1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SampleProfileLoader transformation. This pass 10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 12 // profile information in the given profile. 13 // 14 // This pass generates branch weight annotations on the IR: 15 // 16 // - prof: Represents branch weights. This annotation is added to branches 17 // to indicate the weights of each edge coming out of the branch. 18 // The weight of each edge is the weight of the target block for 19 // that edge. The weight of a block B is computed as the maximum 20 // number of samples found in B. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/IPO/SampleProfile.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/None.h" 29 #include "llvm/ADT/PriorityQueue.h" 30 #include "llvm/ADT/SCCIterator.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringMap.h" 36 #include "llvm/ADT/StringRef.h" 37 #include "llvm/ADT/Twine.h" 38 #include "llvm/Analysis/AssumptionCache.h" 39 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 40 #include "llvm/Analysis/CallGraph.h" 41 #include "llvm/Analysis/CallGraphSCCPass.h" 42 #include "llvm/Analysis/InlineAdvisor.h" 43 #include "llvm/Analysis/InlineCost.h" 44 #include "llvm/Analysis/LoopInfo.h" 45 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 46 #include "llvm/Analysis/PostDominators.h" 47 #include "llvm/Analysis/ProfileSummaryInfo.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/Analysis/TargetTransformInfo.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/CFG.h" 52 #include "llvm/IR/DebugInfoMetadata.h" 53 #include "llvm/IR/DebugLoc.h" 54 #include "llvm/IR/DiagnosticInfo.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/GlobalValue.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/PassManager.h" 66 #include "llvm/IR/ValueSymbolTable.h" 67 #include "llvm/InitializePasses.h" 68 #include "llvm/Pass.h" 69 #include "llvm/ProfileData/InstrProf.h" 70 #include "llvm/ProfileData/SampleProf.h" 71 #include "llvm/ProfileData/SampleProfReader.h" 72 #include "llvm/Support/Casting.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/ErrorOr.h" 77 #include "llvm/Support/GenericDomTree.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include "llvm/Transforms/IPO.h" 80 #include "llvm/Transforms/IPO/ProfiledCallGraph.h" 81 #include "llvm/Transforms/IPO/SampleContextTracker.h" 82 #include "llvm/Transforms/IPO/SampleProfileProbe.h" 83 #include "llvm/Transforms/Instrumentation.h" 84 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 85 #include "llvm/Transforms/Utils/Cloning.h" 86 #include "llvm/Transforms/Utils/SampleProfileLoaderBaseImpl.h" 87 #include "llvm/Transforms/Utils/SampleProfileLoaderBaseUtil.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <functional> 92 #include <limits> 93 #include <map> 94 #include <memory> 95 #include <queue> 96 #include <string> 97 #include <system_error> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace sampleprof; 103 using namespace llvm::sampleprofutil; 104 using ProfileCount = Function::ProfileCount; 105 #define DEBUG_TYPE "sample-profile" 106 #define CSINLINE_DEBUG DEBUG_TYPE "-inline" 107 108 STATISTIC(NumCSInlined, 109 "Number of functions inlined with context sensitive profile"); 110 STATISTIC(NumCSNotInlined, 111 "Number of functions not inlined with context sensitive profile"); 112 STATISTIC(NumMismatchedProfile, 113 "Number of functions with CFG mismatched profile"); 114 STATISTIC(NumMatchedProfile, "Number of functions with CFG matched profile"); 115 STATISTIC(NumDuplicatedInlinesite, 116 "Number of inlined callsites with a partial distribution factor"); 117 118 STATISTIC(NumCSInlinedHitMinLimit, 119 "Number of functions with FDO inline stopped due to min size limit"); 120 STATISTIC(NumCSInlinedHitMaxLimit, 121 "Number of functions with FDO inline stopped due to max size limit"); 122 STATISTIC( 123 NumCSInlinedHitGrowthLimit, 124 "Number of functions with FDO inline stopped due to growth size limit"); 125 126 // Command line option to specify the file to read samples from. This is 127 // mainly used for debugging. 128 static cl::opt<std::string> SampleProfileFile( 129 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 130 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 131 132 // The named file contains a set of transformations that may have been applied 133 // to the symbol names between the program from which the sample data was 134 // collected and the current program's symbols. 135 static cl::opt<std::string> SampleProfileRemappingFile( 136 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), 137 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); 138 139 static cl::opt<bool> ProfileSampleAccurate( 140 "profile-sample-accurate", cl::Hidden, cl::init(false), 141 cl::desc("If the sample profile is accurate, we will mark all un-sampled " 142 "callsite and function as having 0 samples. Otherwise, treat " 143 "un-sampled callsites and functions conservatively as unknown. ")); 144 145 static cl::opt<bool> ProfileSampleBlockAccurate( 146 "profile-sample-block-accurate", cl::Hidden, cl::init(false), 147 cl::desc("If the sample profile is accurate, we will mark all un-sampled " 148 "branches and calls as having 0 samples. Otherwise, treat " 149 "them conservatively as unknown. ")); 150 151 static cl::opt<bool> ProfileAccurateForSymsInList( 152 "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore, 153 cl::init(true), 154 cl::desc("For symbols in profile symbol list, regard their profiles to " 155 "be accurate. It may be overriden by profile-sample-accurate. ")); 156 157 static cl::opt<bool> ProfileMergeInlinee( 158 "sample-profile-merge-inlinee", cl::Hidden, cl::init(true), 159 cl::desc("Merge past inlinee's profile to outline version if sample " 160 "profile loader decided not to inline a call site. It will " 161 "only be enabled when top-down order of profile loading is " 162 "enabled. ")); 163 164 static cl::opt<bool> ProfileTopDownLoad( 165 "sample-profile-top-down-load", cl::Hidden, cl::init(true), 166 cl::desc("Do profile annotation and inlining for functions in top-down " 167 "order of call graph during sample profile loading. It only " 168 "works for new pass manager. ")); 169 170 static cl::opt<bool> 171 UseProfiledCallGraph("use-profiled-call-graph", cl::init(true), cl::Hidden, 172 cl::desc("Process functions in a top-down order " 173 "defined by the profiled call graph when " 174 "-sample-profile-top-down-load is on.")); 175 176 static cl::opt<bool> ProfileSizeInline( 177 "sample-profile-inline-size", cl::Hidden, cl::init(false), 178 cl::desc("Inline cold call sites in profile loader if it's beneficial " 179 "for code size.")); 180 181 cl::opt<int> ProfileInlineGrowthLimit( 182 "sample-profile-inline-growth-limit", cl::Hidden, cl::init(12), 183 cl::desc("The size growth ratio limit for proirity-based sample profile " 184 "loader inlining.")); 185 186 cl::opt<int> ProfileInlineLimitMin( 187 "sample-profile-inline-limit-min", cl::Hidden, cl::init(100), 188 cl::desc("The lower bound of size growth limit for " 189 "proirity-based sample profile loader inlining.")); 190 191 cl::opt<int> ProfileInlineLimitMax( 192 "sample-profile-inline-limit-max", cl::Hidden, cl::init(10000), 193 cl::desc("The upper bound of size growth limit for " 194 "proirity-based sample profile loader inlining.")); 195 196 cl::opt<int> SampleHotCallSiteThreshold( 197 "sample-profile-hot-inline-threshold", cl::Hidden, cl::init(3000), 198 cl::desc("Hot callsite threshold for proirity-based sample profile loader " 199 "inlining.")); 200 201 cl::opt<int> SampleColdCallSiteThreshold( 202 "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45), 203 cl::desc("Threshold for inlining cold callsites")); 204 205 static cl::opt<unsigned> ProfileICPRelativeHotness( 206 "sample-profile-icp-relative-hotness", cl::Hidden, cl::init(25), 207 cl::desc( 208 "Relative hotness percentage threshold for indirect " 209 "call promotion in proirity-based sample profile loader inlining.")); 210 211 static cl::opt<unsigned> ProfileICPRelativeHotnessSkip( 212 "sample-profile-icp-relative-hotness-skip", cl::Hidden, cl::init(1), 213 cl::desc( 214 "Skip relative hotness check for ICP up to given number of targets.")); 215 216 static cl::opt<bool> CallsitePrioritizedInline( 217 "sample-profile-prioritized-inline", cl::Hidden, cl::ZeroOrMore, 218 cl::init(false), 219 cl::desc("Use call site prioritized inlining for sample profile loader." 220 "Currently only CSSPGO is supported.")); 221 222 static cl::opt<bool> UsePreInlinerDecision( 223 "sample-profile-use-preinliner", cl::Hidden, cl::ZeroOrMore, 224 cl::init(false), 225 cl::desc("Use the preinliner decisions stored in profile context.")); 226 227 static cl::opt<bool> AllowRecursiveInline( 228 "sample-profile-recursive-inline", cl::Hidden, cl::ZeroOrMore, 229 cl::init(false), 230 cl::desc("Allow sample loader inliner to inline recursive calls.")); 231 232 static cl::opt<std::string> ProfileInlineReplayFile( 233 "sample-profile-inline-replay", cl::init(""), cl::value_desc("filename"), 234 cl::desc( 235 "Optimization remarks file containing inline remarks to be replayed " 236 "by inlining from sample profile loader."), 237 cl::Hidden); 238 239 static cl::opt<ReplayInlineScope> ProfileInlineReplayScope( 240 "sample-profile-inline-replay-scope", cl::init(ReplayInlineScope::Function), 241 cl::values(clEnumValN(ReplayInlineScope::Function, "Function", 242 "Replay on functions that have remarks associated " 243 "with them (default)"), 244 clEnumValN(ReplayInlineScope::Module, "Module", 245 "Replay on the entire module")), 246 cl::desc("Whether inline replay should be applied to the entire " 247 "Module or just the Functions (default) that are present as " 248 "callers in remarks during sample profile inlining."), 249 cl::Hidden); 250 251 static cl::opt<unsigned> 252 MaxNumPromotions("sample-profile-icp-max-prom", cl::init(3), cl::Hidden, 253 cl::ZeroOrMore, 254 cl::desc("Max number of promotions for a single indirect " 255 "call callsite in sample profile loader")); 256 257 static cl::opt<bool> OverwriteExistingWeights( 258 "overwrite-existing-weights", cl::Hidden, cl::init(false), 259 cl::desc("Ignore existing branch weights on IR and always overwrite.")); 260 261 namespace { 262 263 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 264 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 265 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 266 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 267 using BlockEdgeMap = 268 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 269 270 class GUIDToFuncNameMapper { 271 public: 272 GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader, 273 DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap) 274 : CurrentReader(Reader), CurrentModule(M), 275 CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) { 276 if (!CurrentReader.useMD5()) 277 return; 278 279 for (const auto &F : CurrentModule) { 280 StringRef OrigName = F.getName(); 281 CurrentGUIDToFuncNameMap.insert( 282 {Function::getGUID(OrigName), OrigName}); 283 284 // Local to global var promotion used by optimization like thinlto 285 // will rename the var and add suffix like ".llvm.xxx" to the 286 // original local name. In sample profile, the suffixes of function 287 // names are all stripped. Since it is possible that the mapper is 288 // built in post-thin-link phase and var promotion has been done, 289 // we need to add the substring of function name without the suffix 290 // into the GUIDToFuncNameMap. 291 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 292 if (CanonName != OrigName) 293 CurrentGUIDToFuncNameMap.insert( 294 {Function::getGUID(CanonName), CanonName}); 295 } 296 297 // Update GUIDToFuncNameMap for each function including inlinees. 298 SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap); 299 } 300 301 ~GUIDToFuncNameMapper() { 302 if (!CurrentReader.useMD5()) 303 return; 304 305 CurrentGUIDToFuncNameMap.clear(); 306 307 // Reset GUIDToFuncNameMap for of each function as they're no 308 // longer valid at this point. 309 SetGUIDToFuncNameMapForAll(nullptr); 310 } 311 312 private: 313 void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) { 314 std::queue<FunctionSamples *> FSToUpdate; 315 for (auto &IFS : CurrentReader.getProfiles()) { 316 FSToUpdate.push(&IFS.second); 317 } 318 319 while (!FSToUpdate.empty()) { 320 FunctionSamples *FS = FSToUpdate.front(); 321 FSToUpdate.pop(); 322 FS->GUIDToFuncNameMap = Map; 323 for (const auto &ICS : FS->getCallsiteSamples()) { 324 const FunctionSamplesMap &FSMap = ICS.second; 325 for (auto &IFS : FSMap) { 326 FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second); 327 FSToUpdate.push(&FS); 328 } 329 } 330 } 331 } 332 333 SampleProfileReader &CurrentReader; 334 Module &CurrentModule; 335 DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap; 336 }; 337 338 // Inline candidate used by iterative callsite prioritized inliner 339 struct InlineCandidate { 340 CallBase *CallInstr; 341 const FunctionSamples *CalleeSamples; 342 // Prorated callsite count, which will be used to guide inlining. For example, 343 // if a callsite is duplicated in LTO prelink, then in LTO postlink the two 344 // copies will get their own distribution factors and their prorated counts 345 // will be used to decide if they should be inlined independently. 346 uint64_t CallsiteCount; 347 // Call site distribution factor to prorate the profile samples for a 348 // duplicated callsite. Default value is 1.0. 349 float CallsiteDistribution; 350 }; 351 352 // Inline candidate comparer using call site weight 353 struct CandidateComparer { 354 bool operator()(const InlineCandidate &LHS, const InlineCandidate &RHS) { 355 if (LHS.CallsiteCount != RHS.CallsiteCount) 356 return LHS.CallsiteCount < RHS.CallsiteCount; 357 358 const FunctionSamples *LCS = LHS.CalleeSamples; 359 const FunctionSamples *RCS = RHS.CalleeSamples; 360 assert(LCS && RCS && "Expect non-null FunctionSamples"); 361 362 // Tie breaker using number of samples try to favor smaller functions first 363 if (LCS->getBodySamples().size() != RCS->getBodySamples().size()) 364 return LCS->getBodySamples().size() > RCS->getBodySamples().size(); 365 366 // Tie breaker using GUID so we have stable/deterministic inlining order 367 return LCS->getGUID(LCS->getName()) < RCS->getGUID(RCS->getName()); 368 } 369 }; 370 371 using CandidateQueue = 372 PriorityQueue<InlineCandidate, std::vector<InlineCandidate>, 373 CandidateComparer>; 374 375 /// Sample profile pass. 376 /// 377 /// This pass reads profile data from the file specified by 378 /// -sample-profile-file and annotates every affected function with the 379 /// profile information found in that file. 380 class SampleProfileLoader final 381 : public SampleProfileLoaderBaseImpl<BasicBlock> { 382 public: 383 SampleProfileLoader( 384 StringRef Name, StringRef RemapName, ThinOrFullLTOPhase LTOPhase, 385 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 386 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo, 387 std::function<const TargetLibraryInfo &(Function &)> GetTLI) 388 : SampleProfileLoaderBaseImpl(std::string(Name), std::string(RemapName)), 389 GetAC(std::move(GetAssumptionCache)), 390 GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)), 391 LTOPhase(LTOPhase) {} 392 393 bool doInitialization(Module &M, FunctionAnalysisManager *FAM = nullptr); 394 bool runOnModule(Module &M, ModuleAnalysisManager *AM, 395 ProfileSummaryInfo *_PSI, CallGraph *CG); 396 397 protected: 398 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 399 bool emitAnnotations(Function &F); 400 ErrorOr<uint64_t> getInstWeight(const Instruction &I) override; 401 ErrorOr<uint64_t> getProbeWeight(const Instruction &I); 402 const FunctionSamples *findCalleeFunctionSamples(const CallBase &I) const; 403 const FunctionSamples * 404 findFunctionSamples(const Instruction &I) const override; 405 std::vector<const FunctionSamples *> 406 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 407 void findExternalInlineCandidate(const FunctionSamples *Samples, 408 DenseSet<GlobalValue::GUID> &InlinedGUIDs, 409 const StringMap<Function *> &SymbolMap, 410 uint64_t Threshold); 411 // Attempt to promote indirect call and also inline the promoted call 412 bool tryPromoteAndInlineCandidate( 413 Function &F, InlineCandidate &Candidate, uint64_t SumOrigin, 414 uint64_t &Sum, SmallVector<CallBase *, 8> *InlinedCallSites = nullptr); 415 bool inlineHotFunctions(Function &F, 416 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 417 InlineCost shouldInlineCandidate(InlineCandidate &Candidate); 418 bool getInlineCandidate(InlineCandidate *NewCandidate, CallBase *CB); 419 bool 420 tryInlineCandidate(InlineCandidate &Candidate, 421 SmallVector<CallBase *, 8> *InlinedCallSites = nullptr); 422 bool 423 inlineHotFunctionsWithPriority(Function &F, 424 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 425 // Inline cold/small functions in addition to hot ones 426 bool shouldInlineColdCallee(CallBase &CallInst); 427 void emitOptimizationRemarksForInlineCandidates( 428 const SmallVectorImpl<CallBase *> &Candidates, const Function &F, 429 bool Hot); 430 std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG); 431 std::unique_ptr<ProfiledCallGraph> buildProfiledCallGraph(CallGraph &CG); 432 void generateMDProfMetadata(Function &F); 433 434 /// Map from function name to Function *. Used to find the function from 435 /// the function name. If the function name contains suffix, additional 436 /// entry is added to map from the stripped name to the function if there 437 /// is one-to-one mapping. 438 StringMap<Function *> SymbolMap; 439 440 std::function<AssumptionCache &(Function &)> GetAC; 441 std::function<TargetTransformInfo &(Function &)> GetTTI; 442 std::function<const TargetLibraryInfo &(Function &)> GetTLI; 443 444 /// Profile tracker for different context. 445 std::unique_ptr<SampleContextTracker> ContextTracker; 446 447 /// Flag indicating whether input profile is context-sensitive 448 bool ProfileIsCS = false; 449 450 /// Flag indicating which LTO/ThinLTO phase the pass is invoked in. 451 /// 452 /// We need to know the LTO phase because for example in ThinLTOPrelink 453 /// phase, in annotation, we should not promote indirect calls. Instead, 454 /// we will mark GUIDs that needs to be annotated to the function. 455 ThinOrFullLTOPhase LTOPhase; 456 457 /// Profle Symbol list tells whether a function name appears in the binary 458 /// used to generate the current profile. 459 std::unique_ptr<ProfileSymbolList> PSL; 460 461 /// Total number of samples collected in this profile. 462 /// 463 /// This is the sum of all the samples collected in all the functions executed 464 /// at runtime. 465 uint64_t TotalCollectedSamples = 0; 466 467 // Information recorded when we declined to inline a call site 468 // because we have determined it is too cold is accumulated for 469 // each callee function. Initially this is just the entry count. 470 struct NotInlinedProfileInfo { 471 uint64_t entryCount; 472 }; 473 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo; 474 475 // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for 476 // all the function symbols defined or declared in current module. 477 DenseMap<uint64_t, StringRef> GUIDToFuncNameMap; 478 479 // All the Names used in FunctionSamples including outline function 480 // names, inline instance names and call target names. 481 StringSet<> NamesInProfile; 482 483 // For symbol in profile symbol list, whether to regard their profiles 484 // to be accurate. It is mainly decided by existance of profile symbol 485 // list and -profile-accurate-for-symsinlist flag, but it can be 486 // overriden by -profile-sample-accurate or profile-sample-accurate 487 // attribute. 488 bool ProfAccForSymsInList; 489 490 // External inline advisor used to replay inline decision from remarks. 491 std::unique_ptr<InlineAdvisor> ExternalInlineAdvisor; 492 493 // A pseudo probe helper to correlate the imported sample counts. 494 std::unique_ptr<PseudoProbeManager> ProbeManager; 495 }; 496 497 class SampleProfileLoaderLegacyPass : public ModulePass { 498 public: 499 // Class identification, replacement for typeinfo 500 static char ID; 501 502 SampleProfileLoaderLegacyPass( 503 StringRef Name = SampleProfileFile, 504 ThinOrFullLTOPhase LTOPhase = ThinOrFullLTOPhase::None) 505 : ModulePass(ID), SampleLoader( 506 Name, SampleProfileRemappingFile, LTOPhase, 507 [&](Function &F) -> AssumptionCache & { 508 return ACT->getAssumptionCache(F); 509 }, 510 [&](Function &F) -> TargetTransformInfo & { 511 return TTIWP->getTTI(F); 512 }, 513 [&](Function &F) -> TargetLibraryInfo & { 514 return TLIWP->getTLI(F); 515 }) { 516 initializeSampleProfileLoaderLegacyPassPass( 517 *PassRegistry::getPassRegistry()); 518 } 519 520 void dump() { SampleLoader.dump(); } 521 522 bool doInitialization(Module &M) override { 523 return SampleLoader.doInitialization(M); 524 } 525 526 StringRef getPassName() const override { return "Sample profile pass"; } 527 bool runOnModule(Module &M) override; 528 529 void getAnalysisUsage(AnalysisUsage &AU) const override { 530 AU.addRequired<AssumptionCacheTracker>(); 531 AU.addRequired<TargetTransformInfoWrapperPass>(); 532 AU.addRequired<TargetLibraryInfoWrapperPass>(); 533 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 534 } 535 536 private: 537 SampleProfileLoader SampleLoader; 538 AssumptionCacheTracker *ACT = nullptr; 539 TargetTransformInfoWrapperPass *TTIWP = nullptr; 540 TargetLibraryInfoWrapperPass *TLIWP = nullptr; 541 }; 542 543 } // end anonymous namespace 544 545 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 546 if (FunctionSamples::ProfileIsProbeBased) 547 return getProbeWeight(Inst); 548 549 const DebugLoc &DLoc = Inst.getDebugLoc(); 550 if (!DLoc) 551 return std::error_code(); 552 553 // Ignore all intrinsics, phinodes and branch instructions. 554 // Branch and phinodes instruction usually contains debug info from sources 555 // outside of the residing basic block, thus we ignore them during annotation. 556 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst)) 557 return std::error_code(); 558 559 // For non-CS profile, if a direct call/invoke instruction is inlined in 560 // profile (findCalleeFunctionSamples returns non-empty result), but not 561 // inlined here, it means that the inlined callsite has no sample, thus the 562 // call instruction should have 0 count. 563 // For CS profile, the callsite count of previously inlined callees is 564 // populated with the entry count of the callees. 565 if (!ProfileIsCS) 566 if (const auto *CB = dyn_cast<CallBase>(&Inst)) 567 if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB)) 568 return 0; 569 570 return getInstWeightImpl(Inst); 571 } 572 573 // Here use error_code to represent: 1) The dangling probe. 2) Ignore the weight 574 // of non-probe instruction. So if all instructions of the BB give error_code, 575 // tell the inference algorithm to infer the BB weight. 576 ErrorOr<uint64_t> SampleProfileLoader::getProbeWeight(const Instruction &Inst) { 577 assert(FunctionSamples::ProfileIsProbeBased && 578 "Profile is not pseudo probe based"); 579 Optional<PseudoProbe> Probe = extractProbe(Inst); 580 // Ignore the non-probe instruction. If none of the instruction in the BB is 581 // probe, we choose to infer the BB's weight. 582 if (!Probe) 583 return std::error_code(); 584 585 const FunctionSamples *FS = findFunctionSamples(Inst); 586 // If none of the instruction has FunctionSample, we choose to return zero 587 // value sample to indicate the BB is cold. This could happen when the 588 // instruction is from inlinee and no profile data is found. 589 // FIXME: This should not be affected by the source drift issue as 1) if the 590 // newly added function is top-level inliner, it won't match the CFG checksum 591 // in the function profile or 2) if it's the inlinee, the inlinee should have 592 // a profile, otherwise it wouldn't be inlined. For non-probe based profile, 593 // we can improve it by adding a switch for profile-sample-block-accurate for 594 // block level counts in the future. 595 if (!FS) 596 return 0; 597 598 // For non-CS profile, If a direct call/invoke instruction is inlined in 599 // profile (findCalleeFunctionSamples returns non-empty result), but not 600 // inlined here, it means that the inlined callsite has no sample, thus the 601 // call instruction should have 0 count. 602 // For CS profile, the callsite count of previously inlined callees is 603 // populated with the entry count of the callees. 604 if (!ProfileIsCS) 605 if (const auto *CB = dyn_cast<CallBase>(&Inst)) 606 if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB)) 607 return 0; 608 609 const ErrorOr<uint64_t> &R = FS->findSamplesAt(Probe->Id, 0); 610 if (R) { 611 uint64_t Samples = R.get() * Probe->Factor; 612 bool FirstMark = CoverageTracker.markSamplesUsed(FS, Probe->Id, 0, Samples); 613 if (FirstMark) { 614 ORE->emit([&]() { 615 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 616 Remark << "Applied " << ore::NV("NumSamples", Samples); 617 Remark << " samples from profile (ProbeId="; 618 Remark << ore::NV("ProbeId", Probe->Id); 619 Remark << ", Factor="; 620 Remark << ore::NV("Factor", Probe->Factor); 621 Remark << ", OriginalSamples="; 622 Remark << ore::NV("OriginalSamples", R.get()); 623 Remark << ")"; 624 return Remark; 625 }); 626 } 627 LLVM_DEBUG(dbgs() << " " << Probe->Id << ":" << Inst 628 << " - weight: " << R.get() << " - factor: " 629 << format("%0.2f", Probe->Factor) << ")\n"); 630 return Samples; 631 } 632 return R; 633 } 634 635 /// Get the FunctionSamples for a call instruction. 636 /// 637 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 638 /// instance in which that call instruction is calling to. It contains 639 /// all samples that resides in the inlined instance. We first find the 640 /// inlined instance in which the call instruction is from, then we 641 /// traverse its children to find the callsite with the matching 642 /// location. 643 /// 644 /// \param Inst Call/Invoke instruction to query. 645 /// 646 /// \returns The FunctionSamples pointer to the inlined instance. 647 const FunctionSamples * 648 SampleProfileLoader::findCalleeFunctionSamples(const CallBase &Inst) const { 649 const DILocation *DIL = Inst.getDebugLoc(); 650 if (!DIL) { 651 return nullptr; 652 } 653 654 StringRef CalleeName; 655 if (Function *Callee = Inst.getCalledFunction()) 656 CalleeName = Callee->getName(); 657 658 if (ProfileIsCS) 659 return ContextTracker->getCalleeContextSamplesFor(Inst, CalleeName); 660 661 const FunctionSamples *FS = findFunctionSamples(Inst); 662 if (FS == nullptr) 663 return nullptr; 664 665 return FS->findFunctionSamplesAt(FunctionSamples::getCallSiteIdentifier(DIL), 666 CalleeName, Reader->getRemapper()); 667 } 668 669 /// Returns a vector of FunctionSamples that are the indirect call targets 670 /// of \p Inst. The vector is sorted by the total number of samples. Stores 671 /// the total call count of the indirect call in \p Sum. 672 std::vector<const FunctionSamples *> 673 SampleProfileLoader::findIndirectCallFunctionSamples( 674 const Instruction &Inst, uint64_t &Sum) const { 675 const DILocation *DIL = Inst.getDebugLoc(); 676 std::vector<const FunctionSamples *> R; 677 678 if (!DIL) { 679 return R; 680 } 681 682 auto FSCompare = [](const FunctionSamples *L, const FunctionSamples *R) { 683 assert(L && R && "Expect non-null FunctionSamples"); 684 if (L->getEntrySamples() != R->getEntrySamples()) 685 return L->getEntrySamples() > R->getEntrySamples(); 686 return FunctionSamples::getGUID(L->getName()) < 687 FunctionSamples::getGUID(R->getName()); 688 }; 689 690 if (ProfileIsCS) { 691 auto CalleeSamples = 692 ContextTracker->getIndirectCalleeContextSamplesFor(DIL); 693 if (CalleeSamples.empty()) 694 return R; 695 696 // For CSSPGO, we only use target context profile's entry count 697 // as that already includes both inlined callee and non-inlined ones.. 698 Sum = 0; 699 for (const auto *const FS : CalleeSamples) { 700 Sum += FS->getEntrySamples(); 701 R.push_back(FS); 702 } 703 llvm::sort(R, FSCompare); 704 return R; 705 } 706 707 const FunctionSamples *FS = findFunctionSamples(Inst); 708 if (FS == nullptr) 709 return R; 710 711 auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL); 712 auto T = FS->findCallTargetMapAt(CallSite); 713 Sum = 0; 714 if (T) 715 for (const auto &T_C : T.get()) 716 Sum += T_C.second; 717 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(CallSite)) { 718 if (M->empty()) 719 return R; 720 for (const auto &NameFS : *M) { 721 Sum += NameFS.second.getEntrySamples(); 722 R.push_back(&NameFS.second); 723 } 724 llvm::sort(R, FSCompare); 725 } 726 return R; 727 } 728 729 const FunctionSamples * 730 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 731 if (FunctionSamples::ProfileIsProbeBased) { 732 Optional<PseudoProbe> Probe = extractProbe(Inst); 733 if (!Probe) 734 return nullptr; 735 } 736 737 const DILocation *DIL = Inst.getDebugLoc(); 738 if (!DIL) 739 return Samples; 740 741 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr); 742 if (it.second) { 743 if (ProfileIsCS) 744 it.first->second = ContextTracker->getContextSamplesFor(DIL); 745 else 746 it.first->second = 747 Samples->findFunctionSamples(DIL, Reader->getRemapper()); 748 } 749 return it.first->second; 750 } 751 752 /// Check whether the indirect call promotion history of \p Inst allows 753 /// the promotion for \p Candidate. 754 /// If the profile count for the promotion candidate \p Candidate is 755 /// NOMORE_ICP_MAGICNUM, it means \p Candidate has already been promoted 756 /// for \p Inst. If we already have at least MaxNumPromotions 757 /// NOMORE_ICP_MAGICNUM count values in the value profile of \p Inst, we 758 /// cannot promote for \p Inst anymore. 759 static bool doesHistoryAllowICP(const Instruction &Inst, StringRef Candidate) { 760 uint32_t NumVals = 0; 761 uint64_t TotalCount = 0; 762 std::unique_ptr<InstrProfValueData[]> ValueData = 763 std::make_unique<InstrProfValueData[]>(MaxNumPromotions); 764 bool Valid = 765 getValueProfDataFromInst(Inst, IPVK_IndirectCallTarget, MaxNumPromotions, 766 ValueData.get(), NumVals, TotalCount, true); 767 // No valid value profile so no promoted targets have been recorded 768 // before. Ok to do ICP. 769 if (!Valid) 770 return true; 771 772 unsigned NumPromoted = 0; 773 for (uint32_t I = 0; I < NumVals; I++) { 774 if (ValueData[I].Count != NOMORE_ICP_MAGICNUM) 775 continue; 776 777 // If the promotion candidate has NOMORE_ICP_MAGICNUM count in the 778 // metadata, it means the candidate has been promoted for this 779 // indirect call. 780 if (ValueData[I].Value == Function::getGUID(Candidate)) 781 return false; 782 NumPromoted++; 783 // If already have MaxNumPromotions promotion, don't do it anymore. 784 if (NumPromoted == MaxNumPromotions) 785 return false; 786 } 787 return true; 788 } 789 790 /// Update indirect call target profile metadata for \p Inst. 791 /// Usually \p Sum is the sum of counts of all the targets for \p Inst. 792 /// If it is 0, it means updateIDTMetaData is used to mark a 793 /// certain target to be promoted already. If it is not zero, 794 /// we expect to use it to update the total count in the value profile. 795 static void 796 updateIDTMetaData(Instruction &Inst, 797 const SmallVectorImpl<InstrProfValueData> &CallTargets, 798 uint64_t Sum) { 799 uint32_t NumVals = 0; 800 // OldSum is the existing total count in the value profile data. 801 uint64_t OldSum = 0; 802 std::unique_ptr<InstrProfValueData[]> ValueData = 803 std::make_unique<InstrProfValueData[]>(MaxNumPromotions); 804 bool Valid = 805 getValueProfDataFromInst(Inst, IPVK_IndirectCallTarget, MaxNumPromotions, 806 ValueData.get(), NumVals, OldSum, true); 807 808 DenseMap<uint64_t, uint64_t> ValueCountMap; 809 if (Sum == 0) { 810 assert((CallTargets.size() == 1 && 811 CallTargets[0].Count == NOMORE_ICP_MAGICNUM) && 812 "If sum is 0, assume only one element in CallTargets " 813 "with count being NOMORE_ICP_MAGICNUM"); 814 // Initialize ValueCountMap with existing value profile data. 815 if (Valid) { 816 for (uint32_t I = 0; I < NumVals; I++) 817 ValueCountMap[ValueData[I].Value] = ValueData[I].Count; 818 } 819 auto Pair = 820 ValueCountMap.try_emplace(CallTargets[0].Value, CallTargets[0].Count); 821 // If the target already exists in value profile, decrease the total 822 // count OldSum and reset the target's count to NOMORE_ICP_MAGICNUM. 823 if (!Pair.second) { 824 OldSum -= Pair.first->second; 825 Pair.first->second = NOMORE_ICP_MAGICNUM; 826 } 827 Sum = OldSum; 828 } else { 829 // Initialize ValueCountMap with existing NOMORE_ICP_MAGICNUM 830 // counts in the value profile. 831 if (Valid) { 832 for (uint32_t I = 0; I < NumVals; I++) { 833 if (ValueData[I].Count == NOMORE_ICP_MAGICNUM) 834 ValueCountMap[ValueData[I].Value] = ValueData[I].Count; 835 } 836 } 837 838 for (const auto &Data : CallTargets) { 839 auto Pair = ValueCountMap.try_emplace(Data.Value, Data.Count); 840 if (Pair.second) 841 continue; 842 // The target represented by Data.Value has already been promoted. 843 // Keep the count as NOMORE_ICP_MAGICNUM in the profile and decrease 844 // Sum by Data.Count. 845 assert(Sum >= Data.Count && "Sum should never be less than Data.Count"); 846 Sum -= Data.Count; 847 } 848 } 849 850 SmallVector<InstrProfValueData, 8> NewCallTargets; 851 for (const auto &ValueCount : ValueCountMap) { 852 NewCallTargets.emplace_back( 853 InstrProfValueData{ValueCount.first, ValueCount.second}); 854 } 855 856 llvm::sort(NewCallTargets, 857 [](const InstrProfValueData &L, const InstrProfValueData &R) { 858 if (L.Count != R.Count) 859 return L.Count > R.Count; 860 return L.Value > R.Value; 861 }); 862 863 uint32_t MaxMDCount = 864 std::min(NewCallTargets.size(), static_cast<size_t>(MaxNumPromotions)); 865 annotateValueSite(*Inst.getParent()->getParent()->getParent(), Inst, 866 NewCallTargets, Sum, IPVK_IndirectCallTarget, MaxMDCount); 867 } 868 869 /// Attempt to promote indirect call and also inline the promoted call. 870 /// 871 /// \param F Caller function. 872 /// \param Candidate ICP and inline candidate. 873 /// \param SumOrigin Original sum of target counts for indirect call before 874 /// promoting given candidate. 875 /// \param Sum Prorated sum of remaining target counts for indirect call 876 /// after promoting given candidate. 877 /// \param InlinedCallSite Output vector for new call sites exposed after 878 /// inlining. 879 bool SampleProfileLoader::tryPromoteAndInlineCandidate( 880 Function &F, InlineCandidate &Candidate, uint64_t SumOrigin, uint64_t &Sum, 881 SmallVector<CallBase *, 8> *InlinedCallSite) { 882 auto CalleeFunctionName = Candidate.CalleeSamples->getFuncName(); 883 auto R = SymbolMap.find(CalleeFunctionName); 884 if (R == SymbolMap.end() || !R->getValue()) 885 return false; 886 887 auto &CI = *Candidate.CallInstr; 888 if (!doesHistoryAllowICP(CI, R->getValue()->getName())) 889 return false; 890 891 const char *Reason = "Callee function not available"; 892 // R->getValue() != &F is to prevent promoting a recursive call. 893 // If it is a recursive call, we do not inline it as it could bloat 894 // the code exponentially. There is way to better handle this, e.g. 895 // clone the caller first, and inline the cloned caller if it is 896 // recursive. As llvm does not inline recursive calls, we will 897 // simply ignore it instead of handling it explicitly. 898 if (!R->getValue()->isDeclaration() && R->getValue()->getSubprogram() && 899 R->getValue()->hasFnAttribute("use-sample-profile") && 900 R->getValue() != &F && isLegalToPromote(CI, R->getValue(), &Reason)) { 901 // For promoted target, set its value with NOMORE_ICP_MAGICNUM count 902 // in the value profile metadata so the target won't be promoted again. 903 SmallVector<InstrProfValueData, 1> SortedCallTargets = {InstrProfValueData{ 904 Function::getGUID(R->getValue()->getName()), NOMORE_ICP_MAGICNUM}}; 905 updateIDTMetaData(CI, SortedCallTargets, 0); 906 907 auto *DI = &pgo::promoteIndirectCall( 908 CI, R->getValue(), Candidate.CallsiteCount, Sum, false, ORE); 909 if (DI) { 910 Sum -= Candidate.CallsiteCount; 911 // Do not prorate the indirect callsite distribution since the original 912 // distribution will be used to scale down non-promoted profile target 913 // counts later. By doing this we lose track of the real callsite count 914 // for the leftover indirect callsite as a trade off for accurate call 915 // target counts. 916 // TODO: Ideally we would have two separate factors, one for call site 917 // counts and one is used to prorate call target counts. 918 // Do not update the promoted direct callsite distribution at this 919 // point since the original distribution combined with the callee profile 920 // will be used to prorate callsites from the callee if inlined. Once not 921 // inlined, the direct callsite distribution should be prorated so that 922 // the it will reflect the real callsite counts. 923 Candidate.CallInstr = DI; 924 if (isa<CallInst>(DI) || isa<InvokeInst>(DI)) { 925 bool Inlined = tryInlineCandidate(Candidate, InlinedCallSite); 926 if (!Inlined) { 927 // Prorate the direct callsite distribution so that it reflects real 928 // callsite counts. 929 setProbeDistributionFactor( 930 *DI, static_cast<float>(Candidate.CallsiteCount) / SumOrigin); 931 } 932 return Inlined; 933 } 934 } 935 } else { 936 LLVM_DEBUG(dbgs() << "\nFailed to promote indirect call to " 937 << Candidate.CalleeSamples->getFuncName() << " because " 938 << Reason << "\n"); 939 } 940 return false; 941 } 942 943 bool SampleProfileLoader::shouldInlineColdCallee(CallBase &CallInst) { 944 if (!ProfileSizeInline) 945 return false; 946 947 Function *Callee = CallInst.getCalledFunction(); 948 if (Callee == nullptr) 949 return false; 950 951 InlineCost Cost = getInlineCost(CallInst, getInlineParams(), GetTTI(*Callee), 952 GetAC, GetTLI); 953 954 if (Cost.isNever()) 955 return false; 956 957 if (Cost.isAlways()) 958 return true; 959 960 return Cost.getCost() <= SampleColdCallSiteThreshold; 961 } 962 963 void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates( 964 const SmallVectorImpl<CallBase *> &Candidates, const Function &F, 965 bool Hot) { 966 for (auto I : Candidates) { 967 Function *CalledFunction = I->getCalledFunction(); 968 if (CalledFunction) { 969 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt", 970 I->getDebugLoc(), I->getParent()) 971 << "previous inlining reattempted for " 972 << (Hot ? "hotness: '" : "size: '") 973 << ore::NV("Callee", CalledFunction) << "' into '" 974 << ore::NV("Caller", &F) << "'"); 975 } 976 } 977 } 978 979 void SampleProfileLoader::findExternalInlineCandidate( 980 const FunctionSamples *Samples, DenseSet<GlobalValue::GUID> &InlinedGUIDs, 981 const StringMap<Function *> &SymbolMap, uint64_t Threshold) { 982 assert(Samples && "expect non-null caller profile"); 983 984 // For AutoFDO profile, retrieve candidate profiles by walking over 985 // the nested inlinee profiles. 986 if (!ProfileIsCS) { 987 Samples->findInlinedFunctions(InlinedGUIDs, SymbolMap, Threshold); 988 return; 989 } 990 991 ContextTrieNode *Caller = 992 ContextTracker->getContextFor(Samples->getContext()); 993 std::queue<ContextTrieNode *> CalleeList; 994 CalleeList.push(Caller); 995 while (!CalleeList.empty()) { 996 ContextTrieNode *Node = CalleeList.front(); 997 CalleeList.pop(); 998 FunctionSamples *CalleeSample = Node->getFunctionSamples(); 999 // For CSSPGO profile, retrieve candidate profile by walking over the 1000 // trie built for context profile. Note that also take call targets 1001 // even if callee doesn't have a corresponding context profile. 1002 if (!CalleeSample) 1003 continue; 1004 1005 // If pre-inliner decision is used, honor that for importing as well. 1006 bool PreInline = 1007 UsePreInlinerDecision && 1008 CalleeSample->getContext().hasAttribute(ContextShouldBeInlined); 1009 if (!PreInline && CalleeSample->getEntrySamples() < Threshold) 1010 continue; 1011 1012 StringRef Name = CalleeSample->getFuncName(); 1013 Function *Func = SymbolMap.lookup(Name); 1014 // Add to the import list only when it's defined out of module. 1015 if (!Func || Func->isDeclaration()) 1016 InlinedGUIDs.insert(FunctionSamples::getGUID(CalleeSample->getName())); 1017 1018 // Import hot CallTargets, which may not be available in IR because full 1019 // profile annotation cannot be done until backend compilation in ThinLTO. 1020 for (const auto &BS : CalleeSample->getBodySamples()) 1021 for (const auto &TS : BS.second.getCallTargets()) 1022 if (TS.getValue() > Threshold) { 1023 StringRef CalleeName = CalleeSample->getFuncName(TS.getKey()); 1024 const Function *Callee = SymbolMap.lookup(CalleeName); 1025 if (!Callee || Callee->isDeclaration()) 1026 InlinedGUIDs.insert(FunctionSamples::getGUID(TS.getKey())); 1027 } 1028 1029 // Import hot child context profile associted with callees. Note that this 1030 // may have some overlap with the call target loop above, but doing this 1031 // based child context profile again effectively allow us to use the max of 1032 // entry count and call target count to determine importing. 1033 for (auto &Child : Node->getAllChildContext()) { 1034 ContextTrieNode *CalleeNode = &Child.second; 1035 CalleeList.push(CalleeNode); 1036 } 1037 } 1038 } 1039 1040 /// Iteratively inline hot callsites of a function. 1041 /// 1042 /// Iteratively traverse all callsites of the function \p F, and find if 1043 /// the corresponding inlined instance exists and is hot in profile. If 1044 /// it is hot enough, inline the callsites and adds new callsites of the 1045 /// callee into the caller. If the call is an indirect call, first promote 1046 /// it to direct call. Each indirect call is limited with a single target. 1047 /// 1048 /// \param F function to perform iterative inlining. 1049 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 1050 /// inlined in the profiled binary. 1051 /// 1052 /// \returns True if there is any inline happened. 1053 bool SampleProfileLoader::inlineHotFunctions( 1054 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 1055 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure 1056 // Profile symbol list is ignored when profile-sample-accurate is on. 1057 assert((!ProfAccForSymsInList || 1058 (!ProfileSampleAccurate && 1059 !F.hasFnAttribute("profile-sample-accurate"))) && 1060 "ProfAccForSymsInList should be false when profile-sample-accurate " 1061 "is enabled"); 1062 1063 DenseMap<CallBase *, const FunctionSamples *> LocalNotInlinedCallSites; 1064 bool Changed = false; 1065 bool LocalChanged = true; 1066 while (LocalChanged) { 1067 LocalChanged = false; 1068 SmallVector<CallBase *, 10> CIS; 1069 for (auto &BB : F) { 1070 bool Hot = false; 1071 SmallVector<CallBase *, 10> AllCandidates; 1072 SmallVector<CallBase *, 10> ColdCandidates; 1073 for (auto &I : BB.getInstList()) { 1074 const FunctionSamples *FS = nullptr; 1075 if (auto *CB = dyn_cast<CallBase>(&I)) { 1076 if (!isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(*CB))) { 1077 assert((!FunctionSamples::UseMD5 || FS->GUIDToFuncNameMap) && 1078 "GUIDToFuncNameMap has to be populated"); 1079 AllCandidates.push_back(CB); 1080 if (FS->getEntrySamples() > 0 || ProfileIsCS) 1081 LocalNotInlinedCallSites.try_emplace(CB, FS); 1082 if (callsiteIsHot(FS, PSI, ProfAccForSymsInList)) 1083 Hot = true; 1084 else if (shouldInlineColdCallee(*CB)) 1085 ColdCandidates.push_back(CB); 1086 } 1087 } 1088 } 1089 if (Hot || ExternalInlineAdvisor) { 1090 CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end()); 1091 emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true); 1092 } else { 1093 CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end()); 1094 emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false); 1095 } 1096 } 1097 for (CallBase *I : CIS) { 1098 Function *CalledFunction = I->getCalledFunction(); 1099 InlineCandidate Candidate = { 1100 I, 1101 LocalNotInlinedCallSites.count(I) ? LocalNotInlinedCallSites[I] 1102 : nullptr, 1103 0 /* dummy count */, 1.0 /* dummy distribution factor */}; 1104 // Do not inline recursive calls. 1105 if (CalledFunction == &F) 1106 continue; 1107 if (I->isIndirectCall()) { 1108 uint64_t Sum; 1109 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 1110 uint64_t SumOrigin = Sum; 1111 if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { 1112 findExternalInlineCandidate(FS, InlinedGUIDs, SymbolMap, 1113 PSI->getOrCompHotCountThreshold()); 1114 continue; 1115 } 1116 if (!callsiteIsHot(FS, PSI, ProfAccForSymsInList)) 1117 continue; 1118 1119 Candidate = {I, FS, FS->getEntrySamples(), 1.0}; 1120 if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum)) { 1121 LocalNotInlinedCallSites.erase(I); 1122 LocalChanged = true; 1123 } 1124 } 1125 } else if (CalledFunction && CalledFunction->getSubprogram() && 1126 !CalledFunction->isDeclaration()) { 1127 if (tryInlineCandidate(Candidate)) { 1128 LocalNotInlinedCallSites.erase(I); 1129 LocalChanged = true; 1130 } 1131 } else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { 1132 findExternalInlineCandidate(findCalleeFunctionSamples(*I), InlinedGUIDs, 1133 SymbolMap, 1134 PSI->getOrCompHotCountThreshold()); 1135 } 1136 } 1137 Changed |= LocalChanged; 1138 } 1139 1140 // For CS profile, profile for not inlined context will be merged when 1141 // base profile is being trieved 1142 if (ProfileIsCS) 1143 return Changed; 1144 1145 // Accumulate not inlined callsite information into notInlinedSamples 1146 for (const auto &Pair : LocalNotInlinedCallSites) { 1147 CallBase *I = Pair.getFirst(); 1148 Function *Callee = I->getCalledFunction(); 1149 if (!Callee || Callee->isDeclaration()) 1150 continue; 1151 1152 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline", 1153 I->getDebugLoc(), I->getParent()) 1154 << "previous inlining not repeated: '" 1155 << ore::NV("Callee", Callee) << "' into '" 1156 << ore::NV("Caller", &F) << "'"); 1157 1158 ++NumCSNotInlined; 1159 const FunctionSamples *FS = Pair.getSecond(); 1160 if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) { 1161 continue; 1162 } 1163 1164 if (ProfileMergeInlinee) { 1165 // A function call can be replicated by optimizations like callsite 1166 // splitting or jump threading and the replicates end up sharing the 1167 // sample nested callee profile instead of slicing the original inlinee's 1168 // profile. We want to do merge exactly once by filtering out callee 1169 // profiles with a non-zero head sample count. 1170 if (FS->getHeadSamples() == 0) { 1171 // Use entry samples as head samples during the merge, as inlinees 1172 // don't have head samples. 1173 const_cast<FunctionSamples *>(FS)->addHeadSamples( 1174 FS->getEntrySamples()); 1175 1176 // Note that we have to do the merge right after processing function. 1177 // This allows OutlineFS's profile to be used for annotation during 1178 // top-down processing of functions' annotation. 1179 FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee); 1180 OutlineFS->merge(*FS); 1181 } 1182 } else { 1183 auto pair = 1184 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0}); 1185 pair.first->second.entryCount += FS->getEntrySamples(); 1186 } 1187 } 1188 return Changed; 1189 } 1190 1191 bool SampleProfileLoader::tryInlineCandidate( 1192 InlineCandidate &Candidate, SmallVector<CallBase *, 8> *InlinedCallSites) { 1193 1194 CallBase &CB = *Candidate.CallInstr; 1195 Function *CalledFunction = CB.getCalledFunction(); 1196 assert(CalledFunction && "Expect a callee with definition"); 1197 DebugLoc DLoc = CB.getDebugLoc(); 1198 BasicBlock *BB = CB.getParent(); 1199 1200 InlineCost Cost = shouldInlineCandidate(Candidate); 1201 if (Cost.isNever()) { 1202 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB) 1203 << "incompatible inlining"); 1204 return false; 1205 } 1206 1207 if (!Cost) 1208 return false; 1209 1210 InlineFunctionInfo IFI(nullptr, GetAC); 1211 IFI.UpdateProfile = false; 1212 if (InlineFunction(CB, IFI).isSuccess()) { 1213 // Merge the attributes based on the inlining. 1214 AttributeFuncs::mergeAttributesForInlining(*BB->getParent(), 1215 *CalledFunction); 1216 1217 // The call to InlineFunction erases I, so we can't pass it here. 1218 emitInlinedIntoBasedOnCost(*ORE, DLoc, BB, *CalledFunction, 1219 *BB->getParent(), Cost, true, CSINLINE_DEBUG); 1220 1221 // Now populate the list of newly exposed call sites. 1222 if (InlinedCallSites) { 1223 InlinedCallSites->clear(); 1224 for (auto &I : IFI.InlinedCallSites) 1225 InlinedCallSites->push_back(I); 1226 } 1227 1228 if (ProfileIsCS) 1229 ContextTracker->markContextSamplesInlined(Candidate.CalleeSamples); 1230 ++NumCSInlined; 1231 1232 // Prorate inlined probes for a duplicated inlining callsite which probably 1233 // has a distribution less than 100%. Samples for an inlinee should be 1234 // distributed among the copies of the original callsite based on each 1235 // callsite's distribution factor for counts accuracy. Note that an inlined 1236 // probe may come with its own distribution factor if it has been duplicated 1237 // in the inlinee body. The two factor are multiplied to reflect the 1238 // aggregation of duplication. 1239 if (Candidate.CallsiteDistribution < 1) { 1240 for (auto &I : IFI.InlinedCallSites) { 1241 if (Optional<PseudoProbe> Probe = extractProbe(*I)) 1242 setProbeDistributionFactor(*I, Probe->Factor * 1243 Candidate.CallsiteDistribution); 1244 } 1245 NumDuplicatedInlinesite++; 1246 } 1247 1248 return true; 1249 } 1250 return false; 1251 } 1252 1253 bool SampleProfileLoader::getInlineCandidate(InlineCandidate *NewCandidate, 1254 CallBase *CB) { 1255 assert(CB && "Expect non-null call instruction"); 1256 1257 if (isa<IntrinsicInst>(CB)) 1258 return false; 1259 1260 // Find the callee's profile. For indirect call, find hottest target profile. 1261 const FunctionSamples *CalleeSamples = findCalleeFunctionSamples(*CB); 1262 if (!CalleeSamples) 1263 return false; 1264 1265 float Factor = 1.0; 1266 if (Optional<PseudoProbe> Probe = extractProbe(*CB)) 1267 Factor = Probe->Factor; 1268 1269 uint64_t CallsiteCount = 0; 1270 ErrorOr<uint64_t> Weight = getBlockWeight(CB->getParent()); 1271 if (Weight) 1272 CallsiteCount = Weight.get(); 1273 if (CalleeSamples) 1274 CallsiteCount = std::max( 1275 CallsiteCount, uint64_t(CalleeSamples->getEntrySamples() * Factor)); 1276 1277 *NewCandidate = {CB, CalleeSamples, CallsiteCount, Factor}; 1278 return true; 1279 } 1280 1281 InlineCost 1282 SampleProfileLoader::shouldInlineCandidate(InlineCandidate &Candidate) { 1283 std::unique_ptr<InlineAdvice> Advice = nullptr; 1284 if (ExternalInlineAdvisor) { 1285 Advice = ExternalInlineAdvisor->getAdvice(*Candidate.CallInstr); 1286 if (Advice) { 1287 if (!Advice->isInliningRecommended()) { 1288 Advice->recordUnattemptedInlining(); 1289 return InlineCost::getNever("not previously inlined"); 1290 } 1291 Advice->recordInlining(); 1292 return InlineCost::getAlways("previously inlined"); 1293 } 1294 } 1295 1296 // Adjust threshold based on call site hotness, only do this for callsite 1297 // prioritized inliner because otherwise cost-benefit check is done earlier. 1298 int SampleThreshold = SampleColdCallSiteThreshold; 1299 if (CallsitePrioritizedInline) { 1300 if (Candidate.CallsiteCount > PSI->getHotCountThreshold()) 1301 SampleThreshold = SampleHotCallSiteThreshold; 1302 else if (!ProfileSizeInline) 1303 return InlineCost::getNever("cold callsite"); 1304 } 1305 1306 Function *Callee = Candidate.CallInstr->getCalledFunction(); 1307 assert(Callee && "Expect a definition for inline candidate of direct call"); 1308 1309 InlineParams Params = getInlineParams(); 1310 // We will ignore the threshold from inline cost, so always get full cost. 1311 Params.ComputeFullInlineCost = true; 1312 Params.AllowRecursiveCall = AllowRecursiveInline; 1313 // Checks if there is anything in the reachable portion of the callee at 1314 // this callsite that makes this inlining potentially illegal. Need to 1315 // set ComputeFullInlineCost, otherwise getInlineCost may return early 1316 // when cost exceeds threshold without checking all IRs in the callee. 1317 // The acutal cost does not matter because we only checks isNever() to 1318 // see if it is legal to inline the callsite. 1319 InlineCost Cost = getInlineCost(*Candidate.CallInstr, Callee, Params, 1320 GetTTI(*Callee), GetAC, GetTLI); 1321 1322 // Honor always inline and never inline from call analyzer 1323 if (Cost.isNever() || Cost.isAlways()) 1324 return Cost; 1325 1326 // With CSSPGO, the preinliner in llvm-profgen can estimate global inline 1327 // decisions based on hotness as well as accurate function byte sizes for 1328 // given context using function/inlinee sizes from previous build. It 1329 // stores the decision in profile, and also adjust/merge context profile 1330 // aiming at better context-sensitive post-inline profile quality, assuming 1331 // all inline decision estimates are going to be honored by compiler. Here 1332 // we replay that inline decision under `sample-profile-use-preinliner`. 1333 // Note that we don't need to handle negative decision from preinliner as 1334 // context profile for not inlined calls are merged by preinliner already. 1335 if (UsePreInlinerDecision && Candidate.CalleeSamples) { 1336 // Once two node are merged due to promotion, we're losing some context 1337 // so the original context-sensitive preinliner decision should be ignored 1338 // for SyntheticContext. 1339 SampleContext &Context = Candidate.CalleeSamples->getContext(); 1340 if (!Context.hasState(SyntheticContext) && 1341 Context.hasAttribute(ContextShouldBeInlined)) 1342 return InlineCost::getAlways("preinliner"); 1343 } 1344 1345 // For old FDO inliner, we inline the call site as long as cost is not 1346 // "Never". The cost-benefit check is done earlier. 1347 if (!CallsitePrioritizedInline) { 1348 return InlineCost::get(Cost.getCost(), INT_MAX); 1349 } 1350 1351 // Otherwise only use the cost from call analyzer, but overwite threshold with 1352 // Sample PGO threshold. 1353 return InlineCost::get(Cost.getCost(), SampleThreshold); 1354 } 1355 1356 bool SampleProfileLoader::inlineHotFunctionsWithPriority( 1357 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 1358 assert(ProfileIsCS && "Prioritiy based inliner only works with CSSPGO now"); 1359 1360 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure 1361 // Profile symbol list is ignored when profile-sample-accurate is on. 1362 assert((!ProfAccForSymsInList || 1363 (!ProfileSampleAccurate && 1364 !F.hasFnAttribute("profile-sample-accurate"))) && 1365 "ProfAccForSymsInList should be false when profile-sample-accurate " 1366 "is enabled"); 1367 1368 // Populating worklist with initial call sites from root inliner, along 1369 // with call site weights. 1370 CandidateQueue CQueue; 1371 InlineCandidate NewCandidate; 1372 for (auto &BB : F) { 1373 for (auto &I : BB.getInstList()) { 1374 auto *CB = dyn_cast<CallBase>(&I); 1375 if (!CB) 1376 continue; 1377 if (getInlineCandidate(&NewCandidate, CB)) 1378 CQueue.push(NewCandidate); 1379 } 1380 } 1381 1382 // Cap the size growth from profile guided inlining. This is needed even 1383 // though cost of each inline candidate already accounts for callee size, 1384 // because with top-down inlining, we can grow inliner size significantly 1385 // with large number of smaller inlinees each pass the cost check. 1386 assert(ProfileInlineLimitMax >= ProfileInlineLimitMin && 1387 "Max inline size limit should not be smaller than min inline size " 1388 "limit."); 1389 unsigned SizeLimit = F.getInstructionCount() * ProfileInlineGrowthLimit; 1390 SizeLimit = std::min(SizeLimit, (unsigned)ProfileInlineLimitMax); 1391 SizeLimit = std::max(SizeLimit, (unsigned)ProfileInlineLimitMin); 1392 if (ExternalInlineAdvisor) 1393 SizeLimit = std::numeric_limits<unsigned>::max(); 1394 1395 // Perform iterative BFS call site prioritized inlining 1396 bool Changed = false; 1397 while (!CQueue.empty() && F.getInstructionCount() < SizeLimit) { 1398 InlineCandidate Candidate = CQueue.top(); 1399 CQueue.pop(); 1400 CallBase *I = Candidate.CallInstr; 1401 Function *CalledFunction = I->getCalledFunction(); 1402 1403 if (CalledFunction == &F) 1404 continue; 1405 if (I->isIndirectCall()) { 1406 uint64_t Sum = 0; 1407 auto CalleeSamples = findIndirectCallFunctionSamples(*I, Sum); 1408 uint64_t SumOrigin = Sum; 1409 Sum *= Candidate.CallsiteDistribution; 1410 unsigned ICPCount = 0; 1411 for (const auto *FS : CalleeSamples) { 1412 // TODO: Consider disable pre-lTO ICP for MonoLTO as well 1413 if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { 1414 findExternalInlineCandidate(FS, InlinedGUIDs, SymbolMap, 1415 PSI->getOrCompHotCountThreshold()); 1416 continue; 1417 } 1418 uint64_t EntryCountDistributed = 1419 FS->getEntrySamples() * Candidate.CallsiteDistribution; 1420 // In addition to regular inline cost check, we also need to make sure 1421 // ICP isn't introducing excessive speculative checks even if individual 1422 // target looks beneficial to promote and inline. That means we should 1423 // only do ICP when there's a small number dominant targets. 1424 if (ICPCount >= ProfileICPRelativeHotnessSkip && 1425 EntryCountDistributed * 100 < SumOrigin * ProfileICPRelativeHotness) 1426 break; 1427 // TODO: Fix CallAnalyzer to handle all indirect calls. 1428 // For indirect call, we don't run CallAnalyzer to get InlineCost 1429 // before actual inlining. This is because we could see two different 1430 // types from the same definition, which makes CallAnalyzer choke as 1431 // it's expecting matching parameter type on both caller and callee 1432 // side. See example from PR18962 for the triggering cases (the bug was 1433 // fixed, but we generate different types). 1434 if (!PSI->isHotCount(EntryCountDistributed)) 1435 break; 1436 SmallVector<CallBase *, 8> InlinedCallSites; 1437 // Attach function profile for promoted indirect callee, and update 1438 // call site count for the promoted inline candidate too. 1439 Candidate = {I, FS, EntryCountDistributed, 1440 Candidate.CallsiteDistribution}; 1441 if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum, 1442 &InlinedCallSites)) { 1443 for (auto *CB : InlinedCallSites) { 1444 if (getInlineCandidate(&NewCandidate, CB)) 1445 CQueue.emplace(NewCandidate); 1446 } 1447 ICPCount++; 1448 Changed = true; 1449 } 1450 } 1451 } else if (CalledFunction && CalledFunction->getSubprogram() && 1452 !CalledFunction->isDeclaration()) { 1453 SmallVector<CallBase *, 8> InlinedCallSites; 1454 if (tryInlineCandidate(Candidate, &InlinedCallSites)) { 1455 for (auto *CB : InlinedCallSites) { 1456 if (getInlineCandidate(&NewCandidate, CB)) 1457 CQueue.emplace(NewCandidate); 1458 } 1459 Changed = true; 1460 } 1461 } else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { 1462 findExternalInlineCandidate(Candidate.CalleeSamples, InlinedGUIDs, 1463 SymbolMap, PSI->getOrCompHotCountThreshold()); 1464 } 1465 } 1466 1467 if (!CQueue.empty()) { 1468 if (SizeLimit == (unsigned)ProfileInlineLimitMax) 1469 ++NumCSInlinedHitMaxLimit; 1470 else if (SizeLimit == (unsigned)ProfileInlineLimitMin) 1471 ++NumCSInlinedHitMinLimit; 1472 else 1473 ++NumCSInlinedHitGrowthLimit; 1474 } 1475 1476 return Changed; 1477 } 1478 1479 /// Returns the sorted CallTargetMap \p M by count in descending order. 1480 static SmallVector<InstrProfValueData, 2> 1481 GetSortedValueDataFromCallTargets(const SampleRecord::CallTargetMap &M) { 1482 SmallVector<InstrProfValueData, 2> R; 1483 for (const auto &I : SampleRecord::SortCallTargets(M)) { 1484 R.emplace_back( 1485 InstrProfValueData{FunctionSamples::getGUID(I.first), I.second}); 1486 } 1487 return R; 1488 } 1489 1490 // Generate MD_prof metadata for every branch instruction using the 1491 // edge weights computed during propagation. 1492 void SampleProfileLoader::generateMDProfMetadata(Function &F) { 1493 // Generate MD_prof metadata for every branch instruction using the 1494 // edge weights computed during propagation. 1495 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1496 LLVMContext &Ctx = F.getContext(); 1497 MDBuilder MDB(Ctx); 1498 for (auto &BI : F) { 1499 BasicBlock *BB = &BI; 1500 1501 if (BlockWeights[BB]) { 1502 for (auto &I : BB->getInstList()) { 1503 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1504 continue; 1505 if (!cast<CallBase>(I).getCalledFunction()) { 1506 const DebugLoc &DLoc = I.getDebugLoc(); 1507 if (!DLoc) 1508 continue; 1509 const DILocation *DIL = DLoc; 1510 const FunctionSamples *FS = findFunctionSamples(I); 1511 if (!FS) 1512 continue; 1513 auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL); 1514 auto T = FS->findCallTargetMapAt(CallSite); 1515 if (!T || T.get().empty()) 1516 continue; 1517 if (FunctionSamples::ProfileIsProbeBased) { 1518 // Prorate the callsite counts based on the pre-ICP distribution 1519 // factor to reflect what is already done to the callsite before 1520 // ICP, such as calliste cloning. 1521 if (Optional<PseudoProbe> Probe = extractProbe(I)) { 1522 if (Probe->Factor < 1) 1523 T = SampleRecord::adjustCallTargets(T.get(), Probe->Factor); 1524 } 1525 } 1526 SmallVector<InstrProfValueData, 2> SortedCallTargets = 1527 GetSortedValueDataFromCallTargets(T.get()); 1528 uint64_t Sum = 0; 1529 for (const auto &C : T.get()) 1530 Sum += C.second; 1531 // With CSSPGO all indirect call targets are counted torwards the 1532 // original indirect call site in the profile, including both 1533 // inlined and non-inlined targets. 1534 if (!FunctionSamples::ProfileIsCS) { 1535 if (const FunctionSamplesMap *M = 1536 FS->findFunctionSamplesMapAt(CallSite)) { 1537 for (const auto &NameFS : *M) 1538 Sum += NameFS.second.getEntrySamples(); 1539 } 1540 } 1541 if (Sum) 1542 updateIDTMetaData(I, SortedCallTargets, Sum); 1543 else if (OverwriteExistingWeights) 1544 I.setMetadata(LLVMContext::MD_prof, nullptr); 1545 } else if (!isa<IntrinsicInst>(&I)) { 1546 I.setMetadata(LLVMContext::MD_prof, 1547 MDB.createBranchWeights( 1548 {static_cast<uint32_t>(BlockWeights[BB])})); 1549 } 1550 } 1551 } else if (OverwriteExistingWeights || ProfileSampleBlockAccurate) { 1552 // Set profile metadata (possibly annotated by LTO prelink) to zero or 1553 // clear it for cold code. 1554 for (auto &I : BB->getInstList()) { 1555 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 1556 if (cast<CallBase>(I).isIndirectCall()) 1557 I.setMetadata(LLVMContext::MD_prof, nullptr); 1558 else 1559 I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(0)); 1560 } 1561 } 1562 } 1563 1564 Instruction *TI = BB->getTerminator(); 1565 if (TI->getNumSuccessors() == 1) 1566 continue; 1567 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI) && 1568 !isa<IndirectBrInst>(TI)) 1569 continue; 1570 1571 DebugLoc BranchLoc = TI->getDebugLoc(); 1572 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " 1573 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1574 : Twine("<UNKNOWN LOCATION>")) 1575 << ".\n"); 1576 SmallVector<uint32_t, 4> Weights; 1577 uint32_t MaxWeight = 0; 1578 Instruction *MaxDestInst; 1579 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1580 BasicBlock *Succ = TI->getSuccessor(I); 1581 Edge E = std::make_pair(BB, Succ); 1582 uint64_t Weight = EdgeWeights[E]; 1583 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1584 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1585 // if needed. Sample counts in profiles are 64-bit unsigned values, 1586 // but internally branch weights are expressed as 32-bit values. 1587 if (Weight > std::numeric_limits<uint32_t>::max()) { 1588 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1589 Weight = std::numeric_limits<uint32_t>::max(); 1590 } 1591 // Weight is added by one to avoid propagation errors introduced by 1592 // 0 weights. 1593 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1594 if (Weight != 0) { 1595 if (Weight > MaxWeight) { 1596 MaxWeight = Weight; 1597 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1598 } 1599 } 1600 } 1601 1602 uint64_t TempWeight; 1603 // Only set weights if there is at least one non-zero weight. 1604 // In any other case, let the analyzer set weights. 1605 // Do not set weights if the weights are present unless under 1606 // OverwriteExistingWeights. In ThinLTO, the profile annotation is done 1607 // twice. If the first annotation already set the weights, the second pass 1608 // does not need to set it. With OverwriteExistingWeights, Blocks with zero 1609 // weight should have their existing metadata (possibly annotated by LTO 1610 // prelink) cleared. 1611 if (MaxWeight > 0 && 1612 (!TI->extractProfTotalWeight(TempWeight) || OverwriteExistingWeights)) { 1613 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1614 TI->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); 1615 ORE->emit([&]() { 1616 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1617 << "most popular destination for conditional branches at " 1618 << ore::NV("CondBranchesLoc", BranchLoc); 1619 }); 1620 } else { 1621 if (OverwriteExistingWeights) { 1622 TI->setMetadata(LLVMContext::MD_prof, nullptr); 1623 LLVM_DEBUG(dbgs() << "CLEARED. All branch weights are zero.\n"); 1624 } else { 1625 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1626 } 1627 } 1628 } 1629 } 1630 1631 /// Once all the branch weights are computed, we emit the MD_prof 1632 /// metadata on BB using the computed values for each of its branches. 1633 /// 1634 /// \param F The function to query. 1635 /// 1636 /// \returns true if \p F was modified. Returns false, otherwise. 1637 bool SampleProfileLoader::emitAnnotations(Function &F) { 1638 bool Changed = false; 1639 1640 if (FunctionSamples::ProfileIsProbeBased) { 1641 if (!ProbeManager->profileIsValid(F, *Samples)) { 1642 LLVM_DEBUG( 1643 dbgs() << "Profile is invalid due to CFG mismatch for Function " 1644 << F.getName()); 1645 ++NumMismatchedProfile; 1646 return false; 1647 } 1648 ++NumMatchedProfile; 1649 } else { 1650 if (getFunctionLoc(F) == 0) 1651 return false; 1652 1653 LLVM_DEBUG(dbgs() << "Line number for the first instruction in " 1654 << F.getName() << ": " << getFunctionLoc(F) << "\n"); 1655 } 1656 1657 DenseSet<GlobalValue::GUID> InlinedGUIDs; 1658 if (ProfileIsCS && CallsitePrioritizedInline) 1659 Changed |= inlineHotFunctionsWithPriority(F, InlinedGUIDs); 1660 else 1661 Changed |= inlineHotFunctions(F, InlinedGUIDs); 1662 1663 Changed |= computeAndPropagateWeights(F, InlinedGUIDs); 1664 1665 if (Changed) 1666 generateMDProfMetadata(F); 1667 1668 emitCoverageRemarks(F); 1669 return Changed; 1670 } 1671 1672 char SampleProfileLoaderLegacyPass::ID = 0; 1673 1674 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1675 "Sample Profile loader", false, false) 1676 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1677 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1678 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1679 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1680 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1681 "Sample Profile loader", false, false) 1682 1683 std::unique_ptr<ProfiledCallGraph> 1684 SampleProfileLoader::buildProfiledCallGraph(CallGraph &CG) { 1685 std::unique_ptr<ProfiledCallGraph> ProfiledCG; 1686 if (ProfileIsCS) 1687 ProfiledCG = std::make_unique<ProfiledCallGraph>(*ContextTracker); 1688 else 1689 ProfiledCG = std::make_unique<ProfiledCallGraph>(Reader->getProfiles()); 1690 1691 // Add all functions into the profiled call graph even if they are not in 1692 // the profile. This makes sure functions missing from the profile still 1693 // gets a chance to be processed. 1694 for (auto &Node : CG) { 1695 const auto *F = Node.first; 1696 if (!F || F->isDeclaration() || !F->hasFnAttribute("use-sample-profile")) 1697 continue; 1698 ProfiledCG->addProfiledFunction(FunctionSamples::getCanonicalFnName(*F)); 1699 } 1700 1701 return ProfiledCG; 1702 } 1703 1704 std::vector<Function *> 1705 SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) { 1706 std::vector<Function *> FunctionOrderList; 1707 FunctionOrderList.reserve(M.size()); 1708 1709 if (!ProfileTopDownLoad && UseProfiledCallGraph) 1710 errs() << "WARNING: -use-profiled-call-graph ignored, should be used " 1711 "together with -sample-profile-top-down-load.\n"; 1712 1713 if (!ProfileTopDownLoad || CG == nullptr) { 1714 if (ProfileMergeInlinee) { 1715 // Disable ProfileMergeInlinee if profile is not loaded in top down order, 1716 // because the profile for a function may be used for the profile 1717 // annotation of its outline copy before the profile merging of its 1718 // non-inlined inline instances, and that is not the way how 1719 // ProfileMergeInlinee is supposed to work. 1720 ProfileMergeInlinee = false; 1721 } 1722 1723 for (Function &F : M) 1724 if (!F.isDeclaration() && F.hasFnAttribute("use-sample-profile")) 1725 FunctionOrderList.push_back(&F); 1726 return FunctionOrderList; 1727 } 1728 1729 assert(&CG->getModule() == &M); 1730 1731 if (UseProfiledCallGraph || 1732 (ProfileIsCS && !UseProfiledCallGraph.getNumOccurrences())) { 1733 // Use profiled call edges to augment the top-down order. There are cases 1734 // that the top-down order computed based on the static call graph doesn't 1735 // reflect real execution order. For example 1736 // 1737 // 1. Incomplete static call graph due to unknown indirect call targets. 1738 // Adjusting the order by considering indirect call edges from the 1739 // profile can enable the inlining of indirect call targets by allowing 1740 // the caller processed before them. 1741 // 2. Mutual call edges in an SCC. The static processing order computed for 1742 // an SCC may not reflect the call contexts in the context-sensitive 1743 // profile, thus may cause potential inlining to be overlooked. The 1744 // function order in one SCC is being adjusted to a top-down order based 1745 // on the profile to favor more inlining. This is only a problem with CS 1746 // profile. 1747 // 3. Transitive indirect call edges due to inlining. When a callee function 1748 // (say B) is inlined into into a caller function (say A) in LTO prelink, 1749 // every call edge originated from the callee B will be transferred to 1750 // the caller A. If any transferred edge (say A->C) is indirect, the 1751 // original profiled indirect edge B->C, even if considered, would not 1752 // enforce a top-down order from the caller A to the potential indirect 1753 // call target C in LTO postlink since the inlined callee B is gone from 1754 // the static call graph. 1755 // 4. #3 can happen even for direct call targets, due to functions defined 1756 // in header files. A header function (say A), when included into source 1757 // files, is defined multiple times but only one definition survives due 1758 // to ODR. Therefore, the LTO prelink inlining done on those dropped 1759 // definitions can be useless based on a local file scope. More 1760 // importantly, the inlinee (say B), once fully inlined to a 1761 // to-be-dropped A, will have no profile to consume when its outlined 1762 // version is compiled. This can lead to a profile-less prelink 1763 // compilation for the outlined version of B which may be called from 1764 // external modules. while this isn't easy to fix, we rely on the 1765 // postlink AutoFDO pipeline to optimize B. Since the survived copy of 1766 // the A can be inlined in its local scope in prelink, it may not exist 1767 // in the merged IR in postlink, and we'll need the profiled call edges 1768 // to enforce a top-down order for the rest of the functions. 1769 // 1770 // Considering those cases, a profiled call graph completely independent of 1771 // the static call graph is constructed based on profile data, where 1772 // function objects are not even needed to handle case #3 and case 4. 1773 // 1774 // Note that static callgraph edges are completely ignored since they 1775 // can be conflicting with profiled edges for cyclic SCCs and may result in 1776 // an SCC order incompatible with profile-defined one. Using strictly 1777 // profile order ensures a maximum inlining experience. On the other hand, 1778 // static call edges are not so important when they don't correspond to a 1779 // context in the profile. 1780 1781 std::unique_ptr<ProfiledCallGraph> ProfiledCG = buildProfiledCallGraph(*CG); 1782 scc_iterator<ProfiledCallGraph *> CGI = scc_begin(ProfiledCG.get()); 1783 while (!CGI.isAtEnd()) { 1784 for (ProfiledCallGraphNode *Node : *CGI) { 1785 Function *F = SymbolMap.lookup(Node->Name); 1786 if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile")) 1787 FunctionOrderList.push_back(F); 1788 } 1789 ++CGI; 1790 } 1791 } else { 1792 scc_iterator<CallGraph *> CGI = scc_begin(CG); 1793 while (!CGI.isAtEnd()) { 1794 for (CallGraphNode *Node : *CGI) { 1795 auto *F = Node->getFunction(); 1796 if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile")) 1797 FunctionOrderList.push_back(F); 1798 } 1799 ++CGI; 1800 } 1801 } 1802 1803 LLVM_DEBUG({ 1804 dbgs() << "Function processing order:\n"; 1805 for (auto F : reverse(FunctionOrderList)) { 1806 dbgs() << F->getName() << "\n"; 1807 } 1808 }); 1809 1810 std::reverse(FunctionOrderList.begin(), FunctionOrderList.end()); 1811 return FunctionOrderList; 1812 } 1813 1814 bool SampleProfileLoader::doInitialization(Module &M, 1815 FunctionAnalysisManager *FAM) { 1816 auto &Ctx = M.getContext(); 1817 1818 auto ReaderOrErr = SampleProfileReader::create( 1819 Filename, Ctx, FSDiscriminatorPass::Base, RemappingFilename); 1820 if (std::error_code EC = ReaderOrErr.getError()) { 1821 std::string Msg = "Could not open profile: " + EC.message(); 1822 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1823 return false; 1824 } 1825 Reader = std::move(ReaderOrErr.get()); 1826 Reader->setSkipFlatProf(LTOPhase == ThinOrFullLTOPhase::ThinLTOPostLink); 1827 // set module before reading the profile so reader may be able to only 1828 // read the function profiles which are used by the current module. 1829 Reader->setModule(&M); 1830 if (std::error_code EC = Reader->read()) { 1831 std::string Msg = "profile reading failed: " + EC.message(); 1832 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1833 return false; 1834 } 1835 1836 PSL = Reader->getProfileSymbolList(); 1837 1838 // While profile-sample-accurate is on, ignore symbol list. 1839 ProfAccForSymsInList = 1840 ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate; 1841 if (ProfAccForSymsInList) { 1842 NamesInProfile.clear(); 1843 if (auto NameTable = Reader->getNameTable()) 1844 NamesInProfile.insert(NameTable->begin(), NameTable->end()); 1845 CoverageTracker.setProfAccForSymsInList(true); 1846 } 1847 1848 if (FAM && !ProfileInlineReplayFile.empty()) { 1849 ExternalInlineAdvisor = getReplayInlineAdvisor( 1850 M, *FAM, Ctx, /*OriginalAdvisor=*/nullptr, ProfileInlineReplayFile, 1851 ProfileInlineReplayScope, /*EmitRemarks=*/false); 1852 } 1853 1854 // Apply tweaks if context-sensitive profile is available. 1855 if (Reader->profileIsCS()) { 1856 ProfileIsCS = true; 1857 FunctionSamples::ProfileIsCS = true; 1858 1859 // Enable priority-base inliner and size inline by default for CSSPGO. 1860 if (!ProfileSizeInline.getNumOccurrences()) 1861 ProfileSizeInline = true; 1862 if (!CallsitePrioritizedInline.getNumOccurrences()) 1863 CallsitePrioritizedInline = true; 1864 1865 // For CSSPGO, use preinliner decision by default when available. 1866 if (!UsePreInlinerDecision.getNumOccurrences()) 1867 UsePreInlinerDecision = true; 1868 1869 // For CSSPGO, we also allow recursive inline to best use context profile. 1870 if (!AllowRecursiveInline.getNumOccurrences()) 1871 AllowRecursiveInline = true; 1872 1873 // Enable iterative-BFI by default for CSSPGO. 1874 if (!UseIterativeBFIInference.getNumOccurrences()) 1875 UseIterativeBFIInference = true; 1876 1877 // Tracker for profiles under different context 1878 ContextTracker = std::make_unique<SampleContextTracker>( 1879 Reader->getProfiles(), &GUIDToFuncNameMap); 1880 } 1881 1882 // Load pseudo probe descriptors for probe-based function samples. 1883 if (Reader->profileIsProbeBased()) { 1884 ProbeManager = std::make_unique<PseudoProbeManager>(M); 1885 if (!ProbeManager->moduleIsProbed(M)) { 1886 const char *Msg = 1887 "Pseudo-probe-based profile requires SampleProfileProbePass"; 1888 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1889 return false; 1890 } 1891 } 1892 1893 return true; 1894 } 1895 1896 ModulePass *llvm::createSampleProfileLoaderPass() { 1897 return new SampleProfileLoaderLegacyPass(); 1898 } 1899 1900 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1901 return new SampleProfileLoaderLegacyPass(Name); 1902 } 1903 1904 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, 1905 ProfileSummaryInfo *_PSI, CallGraph *CG) { 1906 GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap); 1907 1908 PSI = _PSI; 1909 if (M.getProfileSummary(/* IsCS */ false) == nullptr) { 1910 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()), 1911 ProfileSummary::PSK_Sample); 1912 PSI->refresh(); 1913 } 1914 // Compute the total number of samples collected in this profile. 1915 for (const auto &I : Reader->getProfiles()) 1916 TotalCollectedSamples += I.second.getTotalSamples(); 1917 1918 auto Remapper = Reader->getRemapper(); 1919 // Populate the symbol map. 1920 for (const auto &N_F : M.getValueSymbolTable()) { 1921 StringRef OrigName = N_F.getKey(); 1922 Function *F = dyn_cast<Function>(N_F.getValue()); 1923 if (F == nullptr || OrigName.empty()) 1924 continue; 1925 SymbolMap[OrigName] = F; 1926 StringRef NewName = FunctionSamples::getCanonicalFnName(*F); 1927 if (OrigName != NewName && !NewName.empty()) { 1928 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1929 // Failiing to insert means there is already an entry in SymbolMap, 1930 // thus there are multiple functions that are mapped to the same 1931 // stripped name. In this case of name conflicting, set the value 1932 // to nullptr to avoid confusion. 1933 if (!r.second) 1934 r.first->second = nullptr; 1935 OrigName = NewName; 1936 } 1937 // Insert the remapped names into SymbolMap. 1938 if (Remapper) { 1939 if (auto MapName = Remapper->lookUpNameInProfile(OrigName)) { 1940 if (*MapName != OrigName && !MapName->empty()) 1941 SymbolMap.insert(std::make_pair(*MapName, F)); 1942 } 1943 } 1944 } 1945 assert(SymbolMap.count(StringRef()) == 0 && 1946 "No empty StringRef should be added in SymbolMap"); 1947 1948 bool retval = false; 1949 for (auto F : buildFunctionOrder(M, CG)) { 1950 assert(!F->isDeclaration()); 1951 clearFunctionData(); 1952 retval |= runOnFunction(*F, AM); 1953 } 1954 1955 // Account for cold calls not inlined.... 1956 if (!ProfileIsCS) 1957 for (const std::pair<Function *, NotInlinedProfileInfo> &pair : 1958 notInlinedCallInfo) 1959 updateProfileCallee(pair.first, pair.second.entryCount); 1960 1961 return retval; 1962 } 1963 1964 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1965 ACT = &getAnalysis<AssumptionCacheTracker>(); 1966 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 1967 TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>(); 1968 ProfileSummaryInfo *PSI = 1969 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1970 return SampleLoader.runOnModule(M, nullptr, PSI, nullptr); 1971 } 1972 1973 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 1974 LLVM_DEBUG(dbgs() << "\n\nProcessing Function " << F.getName() << "\n"); 1975 DILocation2SampleMap.clear(); 1976 // By default the entry count is initialized to -1, which will be treated 1977 // conservatively by getEntryCount as the same as unknown (None). This is 1978 // to avoid newly added code to be treated as cold. If we have samples 1979 // this will be overwritten in emitAnnotations. 1980 uint64_t initialEntryCount = -1; 1981 1982 ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL; 1983 if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) { 1984 // initialize all the function entry counts to 0. It means all the 1985 // functions without profile will be regarded as cold. 1986 initialEntryCount = 0; 1987 // profile-sample-accurate is a user assertion which has a higher precedence 1988 // than symbol list. When profile-sample-accurate is on, ignore symbol list. 1989 ProfAccForSymsInList = false; 1990 } 1991 CoverageTracker.setProfAccForSymsInList(ProfAccForSymsInList); 1992 1993 // PSL -- profile symbol list include all the symbols in sampled binary. 1994 // If ProfileAccurateForSymsInList is enabled, PSL is used to treat 1995 // old functions without samples being cold, without having to worry 1996 // about new and hot functions being mistakenly treated as cold. 1997 if (ProfAccForSymsInList) { 1998 // Initialize the entry count to 0 for functions in the list. 1999 if (PSL->contains(F.getName())) 2000 initialEntryCount = 0; 2001 2002 // Function in the symbol list but without sample will be regarded as 2003 // cold. To minimize the potential negative performance impact it could 2004 // have, we want to be a little conservative here saying if a function 2005 // shows up in the profile, no matter as outline function, inline instance 2006 // or call targets, treat the function as not being cold. This will handle 2007 // the cases such as most callsites of a function are inlined in sampled 2008 // binary but not inlined in current build (because of source code drift, 2009 // imprecise debug information, or the callsites are all cold individually 2010 // but not cold accumulatively...), so the outline function showing up as 2011 // cold in sampled binary will actually not be cold after current build. 2012 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 2013 if (NamesInProfile.count(CanonName)) 2014 initialEntryCount = -1; 2015 } 2016 2017 // Initialize entry count when the function has no existing entry 2018 // count value. 2019 if (!F.getEntryCount().hasValue()) 2020 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real)); 2021 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 2022 if (AM) { 2023 auto &FAM = 2024 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 2025 .getManager(); 2026 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 2027 } else { 2028 OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F); 2029 ORE = OwnedORE.get(); 2030 } 2031 2032 if (ProfileIsCS) 2033 Samples = ContextTracker->getBaseSamplesFor(F); 2034 else 2035 Samples = Reader->getSamplesFor(F); 2036 2037 if (Samples && !Samples->empty()) 2038 return emitAnnotations(F); 2039 return false; 2040 } 2041 2042 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 2043 ModuleAnalysisManager &AM) { 2044 FunctionAnalysisManager &FAM = 2045 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2046 2047 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 2048 return FAM.getResult<AssumptionAnalysis>(F); 2049 }; 2050 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 2051 return FAM.getResult<TargetIRAnalysis>(F); 2052 }; 2053 auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & { 2054 return FAM.getResult<TargetLibraryAnalysis>(F); 2055 }; 2056 2057 SampleProfileLoader SampleLoader( 2058 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 2059 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile 2060 : ProfileRemappingFileName, 2061 LTOPhase, GetAssumptionCache, GetTTI, GetTLI); 2062 2063 if (!SampleLoader.doInitialization(M, &FAM)) 2064 return PreservedAnalyses::all(); 2065 2066 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 2067 CallGraph &CG = AM.getResult<CallGraphAnalysis>(M); 2068 if (!SampleLoader.runOnModule(M, &AM, PSI, &CG)) 2069 return PreservedAnalyses::all(); 2070 2071 return PreservedAnalyses::none(); 2072 } 2073