1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 //      to indicate the weights of each edge coming out of the branch.
19 //      The weight of each edge is the weight of the target block for
20 //      that edge. The weight of a block B is computed as the maximum
21 //      number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Analysis/PostDominators.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/DiagnosticInfo.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/InstIterator.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/MDBuilder.h"
40 #include "llvm/IR/Metadata.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/Pass.h"
43 #include "llvm/ProfileData/SampleProfReader.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorOr.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Transforms/IPO.h"
49 #include "llvm/Transforms/Utils/Cloning.h"
50 #include <cctype>
51 
52 using namespace llvm;
53 using namespace sampleprof;
54 
55 #define DEBUG_TYPE "sample-profile"
56 
57 // Command line option to specify the file to read samples from. This is
58 // mainly used for debugging.
59 static cl::opt<std::string> SampleProfileFile(
60     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
61     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
62 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
63     "sample-profile-max-propagate-iterations", cl::init(100),
64     cl::desc("Maximum number of iterations to go through when propagating "
65              "sample block/edge weights through the CFG."));
66 
67 namespace {
68 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap;
69 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap;
70 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge;
71 typedef DenseMap<Edge, uint64_t> EdgeWeightMap;
72 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>
73     BlockEdgeMap;
74 
75 /// \brief Sample profile pass.
76 ///
77 /// This pass reads profile data from the file specified by
78 /// -sample-profile-file and annotates every affected function with the
79 /// profile information found in that file.
80 class SampleProfileLoader : public ModulePass {
81 public:
82   // Class identification, replacement for typeinfo
83   static char ID;
84 
85   SampleProfileLoader(StringRef Name = SampleProfileFile)
86       : ModulePass(ID), DT(nullptr), PDT(nullptr), LI(nullptr), Reader(),
87         Samples(nullptr), Filename(Name), ProfileIsValid(false) {
88     initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry());
89   }
90 
91   bool doInitialization(Module &M) override;
92 
93   void dump() { Reader->dump(); }
94 
95   const char *getPassName() const override { return "Sample profile pass"; }
96 
97   bool runOnModule(Module &M) override;
98 
99   void getAnalysisUsage(AnalysisUsage &AU) const override {
100     AU.setPreservesCFG();
101   }
102 
103 protected:
104   bool runOnFunction(Function &F);
105   unsigned getFunctionLoc(Function &F);
106   bool emitAnnotations(Function &F);
107   ErrorOr<uint64_t> getInstWeight(const Instruction &I) const;
108   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB) const;
109   const FunctionSamples *findCalleeFunctionSamples(const CallInst &I) const;
110   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
111   bool inlineHotFunctions(Function &F);
112   void printEdgeWeight(raw_ostream &OS, Edge E);
113   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
114   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
115   bool computeBlockWeights(Function &F);
116   void findEquivalenceClasses(Function &F);
117   void findEquivalencesFor(BasicBlock *BB1,
118                            SmallVector<BasicBlock *, 8> Descendants,
119                            DominatorTreeBase<BasicBlock> *DomTree);
120   void propagateWeights(Function &F);
121   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
122   void buildEdges(Function &F);
123   bool propagateThroughEdges(Function &F);
124   void computeDominanceAndLoopInfo(Function &F);
125   unsigned getOffset(unsigned L, unsigned H) const;
126 
127   /// \brief Map basic blocks to their computed weights.
128   ///
129   /// The weight of a basic block is defined to be the maximum
130   /// of all the instruction weights in that block.
131   BlockWeightMap BlockWeights;
132 
133   /// \brief Map edges to their computed weights.
134   ///
135   /// Edge weights are computed by propagating basic block weights in
136   /// SampleProfile::propagateWeights.
137   EdgeWeightMap EdgeWeights;
138 
139   /// \brief Set of visited blocks during propagation.
140   SmallPtrSet<const BasicBlock *, 128> VisitedBlocks;
141 
142   /// \brief Set of visited edges during propagation.
143   SmallSet<Edge, 128> VisitedEdges;
144 
145   /// \brief Equivalence classes for block weights.
146   ///
147   /// Two blocks BB1 and BB2 are in the same equivalence class if they
148   /// dominate and post-dominate each other, and they are in the same loop
149   /// nest. When this happens, the two blocks are guaranteed to execute
150   /// the same number of times.
151   EquivalenceClassMap EquivalenceClass;
152 
153   /// \brief Dominance, post-dominance and loop information.
154   std::unique_ptr<DominatorTree> DT;
155   std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT;
156   std::unique_ptr<LoopInfo> LI;
157 
158   /// \brief Predecessors for each basic block in the CFG.
159   BlockEdgeMap Predecessors;
160 
161   /// \brief Successors for each basic block in the CFG.
162   BlockEdgeMap Successors;
163 
164   /// \brief Profile reader object.
165   std::unique_ptr<SampleProfileReader> Reader;
166 
167   /// \brief Samples collected for the body of this function.
168   FunctionSamples *Samples;
169 
170   /// \brief Name of the profile file to load.
171   StringRef Filename;
172 
173   /// \brief Flag indicating whether the profile input loaded successfully.
174   bool ProfileIsValid;
175 };
176 }
177 
178 /// \brief Returns the offset of lineno \p L to head_lineno \p H
179 ///
180 /// \param L  Lineno
181 /// \param H  Header lineno of the function
182 ///
183 /// \returns offset to the header lineno. 16 bits are used to represent offset.
184 /// We assume that a single function will not exceed 65535 LOC.
185 unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const {
186   return (L - H) & 0xffff;
187 }
188 
189 /// \brief Print the weight of edge \p E on stream \p OS.
190 ///
191 /// \param OS  Stream to emit the output to.
192 /// \param E  Edge to print.
193 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
194   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
195      << "]: " << EdgeWeights[E] << "\n";
196 }
197 
198 /// \brief Print the equivalence class of block \p BB on stream \p OS.
199 ///
200 /// \param OS  Stream to emit the output to.
201 /// \param BB  Block to print.
202 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
203                                                 const BasicBlock *BB) {
204   const BasicBlock *Equiv = EquivalenceClass[BB];
205   OS << "equivalence[" << BB->getName()
206      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
207 }
208 
209 /// \brief Print the weight of block \p BB on stream \p OS.
210 ///
211 /// \param OS  Stream to emit the output to.
212 /// \param BB  Block to print.
213 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
214                                            const BasicBlock *BB) const {
215   const auto &I = BlockWeights.find(BB);
216   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
217   OS << "weight[" << BB->getName() << "]: " << W << "\n";
218 }
219 
220 /// \brief Get the weight for an instruction.
221 ///
222 /// The "weight" of an instruction \p Inst is the number of samples
223 /// collected on that instruction at runtime. To retrieve it, we
224 /// need to compute the line number of \p Inst relative to the start of its
225 /// function. We use HeaderLineno to compute the offset. We then
226 /// look up the samples collected for \p Inst using BodySamples.
227 ///
228 /// \param Inst Instruction to query.
229 ///
230 /// \returns the weight of \p Inst.
231 ErrorOr<uint64_t>
232 SampleProfileLoader::getInstWeight(const Instruction &Inst) const {
233   DebugLoc DLoc = Inst.getDebugLoc();
234   if (!DLoc)
235     return std::error_code();
236 
237   const FunctionSamples *FS = findFunctionSamples(Inst);
238   if (!FS)
239     return std::error_code();
240 
241   const DILocation *DIL = DLoc;
242   unsigned Lineno = DLoc.getLine();
243   unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine();
244 
245   ErrorOr<uint64_t> R = FS->findSamplesAt(getOffset(Lineno, HeaderLineno),
246                                           DIL->getDiscriminator());
247   if (R)
248     DEBUG(dbgs() << "    " << Lineno << "." << DIL->getDiscriminator() << ":"
249                  << Inst << " (line offset: " << Lineno - HeaderLineno << "."
250                  << DIL->getDiscriminator() << " - weight: " << R.get()
251                  << ")\n");
252   return R;
253 }
254 
255 /// \brief Compute the weight of a basic block.
256 ///
257 /// The weight of basic block \p BB is the maximum weight of all the
258 /// instructions in BB.
259 ///
260 /// \param BB The basic block to query.
261 ///
262 /// \returns the weight for \p BB.
263 ErrorOr<uint64_t>
264 SampleProfileLoader::getBlockWeight(const BasicBlock *BB) const {
265   bool Found = false;
266   uint64_t Weight = 0;
267   for (auto &I : BB->getInstList()) {
268     const ErrorOr<uint64_t> &R = getInstWeight(I);
269     if (R && R.get() >= Weight) {
270       Weight = R.get();
271       Found = true;
272     }
273   }
274   if (Found)
275     return Weight;
276   else
277     return std::error_code();
278 }
279 
280 /// \brief Compute and store the weights of every basic block.
281 ///
282 /// This populates the BlockWeights map by computing
283 /// the weights of every basic block in the CFG.
284 ///
285 /// \param F The function to query.
286 bool SampleProfileLoader::computeBlockWeights(Function &F) {
287   bool Changed = false;
288   DEBUG(dbgs() << "Block weights\n");
289   for (const auto &BB : F) {
290     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
291     if (Weight) {
292       BlockWeights[&BB] = Weight.get();
293       VisitedBlocks.insert(&BB);
294       Changed = true;
295     }
296     DEBUG(printBlockWeight(dbgs(), &BB));
297   }
298 
299   return Changed;
300 }
301 
302 /// \brief Get the FunctionSamples for a call instruction.
303 ///
304 /// The FunctionSamples of a call instruction \p Inst is the inlined
305 /// instance in which that call instruction is calling to. It contains
306 /// all samples that resides in the inlined instance. We first find the
307 /// inlined instance in which the call instruction is from, then we
308 /// traverse its children to find the callsite with the matching
309 /// location and callee function name.
310 ///
311 /// \param Inst Call instruction to query.
312 ///
313 /// \returns The FunctionSamples pointer to the inlined instance.
314 const FunctionSamples *
315 SampleProfileLoader::findCalleeFunctionSamples(const CallInst &Inst) const {
316   const DILocation *DIL = Inst.getDebugLoc();
317   if (!DIL) {
318     return nullptr;
319   }
320   DISubprogram *SP = DIL->getScope()->getSubprogram();
321   if (!SP)
322     return nullptr;
323 
324   Function *CalleeFunc = Inst.getCalledFunction();
325   if (!CalleeFunc) {
326     return nullptr;
327   }
328 
329   StringRef CalleeName = CalleeFunc->getName();
330   const FunctionSamples *FS = findFunctionSamples(Inst);
331   if (FS == nullptr)
332     return nullptr;
333 
334   return FS->findFunctionSamplesAt(
335       CallsiteLocation(getOffset(DIL->getLine(), SP->getLine()),
336                        DIL->getDiscriminator(), CalleeName));
337 }
338 
339 /// \brief Get the FunctionSamples for an instruction.
340 ///
341 /// The FunctionSamples of an instruction \p Inst is the inlined instance
342 /// in which that instruction is coming from. We traverse the inline stack
343 /// of that instruction, and match it with the tree nodes in the profile.
344 ///
345 /// \param Inst Instruction to query.
346 ///
347 /// \returns the FunctionSamples pointer to the inlined instance.
348 const FunctionSamples *
349 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
350   SmallVector<CallsiteLocation, 10> S;
351   const DILocation *DIL = Inst.getDebugLoc();
352   if (!DIL) {
353     return Samples;
354   }
355   StringRef CalleeName;
356   for (const DILocation *DIL = Inst.getDebugLoc(); DIL;
357        DIL = DIL->getInlinedAt()) {
358     DISubprogram *SP = DIL->getScope()->getSubprogram();
359     if (!SP)
360       return nullptr;
361     if (!CalleeName.empty()) {
362       S.push_back(CallsiteLocation(getOffset(DIL->getLine(), SP->getLine()),
363                                    DIL->getDiscriminator(), CalleeName));
364     }
365     CalleeName = SP->getLinkageName();
366   }
367   if (S.size() == 0)
368     return Samples;
369   const FunctionSamples *FS = Samples;
370   for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
371     FS = FS->findFunctionSamplesAt(S[i]);
372   }
373   return FS;
374 }
375 
376 /// \brief Iteratively inline hot callsites of a function.
377 ///
378 /// Iteratively traverse all callsites of the function \p F, and find if
379 /// the corresponding inlined instance exists and is hot in profile. If
380 /// it is hot enough, inline the callsites and adds new callsites of the
381 /// callee into the caller.
382 ///
383 /// TODO: investigate the possibility of not invoking InlineFunction directly.
384 ///
385 /// \param F function to perform iterative inlining.
386 ///
387 /// \returns True if there is any inline happened.
388 bool SampleProfileLoader::inlineHotFunctions(Function &F) {
389   bool Changed = false;
390   while (true) {
391     bool LocalChanged = false;
392     SmallVector<CallInst *, 10> CIS;
393     for (auto &BB : F) {
394       for (auto &I : BB.getInstList()) {
395         CallInst *CI = dyn_cast<CallInst>(&I);
396         if (CI) {
397           const FunctionSamples *FS = findCalleeFunctionSamples(*CI);
398           if (FS && FS->getTotalSamples() > 0) {
399             CIS.push_back(CI);
400           }
401         }
402       }
403     }
404     for (auto CI : CIS) {
405       InlineFunctionInfo IFI;
406       if (InlineFunction(CI, IFI))
407         LocalChanged = true;
408     }
409     if (LocalChanged) {
410       Changed = true;
411     } else {
412       break;
413     }
414   }
415   return Changed;
416 }
417 
418 /// \brief Find equivalence classes for the given block.
419 ///
420 /// This finds all the blocks that are guaranteed to execute the same
421 /// number of times as \p BB1. To do this, it traverses all the
422 /// descendants of \p BB1 in the dominator or post-dominator tree.
423 ///
424 /// A block BB2 will be in the same equivalence class as \p BB1 if
425 /// the following holds:
426 ///
427 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
428 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
429 ///    dominate BB1 in the post-dominator tree.
430 ///
431 /// 2- Both BB2 and \p BB1 must be in the same loop.
432 ///
433 /// For every block BB2 that meets those two requirements, we set BB2's
434 /// equivalence class to \p BB1.
435 ///
436 /// \param BB1  Block to check.
437 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
438 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
439 ///                 with blocks from \p BB1's dominator tree, then
440 ///                 this is the post-dominator tree, and vice versa.
441 void SampleProfileLoader::findEquivalencesFor(
442     BasicBlock *BB1, SmallVector<BasicBlock *, 8> Descendants,
443     DominatorTreeBase<BasicBlock> *DomTree) {
444   const BasicBlock *EC = EquivalenceClass[BB1];
445   uint64_t Weight = BlockWeights[EC];
446   for (const auto *BB2 : Descendants) {
447     bool IsDomParent = DomTree->dominates(BB2, BB1);
448     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
449     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
450       EquivalenceClass[BB2] = EC;
451 
452       // If BB2 is heavier than BB1, make BB2 have the same weight
453       // as BB1.
454       //
455       // Note that we don't worry about the opposite situation here
456       // (when BB2 is lighter than BB1). We will deal with this
457       // during the propagation phase. Right now, we just want to
458       // make sure that BB1 has the largest weight of all the
459       // members of its equivalence set.
460       Weight = std::max(Weight, BlockWeights[BB2]);
461     }
462   }
463   BlockWeights[EC] = Weight;
464 }
465 
466 /// \brief Find equivalence classes.
467 ///
468 /// Since samples may be missing from blocks, we can fill in the gaps by setting
469 /// the weights of all the blocks in the same equivalence class to the same
470 /// weight. To compute the concept of equivalence, we use dominance and loop
471 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
472 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
473 ///
474 /// \param F The function to query.
475 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
476   SmallVector<BasicBlock *, 8> DominatedBBs;
477   DEBUG(dbgs() << "\nBlock equivalence classes\n");
478   // Find equivalence sets based on dominance and post-dominance information.
479   for (auto &BB : F) {
480     BasicBlock *BB1 = &BB;
481 
482     // Compute BB1's equivalence class once.
483     if (EquivalenceClass.count(BB1)) {
484       DEBUG(printBlockEquivalence(dbgs(), BB1));
485       continue;
486     }
487 
488     // By default, blocks are in their own equivalence class.
489     EquivalenceClass[BB1] = BB1;
490 
491     // Traverse all the blocks dominated by BB1. We are looking for
492     // every basic block BB2 such that:
493     //
494     // 1- BB1 dominates BB2.
495     // 2- BB2 post-dominates BB1.
496     // 3- BB1 and BB2 are in the same loop nest.
497     //
498     // If all those conditions hold, it means that BB2 is executed
499     // as many times as BB1, so they are placed in the same equivalence
500     // class by making BB2's equivalence class be BB1.
501     DominatedBBs.clear();
502     DT->getDescendants(BB1, DominatedBBs);
503     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
504 
505     DEBUG(printBlockEquivalence(dbgs(), BB1));
506   }
507 
508   // Assign weights to equivalence classes.
509   //
510   // All the basic blocks in the same equivalence class will execute
511   // the same number of times. Since we know that the head block in
512   // each equivalence class has the largest weight, assign that weight
513   // to all the blocks in that equivalence class.
514   DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
515   for (auto &BI : F) {
516     const BasicBlock *BB = &BI;
517     const BasicBlock *EquivBB = EquivalenceClass[BB];
518     if (BB != EquivBB)
519       BlockWeights[BB] = BlockWeights[EquivBB];
520     DEBUG(printBlockWeight(dbgs(), BB));
521   }
522 }
523 
524 /// \brief Visit the given edge to decide if it has a valid weight.
525 ///
526 /// If \p E has not been visited before, we copy to \p UnknownEdge
527 /// and increment the count of unknown edges.
528 ///
529 /// \param E  Edge to visit.
530 /// \param NumUnknownEdges  Current number of unknown edges.
531 /// \param UnknownEdge  Set if E has not been visited before.
532 ///
533 /// \returns E's weight, if known. Otherwise, return 0.
534 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
535                                         Edge *UnknownEdge) {
536   if (!VisitedEdges.count(E)) {
537     (*NumUnknownEdges)++;
538     *UnknownEdge = E;
539     return 0;
540   }
541 
542   return EdgeWeights[E];
543 }
544 
545 /// \brief Propagate weights through incoming/outgoing edges.
546 ///
547 /// If the weight of a basic block is known, and there is only one edge
548 /// with an unknown weight, we can calculate the weight of that edge.
549 ///
550 /// Similarly, if all the edges have a known count, we can calculate the
551 /// count of the basic block, if needed.
552 ///
553 /// \param F  Function to process.
554 ///
555 /// \returns  True if new weights were assigned to edges or blocks.
556 bool SampleProfileLoader::propagateThroughEdges(Function &F) {
557   bool Changed = false;
558   DEBUG(dbgs() << "\nPropagation through edges\n");
559   for (const auto &BI : F) {
560     const BasicBlock *BB = &BI;
561     const BasicBlock *EC = EquivalenceClass[BB];
562 
563     // Visit all the predecessor and successor edges to determine
564     // which ones have a weight assigned already. Note that it doesn't
565     // matter that we only keep track of a single unknown edge. The
566     // only case we are interested in handling is when only a single
567     // edge is unknown (see setEdgeOrBlockWeight).
568     for (unsigned i = 0; i < 2; i++) {
569       uint64_t TotalWeight = 0;
570       unsigned NumUnknownEdges = 0;
571       Edge UnknownEdge, SelfReferentialEdge;
572 
573       if (i == 0) {
574         // First, visit all predecessor edges.
575         for (auto *Pred : Predecessors[BB]) {
576           Edge E = std::make_pair(Pred, BB);
577           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
578           if (E.first == E.second)
579             SelfReferentialEdge = E;
580         }
581       } else {
582         // On the second round, visit all successor edges.
583         for (auto *Succ : Successors[BB]) {
584           Edge E = std::make_pair(BB, Succ);
585           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
586         }
587       }
588 
589       // After visiting all the edges, there are three cases that we
590       // can handle immediately:
591       //
592       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
593       //   In this case, we simply check that the sum of all the edges
594       //   is the same as BB's weight. If not, we change BB's weight
595       //   to match. Additionally, if BB had not been visited before,
596       //   we mark it visited.
597       //
598       // - Only one edge is unknown and BB has already been visited.
599       //   In this case, we can compute the weight of the edge by
600       //   subtracting the total block weight from all the known
601       //   edge weights. If the edges weight more than BB, then the
602       //   edge of the last remaining edge is set to zero.
603       //
604       // - There exists a self-referential edge and the weight of BB is
605       //   known. In this case, this edge can be based on BB's weight.
606       //   We add up all the other known edges and set the weight on
607       //   the self-referential edge as we did in the previous case.
608       //
609       // In any other case, we must continue iterating. Eventually,
610       // all edges will get a weight, or iteration will stop when
611       // it reaches SampleProfileMaxPropagateIterations.
612       if (NumUnknownEdges <= 1) {
613         uint64_t &BBWeight = BlockWeights[EC];
614         if (NumUnknownEdges == 0) {
615           // If we already know the weight of all edges, the weight of the
616           // basic block can be computed. It should be no larger than the sum
617           // of all edge weights.
618           if (TotalWeight > BBWeight) {
619             BBWeight = TotalWeight;
620             Changed = true;
621             DEBUG(dbgs() << "All edge weights for " << BB->getName()
622                          << " known. Set weight for block: ";
623                   printBlockWeight(dbgs(), BB););
624           }
625           if (VisitedBlocks.insert(EC).second)
626             Changed = true;
627         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
628           // If there is a single unknown edge and the block has been
629           // visited, then we can compute E's weight.
630           if (BBWeight >= TotalWeight)
631             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
632           else
633             EdgeWeights[UnknownEdge] = 0;
634           VisitedEdges.insert(UnknownEdge);
635           Changed = true;
636           DEBUG(dbgs() << "Set weight for edge: ";
637                 printEdgeWeight(dbgs(), UnknownEdge));
638         }
639       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
640         uint64_t &BBWeight = BlockWeights[BB];
641         // We have a self-referential edge and the weight of BB is known.
642         if (BBWeight >= TotalWeight)
643           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
644         else
645           EdgeWeights[SelfReferentialEdge] = 0;
646         VisitedEdges.insert(SelfReferentialEdge);
647         Changed = true;
648         DEBUG(dbgs() << "Set self-referential edge weight to: ";
649               printEdgeWeight(dbgs(), SelfReferentialEdge));
650       }
651     }
652   }
653 
654   return Changed;
655 }
656 
657 /// \brief Build in/out edge lists for each basic block in the CFG.
658 ///
659 /// We are interested in unique edges. If a block B1 has multiple
660 /// edges to another block B2, we only add a single B1->B2 edge.
661 void SampleProfileLoader::buildEdges(Function &F) {
662   for (auto &BI : F) {
663     BasicBlock *B1 = &BI;
664 
665     // Add predecessors for B1.
666     SmallPtrSet<BasicBlock *, 16> Visited;
667     if (!Predecessors[B1].empty())
668       llvm_unreachable("Found a stale predecessors list in a basic block.");
669     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
670       BasicBlock *B2 = *PI;
671       if (Visited.insert(B2).second)
672         Predecessors[B1].push_back(B2);
673     }
674 
675     // Add successors for B1.
676     Visited.clear();
677     if (!Successors[B1].empty())
678       llvm_unreachable("Found a stale successors list in a basic block.");
679     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
680       BasicBlock *B2 = *SI;
681       if (Visited.insert(B2).second)
682         Successors[B1].push_back(B2);
683     }
684   }
685 }
686 
687 /// \brief Propagate weights into edges
688 ///
689 /// The following rules are applied to every block BB in the CFG:
690 ///
691 /// - If BB has a single predecessor/successor, then the weight
692 ///   of that edge is the weight of the block.
693 ///
694 /// - If all incoming or outgoing edges are known except one, and the
695 ///   weight of the block is already known, the weight of the unknown
696 ///   edge will be the weight of the block minus the sum of all the known
697 ///   edges. If the sum of all the known edges is larger than BB's weight,
698 ///   we set the unknown edge weight to zero.
699 ///
700 /// - If there is a self-referential edge, and the weight of the block is
701 ///   known, the weight for that edge is set to the weight of the block
702 ///   minus the weight of the other incoming edges to that block (if
703 ///   known).
704 void SampleProfileLoader::propagateWeights(Function &F) {
705   bool Changed = true;
706   unsigned I = 0;
707 
708   // Add an entry count to the function using the samples gathered
709   // at the function entry.
710   F.setEntryCount(Samples->getHeadSamples());
711 
712   // Before propagation starts, build, for each block, a list of
713   // unique predecessors and successors. This is necessary to handle
714   // identical edges in multiway branches. Since we visit all blocks and all
715   // edges of the CFG, it is cleaner to build these lists once at the start
716   // of the pass.
717   buildEdges(F);
718 
719   // Propagate until we converge or we go past the iteration limit.
720   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
721     Changed = propagateThroughEdges(F);
722   }
723 
724   // Generate MD_prof metadata for every branch instruction using the
725   // edge weights computed during propagation.
726   DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
727   MDBuilder MDB(F.getContext());
728   for (auto &BI : F) {
729     BasicBlock *BB = &BI;
730     TerminatorInst *TI = BB->getTerminator();
731     if (TI->getNumSuccessors() == 1)
732       continue;
733     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
734       continue;
735 
736     DEBUG(dbgs() << "\nGetting weights for branch at line "
737                  << TI->getDebugLoc().getLine() << ".\n");
738     SmallVector<uint32_t, 4> Weights;
739     bool AllWeightsZero = true;
740     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
741       BasicBlock *Succ = TI->getSuccessor(I);
742       Edge E = std::make_pair(BB, Succ);
743       uint64_t Weight = EdgeWeights[E];
744       DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
745       // Use uint32_t saturated arithmetic to adjust the incoming weights,
746       // if needed. Sample counts in profiles are 64-bit unsigned values,
747       // but internally branch weights are expressed as 32-bit values.
748       if (Weight > std::numeric_limits<uint32_t>::max()) {
749         DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
750         Weight = std::numeric_limits<uint32_t>::max();
751       }
752       Weights.push_back(static_cast<uint32_t>(Weight));
753       if (Weight != 0)
754         AllWeightsZero = false;
755     }
756 
757     // Only set weights if there is at least one non-zero weight.
758     // In any other case, let the analyzer set weights.
759     if (!AllWeightsZero) {
760       DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
761       TI->setMetadata(llvm::LLVMContext::MD_prof,
762                       MDB.createBranchWeights(Weights));
763     } else {
764       DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
765     }
766   }
767 }
768 
769 /// \brief Get the line number for the function header.
770 ///
771 /// This looks up function \p F in the current compilation unit and
772 /// retrieves the line number where the function is defined. This is
773 /// line 0 for all the samples read from the profile file. Every line
774 /// number is relative to this line.
775 ///
776 /// \param F  Function object to query.
777 ///
778 /// \returns the line number where \p F is defined. If it returns 0,
779 ///          it means that there is no debug information available for \p F.
780 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
781   if (DISubprogram *S = getDISubprogram(&F))
782     return S->getLine();
783 
784   // If could not find the start of \p F, emit a diagnostic to inform the user
785   // about the missed opportunity.
786   F.getContext().diagnose(DiagnosticInfoSampleProfile(
787       "No debug information found in function " + F.getName() +
788           ": Function profile not used",
789       DS_Warning));
790   return 0;
791 }
792 
793 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
794   DT.reset(new DominatorTree);
795   DT->recalculate(F);
796 
797   PDT.reset(new DominatorTreeBase<BasicBlock>(true));
798   PDT->recalculate(F);
799 
800   LI.reset(new LoopInfo);
801   LI->analyze(*DT);
802 }
803 
804 /// \brief Generate branch weight metadata for all branches in \p F.
805 ///
806 /// Branch weights are computed out of instruction samples using a
807 /// propagation heuristic. Propagation proceeds in 3 phases:
808 ///
809 /// 1- Assignment of block weights. All the basic blocks in the function
810 ///    are initial assigned the same weight as their most frequently
811 ///    executed instruction.
812 ///
813 /// 2- Creation of equivalence classes. Since samples may be missing from
814 ///    blocks, we can fill in the gaps by setting the weights of all the
815 ///    blocks in the same equivalence class to the same weight. To compute
816 ///    the concept of equivalence, we use dominance and loop information.
817 ///    Two blocks B1 and B2 are in the same equivalence class if B1
818 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
819 ///
820 /// 3- Propagation of block weights into edges. This uses a simple
821 ///    propagation heuristic. The following rules are applied to every
822 ///    block BB in the CFG:
823 ///
824 ///    - If BB has a single predecessor/successor, then the weight
825 ///      of that edge is the weight of the block.
826 ///
827 ///    - If all the edges are known except one, and the weight of the
828 ///      block is already known, the weight of the unknown edge will
829 ///      be the weight of the block minus the sum of all the known
830 ///      edges. If the sum of all the known edges is larger than BB's weight,
831 ///      we set the unknown edge weight to zero.
832 ///
833 ///    - If there is a self-referential edge, and the weight of the block is
834 ///      known, the weight for that edge is set to the weight of the block
835 ///      minus the weight of the other incoming edges to that block (if
836 ///      known).
837 ///
838 /// Since this propagation is not guaranteed to finalize for every CFG, we
839 /// only allow it to proceed for a limited number of iterations (controlled
840 /// by -sample-profile-max-propagate-iterations).
841 ///
842 /// FIXME: Try to replace this propagation heuristic with a scheme
843 /// that is guaranteed to finalize. A work-list approach similar to
844 /// the standard value propagation algorithm used by SSA-CCP might
845 /// work here.
846 ///
847 /// Once all the branch weights are computed, we emit the MD_prof
848 /// metadata on BB using the computed values for each of its branches.
849 ///
850 /// \param F The function to query.
851 ///
852 /// \returns true if \p F was modified. Returns false, otherwise.
853 bool SampleProfileLoader::emitAnnotations(Function &F) {
854   bool Changed = false;
855 
856   if (getFunctionLoc(F) == 0)
857     return false;
858 
859   DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
860                << ": " << getFunctionLoc(F) << "\n");
861 
862   Changed |= inlineHotFunctions(F);
863 
864   // Compute basic block weights.
865   Changed |= computeBlockWeights(F);
866 
867   if (Changed) {
868     // Compute dominance and loop info needed for propagation.
869     computeDominanceAndLoopInfo(F);
870 
871     // Find equivalence classes.
872     findEquivalenceClasses(F);
873 
874     // Propagate weights to all edges.
875     propagateWeights(F);
876   }
877 
878   return Changed;
879 }
880 
881 char SampleProfileLoader::ID = 0;
882 INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile",
883                       "Sample Profile loader", false, false)
884 INITIALIZE_PASS_DEPENDENCY(AddDiscriminators)
885 INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile",
886                     "Sample Profile loader", false, false)
887 
888 bool SampleProfileLoader::doInitialization(Module &M) {
889   auto &Ctx = M.getContext();
890   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
891   if (std::error_code EC = ReaderOrErr.getError()) {
892     std::string Msg = "Could not open profile: " + EC.message();
893     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename.data(), Msg));
894     return false;
895   }
896   Reader = std::move(ReaderOrErr.get());
897   ProfileIsValid = (Reader->read() == sampleprof_error::success);
898   return true;
899 }
900 
901 ModulePass *llvm::createSampleProfileLoaderPass() {
902   return new SampleProfileLoader(SampleProfileFile);
903 }
904 
905 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
906   return new SampleProfileLoader(Name);
907 }
908 
909 bool SampleProfileLoader::runOnModule(Module &M) {
910   bool retval = false;
911   for (auto &F : M)
912     if (!F.isDeclaration())
913       retval |= runOnFunction(F);
914   return retval;
915 }
916 
917 bool SampleProfileLoader::runOnFunction(Function &F) {
918   if (!ProfileIsValid)
919     return false;
920 
921   Samples = Reader->getSamplesFor(F);
922   if (!Samples->empty())
923     return emitAnnotations(F);
924   return false;
925 }
926