRegistry::getPassRegistry()); 289 } 290 291 void dump() { SampleLoader.dump(); } 292 293 bool doInitialization(Module &M) override { 294 return SampleLoader.doInitialization(M); 295 } 296 StringRef getPassName() const override { return "Sample profile pass"; } 297 bool runOnModule(Module &M) override; 298 299 void getAnalysisUsage(AnalysisUsage &AU) const override { 300 AU.addRequired<AssumptionCacheTracker>(); 301 AU.addRequired<TargetTransformInfoWrapperPass>(); 302 } 303 304 private: 305 SampleProfileLoader SampleLoader; 306 AssumptionCacheTracker *ACT; 307 TargetTransformInfoWrapperPass *TTIWP; 308 }; 309 310 /// Return true if the given callsite is hot wrt to its caller. 311 /// 312 /// Functions that were inlined in the original binary will be represented 313 /// in the inline stack in the sample profile. If the profile shows that 314 /// the original inline decision was "good" (i.e., the callsite is executed 315 /// frequently), then we will recreate the inline decision and apply the 316 /// profile from the inlined callsite. 317 /// 318 /// To decide whether an inlined callsite is hot, we compute the fraction 319 /// of samples used by the callsite with respect to the total number of samples 320 /// collected in the caller. 321 /// 322 /// If that fraction is larger than the default given by 323 /// SampleProfileHotThreshold, the callsite will be inlined again. 324 bool callsiteIsHot(const FunctionSamples *CallerFS, 325 const FunctionSamples *CallsiteFS) { 326 if (!CallsiteFS) 327 return false; // The callsite was not inlined in the original binary. 328 329 uint64_t ParentTotalSamples = CallerFS->getTotalSamples(); 330 if (ParentTotalSamples == 0) 331 return false; // Avoid division by zero. 332 333 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 334 if (CallsiteTotalSamples == 0) 335 return false; // Callsite is trivially cold. 336 337 double PercentSamples = 338 (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0; 339 return PercentSamples >= SampleProfileHotThreshold; 340 } 341 } 342 343 /// Mark as used the sample record for the given function samples at 344 /// (LineOffset, Discriminator). 345 /// 346 /// \returns true if this is the first time we mark the given record. 347 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 348 uint32_t LineOffset, 349 uint32_t Discriminator, 350 uint64_t Samples) { 351 LineLocation Loc(LineOffset, Discriminator); 352 unsigned &Count = SampleCoverage[FS][Loc]; 353 bool FirstTime = (++Count == 1); 354 if (FirstTime) 355 TotalUsedSamples += Samples; 356 return FirstTime; 357 } 358 359 /// Return the number of sample records that were applied from this profile. 360 /// 361 /// This count does not include records from cold inlined callsites. 362 unsigned 363 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const { 364 auto I = SampleCoverage.find(FS); 365 366 // The size of the coverage map for FS represents the number of records 367 // that were marked used at least once. 368 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 369 370 // If there are inlined callsites in this function, count the samples found 371 // in the respective bodies. However, do not bother counting callees with 0 372 // total samples, these are callees that were never invoked at runtime. 373 for (const auto &I : FS->getCallsiteSamples()) 374 for (const auto &J : I.second) { 375 const FunctionSamples *CalleeSamples = &J.second; 376 if (callsiteIsHot(FS, CalleeSamples)) 377 Count += countUsedRecords(CalleeSamples); 378 } 379 380 return Count; 381 } 382 383 /// Return the number of sample records in the body of this profile. 384 /// 385 /// This count does not include records from cold inlined callsites. 386 unsigned 387 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const { 388 unsigned Count = FS->getBodySamples().size(); 389 390 // Only count records in hot callsites. 391 for (const auto &I : FS->getCallsiteSamples()) 392 for (const auto &J : I.second) { 393 const FunctionSamples *CalleeSamples = &J.second; 394 if (callsiteIsHot(FS, CalleeSamples)) 395 Count += countBodyRecords(CalleeSamples); 396 } 397 398 return Count; 399 } 400 401 /// Return the number of samples collected in the body of this profile. 402 /// 403 /// This count does not include samples from cold inlined callsites. 404 uint64_t 405 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const { 406 uint64_t Total = 0; 407 for (const auto &I : FS->getBodySamples()) 408 Total += I.second.getSamples(); 409 410 // Only count samples in hot callsites. 411 for (const auto &I : FS->getCallsiteSamples()) 412 for (const auto &J : I.second) { 413 const FunctionSamples *CalleeSamples = &J.second; 414 if (callsiteIsHot(FS, CalleeSamples)) 415 Total += countBodySamples(CalleeSamples); 416 } 417 418 return Total; 419 } 420 421 /// Return the fraction of sample records used in this profile. 422 /// 423 /// The returned value is an unsigned integer in the range 0-100 indicating 424 /// the percentage of sample records that were used while applying this 425 /// profile to the associated function. 426 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 427 unsigned Total) const { 428 assert(Used <= Total && 429 "number of used records cannot exceed the total number of records"); 430 return Total > 0 ? Used * 100 / Total : 100; 431 } 432 433 /// Clear all the per-function data used to load samples and propagate weights. 434 void SampleProfileLoader::clearFunctionData() { 435 BlockWeights.clear(); 436 EdgeWeights.clear(); 437 VisitedBlocks.clear(); 438 VisitedEdges.clear(); 439 EquivalenceClass.clear(); 440 DT = nullptr; 441 PDT = nullptr; 442 LI = nullptr; 443 Predecessors.clear(); 444 Successors.clear(); 445 CoverageTracker.clear(); 446 } 447 448 /// Returns the line offset to the start line of the subprogram. 449 /// We assume that a single function will not exceed 65535 LOC. 450 unsigned SampleProfileLoader::getOffset(const DILocation *DIL) const { 451 return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) & 452 0xffff; 453 } 454 455 #ifndef NDEBUG 456 /// \brief Print the weight of edge \p E on stream \p OS. 457 /// 458 /// \param OS Stream to emit the output to. 459 /// \param E Edge to print. 460 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 461 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 462 << "]: " << EdgeWeights[E] << "\n"; 463 } 464 465 /// \brief Print the equivalence class of block \p BB on stream \p OS. 466 /// 467 /// \param OS Stream to emit the output to. 468 /// \param BB Block to print. 469 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 470 const BasicBlock *BB) { 471 const BasicBlock *Equiv = EquivalenceClass[BB]; 472 OS << "equivalence[" << BB->getName() 473 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 474 } 475 476 /// \brief Print the weight of block \p BB on stream \p OS. 477 /// 478 /// \param OS Stream to emit the output to. 479 /// \param BB Block to print. 480 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 481 const BasicBlock *BB) const { 482 const auto &I = BlockWeights.find(BB); 483 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 484 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 485 } 486 #endif 487 488 /// \brief Get the weight for an instruction. 489 /// 490 /// The "weight" of an instruction \p Inst is the number of samples 491 /// collected on that instruction at runtime. To retrieve it, we 492 /// need to compute the line number of \p Inst relative to the start of its 493 /// function. We use HeaderLineno to compute the offset. We then 494 /// look up the samples collected for \p Inst using BodySamples. 495 /// 496 /// \param Inst Instruction to query. 497 /// 498 /// \returns the weight of \p Inst. 499 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 500 const DebugLoc &DLoc = Inst.getDebugLoc(); 501 if (!DLoc) 502 return std::error_code(); 503 504 const FunctionSamples *FS = findFunctionSamples(Inst); 505 if (!FS) 506 return std::error_code(); 507 508 // Ignore all intrinsics and branch instructions. 509 // Branch instruction usually contains debug info from sources outside of 510 // the residing basic block, thus we ignore them during annotation. 511 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst)) 512 return std::error_code(); 513 514 // If a call/invoke instruction is inlined in profile, but not inlined here, 515 // it means that the inlined callsite has no sample, thus the call 516 // instruction should have 0 count. 517 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && 518 findCalleeFunctionSamples(Inst)) 519 return 0; 520 521 const DILocation *DIL = DLoc; 522 uint32_t LineOffset = getOffset(DIL); 523 uint32_t Discriminator = DIL->getBaseDiscriminator(); 524 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 525 if (R) { 526 bool FirstMark = 527 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 528 if (FirstMark) { 529 if (Discriminator) 530 ORE->emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AppliedSamples", &Inst) 531 << "Applied " << ore::NV("NumSamples", *R) 532 << " samples from profile (offset: " 533 << ore::NV("LineOffset", LineOffset) << "." 534 << ore::NV("Discriminator", Discriminator) << ")"); 535 else 536 ORE->emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AppliedSamples", &Inst) 537 << "Applied " << ore::NV("NumSamples", *R) 538 << " samples from profile (offset: " 539 << ore::NV("LineOffset", LineOffset) << ")"); 540 } 541 DEBUG(dbgs() << " " << DLoc.getLine() << "." 542 << DIL->getBaseDiscriminator() << ":" << Inst 543 << " (line offset: " << LineOffset << "." 544 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 545 << ")\n"); 546 } 547 return R; 548 } 549 550 /// \brief Compute the weight of a basic block. 551 /// 552 /// The weight of basic block \p BB is the maximum weight of all the 553 /// instructions in BB. 554 /// 555 /// \param BB The basic block to query. 556 /// 557 /// \returns the weight for \p BB. 558 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 559 uint64_t Max = 0; 560 bool HasWeight = false; 561 for (auto &I : BB->getInstList()) { 562 const ErrorOr<uint64_t> &R = getInstWeight(I); 563 if (R) { 564 Max = std::max(Max, R.get()); 565 HasWeight = true; 566 } 567 } 568 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 569 } 570 571 /// \brief Compute and store the weights of every basic block. 572 /// 573 /// This populates the BlockWeights map by computing 574 /// the weights of every basic block in the CFG. 575 /// 576 /// \param F The function to query. 577 bool SampleProfileLoader::computeBlockWeights(Function &F) { 578 bool Changed = false; 579 DEBUG(dbgs() << "Block weights\n"); 580 for (const auto &BB : F) { 581 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 582 if (Weight) { 583 BlockWeights[&BB] = Weight.get(); 584 VisitedBlocks.insert(&BB); 585 Changed = true; 586 } 587 DEBUG(printBlockWeight(dbgs(), &BB)); 588 } 589 590 return Changed; 591 } 592 593 /// \brief Get the FunctionSamples for a call instruction. 594 /// 595 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 596 /// instance in which that call instruction is calling to. It contains 597 /// all samples that resides in the inlined instance. We first find the 598 /// inlined instance in which the call instruction is from, then we 599 /// traverse its children to find the callsite with the matching 600 /// location. 601 /// 602 /// \param Inst Call/Invoke instruction to query. 603 /// 604 /// \returns The FunctionSamples pointer to the inlined instance. 605 const FunctionSamples * 606 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 607 const DILocation *DIL = Inst.getDebugLoc(); 608 if (!DIL) { 609 return nullptr; 610 } 611 612 StringRef CalleeName; 613 if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) 614 if (Function *Callee = CI->getCalledFunction()) 615 CalleeName = Callee->getName(); 616 617 const FunctionSamples *FS = findFunctionSamples(Inst); 618 if (FS == nullptr) 619 return nullptr; 620 621 return FS->findFunctionSamplesAt( 622 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), CalleeName); 623 } 624 625 /// Returns a vector of FunctionSamples that are the indirect call targets 626 /// of \p Inst. The vector is sorted by the total number of samples. 627 std::vector<const FunctionSamples *> 628 SampleProfileLoader::findIndirectCallFunctionSamples( 629 const Instruction &Inst) const { 630 const DILocation *DIL = Inst.getDebugLoc(); 631 std::vector<const FunctionSamples *> R; 632 633 if (!DIL) { 634 return R; 635 } 636 637 const FunctionSamples *FS = findFunctionSamples(Inst); 638 if (FS == nullptr) 639 return R; 640 641 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt( 642 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()))) { 643 if (M->size() == 0) 644 return R; 645 for (const auto &NameFS : *M) { 646 R.push_back(&NameFS.second); 647 } 648 std::sort(R.begin(), R.end(), 649 [](const FunctionSamples *L, const FunctionSamples *R) { 650 return L->getTotalSamples() > R->getTotalSamples(); 651 }); 652 } 653 return R; 654 } 655 656 /// \brief Get the FunctionSamples for an instruction. 657 /// 658 /// The FunctionSamples of an instruction \p Inst is the inlined instance 659 /// in which that instruction is coming from. We traverse the inline stack 660 /// of that instruction, and match it with the tree nodes in the profile. 661 /// 662 /// \param Inst Instruction to query. 663 /// 664 /// \returns the FunctionSamples pointer to the inlined instance. 665 const FunctionSamples * 666 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 667 SmallVector<std::pair<LineLocation, StringRef>, 10> S; 668 const DILocation *DIL = Inst.getDebugLoc(); 669 if (!DIL) 670 return Samples; 671 672 const DILocation *PrevDIL = DIL; 673 for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) { 674 S.push_back(std::make_pair( 675 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), 676 PrevDIL->getScope()->getSubprogram()->getLinkageName())); 677 PrevDIL = DIL; 678 } 679 if (S.size() == 0) 680 return Samples; 681 const FunctionSamples *FS = Samples; 682 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 683 FS = FS->findFunctionSamplesAt(S[i].first, S[i].second); 684 } 685 return FS; 686 } 687 688 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) { 689 assert(isa<CallInst>(I) || isa<InvokeInst>(I)); 690 CallSite CS(I); 691 Function *CalledFunction = CS.getCalledFunction(); 692 assert(CalledFunction); 693 DebugLoc DLoc = I->getDebugLoc(); 694 BasicBlock *BB = I->getParent(); 695 InlineParams Params = getInlineParams(); 696 Params.ComputeFullInlineCost = true; 697 // Checks if there is anything in the reachable portion of the callee at 698 // this callsite that makes this inlining potentially illegal. Need to 699 // set ComputeFullInlineCost, otherwise getInlineCost may return early 700 // when cost exceeds threshold without checking all IRs in the callee. 701 // The acutal cost does not matter because we only checks isNever() to 702 // see if it is legal to inline the callsite. 703 InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC, 704 None, nullptr, nullptr); 705 if (Cost.isNever()) { 706 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB) 707 << "incompatible inlining"); 708 return false; 709 } 710 InlineFunctionInfo IFI(nullptr, &GetAC); 711 if (InlineFunction(CS, IFI)) { 712 // The call to InlineFunction erases I, so we can't pass it here. 713 ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB) 714 << "inlined hot callee '" << ore::NV("Callee", CalledFunction) 715 << "' into '" << ore::NV("Caller", BB->getParent()) << "'"); 716 return true; 717 } 718 return false; 719 } 720 721 /// \brief Iteratively inline hot callsites of a function. 722 /// 723 /// Iteratively traverse all callsites of the function \p F, and find if 724 /// the corresponding inlined instance exists and is hot in profile. If 725 /// it is hot enough, inline the callsites and adds new callsites of the 726 /// callee into the caller. If the call is an indirect call, first promote 727 /// it to direct call. Each indirect call is limited with a single target. 728 /// 729 /// \param F function to perform iterative inlining. 730 /// \param ImportGUIDs a set to be updated to include all GUIDs that come 731 /// from a different module but inlined in the profiled binary. 732 /// 733 /// \returns True if there is any inline happened. 734 bool SampleProfileLoader::inlineHotFunctions( 735 Function &F, DenseSet<GlobalValue::GUID> &ImportGUIDs) { 736 DenseSet<Instruction *> PromotedInsns; 737 bool Changed = false; 738 while (true) { 739 bool LocalChanged = false; 740 SmallVector<Instruction *, 10> CIS; 741 for (auto &BB : F) { 742 bool Hot = false; 743 SmallVector<Instruction *, 10> Candidates; 744 for (auto &I : BB.getInstList()) { 745 const FunctionSamples *FS = nullptr; 746 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 747 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { 748 Candidates.push_back(&I); 749 if (callsiteIsHot(Samples, FS)) 750 Hot = true; 751 } 752 } 753 if (Hot) { 754 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); 755 } 756 } 757 for (auto I : CIS) { 758 Function *CalledFunction = CallSite(I).getCalledFunction(); 759 // Do not inline recursive calls. 760 if (CalledFunction == &F) 761 continue; 762 if (CallSite(I).isIndirectCall()) { 763 if (PromotedInsns.count(I)) 764 continue; 765 for (const auto *FS : findIndirectCallFunctionSamples(*I)) { 766 if (IsThinLTOPreLink) { 767 FS->findImportedFunctions(ImportGUIDs, F.getParent(), 768 Samples->getTotalSamples() * 769 SampleProfileHotThreshold / 100); 770 continue; 771 } 772 auto CalleeFunctionName = FS->getName(); 773 // If it is a recursive call, we do not inline it as it could bloat 774 // the code exponentially. There is way to better handle this, e.g. 775 // clone the caller first, and inline the cloned caller if it is 776 // recursive. As llvm does not inline recursive calls, we will 777 // simply ignore it instead of handling it explicitly. 778 if (CalleeFunctionName == F.getName()) 779 continue; 780 781 const char *Reason = "Callee function not available"; 782 auto R = SymbolMap.find(CalleeFunctionName); 783 if (R != SymbolMap.end() && R->getValue() && 784 !R->getValue()->isDeclaration() && 785 R->getValue()->getSubprogram() && 786 isLegalToPromote(I, R->getValue(), &Reason)) { 787 // The indirect target was promoted and inlined in the profile, 788 // as a result, we do not have profile info for the branch 789 // probability. We set the probability to 80% taken to indicate 790 // that the static call is likely taken. 791 Instruction *DI = dyn_cast<Instruction>( 792 promoteIndirectCall(I, R->getValue(), 80, 100, false, ORE) 793 ->stripPointerCasts()); 794 PromotedInsns.insert(I); 795 // If profile mismatches, we should not attempt to inline DI. 796 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && 797 inlineCallInstruction(DI)) 798 LocalChanged = true; 799 } else { 800 DEBUG(dbgs() 801 << "\nFailed to promote indirect call to " 802 << CalleeFunctionName << " because " << Reason << "\n"); 803 } 804 } 805 } else if (CalledFunction && CalledFunction->getSubprogram() && 806 !CalledFunction->isDeclaration()) { 807 if (inlineCallInstruction(I)) 808 LocalChanged = true; 809 } else if (IsThinLTOPreLink) { 810 findCalleeFunctionSamples(*I)->findImportedFunctions( 811 ImportGUIDs, F.getParent(), 812 Samples->getTotalSamples() * SampleProfileHotThreshold / 100); 813 } 814 } 815 if (LocalChanged) { 816 Changed = true; 817 } else { 818 break; 819 } 820 } 821 return Changed; 822 } 823 824 /// \brief Find equivalence classes for the given block. 825 /// 826 /// This finds all the blocks that are guaranteed to execute the same 827 /// number of times as \p BB1. To do this, it traverses all the 828 /// descendants of \p BB1 in the dominator or post-dominator tree. 829 /// 830 /// A block BB2 will be in the same equivalence class as \p BB1 if 831 /// the following holds: 832 /// 833 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 834 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 835 /// dominate BB1 in the post-dominator tree. 836 /// 837 /// 2- Both BB2 and \p BB1 must be in the same loop. 838 /// 839 /// For every block BB2 that meets those two requirements, we set BB2's 840 /// equivalence class to \p BB1. 841 /// 842 /// \param BB1 Block to check. 843 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 844 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 845 /// with blocks from \p BB1's dominator tree, then 846 /// this is the post-dominator tree, and vice versa. 847 template <bool IsPostDom> 848 void SampleProfileLoader::findEquivalencesFor( 849 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 850 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 851 const BasicBlock *EC = EquivalenceClass[BB1]; 852 uint64_t Weight = BlockWeights[EC]; 853 for (const auto *BB2 : Descendants) { 854 bool IsDomParent = DomTree->dominates(BB2, BB1); 855 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 856 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 857 EquivalenceClass[BB2] = EC; 858 // If BB2 is visited, then the entire EC should be marked as visited. 859 if (VisitedBlocks.count(BB2)) { 860 VisitedBlocks.insert(EC); 861 } 862 863 // If BB2 is heavier than BB1, make BB2 have the same weight 864 // as BB1. 865 // 866 // Note that we don't worry about the opposite situation here 867 // (when BB2 is lighter than BB1). We will deal with this 868 // during the propagation phase. Right now, we just want to 869 // make sure that BB1 has the largest weight of all the 870 // members of its equivalence set. 871 Weight = std::max(Weight, BlockWeights[BB2]); 872 } 873 } 874 if (EC == &EC->getParent()->getEntryBlock()) { 875 BlockWeights[EC] = Samples->getHeadSamples() + 1; 876 } else { 877 BlockWeights[EC] = Weight; 878 } 879 } 880 881 /// \brief Find equivalence classes. 882 /// 883 /// Since samples may be missing from blocks, we can fill in the gaps by setting 884 /// the weights of all the blocks in the same equivalence class to the same 885 /// weight. To compute the concept of equivalence, we use dominance and loop 886 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 887 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 888 /// 889 /// \param F The function to query. 890 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 891 SmallVector<BasicBlock *, 8> DominatedBBs; 892 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 893 // Find equivalence sets based on dominance and post-dominance information. 894 for (auto &BB : F) { 895 BasicBlock *BB1 = &BB; 896 897 // Compute BB1's equivalence class once. 898 if (EquivalenceClass.count(BB1)) { 899 DEBUG(printBlockEquivalence(dbgs(), BB1)); 900 continue; 901 } 902 903 // By default, blocks are in their own equivalence class. 904 EquivalenceClass[BB1] = BB1; 905 906 // Traverse all the blocks dominated by BB1. We are looking for 907 // every basic block BB2 such that: 908 // 909 // 1- BB1 dominates BB2. 910 // 2- BB2 post-dominates BB1. 911 // 3- BB1 and BB2 are in the same loop nest. 912 // 913 // If all those conditions hold, it means that BB2 is executed 914 // as many times as BB1, so they are placed in the same equivalence 915 // class by making BB2's equivalence class be BB1. 916 DominatedBBs.clear(); 917 DT->getDescendants(BB1, DominatedBBs); 918 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 919 920 DEBUG(printBlockEquivalence(dbgs(), BB1)); 921 } 922 923 // Assign weights to equivalence classes. 924 // 925 // All the basic blocks in the same equivalence class will execute 926 // the same number of times. Since we know that the head block in 927 // each equivalence class has the largest weight, assign that weight 928 // to all the blocks in that equivalence class. 929 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 930 for (auto &BI : F) { 931 const BasicBlock *BB = &BI; 932 const BasicBlock *EquivBB = EquivalenceClass[BB]; 933 if (BB != EquivBB) 934 BlockWeights[BB] = BlockWeights[EquivBB]; 935 DEBUG(printBlockWeight(dbgs(), BB)); 936 } 937 } 938 939 /// \brief Visit the given edge to decide if it has a valid weight. 940 /// 941 /// If \p E has not been visited before, we copy to \p UnknownEdge 942 /// and increment the count of unknown edges. 943 /// 944 /// \param E Edge to visit. 945 /// \param NumUnknownEdges Current number of unknown edges. 946 /// \param UnknownEdge Set if E has not been visited before. 947 /// 948 /// \returns E's weight, if known. Otherwise, return 0. 949 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 950 Edge *UnknownEdge) { 951 if (!VisitedEdges.count(E)) { 952 (*NumUnknownEdges)++; 953 *UnknownEdge = E; 954 return 0; 955 } 956 957 return EdgeWeights[E]; 958 } 959 960 /// \brief Propagate weights through incoming/outgoing edges. 961 /// 962 /// If the weight of a basic block is known, and there is only one edge 963 /// with an unknown weight, we can calculate the weight of that edge. 964 /// 965 /// Similarly, if all the edges have a known count, we can calculate the 966 /// count of the basic block, if needed. 967 /// 968 /// \param F Function to process. 969 /// \param UpdateBlockCount Whether we should update basic block counts that 970 /// has already been annotated. 971 /// 972 /// \returns True if new weights were assigned to edges or blocks. 973 bool SampleProfileLoader::propagateThroughEdges(Function &F, 974 bool UpdateBlockCount) { 975 bool Changed = false; 976 DEBUG(dbgs() << "\nPropagation through edges\n"); 977 for (const auto &BI : F) { 978 const BasicBlock *BB = &BI; 979 const BasicBlock *EC = EquivalenceClass[BB]; 980 981 // Visit all the predecessor and successor edges to determine 982 // which ones have a weight assigned already. Note that it doesn't 983 // matter that we only keep track of a single unknown edge. The 984 // only case we are interested in handling is when only a single 985 // edge is unknown (see setEdgeOrBlockWeight). 986 for (unsigned i = 0; i < 2; i++) { 987 uint64_t TotalWeight = 0; 988 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 989 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 990 991 if (i == 0) { 992 // First, visit all predecessor edges. 993 NumTotalEdges = Predecessors[BB].size(); 994 for (auto *Pred : Predecessors[BB]) { 995 Edge E = std::make_pair(Pred, BB); 996 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 997 if (E.first == E.second) 998 SelfReferentialEdge = E; 999 } 1000 if (NumTotalEdges == 1) { 1001 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 1002 } 1003 } else { 1004 // On the second round, visit all successor edges. 1005 NumTotalEdges = Successors[BB].size(); 1006 for (auto *Succ : Successors[BB]) { 1007 Edge E = std::make_pair(BB, Succ); 1008 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1009 } 1010 if (NumTotalEdges == 1) { 1011 SingleEdge = std::make_pair(BB, Successors[BB][0]); 1012 } 1013 } 1014 1015 // After visiting all the edges, there are three cases that we 1016 // can handle immediately: 1017 // 1018 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 1019 // In this case, we simply check that the sum of all the edges 1020 // is the same as BB's weight. If not, we change BB's weight 1021 // to match. Additionally, if BB had not been visited before, 1022 // we mark it visited. 1023 // 1024 // - Only one edge is unknown and BB has already been visited. 1025 // In this case, we can compute the weight of the edge by 1026 // subtracting the total block weight from all the known 1027 // edge weights. If the edges weight more than BB, then the 1028 // edge of the last remaining edge is set to zero. 1029 // 1030 // - There exists a self-referential edge and the weight of BB is 1031 // known. In this case, this edge can be based on BB's weight. 1032 // We add up all the other known edges and set the weight on 1033 // the self-referential edge as we did in the previous case. 1034 // 1035 // In any other case, we must continue iterating. Eventually, 1036 // all edges will get a weight, or iteration will stop when 1037 // it reaches SampleProfileMaxPropagateIterations. 1038 if (NumUnknownEdges <= 1) { 1039 uint64_t &BBWeight = BlockWeights[EC]; 1040 if (NumUnknownEdges == 0) { 1041 if (!VisitedBlocks.count(EC)) { 1042 // If we already know the weight of all edges, the weight of the 1043 // basic block can be computed. It should be no larger than the sum 1044 // of all edge weights. 1045 if (TotalWeight > BBWeight) { 1046 BBWeight = TotalWeight; 1047 Changed = true; 1048 DEBUG(dbgs() << "All edge weights for " << BB->getName() 1049 << " known. Set weight for block: "; 1050 printBlockWeight(dbgs(), BB);); 1051 } 1052 } else if (NumTotalEdges == 1 && 1053 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1054 // If there is only one edge for the visited basic block, use the 1055 // block weight to adjust edge weight if edge weight is smaller. 1056 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1057 Changed = true; 1058 } 1059 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1060 // If there is a single unknown edge and the block has been 1061 // visited, then we can compute E's weight. 1062 if (BBWeight >= TotalWeight) 1063 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1064 else 1065 EdgeWeights[UnknownEdge] = 0; 1066 const BasicBlock *OtherEC; 1067 if (i == 0) 1068 OtherEC = EquivalenceClass[UnknownEdge.first]; 1069 else 1070 OtherEC = EquivalenceClass[UnknownEdge.second]; 1071 // Edge weights should never exceed the BB weights it connects. 1072 if (VisitedBlocks.count(OtherEC) && 1073 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1074 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1075 VisitedEdges.insert(UnknownEdge); 1076 Changed = true; 1077 DEBUG(dbgs() << "Set weight for edge: "; 1078 printEdgeWeight(dbgs(), UnknownEdge)); 1079 } 1080 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1081 // If a block Weights 0, all its in/out edges should weight 0. 1082 if (i == 0) { 1083 for (auto *Pred : Predecessors[BB]) { 1084 Edge E = std::make_pair(Pred, BB); 1085 EdgeWeights[E] = 0; 1086 VisitedEdges.insert(E); 1087 } 1088 } else { 1089 for (auto *Succ : Successors[BB]) { 1090 Edge E = std::make_pair(BB, Succ); 1091 EdgeWeights[E] = 0; 1092 VisitedEdges.insert(E); 1093 } 1094 } 1095 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1096 uint64_t &BBWeight = BlockWeights[BB]; 1097 // We have a self-referential edge and the weight of BB is known. 1098 if (BBWeight >= TotalWeight) 1099 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1100 else 1101 EdgeWeights[SelfReferentialEdge] = 0; 1102 VisitedEdges.insert(SelfReferentialEdge); 1103 Changed = true; 1104 DEBUG(dbgs() << "Set self-referential edge weight to: "; 1105 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1106 } 1107 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1108 BlockWeights[EC] = TotalWeight; 1109 VisitedBlocks.insert(EC); 1110 Changed = true; 1111 } 1112 } 1113 } 1114 1115 return Changed; 1116 } 1117 1118 /// \brief Build in/out edge lists for each basic block in the CFG. 1119 /// 1120 /// We are interested in unique edges. If a block B1 has multiple 1121 /// edges to another block B2, we only add a single B1->B2 edge. 1122 void SampleProfileLoader::buildEdges(Function &F) { 1123 for (auto &BI : F) { 1124 BasicBlock *B1 = &BI; 1125 1126 // Add predecessors for B1. 1127 SmallPtrSet<BasicBlock *, 16> Visited; 1128 if (!Predecessors[B1].empty()) 1129 llvm_unreachable("Found a stale predecessors list in a basic block."); 1130 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1131 BasicBlock *B2 = *PI; 1132 if (Visited.insert(B2).second) 1133 Predecessors[B1].push_back(B2); 1134 } 1135 1136 // Add successors for B1. 1137 Visited.clear(); 1138 if (!Successors[B1].empty()) 1139 llvm_unreachable("Found a stale successors list in a basic block."); 1140 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1141 BasicBlock *B2 = *SI; 1142 if (Visited.insert(B2).second) 1143 Successors[B1].push_back(B2); 1144 } 1145 } 1146 } 1147 1148 /// Sorts the CallTargetMap \p M by count in descending order and stores the 1149 /// sorted result in \p Sorted. Returns the total counts. 1150 static uint64_t SortCallTargets(SmallVector<InstrProfValueData, 2> &Sorted, 1151 const SampleRecord::CallTargetMap &M) { 1152 Sorted.clear(); 1153 uint64_t Sum = 0; 1154 for (auto I = M.begin(); I != M.end(); ++I) { 1155 Sum += I->getValue(); 1156 Sorted.push_back({Function::getGUID(I->getKey()), I->getValue()}); 1157 } 1158 std::sort(Sorted.begin(), Sorted.end(), 1159 [](const InstrProfValueData &L, const InstrProfValueData &R) { 1160 if (L.Count == R.Count) 1161 return L.Value > R.Value; 1162 else 1163 return L.Count > R.Count; 1164 }); 1165 return Sum; 1166 } 1167 1168 /// \brief Propagate weights into edges 1169 /// 1170 /// The following rules are applied to every block BB in the CFG: 1171 /// 1172 /// - If BB has a single predecessor/successor, then the weight 1173 /// of that edge is the weight of the block. 1174 /// 1175 /// - If all incoming or outgoing edges are known except one, and the 1176 /// weight of the block is already known, the weight of the unknown 1177 /// edge will be the weight of the block minus the sum of all the known 1178 /// edges. If the sum of all the known edges is larger than BB's weight, 1179 /// we set the unknown edge weight to zero. 1180 /// 1181 /// - If there is a self-referential edge, and the weight of the block is 1182 /// known, the weight for that edge is set to the weight of the block 1183 /// minus the weight of the other incoming edges to that block (if 1184 /// known). 1185 void SampleProfileLoader::propagateWeights(Function &F) { 1186 bool Changed = true; 1187 unsigned I = 0; 1188 1189 // If BB weight is larger than its corresponding loop's header BB weight, 1190 // use the BB weight to replace the loop header BB weight. 1191 for (auto &BI : F) { 1192 BasicBlock *BB = &BI; 1193 Loop *L = LI->getLoopFor(BB); 1194 if (!L) { 1195 continue; 1196 } 1197 BasicBlock *Header = L->getHeader(); 1198 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1199 BlockWeights[Header] = BlockWeights[BB]; 1200 } 1201 } 1202 1203 // Before propagation starts, build, for each block, a list of 1204 // unique predecessors and successors. This is necessary to handle 1205 // identical edges in multiway branches. Since we visit all blocks and all 1206 // edges of the CFG, it is cleaner to build these lists once at the start 1207 // of the pass. 1208 buildEdges(F); 1209 1210 // Propagate until we converge or we go past the iteration limit. 1211 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1212 Changed = propagateThroughEdges(F, false); 1213 } 1214 1215 // The first propagation propagates BB counts from annotated BBs to unknown 1216 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1217 // to propagate edge weights. 1218 VisitedEdges.clear(); 1219 Changed = true; 1220 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1221 Changed = propagateThroughEdges(F, false); 1222 } 1223 1224 // The 3rd propagation pass allows adjust annotated BB weights that are 1225 // obviously wrong. 1226 Changed = true; 1227 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1228 Changed = propagateThroughEdges(F, true); 1229 } 1230 1231 // Generate MD_prof metadata for every branch instruction using the 1232 // edge weights computed during propagation. 1233 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1234 LLVMContext &Ctx = F.getContext(); 1235 MDBuilder MDB(Ctx); 1236 for (auto &BI : F) { 1237 BasicBlock *BB = &BI; 1238 1239 if (BlockWeights[BB]) { 1240 for (auto &I : BB->getInstList()) { 1241 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1242 continue; 1243 CallSite CS(&I); 1244 if (!CS.getCalledFunction()) { 1245 const DebugLoc &DLoc = I.getDebugLoc(); 1246 if (!DLoc) 1247 continue; 1248 const DILocation *DIL = DLoc; 1249 uint32_t LineOffset = getOffset(DIL); 1250 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1251 1252 const FunctionSamples *FS = findFunctionSamples(I); 1253 if (!FS) 1254 continue; 1255 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1256 if (!T || T.get().size() == 0) 1257 continue; 1258 SmallVector<InstrProfValueData, 2> SortedCallTargets; 1259 uint64_t Sum = SortCallTargets(SortedCallTargets, T.get()); 1260 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1261 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1262 SortedCallTargets.size()); 1263 } else if (!dyn_cast<IntrinsicInst>(&I)) { 1264 SmallVector<uint32_t, 1> Weights; 1265 Weights.push_back(BlockWeights[BB]); 1266 I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); 1267 } 1268 } 1269 } 1270 TerminatorInst *TI = BB->getTerminator(); 1271 if (TI->getNumSuccessors() == 1) 1272 continue; 1273 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1274 continue; 1275 1276 DebugLoc BranchLoc = TI->getDebugLoc(); 1277 DEBUG(dbgs() << "\nGetting weights for branch at line " 1278 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1279 : Twine("<UNKNOWN LOCATION>")) 1280 << ".\n"); 1281 SmallVector<uint32_t, 4> Weights; 1282 uint32_t MaxWeight = 0; 1283 Instruction *MaxDestInst; 1284 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1285 BasicBlock *Succ = TI->getSuccessor(I); 1286 Edge E = std::make_pair(BB, Succ); 1287 uint64_t Weight = EdgeWeights[E]; 1288 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1289 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1290 // if needed. Sample counts in profiles are 64-bit unsigned values, 1291 // but internally branch weights are expressed as 32-bit values. 1292 if (Weight > std::numeric_limits<uint32_t>::max()) { 1293 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1294 Weight = std::numeric_limits<uint32_t>::max(); 1295 } 1296 // Weight is added by one to avoid propagation errors introduced by 1297 // 0 weights. 1298 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1299 if (Weight != 0) { 1300 if (Weight > MaxWeight) { 1301 MaxWeight = Weight; 1302 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1303 } 1304 } 1305 } 1306 1307 uint64_t TempWeight; 1308 // Only set weights if there is at least one non-zero weight. 1309 // In any other case, let the analyzer set weights. 1310 // Do not set weights if the weights are present. In ThinLTO, the profile 1311 // annotation is done twice. If the first annotation already set the 1312 // weights, the second pass does not need to set it. 1313 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1314 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1315 TI->setMetadata(llvm::LLVMContext::MD_prof, 1316 MDB.createBranchWeights(Weights)); 1317 ORE->emit(OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1318 << "most popular destination for conditional branches at " 1319 << ore::NV("CondBranchesLoc", BranchLoc)); 1320 } else { 1321 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1322 } 1323 } 1324 } 1325 1326 /// \brief Get the line number for the function header. 1327 /// 1328 /// This looks up function \p F in the current compilation unit and 1329 /// retrieves the line number where the function is defined. This is 1330 /// line 0 for all the samples read from the profile file. Every line 1331 /// number is relative to this line. 1332 /// 1333 /// \param F Function object to query. 1334 /// 1335 /// \returns the line number where \p F is defined. If it returns 0, 1336 /// it means that there is no debug information available for \p F. 1337 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1338 if (DISubprogram *S = F.getSubprogram()) 1339 return S->getLine(); 1340 1341 // If the start of \p F is missing, emit a diagnostic to inform the user 1342 // about the missed opportunity. 1343 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1344 "No debug information found in function " + F.getName() + 1345 ": Function profile not used", 1346 DS_Warning)); 1347 return 0; 1348 } 1349 1350 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1351 DT.reset(new DominatorTree); 1352 DT->recalculate(F); 1353 1354 PDT.reset(new PostDomTreeBase<BasicBlock>()); 1355 PDT->recalculate(F); 1356 1357 LI.reset(new LoopInfo); 1358 LI->analyze(*DT); 1359 } 1360 1361 /// \brief Generate branch weight metadata for all branches in \p F. 1362 /// 1363 /// Branch weights are computed out of instruction samples using a 1364 /// propagation heuristic. Propagation proceeds in 3 phases: 1365 /// 1366 /// 1- Assignment of block weights. All the basic blocks in the function 1367 /// are initial assigned the same weight as their most frequently 1368 /// executed instruction. 1369 /// 1370 /// 2- Creation of equivalence classes. Since samples may be missing from 1371 /// blocks, we can fill in the gaps by setting the weights of all the 1372 /// blocks in the same equivalence class to the same weight. To compute 1373 /// the concept of equivalence, we use dominance and loop information. 1374 /// Two blocks B1 and B2 are in the same equivalence class if B1 1375 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1376 /// 1377 /// 3- Propagation of block weights into edges. This uses a simple 1378 /// propagation heuristic. The following rules are applied to every 1379 /// block BB in the CFG: 1380 /// 1381 /// - If BB has a single predecessor/successor, then the weight 1382 /// of that edge is the weight of the block. 1383 /// 1384 /// - If all the edges are known except one, and the weight of the 1385 /// block is already known, the weight of the unknown edge will 1386 /// be the weight of the block minus the sum of all the known 1387 /// edges. If the sum of all the known edges is larger than BB's weight, 1388 /// we set the unknown edge weight to zero. 1389 /// 1390 /// - If there is a self-referential edge, and the weight of the block is 1391 /// known, the weight for that edge is set to the weight of the block 1392 /// minus the weight of the other incoming edges to that block (if 1393 /// known). 1394 /// 1395 /// Since this propagation is not guaranteed to finalize for every CFG, we 1396 /// only allow it to proceed for a limited number of iterations (controlled 1397 /// by -sample-profile-max-propagate-iterations). 1398 /// 1399 /// FIXME: Try to replace this propagation heuristic with a scheme 1400 /// that is guaranteed to finalize. A work-list approach similar to 1401 /// the standard value propagation algorithm used by SSA-CCP might 1402 /// work here. 1403 /// 1404 /// Once all the branch weights are computed, we emit the MD_prof 1405 /// metadata on BB using the computed values for each of its branches. 1406 /// 1407 /// \param F The function to query. 1408 /// 1409 /// \returns true if \p F was modified. Returns false, otherwise. 1410 bool SampleProfileLoader::emitAnnotations(Function &F) { 1411 bool Changed = false; 1412 1413 if (getFunctionLoc(F) == 0) 1414 return false; 1415 1416 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 1417 << ": " << getFunctionLoc(F) << "\n"); 1418 1419 DenseSet<GlobalValue::GUID> ImportGUIDs; 1420 Changed |= inlineHotFunctions(F, ImportGUIDs); 1421 1422 // Compute basic block weights. 1423 Changed |= computeBlockWeights(F); 1424 1425 if (Changed) { 1426 // Add an entry count to the function using the samples gathered at the 1427 // function entry. Also sets the GUIDs that comes from a different 1428 // module but inlined in the profiled binary. This is aiming at making 1429 // the IR match the profiled binary before annotation. 1430 F.setEntryCount(Samples->getHeadSamples() + 1, &ImportGUIDs); 1431 1432 // Compute dominance and loop info needed for propagation. 1433 computeDominanceAndLoopInfo(F); 1434 1435 // Find equivalence classes. 1436 findEquivalenceClasses(F); 1437 1438 // Propagate weights to all edges. 1439 propagateWeights(F); 1440 } 1441 1442 // If coverage checking was requested, compute it now. 1443 if (SampleProfileRecordCoverage) { 1444 unsigned Used = CoverageTracker.countUsedRecords(Samples); 1445 unsigned Total = CoverageTracker.countBodyRecords(Samples); 1446 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1447 if (Coverage < SampleProfileRecordCoverage) { 1448 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1449 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1450 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1451 Twine(Coverage) + "%) were applied", 1452 DS_Warning)); 1453 } 1454 } 1455 1456 if (SampleProfileSampleCoverage) { 1457 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1458 uint64_t Total = CoverageTracker.countBodySamples(Samples); 1459 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1460 if (Coverage < SampleProfileSampleCoverage) { 1461 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1462 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1463 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1464 Twine(Coverage) + "%) were applied", 1465 DS_Warning)); 1466 } 1467 } 1468 return Changed; 1469 } 1470 1471 char SampleProfileLoaderLegacyPass::ID = 0; 1472 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1473 "Sample Profile loader", false, false) 1474 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1475 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1476 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1477 "Sample Profile loader", false, false) 1478 1479 bool SampleProfileLoader::doInitialization(Module &M) { 1480 auto &Ctx = M.getContext(); 1481 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1482 if (std::error_code EC = ReaderOrErr.getError()) { 1483 std::string Msg = "Could not open profile: " + EC.message(); 1484 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1485 return false; 1486 } 1487 Reader = std::move(ReaderOrErr.get()); 1488 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1489 return true; 1490 } 1491 1492 ModulePass *llvm::createSampleProfileLoaderPass() { 1493 return new SampleProfileLoaderLegacyPass(SampleProfileFile); 1494 } 1495 1496 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1497 return new SampleProfileLoaderLegacyPass(Name); 1498 } 1499 1500 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM) { 1501 if (!ProfileIsValid) 1502 return false; 1503 1504 // Compute the total number of samples collected in this profile. 1505 for (const auto &I : Reader->getProfiles()) 1506 TotalCollectedSamples += I.second.getTotalSamples(); 1507 1508 // Populate the symbol map. 1509 for (const auto &N_F : M.getValueSymbolTable()) { 1510 std::string OrigName = N_F.getKey(); 1511 Function *F = dyn_cast<Function>(N_F.getValue()); 1512 if (F == nullptr) 1513 continue; 1514 SymbolMap[OrigName] = F; 1515 auto pos = OrigName.find('.'); 1516 if (pos != std::string::npos) { 1517 std::string NewName = OrigName.substr(0, pos); 1518 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1519 // Failiing to insert means there is already an entry in SymbolMap, 1520 // thus there are multiple functions that are mapped to the same 1521 // stripped name. In this case of name conflicting, set the value 1522 // to nullptr to avoid confusion. 1523 if (!r.second) 1524 r.first->second = nullptr; 1525 } 1526 } 1527 1528 bool retval = false; 1529 for (auto &F : M) 1530 if (!F.isDeclaration()) { 1531 clearFunctionData(); 1532 retval |= runOnFunction(F, AM); 1533 } 1534 if (M.getProfileSummary() == nullptr) 1535 M.setProfileSummary(Reader->getSummary().getMD(M.getContext())); 1536 return retval; 1537 } 1538 1539 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1540 ACT = &getAnalysis<AssumptionCacheTracker>(); 1541 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 1542 return SampleLoader.runOnModule(M, nullptr); 1543 } 1544 1545 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 1546 F.setEntryCount(0); 1547 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 1548 if (AM) { 1549 auto &FAM = 1550 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 1551 .getManager(); 1552 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1553 } else { 1554 OwnedORE = make_unique<OptimizationRemarkEmitter>(&F); 1555 ORE = OwnedORE.get(); 1556 } 1557 Samples = Reader->getSamplesFor(F); 1558 if (Samples && !Samples->empty()) 1559 return emitAnnotations(F); 1560 return false; 1561 } 1562 1563 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1564 ModuleAnalysisManager &AM) { 1565 FunctionAnalysisManager &FAM = 1566 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1567 1568 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 1569 return FAM.getResult<AssumptionAnalysis>(F); 1570 }; 1571 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 1572 return FAM.getResult<TargetIRAnalysis>(F); 1573 }; 1574 1575 SampleProfileLoader SampleLoader( 1576 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 1577 IsThinLTOPreLink, GetAssumptionCache, GetTTI); 1578 1579 SampleLoader.doInitialization(M); 1580 1581 if (!SampleLoader.runOnModule(M, &AM)) 1582 return PreservedAnalyses::all(); 1583 1584 return PreservedAnalyses::none(); 1585 } 1586