1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 //      to indicate the weights of each edge coming out of the branch.
19 //      The weight of each edge is the weight of the target block for
20 //      that edge. The weight of a block B is computed as the maximum
21 //      number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/IPO/SampleProfile.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringMap.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/AssumptionCache.h"
37 #include "llvm/Analysis/InlineCost.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
40 #include "llvm/Analysis/ProfileSummaryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/CallSite.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DiagnosticInfo.h"
48 #include "llvm/IR/Dominators.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/MDBuilder.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/PassManager.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/Pass.h"
61 #include "llvm/ProfileData/InstrProf.h"
62 #include "llvm/ProfileData/SampleProf.h"
63 #include "llvm/ProfileData/SampleProfReader.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ErrorOr.h"
69 #include "llvm/Support/GenericDomTree.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/IPO.h"
72 #include "llvm/Transforms/Instrumentation.h"
73 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
74 #include "llvm/Transforms/Utils/Cloning.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstdint>
78 #include <functional>
79 #include <limits>
80 #include <map>
81 #include <memory>
82 #include <string>
83 #include <system_error>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 using namespace sampleprof;
89 using ProfileCount = Function::ProfileCount;
90 #define DEBUG_TYPE "sample-profile"
91 
92 // Command line option to specify the file to read samples from. This is
93 // mainly used for debugging.
94 static cl::opt<std::string> SampleProfileFile(
95     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
96     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
97 
98 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
99     "sample-profile-max-propagate-iterations", cl::init(100),
100     cl::desc("Maximum number of iterations to go through when propagating "
101              "sample block/edge weights through the CFG."));
102 
103 static cl::opt<unsigned> SampleProfileRecordCoverage(
104     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
105     cl::desc("Emit a warning if less than N% of records in the input profile "
106              "are matched to the IR."));
107 
108 static cl::opt<unsigned> SampleProfileSampleCoverage(
109     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
110     cl::desc("Emit a warning if less than N% of samples in the input profile "
111              "are matched to the IR."));
112 
113 namespace {
114 
115 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
116 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
117 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
118 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
119 using BlockEdgeMap =
120     DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
121 
122 class SampleCoverageTracker {
123 public:
124   SampleCoverageTracker() = default;
125 
126   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
127                        uint32_t Discriminator, uint64_t Samples);
128   unsigned computeCoverage(unsigned Used, unsigned Total) const;
129   unsigned countUsedRecords(const FunctionSamples *FS,
130                             ProfileSummaryInfo *PSI) const;
131   unsigned countBodyRecords(const FunctionSamples *FS,
132                             ProfileSummaryInfo *PSI) const;
133   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
134   uint64_t countBodySamples(const FunctionSamples *FS,
135                             ProfileSummaryInfo *PSI) const;
136 
137   void clear() {
138     SampleCoverage.clear();
139     TotalUsedSamples = 0;
140   }
141 
142 private:
143   using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
144   using FunctionSamplesCoverageMap =
145       DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
146 
147   /// Coverage map for sampling records.
148   ///
149   /// This map keeps a record of sampling records that have been matched to
150   /// an IR instruction. This is used to detect some form of staleness in
151   /// profiles (see flag -sample-profile-check-coverage).
152   ///
153   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
154   /// another map that counts how many times the sample record at the
155   /// given location has been used.
156   FunctionSamplesCoverageMap SampleCoverage;
157 
158   /// Number of samples used from the profile.
159   ///
160   /// When a sampling record is used for the first time, the samples from
161   /// that record are added to this accumulator.  Coverage is later computed
162   /// based on the total number of samples available in this function and
163   /// its callsites.
164   ///
165   /// Note that this accumulator tracks samples used from a single function
166   /// and all the inlined callsites. Strictly, we should have a map of counters
167   /// keyed by FunctionSamples pointers, but these stats are cleared after
168   /// every function, so we just need to keep a single counter.
169   uint64_t TotalUsedSamples = 0;
170 };
171 
172 /// Sample profile pass.
173 ///
174 /// This pass reads profile data from the file specified by
175 /// -sample-profile-file and annotates every affected function with the
176 /// profile information found in that file.
177 class SampleProfileLoader {
178 public:
179   SampleProfileLoader(
180       StringRef Name, bool IsThinLTOPreLink,
181       std::function<AssumptionCache &(Function &)> GetAssumptionCache,
182       std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
183       : GetAC(std::move(GetAssumptionCache)),
184         GetTTI(std::move(GetTargetTransformInfo)), Filename(Name),
185         IsThinLTOPreLink(IsThinLTOPreLink) {}
186 
187   bool doInitialization(Module &M);
188   bool runOnModule(Module &M, ModuleAnalysisManager *AM,
189                    ProfileSummaryInfo *_PSI);
190 
191   void dump() { Reader->dump(); }
192 
193 protected:
194   bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
195   unsigned getFunctionLoc(Function &F);
196   bool emitAnnotations(Function &F);
197   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
198   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
199   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
200   std::vector<const FunctionSamples *>
201   findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
202   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
203   bool inlineCallInstruction(Instruction *I);
204   bool inlineHotFunctions(Function &F,
205                           DenseSet<GlobalValue::GUID> &InlinedGUIDs);
206   void printEdgeWeight(raw_ostream &OS, Edge E);
207   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
208   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
209   bool computeBlockWeights(Function &F);
210   void findEquivalenceClasses(Function &F);
211   template <bool IsPostDom>
212   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
213                            DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
214 
215   void propagateWeights(Function &F);
216   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
217   void buildEdges(Function &F);
218   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
219   void computeDominanceAndLoopInfo(Function &F);
220   void clearFunctionData();
221 
222   /// Map basic blocks to their computed weights.
223   ///
224   /// The weight of a basic block is defined to be the maximum
225   /// of all the instruction weights in that block.
226   BlockWeightMap BlockWeights;
227 
228   /// Map edges to their computed weights.
229   ///
230   /// Edge weights are computed by propagating basic block weights in
231   /// SampleProfile::propagateWeights.
232   EdgeWeightMap EdgeWeights;
233 
234   /// Set of visited blocks during propagation.
235   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
236 
237   /// Set of visited edges during propagation.
238   SmallSet<Edge, 32> VisitedEdges;
239 
240   /// Equivalence classes for block weights.
241   ///
242   /// Two blocks BB1 and BB2 are in the same equivalence class if they
243   /// dominate and post-dominate each other, and they are in the same loop
244   /// nest. When this happens, the two blocks are guaranteed to execute
245   /// the same number of times.
246   EquivalenceClassMap EquivalenceClass;
247 
248   /// Map from function name to Function *. Used to find the function from
249   /// the function name. If the function name contains suffix, additional
250   /// entry is added to map from the stripped name to the function if there
251   /// is one-to-one mapping.
252   StringMap<Function *> SymbolMap;
253 
254   /// Dominance, post-dominance and loop information.
255   std::unique_ptr<DominatorTree> DT;
256   std::unique_ptr<PostDomTreeBase<BasicBlock>> PDT;
257   std::unique_ptr<LoopInfo> LI;
258 
259   std::function<AssumptionCache &(Function &)> GetAC;
260   std::function<TargetTransformInfo &(Function &)> GetTTI;
261 
262   /// Predecessors for each basic block in the CFG.
263   BlockEdgeMap Predecessors;
264 
265   /// Successors for each basic block in the CFG.
266   BlockEdgeMap Successors;
267 
268   SampleCoverageTracker CoverageTracker;
269 
270   /// Profile reader object.
271   std::unique_ptr<SampleProfileReader> Reader;
272 
273   /// Samples collected for the body of this function.
274   FunctionSamples *Samples = nullptr;
275 
276   /// Name of the profile file to load.
277   std::string Filename;
278 
279   /// Flag indicating whether the profile input loaded successfully.
280   bool ProfileIsValid = false;
281 
282   /// Flag indicating if the pass is invoked in ThinLTO compile phase.
283   ///
284   /// In this phase, in annotation, we should not promote indirect calls.
285   /// Instead, we will mark GUIDs that needs to be annotated to the function.
286   bool IsThinLTOPreLink;
287 
288   /// Profile Summary Info computed from sample profile.
289   ProfileSummaryInfo *PSI = nullptr;
290 
291   /// Total number of samples collected in this profile.
292   ///
293   /// This is the sum of all the samples collected in all the functions executed
294   /// at runtime.
295   uint64_t TotalCollectedSamples = 0;
296 
297   /// Optimization Remark Emitter used to emit diagnostic remarks.
298   OptimizationRemarkEmitter *ORE = nullptr;
299 };
300 
301 class SampleProfileLoaderLegacyPass : public ModulePass {
302 public:
303   // Class identification, replacement for typeinfo
304   static char ID;
305 
306   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
307                                 bool IsThinLTOPreLink = false)
308       : ModulePass(ID), SampleLoader(Name, IsThinLTOPreLink,
309                                      [&](Function &F) -> AssumptionCache & {
310                                        return ACT->getAssumptionCache(F);
311                                      },
312                                      [&](Function &F) -> TargetTransformInfo & {
313                                        return TTIWP->getTTI(F);
314                                      }) {
315     initializeSampleProfileLoaderLegacyPassPass(
316         *PassRegistry::getPassRegistry());
317   }
318 
319   void dump() { SampleLoader.dump(); }
320 
321   bool doInitialization(Module &M) override {
322     return SampleLoader.doInitialization(M);
323   }
324 
325   StringRef getPassName() const override { return "Sample profile pass"; }
326   bool runOnModule(Module &M) override;
327 
328   void getAnalysisUsage(AnalysisUsage &AU) const override {
329     AU.addRequired<AssumptionCacheTracker>();
330     AU.addRequired<TargetTransformInfoWrapperPass>();
331     AU.addRequired<ProfileSummaryInfoWrapperPass>();
332   }
333 
334 private:
335   SampleProfileLoader SampleLoader;
336   AssumptionCacheTracker *ACT = nullptr;
337   TargetTransformInfoWrapperPass *TTIWP = nullptr;
338 };
339 
340 } // end anonymous namespace
341 
342 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
343 ///
344 /// Functions that were inlined in the original binary will be represented
345 /// in the inline stack in the sample profile. If the profile shows that
346 /// the original inline decision was "good" (i.e., the callsite is executed
347 /// frequently), then we will recreate the inline decision and apply the
348 /// profile from the inlined callsite.
349 ///
350 /// To decide whether an inlined callsite is hot, we compare the callsite
351 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
352 /// regarded as hot if the count is above the cutoff value.
353 static bool callsiteIsHot(const FunctionSamples *CallsiteFS,
354                           ProfileSummaryInfo *PSI) {
355   if (!CallsiteFS)
356     return false; // The callsite was not inlined in the original binary.
357 
358   assert(PSI && "PSI is expected to be non null");
359   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
360   return PSI->isHotCount(CallsiteTotalSamples);
361 }
362 
363 /// Mark as used the sample record for the given function samples at
364 /// (LineOffset, Discriminator).
365 ///
366 /// \returns true if this is the first time we mark the given record.
367 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
368                                             uint32_t LineOffset,
369                                             uint32_t Discriminator,
370                                             uint64_t Samples) {
371   LineLocation Loc(LineOffset, Discriminator);
372   unsigned &Count = SampleCoverage[FS][Loc];
373   bool FirstTime = (++Count == 1);
374   if (FirstTime)
375     TotalUsedSamples += Samples;
376   return FirstTime;
377 }
378 
379 /// Return the number of sample records that were applied from this profile.
380 ///
381 /// This count does not include records from cold inlined callsites.
382 unsigned
383 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
384                                         ProfileSummaryInfo *PSI) const {
385   auto I = SampleCoverage.find(FS);
386 
387   // The size of the coverage map for FS represents the number of records
388   // that were marked used at least once.
389   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
390 
391   // If there are inlined callsites in this function, count the samples found
392   // in the respective bodies. However, do not bother counting callees with 0
393   // total samples, these are callees that were never invoked at runtime.
394   for (const auto &I : FS->getCallsiteSamples())
395     for (const auto &J : I.second) {
396       const FunctionSamples *CalleeSamples = &J.second;
397       if (callsiteIsHot(CalleeSamples, PSI))
398         Count += countUsedRecords(CalleeSamples, PSI);
399     }
400 
401   return Count;
402 }
403 
404 /// Return the number of sample records in the body of this profile.
405 ///
406 /// This count does not include records from cold inlined callsites.
407 unsigned
408 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
409                                         ProfileSummaryInfo *PSI) const {
410   unsigned Count = FS->getBodySamples().size();
411 
412   // Only count records in hot callsites.
413   for (const auto &I : FS->getCallsiteSamples())
414     for (const auto &J : I.second) {
415       const FunctionSamples *CalleeSamples = &J.second;
416       if (callsiteIsHot(CalleeSamples, PSI))
417         Count += countBodyRecords(CalleeSamples, PSI);
418     }
419 
420   return Count;
421 }
422 
423 /// Return the number of samples collected in the body of this profile.
424 ///
425 /// This count does not include samples from cold inlined callsites.
426 uint64_t
427 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
428                                         ProfileSummaryInfo *PSI) const {
429   uint64_t Total = 0;
430   for (const auto &I : FS->getBodySamples())
431     Total += I.second.getSamples();
432 
433   // Only count samples in hot callsites.
434   for (const auto &I : FS->getCallsiteSamples())
435     for (const auto &J : I.second) {
436       const FunctionSamples *CalleeSamples = &J.second;
437       if (callsiteIsHot(CalleeSamples, PSI))
438         Total += countBodySamples(CalleeSamples, PSI);
439     }
440 
441   return Total;
442 }
443 
444 /// Return the fraction of sample records used in this profile.
445 ///
446 /// The returned value is an unsigned integer in the range 0-100 indicating
447 /// the percentage of sample records that were used while applying this
448 /// profile to the associated function.
449 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
450                                                 unsigned Total) const {
451   assert(Used <= Total &&
452          "number of used records cannot exceed the total number of records");
453   return Total > 0 ? Used * 100 / Total : 100;
454 }
455 
456 /// Clear all the per-function data used to load samples and propagate weights.
457 void SampleProfileLoader::clearFunctionData() {
458   BlockWeights.clear();
459   EdgeWeights.clear();
460   VisitedBlocks.clear();
461   VisitedEdges.clear();
462   EquivalenceClass.clear();
463   DT = nullptr;
464   PDT = nullptr;
465   LI = nullptr;
466   Predecessors.clear();
467   Successors.clear();
468   CoverageTracker.clear();
469 }
470 
471 #ifndef NDEBUG
472 /// Print the weight of edge \p E on stream \p OS.
473 ///
474 /// \param OS  Stream to emit the output to.
475 /// \param E  Edge to print.
476 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
477   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
478      << "]: " << EdgeWeights[E] << "\n";
479 }
480 
481 /// Print the equivalence class of block \p BB on stream \p OS.
482 ///
483 /// \param OS  Stream to emit the output to.
484 /// \param BB  Block to print.
485 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
486                                                 const BasicBlock *BB) {
487   const BasicBlock *Equiv = EquivalenceClass[BB];
488   OS << "equivalence[" << BB->getName()
489      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
490 }
491 
492 /// Print the weight of block \p BB on stream \p OS.
493 ///
494 /// \param OS  Stream to emit the output to.
495 /// \param BB  Block to print.
496 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
497                                            const BasicBlock *BB) const {
498   const auto &I = BlockWeights.find(BB);
499   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
500   OS << "weight[" << BB->getName() << "]: " << W << "\n";
501 }
502 #endif
503 
504 /// Get the weight for an instruction.
505 ///
506 /// The "weight" of an instruction \p Inst is the number of samples
507 /// collected on that instruction at runtime. To retrieve it, we
508 /// need to compute the line number of \p Inst relative to the start of its
509 /// function. We use HeaderLineno to compute the offset. We then
510 /// look up the samples collected for \p Inst using BodySamples.
511 ///
512 /// \param Inst Instruction to query.
513 ///
514 /// \returns the weight of \p Inst.
515 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
516   const DebugLoc &DLoc = Inst.getDebugLoc();
517   if (!DLoc)
518     return std::error_code();
519 
520   const FunctionSamples *FS = findFunctionSamples(Inst);
521   if (!FS)
522     return std::error_code();
523 
524   // Ignore all intrinsics and branch instructions.
525   // Branch instruction usually contains debug info from sources outside of
526   // the residing basic block, thus we ignore them during annotation.
527   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst))
528     return std::error_code();
529 
530   // If a direct call/invoke instruction is inlined in profile
531   // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
532   // it means that the inlined callsite has no sample, thus the call
533   // instruction should have 0 count.
534   if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
535       !ImmutableCallSite(&Inst).isIndirectCall() &&
536       findCalleeFunctionSamples(Inst))
537     return 0;
538 
539   const DILocation *DIL = DLoc;
540   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
541   uint32_t Discriminator = DIL->getBaseDiscriminator();
542   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
543   if (R) {
544     bool FirstMark =
545         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
546     if (FirstMark) {
547       ORE->emit([&]() {
548         OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
549         Remark << "Applied " << ore::NV("NumSamples", *R);
550         Remark << " samples from profile (offset: ";
551         Remark << ore::NV("LineOffset", LineOffset);
552         if (Discriminator) {
553           Remark << ".";
554           Remark << ore::NV("Discriminator", Discriminator);
555         }
556         Remark << ")";
557         return Remark;
558       });
559     }
560     LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "."
561                       << DIL->getBaseDiscriminator() << ":" << Inst
562                       << " (line offset: " << LineOffset << "."
563                       << DIL->getBaseDiscriminator() << " - weight: " << R.get()
564                       << ")\n");
565   }
566   return R;
567 }
568 
569 /// Compute the weight of a basic block.
570 ///
571 /// The weight of basic block \p BB is the maximum weight of all the
572 /// instructions in BB.
573 ///
574 /// \param BB The basic block to query.
575 ///
576 /// \returns the weight for \p BB.
577 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
578   uint64_t Max = 0;
579   bool HasWeight = false;
580   for (auto &I : BB->getInstList()) {
581     const ErrorOr<uint64_t> &R = getInstWeight(I);
582     if (R) {
583       Max = std::max(Max, R.get());
584       HasWeight = true;
585     }
586   }
587   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
588 }
589 
590 /// Compute and store the weights of every basic block.
591 ///
592 /// This populates the BlockWeights map by computing
593 /// the weights of every basic block in the CFG.
594 ///
595 /// \param F The function to query.
596 bool SampleProfileLoader::computeBlockWeights(Function &F) {
597   bool Changed = false;
598   LLVM_DEBUG(dbgs() << "Block weights\n");
599   for (const auto &BB : F) {
600     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
601     if (Weight) {
602       BlockWeights[&BB] = Weight.get();
603       VisitedBlocks.insert(&BB);
604       Changed = true;
605     }
606     LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
607   }
608 
609   return Changed;
610 }
611 
612 /// Get the FunctionSamples for a call instruction.
613 ///
614 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
615 /// instance in which that call instruction is calling to. It contains
616 /// all samples that resides in the inlined instance. We first find the
617 /// inlined instance in which the call instruction is from, then we
618 /// traverse its children to find the callsite with the matching
619 /// location.
620 ///
621 /// \param Inst Call/Invoke instruction to query.
622 ///
623 /// \returns The FunctionSamples pointer to the inlined instance.
624 const FunctionSamples *
625 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
626   const DILocation *DIL = Inst.getDebugLoc();
627   if (!DIL) {
628     return nullptr;
629   }
630 
631   StringRef CalleeName;
632   if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
633     if (Function *Callee = CI->getCalledFunction())
634       CalleeName = Callee->getName();
635 
636   const FunctionSamples *FS = findFunctionSamples(Inst);
637   if (FS == nullptr)
638     return nullptr;
639 
640   return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
641                                                 DIL->getBaseDiscriminator()),
642                                    CalleeName);
643 }
644 
645 /// Returns a vector of FunctionSamples that are the indirect call targets
646 /// of \p Inst. The vector is sorted by the total number of samples. Stores
647 /// the total call count of the indirect call in \p Sum.
648 std::vector<const FunctionSamples *>
649 SampleProfileLoader::findIndirectCallFunctionSamples(
650     const Instruction &Inst, uint64_t &Sum) const {
651   const DILocation *DIL = Inst.getDebugLoc();
652   std::vector<const FunctionSamples *> R;
653 
654   if (!DIL) {
655     return R;
656   }
657 
658   const FunctionSamples *FS = findFunctionSamples(Inst);
659   if (FS == nullptr)
660     return R;
661 
662   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
663   uint32_t Discriminator = DIL->getBaseDiscriminator();
664 
665   auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
666   Sum = 0;
667   if (T)
668     for (const auto &T_C : T.get())
669       Sum += T_C.second;
670   if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
671           FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
672     if (M->empty())
673       return R;
674     for (const auto &NameFS : *M) {
675       Sum += NameFS.second.getEntrySamples();
676       R.push_back(&NameFS.second);
677     }
678     llvm::sort(R.begin(), R.end(),
679                [](const FunctionSamples *L, const FunctionSamples *R) {
680                  return L->getEntrySamples() > R->getEntrySamples();
681                });
682   }
683   return R;
684 }
685 
686 /// Get the FunctionSamples for an instruction.
687 ///
688 /// The FunctionSamples of an instruction \p Inst is the inlined instance
689 /// in which that instruction is coming from. We traverse the inline stack
690 /// of that instruction, and match it with the tree nodes in the profile.
691 ///
692 /// \param Inst Instruction to query.
693 ///
694 /// \returns the FunctionSamples pointer to the inlined instance.
695 const FunctionSamples *
696 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
697   SmallVector<std::pair<LineLocation, StringRef>, 10> S;
698   const DILocation *DIL = Inst.getDebugLoc();
699   if (!DIL)
700     return Samples;
701 
702   return Samples->findFunctionSamples(DIL);
703 }
704 
705 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
706   assert(isa<CallInst>(I) || isa<InvokeInst>(I));
707   CallSite CS(I);
708   Function *CalledFunction = CS.getCalledFunction();
709   assert(CalledFunction);
710   DebugLoc DLoc = I->getDebugLoc();
711   BasicBlock *BB = I->getParent();
712   InlineParams Params = getInlineParams();
713   Params.ComputeFullInlineCost = true;
714   // Checks if there is anything in the reachable portion of the callee at
715   // this callsite that makes this inlining potentially illegal. Need to
716   // set ComputeFullInlineCost, otherwise getInlineCost may return early
717   // when cost exceeds threshold without checking all IRs in the callee.
718   // The acutal cost does not matter because we only checks isNever() to
719   // see if it is legal to inline the callsite.
720   InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC,
721                                   None, nullptr, nullptr);
722   if (Cost.isNever()) {
723     ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB)
724               << "incompatible inlining");
725     return false;
726   }
727   InlineFunctionInfo IFI(nullptr, &GetAC);
728   if (InlineFunction(CS, IFI)) {
729     // The call to InlineFunction erases I, so we can't pass it here.
730     ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB)
731               << "inlined hot callee '" << ore::NV("Callee", CalledFunction)
732               << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
733     return true;
734   }
735   return false;
736 }
737 
738 /// Iteratively inline hot callsites of a function.
739 ///
740 /// Iteratively traverse all callsites of the function \p F, and find if
741 /// the corresponding inlined instance exists and is hot in profile. If
742 /// it is hot enough, inline the callsites and adds new callsites of the
743 /// callee into the caller. If the call is an indirect call, first promote
744 /// it to direct call. Each indirect call is limited with a single target.
745 ///
746 /// \param F function to perform iterative inlining.
747 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
748 ///     inlined in the profiled binary.
749 ///
750 /// \returns True if there is any inline happened.
751 bool SampleProfileLoader::inlineHotFunctions(
752     Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
753   DenseSet<Instruction *> PromotedInsns;
754   bool Changed = false;
755   while (true) {
756     bool LocalChanged = false;
757     SmallVector<Instruction *, 10> CIS;
758     for (auto &BB : F) {
759       bool Hot = false;
760       SmallVector<Instruction *, 10> Candidates;
761       for (auto &I : BB.getInstList()) {
762         const FunctionSamples *FS = nullptr;
763         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
764             !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
765           Candidates.push_back(&I);
766           if (callsiteIsHot(FS, PSI))
767             Hot = true;
768         }
769       }
770       if (Hot) {
771         CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
772       }
773     }
774     for (auto I : CIS) {
775       Function *CalledFunction = CallSite(I).getCalledFunction();
776       // Do not inline recursive calls.
777       if (CalledFunction == &F)
778         continue;
779       if (CallSite(I).isIndirectCall()) {
780         if (PromotedInsns.count(I))
781           continue;
782         uint64_t Sum;
783         for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
784           if (IsThinLTOPreLink) {
785             FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
786                                      PSI->getOrCompHotCountThreshold());
787             continue;
788           }
789           auto CalleeFunctionName = FS->getName();
790           // If it is a recursive call, we do not inline it as it could bloat
791           // the code exponentially. There is way to better handle this, e.g.
792           // clone the caller first, and inline the cloned caller if it is
793           // recursive. As llvm does not inline recursive calls, we will
794           // simply ignore it instead of handling it explicitly.
795           if (CalleeFunctionName == F.getName())
796             continue;
797 
798           const char *Reason = "Callee function not available";
799           auto R = SymbolMap.find(CalleeFunctionName);
800           if (R != SymbolMap.end() && R->getValue() &&
801               !R->getValue()->isDeclaration() &&
802               R->getValue()->getSubprogram() &&
803               isLegalToPromote(CallSite(I), R->getValue(), &Reason)) {
804             uint64_t C = FS->getEntrySamples();
805             Instruction *DI =
806                 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
807             Sum -= C;
808             PromotedInsns.insert(I);
809             // If profile mismatches, we should not attempt to inline DI.
810             if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
811                 inlineCallInstruction(DI))
812               LocalChanged = true;
813           } else {
814             LLVM_DEBUG(dbgs()
815                        << "\nFailed to promote indirect call to "
816                        << CalleeFunctionName << " because " << Reason << "\n");
817           }
818         }
819       } else if (CalledFunction && CalledFunction->getSubprogram() &&
820                  !CalledFunction->isDeclaration()) {
821         if (inlineCallInstruction(I))
822           LocalChanged = true;
823       } else if (IsThinLTOPreLink) {
824         findCalleeFunctionSamples(*I)->findInlinedFunctions(
825             InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
826       }
827     }
828     if (LocalChanged) {
829       Changed = true;
830     } else {
831       break;
832     }
833   }
834   return Changed;
835 }
836 
837 /// Find equivalence classes for the given block.
838 ///
839 /// This finds all the blocks that are guaranteed to execute the same
840 /// number of times as \p BB1. To do this, it traverses all the
841 /// descendants of \p BB1 in the dominator or post-dominator tree.
842 ///
843 /// A block BB2 will be in the same equivalence class as \p BB1 if
844 /// the following holds:
845 ///
846 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
847 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
848 ///    dominate BB1 in the post-dominator tree.
849 ///
850 /// 2- Both BB2 and \p BB1 must be in the same loop.
851 ///
852 /// For every block BB2 that meets those two requirements, we set BB2's
853 /// equivalence class to \p BB1.
854 ///
855 /// \param BB1  Block to check.
856 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
857 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
858 ///                 with blocks from \p BB1's dominator tree, then
859 ///                 this is the post-dominator tree, and vice versa.
860 template <bool IsPostDom>
861 void SampleProfileLoader::findEquivalencesFor(
862     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
863     DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
864   const BasicBlock *EC = EquivalenceClass[BB1];
865   uint64_t Weight = BlockWeights[EC];
866   for (const auto *BB2 : Descendants) {
867     bool IsDomParent = DomTree->dominates(BB2, BB1);
868     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
869     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
870       EquivalenceClass[BB2] = EC;
871       // If BB2 is visited, then the entire EC should be marked as visited.
872       if (VisitedBlocks.count(BB2)) {
873         VisitedBlocks.insert(EC);
874       }
875 
876       // If BB2 is heavier than BB1, make BB2 have the same weight
877       // as BB1.
878       //
879       // Note that we don't worry about the opposite situation here
880       // (when BB2 is lighter than BB1). We will deal with this
881       // during the propagation phase. Right now, we just want to
882       // make sure that BB1 has the largest weight of all the
883       // members of its equivalence set.
884       Weight = std::max(Weight, BlockWeights[BB2]);
885     }
886   }
887   if (EC == &EC->getParent()->getEntryBlock()) {
888     BlockWeights[EC] = Samples->getHeadSamples() + 1;
889   } else {
890     BlockWeights[EC] = Weight;
891   }
892 }
893 
894 /// Find equivalence classes.
895 ///
896 /// Since samples may be missing from blocks, we can fill in the gaps by setting
897 /// the weights of all the blocks in the same equivalence class to the same
898 /// weight. To compute the concept of equivalence, we use dominance and loop
899 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
900 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
901 ///
902 /// \param F The function to query.
903 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
904   SmallVector<BasicBlock *, 8> DominatedBBs;
905   LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
906   // Find equivalence sets based on dominance and post-dominance information.
907   for (auto &BB : F) {
908     BasicBlock *BB1 = &BB;
909 
910     // Compute BB1's equivalence class once.
911     if (EquivalenceClass.count(BB1)) {
912       LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
913       continue;
914     }
915 
916     // By default, blocks are in their own equivalence class.
917     EquivalenceClass[BB1] = BB1;
918 
919     // Traverse all the blocks dominated by BB1. We are looking for
920     // every basic block BB2 such that:
921     //
922     // 1- BB1 dominates BB2.
923     // 2- BB2 post-dominates BB1.
924     // 3- BB1 and BB2 are in the same loop nest.
925     //
926     // If all those conditions hold, it means that BB2 is executed
927     // as many times as BB1, so they are placed in the same equivalence
928     // class by making BB2's equivalence class be BB1.
929     DominatedBBs.clear();
930     DT->getDescendants(BB1, DominatedBBs);
931     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
932 
933     LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
934   }
935 
936   // Assign weights to equivalence classes.
937   //
938   // All the basic blocks in the same equivalence class will execute
939   // the same number of times. Since we know that the head block in
940   // each equivalence class has the largest weight, assign that weight
941   // to all the blocks in that equivalence class.
942   LLVM_DEBUG(
943       dbgs() << "\nAssign the same weight to all blocks in the same class\n");
944   for (auto &BI : F) {
945     const BasicBlock *BB = &BI;
946     const BasicBlock *EquivBB = EquivalenceClass[BB];
947     if (BB != EquivBB)
948       BlockWeights[BB] = BlockWeights[EquivBB];
949     LLVM_DEBUG(printBlockWeight(dbgs(), BB));
950   }
951 }
952 
953 /// Visit the given edge to decide if it has a valid weight.
954 ///
955 /// If \p E has not been visited before, we copy to \p UnknownEdge
956 /// and increment the count of unknown edges.
957 ///
958 /// \param E  Edge to visit.
959 /// \param NumUnknownEdges  Current number of unknown edges.
960 /// \param UnknownEdge  Set if E has not been visited before.
961 ///
962 /// \returns E's weight, if known. Otherwise, return 0.
963 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
964                                         Edge *UnknownEdge) {
965   if (!VisitedEdges.count(E)) {
966     (*NumUnknownEdges)++;
967     *UnknownEdge = E;
968     return 0;
969   }
970 
971   return EdgeWeights[E];
972 }
973 
974 /// Propagate weights through incoming/outgoing edges.
975 ///
976 /// If the weight of a basic block is known, and there is only one edge
977 /// with an unknown weight, we can calculate the weight of that edge.
978 ///
979 /// Similarly, if all the edges have a known count, we can calculate the
980 /// count of the basic block, if needed.
981 ///
982 /// \param F  Function to process.
983 /// \param UpdateBlockCount  Whether we should update basic block counts that
984 ///                          has already been annotated.
985 ///
986 /// \returns  True if new weights were assigned to edges or blocks.
987 bool SampleProfileLoader::propagateThroughEdges(Function &F,
988                                                 bool UpdateBlockCount) {
989   bool Changed = false;
990   LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
991   for (const auto &BI : F) {
992     const BasicBlock *BB = &BI;
993     const BasicBlock *EC = EquivalenceClass[BB];
994 
995     // Visit all the predecessor and successor edges to determine
996     // which ones have a weight assigned already. Note that it doesn't
997     // matter that we only keep track of a single unknown edge. The
998     // only case we are interested in handling is when only a single
999     // edge is unknown (see setEdgeOrBlockWeight).
1000     for (unsigned i = 0; i < 2; i++) {
1001       uint64_t TotalWeight = 0;
1002       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1003       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1004 
1005       if (i == 0) {
1006         // First, visit all predecessor edges.
1007         NumTotalEdges = Predecessors[BB].size();
1008         for (auto *Pred : Predecessors[BB]) {
1009           Edge E = std::make_pair(Pred, BB);
1010           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1011           if (E.first == E.second)
1012             SelfReferentialEdge = E;
1013         }
1014         if (NumTotalEdges == 1) {
1015           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1016         }
1017       } else {
1018         // On the second round, visit all successor edges.
1019         NumTotalEdges = Successors[BB].size();
1020         for (auto *Succ : Successors[BB]) {
1021           Edge E = std::make_pair(BB, Succ);
1022           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1023         }
1024         if (NumTotalEdges == 1) {
1025           SingleEdge = std::make_pair(BB, Successors[BB][0]);
1026         }
1027       }
1028 
1029       // After visiting all the edges, there are three cases that we
1030       // can handle immediately:
1031       //
1032       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1033       //   In this case, we simply check that the sum of all the edges
1034       //   is the same as BB's weight. If not, we change BB's weight
1035       //   to match. Additionally, if BB had not been visited before,
1036       //   we mark it visited.
1037       //
1038       // - Only one edge is unknown and BB has already been visited.
1039       //   In this case, we can compute the weight of the edge by
1040       //   subtracting the total block weight from all the known
1041       //   edge weights. If the edges weight more than BB, then the
1042       //   edge of the last remaining edge is set to zero.
1043       //
1044       // - There exists a self-referential edge and the weight of BB is
1045       //   known. In this case, this edge can be based on BB's weight.
1046       //   We add up all the other known edges and set the weight on
1047       //   the self-referential edge as we did in the previous case.
1048       //
1049       // In any other case, we must continue iterating. Eventually,
1050       // all edges will get a weight, or iteration will stop when
1051       // it reaches SampleProfileMaxPropagateIterations.
1052       if (NumUnknownEdges <= 1) {
1053         uint64_t &BBWeight = BlockWeights[EC];
1054         if (NumUnknownEdges == 0) {
1055           if (!VisitedBlocks.count(EC)) {
1056             // If we already know the weight of all edges, the weight of the
1057             // basic block can be computed. It should be no larger than the sum
1058             // of all edge weights.
1059             if (TotalWeight > BBWeight) {
1060               BBWeight = TotalWeight;
1061               Changed = true;
1062               LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
1063                                 << " known. Set weight for block: ";
1064                          printBlockWeight(dbgs(), BB););
1065             }
1066           } else if (NumTotalEdges == 1 &&
1067                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1068             // If there is only one edge for the visited basic block, use the
1069             // block weight to adjust edge weight if edge weight is smaller.
1070             EdgeWeights[SingleEdge] = BlockWeights[EC];
1071             Changed = true;
1072           }
1073         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1074           // If there is a single unknown edge and the block has been
1075           // visited, then we can compute E's weight.
1076           if (BBWeight >= TotalWeight)
1077             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1078           else
1079             EdgeWeights[UnknownEdge] = 0;
1080           const BasicBlock *OtherEC;
1081           if (i == 0)
1082             OtherEC = EquivalenceClass[UnknownEdge.first];
1083           else
1084             OtherEC = EquivalenceClass[UnknownEdge.second];
1085           // Edge weights should never exceed the BB weights it connects.
1086           if (VisitedBlocks.count(OtherEC) &&
1087               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1088             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1089           VisitedEdges.insert(UnknownEdge);
1090           Changed = true;
1091           LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1092                      printEdgeWeight(dbgs(), UnknownEdge));
1093         }
1094       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1095         // If a block Weights 0, all its in/out edges should weight 0.
1096         if (i == 0) {
1097           for (auto *Pred : Predecessors[BB]) {
1098             Edge E = std::make_pair(Pred, BB);
1099             EdgeWeights[E] = 0;
1100             VisitedEdges.insert(E);
1101           }
1102         } else {
1103           for (auto *Succ : Successors[BB]) {
1104             Edge E = std::make_pair(BB, Succ);
1105             EdgeWeights[E] = 0;
1106             VisitedEdges.insert(E);
1107           }
1108         }
1109       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1110         uint64_t &BBWeight = BlockWeights[BB];
1111         // We have a self-referential edge and the weight of BB is known.
1112         if (BBWeight >= TotalWeight)
1113           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1114         else
1115           EdgeWeights[SelfReferentialEdge] = 0;
1116         VisitedEdges.insert(SelfReferentialEdge);
1117         Changed = true;
1118         LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1119                    printEdgeWeight(dbgs(), SelfReferentialEdge));
1120       }
1121       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1122         BlockWeights[EC] = TotalWeight;
1123         VisitedBlocks.insert(EC);
1124         Changed = true;
1125       }
1126     }
1127   }
1128 
1129   return Changed;
1130 }
1131 
1132 /// Build in/out edge lists for each basic block in the CFG.
1133 ///
1134 /// We are interested in unique edges. If a block B1 has multiple
1135 /// edges to another block B2, we only add a single B1->B2 edge.
1136 void SampleProfileLoader::buildEdges(Function &F) {
1137   for (auto &BI : F) {
1138     BasicBlock *B1 = &BI;
1139 
1140     // Add predecessors for B1.
1141     SmallPtrSet<BasicBlock *, 16> Visited;
1142     if (!Predecessors[B1].empty())
1143       llvm_unreachable("Found a stale predecessors list in a basic block.");
1144     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1145       BasicBlock *B2 = *PI;
1146       if (Visited.insert(B2).second)
1147         Predecessors[B1].push_back(B2);
1148     }
1149 
1150     // Add successors for B1.
1151     Visited.clear();
1152     if (!Successors[B1].empty())
1153       llvm_unreachable("Found a stale successors list in a basic block.");
1154     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1155       BasicBlock *B2 = *SI;
1156       if (Visited.insert(B2).second)
1157         Successors[B1].push_back(B2);
1158     }
1159   }
1160 }
1161 
1162 /// Returns the sorted CallTargetMap \p M by count in descending order.
1163 static SmallVector<InstrProfValueData, 2> SortCallTargets(
1164     const SampleRecord::CallTargetMap &M) {
1165   SmallVector<InstrProfValueData, 2> R;
1166   for (auto I = M.begin(); I != M.end(); ++I)
1167     R.push_back({Function::getGUID(I->getKey()), I->getValue()});
1168   llvm::sort(R.begin(), R.end(),
1169              [](const InstrProfValueData &L, const InstrProfValueData &R) {
1170                if (L.Count == R.Count)
1171                  return L.Value > R.Value;
1172                else
1173                  return L.Count > R.Count;
1174              });
1175   return R;
1176 }
1177 
1178 /// Propagate weights into edges
1179 ///
1180 /// The following rules are applied to every block BB in the CFG:
1181 ///
1182 /// - If BB has a single predecessor/successor, then the weight
1183 ///   of that edge is the weight of the block.
1184 ///
1185 /// - If all incoming or outgoing edges are known except one, and the
1186 ///   weight of the block is already known, the weight of the unknown
1187 ///   edge will be the weight of the block minus the sum of all the known
1188 ///   edges. If the sum of all the known edges is larger than BB's weight,
1189 ///   we set the unknown edge weight to zero.
1190 ///
1191 /// - If there is a self-referential edge, and the weight of the block is
1192 ///   known, the weight for that edge is set to the weight of the block
1193 ///   minus the weight of the other incoming edges to that block (if
1194 ///   known).
1195 void SampleProfileLoader::propagateWeights(Function &F) {
1196   bool Changed = true;
1197   unsigned I = 0;
1198 
1199   // If BB weight is larger than its corresponding loop's header BB weight,
1200   // use the BB weight to replace the loop header BB weight.
1201   for (auto &BI : F) {
1202     BasicBlock *BB = &BI;
1203     Loop *L = LI->getLoopFor(BB);
1204     if (!L) {
1205       continue;
1206     }
1207     BasicBlock *Header = L->getHeader();
1208     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1209       BlockWeights[Header] = BlockWeights[BB];
1210     }
1211   }
1212 
1213   // Before propagation starts, build, for each block, a list of
1214   // unique predecessors and successors. This is necessary to handle
1215   // identical edges in multiway branches. Since we visit all blocks and all
1216   // edges of the CFG, it is cleaner to build these lists once at the start
1217   // of the pass.
1218   buildEdges(F);
1219 
1220   // Propagate until we converge or we go past the iteration limit.
1221   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1222     Changed = propagateThroughEdges(F, false);
1223   }
1224 
1225   // The first propagation propagates BB counts from annotated BBs to unknown
1226   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1227   // to propagate edge weights.
1228   VisitedEdges.clear();
1229   Changed = true;
1230   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1231     Changed = propagateThroughEdges(F, false);
1232   }
1233 
1234   // The 3rd propagation pass allows adjust annotated BB weights that are
1235   // obviously wrong.
1236   Changed = true;
1237   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1238     Changed = propagateThroughEdges(F, true);
1239   }
1240 
1241   // Generate MD_prof metadata for every branch instruction using the
1242   // edge weights computed during propagation.
1243   LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1244   LLVMContext &Ctx = F.getContext();
1245   MDBuilder MDB(Ctx);
1246   for (auto &BI : F) {
1247     BasicBlock *BB = &BI;
1248 
1249     if (BlockWeights[BB]) {
1250       for (auto &I : BB->getInstList()) {
1251         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1252           continue;
1253         CallSite CS(&I);
1254         if (!CS.getCalledFunction()) {
1255           const DebugLoc &DLoc = I.getDebugLoc();
1256           if (!DLoc)
1257             continue;
1258           const DILocation *DIL = DLoc;
1259           uint32_t LineOffset = FunctionSamples::getOffset(DIL);
1260           uint32_t Discriminator = DIL->getBaseDiscriminator();
1261 
1262           const FunctionSamples *FS = findFunctionSamples(I);
1263           if (!FS)
1264             continue;
1265           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1266           if (!T || T.get().empty())
1267             continue;
1268           SmallVector<InstrProfValueData, 2> SortedCallTargets =
1269               SortCallTargets(T.get());
1270           uint64_t Sum;
1271           findIndirectCallFunctionSamples(I, Sum);
1272           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1273                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1274                             SortedCallTargets.size());
1275         } else if (!dyn_cast<IntrinsicInst>(&I)) {
1276           SmallVector<uint32_t, 1> Weights;
1277           Weights.push_back(BlockWeights[BB]);
1278           I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
1279         }
1280       }
1281     }
1282     TerminatorInst *TI = BB->getTerminator();
1283     if (TI->getNumSuccessors() == 1)
1284       continue;
1285     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1286       continue;
1287 
1288     DebugLoc BranchLoc = TI->getDebugLoc();
1289     LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1290                       << ((BranchLoc) ? Twine(BranchLoc.getLine())
1291                                       : Twine("<UNKNOWN LOCATION>"))
1292                       << ".\n");
1293     SmallVector<uint32_t, 4> Weights;
1294     uint32_t MaxWeight = 0;
1295     Instruction *MaxDestInst;
1296     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1297       BasicBlock *Succ = TI->getSuccessor(I);
1298       Edge E = std::make_pair(BB, Succ);
1299       uint64_t Weight = EdgeWeights[E];
1300       LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1301       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1302       // if needed. Sample counts in profiles are 64-bit unsigned values,
1303       // but internally branch weights are expressed as 32-bit values.
1304       if (Weight > std::numeric_limits<uint32_t>::max()) {
1305         LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1306         Weight = std::numeric_limits<uint32_t>::max();
1307       }
1308       // Weight is added by one to avoid propagation errors introduced by
1309       // 0 weights.
1310       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1311       if (Weight != 0) {
1312         if (Weight > MaxWeight) {
1313           MaxWeight = Weight;
1314           MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1315         }
1316       }
1317     }
1318 
1319     uint64_t TempWeight;
1320     // Only set weights if there is at least one non-zero weight.
1321     // In any other case, let the analyzer set weights.
1322     // Do not set weights if the weights are present. In ThinLTO, the profile
1323     // annotation is done twice. If the first annotation already set the
1324     // weights, the second pass does not need to set it.
1325     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1326       LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1327       TI->setMetadata(LLVMContext::MD_prof,
1328                       MDB.createBranchWeights(Weights));
1329       ORE->emit([&]() {
1330         return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1331                << "most popular destination for conditional branches at "
1332                << ore::NV("CondBranchesLoc", BranchLoc);
1333       });
1334     } else {
1335       LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1336     }
1337   }
1338 }
1339 
1340 /// Get the line number for the function header.
1341 ///
1342 /// This looks up function \p F in the current compilation unit and
1343 /// retrieves the line number where the function is defined. This is
1344 /// line 0 for all the samples read from the profile file. Every line
1345 /// number is relative to this line.
1346 ///
1347 /// \param F  Function object to query.
1348 ///
1349 /// \returns the line number where \p F is defined. If it returns 0,
1350 ///          it means that there is no debug information available for \p F.
1351 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1352   if (DISubprogram *S = F.getSubprogram())
1353     return S->getLine();
1354 
1355   // If the start of \p F is missing, emit a diagnostic to inform the user
1356   // about the missed opportunity.
1357   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1358       "No debug information found in function " + F.getName() +
1359           ": Function profile not used",
1360       DS_Warning));
1361   return 0;
1362 }
1363 
1364 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1365   DT.reset(new DominatorTree);
1366   DT->recalculate(F);
1367 
1368   PDT.reset(new PostDomTreeBase<BasicBlock>());
1369   PDT->recalculate(F);
1370 
1371   LI.reset(new LoopInfo);
1372   LI->analyze(*DT);
1373 }
1374 
1375 /// Generate branch weight metadata for all branches in \p F.
1376 ///
1377 /// Branch weights are computed out of instruction samples using a
1378 /// propagation heuristic. Propagation proceeds in 3 phases:
1379 ///
1380 /// 1- Assignment of block weights. All the basic blocks in the function
1381 ///    are initial assigned the same weight as their most frequently
1382 ///    executed instruction.
1383 ///
1384 /// 2- Creation of equivalence classes. Since samples may be missing from
1385 ///    blocks, we can fill in the gaps by setting the weights of all the
1386 ///    blocks in the same equivalence class to the same weight. To compute
1387 ///    the concept of equivalence, we use dominance and loop information.
1388 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1389 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1390 ///
1391 /// 3- Propagation of block weights into edges. This uses a simple
1392 ///    propagation heuristic. The following rules are applied to every
1393 ///    block BB in the CFG:
1394 ///
1395 ///    - If BB has a single predecessor/successor, then the weight
1396 ///      of that edge is the weight of the block.
1397 ///
1398 ///    - If all the edges are known except one, and the weight of the
1399 ///      block is already known, the weight of the unknown edge will
1400 ///      be the weight of the block minus the sum of all the known
1401 ///      edges. If the sum of all the known edges is larger than BB's weight,
1402 ///      we set the unknown edge weight to zero.
1403 ///
1404 ///    - If there is a self-referential edge, and the weight of the block is
1405 ///      known, the weight for that edge is set to the weight of the block
1406 ///      minus the weight of the other incoming edges to that block (if
1407 ///      known).
1408 ///
1409 /// Since this propagation is not guaranteed to finalize for every CFG, we
1410 /// only allow it to proceed for a limited number of iterations (controlled
1411 /// by -sample-profile-max-propagate-iterations).
1412 ///
1413 /// FIXME: Try to replace this propagation heuristic with a scheme
1414 /// that is guaranteed to finalize. A work-list approach similar to
1415 /// the standard value propagation algorithm used by SSA-CCP might
1416 /// work here.
1417 ///
1418 /// Once all the branch weights are computed, we emit the MD_prof
1419 /// metadata on BB using the computed values for each of its branches.
1420 ///
1421 /// \param F The function to query.
1422 ///
1423 /// \returns true if \p F was modified. Returns false, otherwise.
1424 bool SampleProfileLoader::emitAnnotations(Function &F) {
1425   bool Changed = false;
1426 
1427   if (getFunctionLoc(F) == 0)
1428     return false;
1429 
1430   LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1431                     << F.getName() << ": " << getFunctionLoc(F) << "\n");
1432 
1433   DenseSet<GlobalValue::GUID> InlinedGUIDs;
1434   Changed |= inlineHotFunctions(F, InlinedGUIDs);
1435 
1436   // Compute basic block weights.
1437   Changed |= computeBlockWeights(F);
1438 
1439   if (Changed) {
1440     // Add an entry count to the function using the samples gathered at the
1441     // function entry.
1442     // Sets the GUIDs that are inlined in the profiled binary. This is used
1443     // for ThinLink to make correct liveness analysis, and also make the IR
1444     // match the profiled binary before annotation.
1445     F.setEntryCount(
1446         ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1447         &InlinedGUIDs);
1448 
1449     // Compute dominance and loop info needed for propagation.
1450     computeDominanceAndLoopInfo(F);
1451 
1452     // Find equivalence classes.
1453     findEquivalenceClasses(F);
1454 
1455     // Propagate weights to all edges.
1456     propagateWeights(F);
1457   }
1458 
1459   // If coverage checking was requested, compute it now.
1460   if (SampleProfileRecordCoverage) {
1461     unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1462     unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1463     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1464     if (Coverage < SampleProfileRecordCoverage) {
1465       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1466           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1467           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1468               Twine(Coverage) + "%) were applied",
1469           DS_Warning));
1470     }
1471   }
1472 
1473   if (SampleProfileSampleCoverage) {
1474     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1475     uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1476     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1477     if (Coverage < SampleProfileSampleCoverage) {
1478       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1479           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1480           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1481               Twine(Coverage) + "%) were applied",
1482           DS_Warning));
1483     }
1484   }
1485   return Changed;
1486 }
1487 
1488 char SampleProfileLoaderLegacyPass::ID = 0;
1489 
1490 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1491                       "Sample Profile loader", false, false)
1492 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1493 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1494 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1495 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1496                     "Sample Profile loader", false, false)
1497 
1498 bool SampleProfileLoader::doInitialization(Module &M) {
1499   auto &Ctx = M.getContext();
1500   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1501   if (std::error_code EC = ReaderOrErr.getError()) {
1502     std::string Msg = "Could not open profile: " + EC.message();
1503     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1504     return false;
1505   }
1506   Reader = std::move(ReaderOrErr.get());
1507   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1508   return true;
1509 }
1510 
1511 ModulePass *llvm::createSampleProfileLoaderPass() {
1512   return new SampleProfileLoaderLegacyPass(SampleProfileFile);
1513 }
1514 
1515 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1516   return new SampleProfileLoaderLegacyPass(Name);
1517 }
1518 
1519 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
1520                                       ProfileSummaryInfo *_PSI) {
1521   if (!ProfileIsValid)
1522     return false;
1523 
1524   PSI = _PSI;
1525   if (M.getProfileSummary() == nullptr)
1526     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
1527 
1528   // Compute the total number of samples collected in this profile.
1529   for (const auto &I : Reader->getProfiles())
1530     TotalCollectedSamples += I.second.getTotalSamples();
1531 
1532   // Populate the symbol map.
1533   for (const auto &N_F : M.getValueSymbolTable()) {
1534     StringRef OrigName = N_F.getKey();
1535     Function *F = dyn_cast<Function>(N_F.getValue());
1536     if (F == nullptr)
1537       continue;
1538     SymbolMap[OrigName] = F;
1539     auto pos = OrigName.find('.');
1540     if (pos != StringRef::npos) {
1541       StringRef NewName = OrigName.substr(0, pos);
1542       auto r = SymbolMap.insert(std::make_pair(NewName, F));
1543       // Failiing to insert means there is already an entry in SymbolMap,
1544       // thus there are multiple functions that are mapped to the same
1545       // stripped name. In this case of name conflicting, set the value
1546       // to nullptr to avoid confusion.
1547       if (!r.second)
1548         r.first->second = nullptr;
1549     }
1550   }
1551 
1552   bool retval = false;
1553   for (auto &F : M)
1554     if (!F.isDeclaration()) {
1555       clearFunctionData();
1556       retval |= runOnFunction(F, AM);
1557     }
1558   return retval;
1559 }
1560 
1561 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1562   ACT = &getAnalysis<AssumptionCacheTracker>();
1563   TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1564   ProfileSummaryInfo *PSI =
1565       getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1566   return SampleLoader.runOnModule(M, nullptr, PSI);
1567 }
1568 
1569 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1570   // Initialize the entry count to -1, which will be treated conservatively
1571   // by getEntryCount as the same as unknown (None). If we have samples this
1572   // will be overwritten in emitAnnotations.
1573   F.setEntryCount(ProfileCount(-1, Function::PCT_Real));
1574   std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1575   if (AM) {
1576     auto &FAM =
1577         AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1578             .getManager();
1579     ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1580   } else {
1581     OwnedORE = make_unique<OptimizationRemarkEmitter>(&F);
1582     ORE = OwnedORE.get();
1583   }
1584   Samples = Reader->getSamplesFor(F);
1585   if (Samples && !Samples->empty())
1586     return emitAnnotations(F);
1587   return false;
1588 }
1589 
1590 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1591                                                ModuleAnalysisManager &AM) {
1592   FunctionAnalysisManager &FAM =
1593       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1594 
1595   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1596     return FAM.getResult<AssumptionAnalysis>(F);
1597   };
1598   auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1599     return FAM.getResult<TargetIRAnalysis>(F);
1600   };
1601 
1602   SampleProfileLoader SampleLoader(
1603       ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1604       IsThinLTOPreLink, GetAssumptionCache, GetTTI);
1605 
1606   SampleLoader.doInitialization(M);
1607 
1608   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1609   if (!SampleLoader.runOnModule(M, &AM, PSI))
1610     return PreservedAnalyses::all();
1611 
1612   return PreservedAnalyses::none();
1613 }
1614