1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SampleProfileLoader transformation. This pass 10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 12 // profile information in the given profile. 13 // 14 // This pass generates branch weight annotations on the IR: 15 // 16 // - prof: Represents branch weights. This annotation is added to branches 17 // to indicate the weights of each edge coming out of the branch. 18 // The weight of each edge is the weight of the target block for 19 // that edge. The weight of a block B is computed as the maximum 20 // number of samples found in B. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/IPO/SampleProfile.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/None.h" 29 #include "llvm/ADT/SCCIterator.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/StringMap.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/Twine.h" 37 #include "llvm/Analysis/AssumptionCache.h" 38 #include "llvm/Analysis/CallGraph.h" 39 #include "llvm/Analysis/CallGraphSCCPass.h" 40 #include "llvm/Analysis/InlineAdvisor.h" 41 #include "llvm/Analysis/InlineCost.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/PostDominators.h" 45 #include "llvm/Analysis/ProfileSummaryInfo.h" 46 #include "llvm/Analysis/ReplayInlineAdvisor.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/IR/BasicBlock.h" 50 #include "llvm/IR/CFG.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/DiagnosticInfo.h" 54 #include "llvm/IR/Dominators.h" 55 #include "llvm/IR/Function.h" 56 #include "llvm/IR/GlobalValue.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/MDBuilder.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/PassManager.h" 65 #include "llvm/IR/ValueSymbolTable.h" 66 #include "llvm/InitializePasses.h" 67 #include "llvm/Pass.h" 68 #include "llvm/ProfileData/InstrProf.h" 69 #include "llvm/ProfileData/SampleProf.h" 70 #include "llvm/ProfileData/SampleProfReader.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/ErrorOr.h" 76 #include "llvm/Support/GenericDomTree.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/IPO.h" 79 #include "llvm/Transforms/IPO/SampleContextTracker.h" 80 #include "llvm/Transforms/Instrumentation.h" 81 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 82 #include "llvm/Transforms/Utils/Cloning.h" 83 #include <algorithm> 84 #include <cassert> 85 #include <cstdint> 86 #include <functional> 87 #include <limits> 88 #include <map> 89 #include <memory> 90 #include <queue> 91 #include <string> 92 #include <system_error> 93 #include <utility> 94 #include <vector> 95 96 using namespace llvm; 97 using namespace sampleprof; 98 using ProfileCount = Function::ProfileCount; 99 #define DEBUG_TYPE "sample-profile" 100 #define CSINLINE_DEBUG DEBUG_TYPE "-inline" 101 102 STATISTIC(NumCSInlined, 103 "Number of functions inlined with context sensitive profile"); 104 STATISTIC(NumCSNotInlined, 105 "Number of functions not inlined with context sensitive profile"); 106 107 // Command line option to specify the file to read samples from. This is 108 // mainly used for debugging. 109 static cl::opt<std::string> SampleProfileFile( 110 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 111 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 112 113 // The named file contains a set of transformations that may have been applied 114 // to the symbol names between the program from which the sample data was 115 // collected and the current program's symbols. 116 static cl::opt<std::string> SampleProfileRemappingFile( 117 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), 118 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); 119 120 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 121 "sample-profile-max-propagate-iterations", cl::init(100), 122 cl::desc("Maximum number of iterations to go through when propagating " 123 "sample block/edge weights through the CFG.")); 124 125 static cl::opt<unsigned> SampleProfileRecordCoverage( 126 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 127 cl::desc("Emit a warning if less than N% of records in the input profile " 128 "are matched to the IR.")); 129 130 static cl::opt<unsigned> SampleProfileSampleCoverage( 131 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 132 cl::desc("Emit a warning if less than N% of samples in the input profile " 133 "are matched to the IR.")); 134 135 static cl::opt<bool> NoWarnSampleUnused( 136 "no-warn-sample-unused", cl::init(false), cl::Hidden, 137 cl::desc("Use this option to turn off/on warnings about function with " 138 "samples but without debug information to use those samples. ")); 139 140 static cl::opt<bool> ProfileSampleAccurate( 141 "profile-sample-accurate", cl::Hidden, cl::init(false), 142 cl::desc("If the sample profile is accurate, we will mark all un-sampled " 143 "callsite and function as having 0 samples. Otherwise, treat " 144 "un-sampled callsites and functions conservatively as unknown. ")); 145 146 static cl::opt<bool> ProfileAccurateForSymsInList( 147 "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore, 148 cl::init(true), 149 cl::desc("For symbols in profile symbol list, regard their profiles to " 150 "be accurate. It may be overriden by profile-sample-accurate. ")); 151 152 static cl::opt<bool> ProfileMergeInlinee( 153 "sample-profile-merge-inlinee", cl::Hidden, cl::init(true), 154 cl::desc("Merge past inlinee's profile to outline version if sample " 155 "profile loader decided not to inline a call site. It will " 156 "only be enabled when top-down order of profile loading is " 157 "enabled. ")); 158 159 static cl::opt<bool> ProfileTopDownLoad( 160 "sample-profile-top-down-load", cl::Hidden, cl::init(true), 161 cl::desc("Do profile annotation and inlining for functions in top-down " 162 "order of call graph during sample profile loading. It only " 163 "works for new pass manager. ")); 164 165 static cl::opt<bool> ProfileSizeInline( 166 "sample-profile-inline-size", cl::Hidden, cl::init(false), 167 cl::desc("Inline cold call sites in profile loader if it's beneficial " 168 "for code size.")); 169 170 static cl::opt<int> SampleColdCallSiteThreshold( 171 "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45), 172 cl::desc("Threshold for inlining cold callsites")); 173 174 static cl::opt<std::string> ProfileInlineReplayFile( 175 "sample-profile-inline-replay", cl::init(""), cl::value_desc("filename"), 176 cl::desc( 177 "Optimization remarks file containing inline remarks to be replayed " 178 "by inlining from sample profile loader."), 179 cl::Hidden); 180 181 namespace { 182 183 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 184 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 185 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 186 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 187 using BlockEdgeMap = 188 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 189 190 class SampleProfileLoader; 191 192 class SampleCoverageTracker { 193 public: 194 SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){}; 195 196 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 197 uint32_t Discriminator, uint64_t Samples); 198 unsigned computeCoverage(unsigned Used, unsigned Total) const; 199 unsigned countUsedRecords(const FunctionSamples *FS, 200 ProfileSummaryInfo *PSI) const; 201 unsigned countBodyRecords(const FunctionSamples *FS, 202 ProfileSummaryInfo *PSI) const; 203 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 204 uint64_t countBodySamples(const FunctionSamples *FS, 205 ProfileSummaryInfo *PSI) const; 206 207 void clear() { 208 SampleCoverage.clear(); 209 TotalUsedSamples = 0; 210 } 211 212 private: 213 using BodySampleCoverageMap = std::map<LineLocation, unsigned>; 214 using FunctionSamplesCoverageMap = 215 DenseMap<const FunctionSamples *, BodySampleCoverageMap>; 216 217 /// Coverage map for sampling records. 218 /// 219 /// This map keeps a record of sampling records that have been matched to 220 /// an IR instruction. This is used to detect some form of staleness in 221 /// profiles (see flag -sample-profile-check-coverage). 222 /// 223 /// Each entry in the map corresponds to a FunctionSamples instance. This is 224 /// another map that counts how many times the sample record at the 225 /// given location has been used. 226 FunctionSamplesCoverageMap SampleCoverage; 227 228 /// Number of samples used from the profile. 229 /// 230 /// When a sampling record is used for the first time, the samples from 231 /// that record are added to this accumulator. Coverage is later computed 232 /// based on the total number of samples available in this function and 233 /// its callsites. 234 /// 235 /// Note that this accumulator tracks samples used from a single function 236 /// and all the inlined callsites. Strictly, we should have a map of counters 237 /// keyed by FunctionSamples pointers, but these stats are cleared after 238 /// every function, so we just need to keep a single counter. 239 uint64_t TotalUsedSamples = 0; 240 241 SampleProfileLoader &SPLoader; 242 }; 243 244 class GUIDToFuncNameMapper { 245 public: 246 GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader, 247 DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap) 248 : CurrentReader(Reader), CurrentModule(M), 249 CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) { 250 if (!CurrentReader.useMD5()) 251 return; 252 253 for (const auto &F : CurrentModule) { 254 StringRef OrigName = F.getName(); 255 CurrentGUIDToFuncNameMap.insert( 256 {Function::getGUID(OrigName), OrigName}); 257 258 // Local to global var promotion used by optimization like thinlto 259 // will rename the var and add suffix like ".llvm.xxx" to the 260 // original local name. In sample profile, the suffixes of function 261 // names are all stripped. Since it is possible that the mapper is 262 // built in post-thin-link phase and var promotion has been done, 263 // we need to add the substring of function name without the suffix 264 // into the GUIDToFuncNameMap. 265 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 266 if (CanonName != OrigName) 267 CurrentGUIDToFuncNameMap.insert( 268 {Function::getGUID(CanonName), CanonName}); 269 } 270 271 // Update GUIDToFuncNameMap for each function including inlinees. 272 SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap); 273 } 274 275 ~GUIDToFuncNameMapper() { 276 if (!CurrentReader.useMD5()) 277 return; 278 279 CurrentGUIDToFuncNameMap.clear(); 280 281 // Reset GUIDToFuncNameMap for of each function as they're no 282 // longer valid at this point. 283 SetGUIDToFuncNameMapForAll(nullptr); 284 } 285 286 private: 287 void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) { 288 std::queue<FunctionSamples *> FSToUpdate; 289 for (auto &IFS : CurrentReader.getProfiles()) { 290 FSToUpdate.push(&IFS.second); 291 } 292 293 while (!FSToUpdate.empty()) { 294 FunctionSamples *FS = FSToUpdate.front(); 295 FSToUpdate.pop(); 296 FS->GUIDToFuncNameMap = Map; 297 for (const auto &ICS : FS->getCallsiteSamples()) { 298 const FunctionSamplesMap &FSMap = ICS.second; 299 for (auto &IFS : FSMap) { 300 FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second); 301 FSToUpdate.push(&FS); 302 } 303 } 304 } 305 } 306 307 SampleProfileReader &CurrentReader; 308 Module &CurrentModule; 309 DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap; 310 }; 311 312 /// Sample profile pass. 313 /// 314 /// This pass reads profile data from the file specified by 315 /// -sample-profile-file and annotates every affected function with the 316 /// profile information found in that file. 317 class SampleProfileLoader { 318 public: 319 SampleProfileLoader( 320 StringRef Name, StringRef RemapName, bool IsThinLTOPreLink, 321 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 322 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo, 323 std::function<const TargetLibraryInfo &(Function &)> GetTLI) 324 : GetAC(std::move(GetAssumptionCache)), 325 GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)), 326 CoverageTracker(*this), Filename(std::string(Name)), 327 RemappingFilename(std::string(RemapName)), 328 IsThinLTOPreLink(IsThinLTOPreLink) {} 329 330 bool doInitialization(Module &M, FunctionAnalysisManager *FAM = nullptr); 331 bool runOnModule(Module &M, ModuleAnalysisManager *AM, 332 ProfileSummaryInfo *_PSI, CallGraph *CG); 333 334 void dump() { Reader->dump(); } 335 336 protected: 337 friend class SampleCoverageTracker; 338 339 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 340 unsigned getFunctionLoc(Function &F); 341 bool emitAnnotations(Function &F); 342 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 343 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 344 const FunctionSamples *findCalleeFunctionSamples(const CallBase &I) const; 345 std::vector<const FunctionSamples *> 346 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 347 mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap; 348 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 349 bool inlineCallInstruction(CallBase &CB); 350 bool inlineHotFunctions(Function &F, 351 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 352 // Inline cold/small functions in addition to hot ones 353 bool shouldInlineColdCallee(CallBase &CallInst); 354 void emitOptimizationRemarksForInlineCandidates( 355 const SmallVectorImpl<CallBase *> &Candidates, const Function &F, 356 bool Hot); 357 void printEdgeWeight(raw_ostream &OS, Edge E); 358 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 359 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 360 bool computeBlockWeights(Function &F); 361 void findEquivalenceClasses(Function &F); 362 template <bool IsPostDom> 363 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 364 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 365 366 void propagateWeights(Function &F); 367 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 368 void buildEdges(Function &F); 369 std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG); 370 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 371 void computeDominanceAndLoopInfo(Function &F); 372 void clearFunctionData(); 373 bool callsiteIsHot(const FunctionSamples *CallsiteFS, 374 ProfileSummaryInfo *PSI); 375 376 /// Map basic blocks to their computed weights. 377 /// 378 /// The weight of a basic block is defined to be the maximum 379 /// of all the instruction weights in that block. 380 BlockWeightMap BlockWeights; 381 382 /// Map edges to their computed weights. 383 /// 384 /// Edge weights are computed by propagating basic block weights in 385 /// SampleProfile::propagateWeights. 386 EdgeWeightMap EdgeWeights; 387 388 /// Set of visited blocks during propagation. 389 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 390 391 /// Set of visited edges during propagation. 392 SmallSet<Edge, 32> VisitedEdges; 393 394 /// Equivalence classes for block weights. 395 /// 396 /// Two blocks BB1 and BB2 are in the same equivalence class if they 397 /// dominate and post-dominate each other, and they are in the same loop 398 /// nest. When this happens, the two blocks are guaranteed to execute 399 /// the same number of times. 400 EquivalenceClassMap EquivalenceClass; 401 402 /// Map from function name to Function *. Used to find the function from 403 /// the function name. If the function name contains suffix, additional 404 /// entry is added to map from the stripped name to the function if there 405 /// is one-to-one mapping. 406 StringMap<Function *> SymbolMap; 407 408 /// Dominance, post-dominance and loop information. 409 std::unique_ptr<DominatorTree> DT; 410 std::unique_ptr<PostDominatorTree> PDT; 411 std::unique_ptr<LoopInfo> LI; 412 413 std::function<AssumptionCache &(Function &)> GetAC; 414 std::function<TargetTransformInfo &(Function &)> GetTTI; 415 std::function<const TargetLibraryInfo &(Function &)> GetTLI; 416 417 /// Predecessors for each basic block in the CFG. 418 BlockEdgeMap Predecessors; 419 420 /// Successors for each basic block in the CFG. 421 BlockEdgeMap Successors; 422 423 SampleCoverageTracker CoverageTracker; 424 425 /// Profile reader object. 426 std::unique_ptr<SampleProfileReader> Reader; 427 428 /// Profile tracker for different context. 429 std::unique_ptr<SampleContextTracker> ContextTracker; 430 431 /// Samples collected for the body of this function. 432 FunctionSamples *Samples = nullptr; 433 434 /// Name of the profile file to load. 435 std::string Filename; 436 437 /// Name of the profile remapping file to load. 438 std::string RemappingFilename; 439 440 /// Flag indicating whether the profile input loaded successfully. 441 bool ProfileIsValid = false; 442 443 /// Flag indicating whether input profile is context-sensitive 444 bool ProfileIsCS = false; 445 446 /// Flag indicating if the pass is invoked in ThinLTO compile phase. 447 /// 448 /// In this phase, in annotation, we should not promote indirect calls. 449 /// Instead, we will mark GUIDs that needs to be annotated to the function. 450 bool IsThinLTOPreLink; 451 452 /// Profile Summary Info computed from sample profile. 453 ProfileSummaryInfo *PSI = nullptr; 454 455 /// Profle Symbol list tells whether a function name appears in the binary 456 /// used to generate the current profile. 457 std::unique_ptr<ProfileSymbolList> PSL; 458 459 /// Total number of samples collected in this profile. 460 /// 461 /// This is the sum of all the samples collected in all the functions executed 462 /// at runtime. 463 uint64_t TotalCollectedSamples = 0; 464 465 /// Optimization Remark Emitter used to emit diagnostic remarks. 466 OptimizationRemarkEmitter *ORE = nullptr; 467 468 // Information recorded when we declined to inline a call site 469 // because we have determined it is too cold is accumulated for 470 // each callee function. Initially this is just the entry count. 471 struct NotInlinedProfileInfo { 472 uint64_t entryCount; 473 }; 474 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo; 475 476 // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for 477 // all the function symbols defined or declared in current module. 478 DenseMap<uint64_t, StringRef> GUIDToFuncNameMap; 479 480 // All the Names used in FunctionSamples including outline function 481 // names, inline instance names and call target names. 482 StringSet<> NamesInProfile; 483 484 // For symbol in profile symbol list, whether to regard their profiles 485 // to be accurate. It is mainly decided by existance of profile symbol 486 // list and -profile-accurate-for-symsinlist flag, but it can be 487 // overriden by -profile-sample-accurate or profile-sample-accurate 488 // attribute. 489 bool ProfAccForSymsInList; 490 491 // External inline advisor used to replay inline decision from remarks. 492 std::unique_ptr<ReplayInlineAdvisor> ExternalInlineAdvisor; 493 }; 494 495 class SampleProfileLoaderLegacyPass : public ModulePass { 496 public: 497 // Class identification, replacement for typeinfo 498 static char ID; 499 500 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, 501 bool IsThinLTOPreLink = false) 502 : ModulePass(ID), SampleLoader( 503 Name, SampleProfileRemappingFile, IsThinLTOPreLink, 504 [&](Function &F) -> AssumptionCache & { 505 return ACT->getAssumptionCache(F); 506 }, 507 [&](Function &F) -> TargetTransformInfo & { 508 return TTIWP->getTTI(F); 509 }, 510 [&](Function &F) -> TargetLibraryInfo & { 511 return TLIWP->getTLI(F); 512 }) { 513 initializeSampleProfileLoaderLegacyPassPass( 514 *PassRegistry::getPassRegistry()); 515 } 516 517 void dump() { SampleLoader.dump(); } 518 519 bool doInitialization(Module &M) override { 520 return SampleLoader.doInitialization(M); 521 } 522 523 StringRef getPassName() const override { return "Sample profile pass"; } 524 bool runOnModule(Module &M) override; 525 526 void getAnalysisUsage(AnalysisUsage &AU) const override { 527 AU.addRequired<AssumptionCacheTracker>(); 528 AU.addRequired<TargetTransformInfoWrapperPass>(); 529 AU.addRequired<TargetLibraryInfoWrapperPass>(); 530 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 531 } 532 533 private: 534 SampleProfileLoader SampleLoader; 535 AssumptionCacheTracker *ACT = nullptr; 536 TargetTransformInfoWrapperPass *TTIWP = nullptr; 537 TargetLibraryInfoWrapperPass *TLIWP = nullptr; 538 }; 539 540 } // end anonymous namespace 541 542 /// Return true if the given callsite is hot wrt to hot cutoff threshold. 543 /// 544 /// Functions that were inlined in the original binary will be represented 545 /// in the inline stack in the sample profile. If the profile shows that 546 /// the original inline decision was "good" (i.e., the callsite is executed 547 /// frequently), then we will recreate the inline decision and apply the 548 /// profile from the inlined callsite. 549 /// 550 /// To decide whether an inlined callsite is hot, we compare the callsite 551 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is 552 /// regarded as hot if the count is above the cutoff value. 553 /// 554 /// When ProfileAccurateForSymsInList is enabled and profile symbol list 555 /// is present, functions in the profile symbol list but without profile will 556 /// be regarded as cold and much less inlining will happen in CGSCC inlining 557 /// pass, so we tend to lower the hot criteria here to allow more early 558 /// inlining to happen for warm callsites and it is helpful for performance. 559 bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS, 560 ProfileSummaryInfo *PSI) { 561 if (!CallsiteFS) 562 return false; // The callsite was not inlined in the original binary. 563 564 assert(PSI && "PSI is expected to be non null"); 565 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 566 if (ProfAccForSymsInList) 567 return !PSI->isColdCount(CallsiteTotalSamples); 568 else 569 return PSI->isHotCount(CallsiteTotalSamples); 570 } 571 572 /// Mark as used the sample record for the given function samples at 573 /// (LineOffset, Discriminator). 574 /// 575 /// \returns true if this is the first time we mark the given record. 576 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 577 uint32_t LineOffset, 578 uint32_t Discriminator, 579 uint64_t Samples) { 580 LineLocation Loc(LineOffset, Discriminator); 581 unsigned &Count = SampleCoverage[FS][Loc]; 582 bool FirstTime = (++Count == 1); 583 if (FirstTime) 584 TotalUsedSamples += Samples; 585 return FirstTime; 586 } 587 588 /// Return the number of sample records that were applied from this profile. 589 /// 590 /// This count does not include records from cold inlined callsites. 591 unsigned 592 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS, 593 ProfileSummaryInfo *PSI) const { 594 auto I = SampleCoverage.find(FS); 595 596 // The size of the coverage map for FS represents the number of records 597 // that were marked used at least once. 598 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 599 600 // If there are inlined callsites in this function, count the samples found 601 // in the respective bodies. However, do not bother counting callees with 0 602 // total samples, these are callees that were never invoked at runtime. 603 for (const auto &I : FS->getCallsiteSamples()) 604 for (const auto &J : I.second) { 605 const FunctionSamples *CalleeSamples = &J.second; 606 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 607 Count += countUsedRecords(CalleeSamples, PSI); 608 } 609 610 return Count; 611 } 612 613 /// Return the number of sample records in the body of this profile. 614 /// 615 /// This count does not include records from cold inlined callsites. 616 unsigned 617 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS, 618 ProfileSummaryInfo *PSI) const { 619 unsigned Count = FS->getBodySamples().size(); 620 621 // Only count records in hot callsites. 622 for (const auto &I : FS->getCallsiteSamples()) 623 for (const auto &J : I.second) { 624 const FunctionSamples *CalleeSamples = &J.second; 625 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 626 Count += countBodyRecords(CalleeSamples, PSI); 627 } 628 629 return Count; 630 } 631 632 /// Return the number of samples collected in the body of this profile. 633 /// 634 /// This count does not include samples from cold inlined callsites. 635 uint64_t 636 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS, 637 ProfileSummaryInfo *PSI) const { 638 uint64_t Total = 0; 639 for (const auto &I : FS->getBodySamples()) 640 Total += I.second.getSamples(); 641 642 // Only count samples in hot callsites. 643 for (const auto &I : FS->getCallsiteSamples()) 644 for (const auto &J : I.second) { 645 const FunctionSamples *CalleeSamples = &J.second; 646 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 647 Total += countBodySamples(CalleeSamples, PSI); 648 } 649 650 return Total; 651 } 652 653 /// Return the fraction of sample records used in this profile. 654 /// 655 /// The returned value is an unsigned integer in the range 0-100 indicating 656 /// the percentage of sample records that were used while applying this 657 /// profile to the associated function. 658 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 659 unsigned Total) const { 660 assert(Used <= Total && 661 "number of used records cannot exceed the total number of records"); 662 return Total > 0 ? Used * 100 / Total : 100; 663 } 664 665 /// Clear all the per-function data used to load samples and propagate weights. 666 void SampleProfileLoader::clearFunctionData() { 667 BlockWeights.clear(); 668 EdgeWeights.clear(); 669 VisitedBlocks.clear(); 670 VisitedEdges.clear(); 671 EquivalenceClass.clear(); 672 DT = nullptr; 673 PDT = nullptr; 674 LI = nullptr; 675 Predecessors.clear(); 676 Successors.clear(); 677 CoverageTracker.clear(); 678 } 679 680 #ifndef NDEBUG 681 /// Print the weight of edge \p E on stream \p OS. 682 /// 683 /// \param OS Stream to emit the output to. 684 /// \param E Edge to print. 685 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 686 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 687 << "]: " << EdgeWeights[E] << "\n"; 688 } 689 690 /// Print the equivalence class of block \p BB on stream \p OS. 691 /// 692 /// \param OS Stream to emit the output to. 693 /// \param BB Block to print. 694 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 695 const BasicBlock *BB) { 696 const BasicBlock *Equiv = EquivalenceClass[BB]; 697 OS << "equivalence[" << BB->getName() 698 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 699 } 700 701 /// Print the weight of block \p BB on stream \p OS. 702 /// 703 /// \param OS Stream to emit the output to. 704 /// \param BB Block to print. 705 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 706 const BasicBlock *BB) const { 707 const auto &I = BlockWeights.find(BB); 708 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 709 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 710 } 711 #endif 712 713 /// Get the weight for an instruction. 714 /// 715 /// The "weight" of an instruction \p Inst is the number of samples 716 /// collected on that instruction at runtime. To retrieve it, we 717 /// need to compute the line number of \p Inst relative to the start of its 718 /// function. We use HeaderLineno to compute the offset. We then 719 /// look up the samples collected for \p Inst using BodySamples. 720 /// 721 /// \param Inst Instruction to query. 722 /// 723 /// \returns the weight of \p Inst. 724 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 725 const DebugLoc &DLoc = Inst.getDebugLoc(); 726 if (!DLoc) 727 return std::error_code(); 728 729 const FunctionSamples *FS = findFunctionSamples(Inst); 730 if (!FS) 731 return std::error_code(); 732 733 // Ignore all intrinsics, phinodes and branch instructions. 734 // Branch and phinodes instruction usually contains debug info from sources outside of 735 // the residing basic block, thus we ignore them during annotation. 736 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst)) 737 return std::error_code(); 738 739 // If a direct call/invoke instruction is inlined in profile 740 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 741 // it means that the inlined callsite has no sample, thus the call 742 // instruction should have 0 count. 743 if (!ProfileIsCS) 744 if (const auto *CB = dyn_cast<CallBase>(&Inst)) 745 if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB)) 746 return 0; 747 748 const DILocation *DIL = DLoc; 749 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 750 uint32_t Discriminator = DIL->getBaseDiscriminator(); 751 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 752 if (R) { 753 bool FirstMark = 754 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 755 if (FirstMark) { 756 ORE->emit([&]() { 757 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 758 Remark << "Applied " << ore::NV("NumSamples", *R); 759 Remark << " samples from profile (offset: "; 760 Remark << ore::NV("LineOffset", LineOffset); 761 if (Discriminator) { 762 Remark << "."; 763 Remark << ore::NV("Discriminator", Discriminator); 764 } 765 Remark << ")"; 766 return Remark; 767 }); 768 } 769 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." 770 << DIL->getBaseDiscriminator() << ":" << Inst 771 << " (line offset: " << LineOffset << "." 772 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 773 << ")\n"); 774 } 775 return R; 776 } 777 778 /// Compute the weight of a basic block. 779 /// 780 /// The weight of basic block \p BB is the maximum weight of all the 781 /// instructions in BB. 782 /// 783 /// \param BB The basic block to query. 784 /// 785 /// \returns the weight for \p BB. 786 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 787 uint64_t Max = 0; 788 bool HasWeight = false; 789 for (auto &I : BB->getInstList()) { 790 const ErrorOr<uint64_t> &R = getInstWeight(I); 791 if (R) { 792 Max = std::max(Max, R.get()); 793 HasWeight = true; 794 } 795 } 796 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 797 } 798 799 /// Compute and store the weights of every basic block. 800 /// 801 /// This populates the BlockWeights map by computing 802 /// the weights of every basic block in the CFG. 803 /// 804 /// \param F The function to query. 805 bool SampleProfileLoader::computeBlockWeights(Function &F) { 806 bool Changed = false; 807 LLVM_DEBUG(dbgs() << "Block weights\n"); 808 for (const auto &BB : F) { 809 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 810 if (Weight) { 811 BlockWeights[&BB] = Weight.get(); 812 VisitedBlocks.insert(&BB); 813 Changed = true; 814 } 815 LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); 816 } 817 818 return Changed; 819 } 820 821 /// Get the FunctionSamples for a call instruction. 822 /// 823 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 824 /// instance in which that call instruction is calling to. It contains 825 /// all samples that resides in the inlined instance. We first find the 826 /// inlined instance in which the call instruction is from, then we 827 /// traverse its children to find the callsite with the matching 828 /// location. 829 /// 830 /// \param Inst Call/Invoke instruction to query. 831 /// 832 /// \returns The FunctionSamples pointer to the inlined instance. 833 const FunctionSamples * 834 SampleProfileLoader::findCalleeFunctionSamples(const CallBase &Inst) const { 835 const DILocation *DIL = Inst.getDebugLoc(); 836 if (!DIL) { 837 return nullptr; 838 } 839 840 StringRef CalleeName; 841 if (Function *Callee = Inst.getCalledFunction()) 842 CalleeName = FunctionSamples::getCanonicalFnName(*Callee); 843 844 if (ProfileIsCS) 845 return ContextTracker->getCalleeContextSamplesFor(Inst, CalleeName); 846 847 const FunctionSamples *FS = findFunctionSamples(Inst); 848 if (FS == nullptr) 849 return nullptr; 850 851 return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL), 852 DIL->getBaseDiscriminator()), 853 CalleeName, Reader->getRemapper()); 854 } 855 856 /// Returns a vector of FunctionSamples that are the indirect call targets 857 /// of \p Inst. The vector is sorted by the total number of samples. Stores 858 /// the total call count of the indirect call in \p Sum. 859 std::vector<const FunctionSamples *> 860 SampleProfileLoader::findIndirectCallFunctionSamples( 861 const Instruction &Inst, uint64_t &Sum) const { 862 const DILocation *DIL = Inst.getDebugLoc(); 863 std::vector<const FunctionSamples *> R; 864 865 if (!DIL) { 866 return R; 867 } 868 869 const FunctionSamples *FS = findFunctionSamples(Inst); 870 if (FS == nullptr) 871 return R; 872 873 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 874 uint32_t Discriminator = DIL->getBaseDiscriminator(); 875 876 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 877 Sum = 0; 878 if (T) 879 for (const auto &T_C : T.get()) 880 Sum += T_C.second; 881 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation( 882 FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) { 883 if (M->empty()) 884 return R; 885 for (const auto &NameFS : *M) { 886 Sum += NameFS.second.getEntrySamples(); 887 R.push_back(&NameFS.second); 888 } 889 llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) { 890 if (L->getEntrySamples() != R->getEntrySamples()) 891 return L->getEntrySamples() > R->getEntrySamples(); 892 return FunctionSamples::getGUID(L->getName()) < 893 FunctionSamples::getGUID(R->getName()); 894 }); 895 } 896 return R; 897 } 898 899 /// Get the FunctionSamples for an instruction. 900 /// 901 /// The FunctionSamples of an instruction \p Inst is the inlined instance 902 /// in which that instruction is coming from. We traverse the inline stack 903 /// of that instruction, and match it with the tree nodes in the profile. 904 /// 905 /// \param Inst Instruction to query. 906 /// 907 /// \returns the FunctionSamples pointer to the inlined instance. 908 const FunctionSamples * 909 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 910 const DILocation *DIL = Inst.getDebugLoc(); 911 if (!DIL) 912 return Samples; 913 914 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr); 915 if (it.second) { 916 if (ProfileIsCS) 917 it.first->second = ContextTracker->getContextSamplesFor(DIL); 918 else 919 it.first->second = 920 Samples->findFunctionSamples(DIL, Reader->getRemapper()); 921 } 922 return it.first->second; 923 } 924 925 bool SampleProfileLoader::inlineCallInstruction(CallBase &CB) { 926 if (ExternalInlineAdvisor) { 927 auto Advice = ExternalInlineAdvisor->getAdvice(CB); 928 if (!Advice->isInliningRecommended()) { 929 Advice->recordUnattemptedInlining(); 930 return false; 931 } 932 // Dummy record, we don't use it for replay. 933 Advice->recordInlining(); 934 } 935 936 Function *CalledFunction = CB.getCalledFunction(); 937 assert(CalledFunction); 938 DebugLoc DLoc = CB.getDebugLoc(); 939 BasicBlock *BB = CB.getParent(); 940 InlineParams Params = getInlineParams(); 941 Params.ComputeFullInlineCost = true; 942 // Checks if there is anything in the reachable portion of the callee at 943 // this callsite that makes this inlining potentially illegal. Need to 944 // set ComputeFullInlineCost, otherwise getInlineCost may return early 945 // when cost exceeds threshold without checking all IRs in the callee. 946 // The acutal cost does not matter because we only checks isNever() to 947 // see if it is legal to inline the callsite. 948 InlineCost Cost = 949 getInlineCost(CB, Params, GetTTI(*CalledFunction), GetAC, GetTLI); 950 if (Cost.isNever()) { 951 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB) 952 << "incompatible inlining"); 953 return false; 954 } 955 InlineFunctionInfo IFI(nullptr, GetAC); 956 if (InlineFunction(CB, IFI).isSuccess()) { 957 // The call to InlineFunction erases I, so we can't pass it here. 958 emitInlinedInto(*ORE, DLoc, BB, *CalledFunction, *BB->getParent(), Cost, 959 true, CSINLINE_DEBUG); 960 return true; 961 } 962 return false; 963 } 964 965 bool SampleProfileLoader::shouldInlineColdCallee(CallBase &CallInst) { 966 if (!ProfileSizeInline) 967 return false; 968 969 Function *Callee = CallInst.getCalledFunction(); 970 if (Callee == nullptr) 971 return false; 972 973 InlineCost Cost = getInlineCost(CallInst, getInlineParams(), GetTTI(*Callee), 974 GetAC, GetTLI); 975 976 if (Cost.isNever()) 977 return false; 978 979 if (Cost.isAlways()) 980 return true; 981 982 return Cost.getCost() <= SampleColdCallSiteThreshold; 983 } 984 985 void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates( 986 const SmallVectorImpl<CallBase *> &Candidates, const Function &F, 987 bool Hot) { 988 for (auto I : Candidates) { 989 Function *CalledFunction = I->getCalledFunction(); 990 if (CalledFunction) { 991 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt", 992 I->getDebugLoc(), I->getParent()) 993 << "previous inlining reattempted for " 994 << (Hot ? "hotness: '" : "size: '") 995 << ore::NV("Callee", CalledFunction) << "' into '" 996 << ore::NV("Caller", &F) << "'"); 997 } 998 } 999 } 1000 1001 /// Iteratively inline hot callsites of a function. 1002 /// 1003 /// Iteratively traverse all callsites of the function \p F, and find if 1004 /// the corresponding inlined instance exists and is hot in profile. If 1005 /// it is hot enough, inline the callsites and adds new callsites of the 1006 /// callee into the caller. If the call is an indirect call, first promote 1007 /// it to direct call. Each indirect call is limited with a single target. 1008 /// 1009 /// \param F function to perform iterative inlining. 1010 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 1011 /// inlined in the profiled binary. 1012 /// 1013 /// \returns True if there is any inline happened. 1014 bool SampleProfileLoader::inlineHotFunctions( 1015 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 1016 DenseSet<Instruction *> PromotedInsns; 1017 1018 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure 1019 // Profile symbol list is ignored when profile-sample-accurate is on. 1020 assert((!ProfAccForSymsInList || 1021 (!ProfileSampleAccurate && 1022 !F.hasFnAttribute("profile-sample-accurate"))) && 1023 "ProfAccForSymsInList should be false when profile-sample-accurate " 1024 "is enabled"); 1025 1026 DenseMap<CallBase *, const FunctionSamples *> localNotInlinedCallSites; 1027 bool Changed = false; 1028 while (true) { 1029 bool LocalChanged = false; 1030 SmallVector<CallBase *, 10> CIS; 1031 for (auto &BB : F) { 1032 bool Hot = false; 1033 SmallVector<CallBase *, 10> AllCandidates; 1034 SmallVector<CallBase *, 10> ColdCandidates; 1035 for (auto &I : BB.getInstList()) { 1036 const FunctionSamples *FS = nullptr; 1037 if (auto *CB = dyn_cast<CallBase>(&I)) { 1038 if (!isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(*CB))) { 1039 assert((!FunctionSamples::UseMD5 || FS->GUIDToFuncNameMap) && 1040 "GUIDToFuncNameMap has to be populated"); 1041 AllCandidates.push_back(CB); 1042 if (FS->getEntrySamples() > 0 || ProfileIsCS) 1043 localNotInlinedCallSites.try_emplace(CB, FS); 1044 if (callsiteIsHot(FS, PSI)) 1045 Hot = true; 1046 else if (shouldInlineColdCallee(*CB)) 1047 ColdCandidates.push_back(CB); 1048 } 1049 } 1050 } 1051 if (Hot || ExternalInlineAdvisor) { 1052 CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end()); 1053 emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true); 1054 } else { 1055 CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end()); 1056 emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false); 1057 } 1058 } 1059 for (CallBase *I : CIS) { 1060 Function *CalledFunction = I->getCalledFunction(); 1061 // Do not inline recursive calls. 1062 if (CalledFunction == &F) 1063 continue; 1064 if (I->isIndirectCall()) { 1065 if (PromotedInsns.count(I)) 1066 continue; 1067 uint64_t Sum; 1068 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 1069 if (IsThinLTOPreLink) { 1070 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), 1071 PSI->getOrCompHotCountThreshold()); 1072 continue; 1073 } 1074 if (!callsiteIsHot(FS, PSI)) 1075 continue; 1076 1077 const char *Reason = "Callee function not available"; 1078 // R->getValue() != &F is to prevent promoting a recursive call. 1079 // If it is a recursive call, we do not inline it as it could bloat 1080 // the code exponentially. There is way to better handle this, e.g. 1081 // clone the caller first, and inline the cloned caller if it is 1082 // recursive. As llvm does not inline recursive calls, we will 1083 // simply ignore it instead of handling it explicitly. 1084 auto CalleeFunctionName = FS->getFuncName(); 1085 auto R = SymbolMap.find(CalleeFunctionName); 1086 if (R != SymbolMap.end() && R->getValue() && 1087 !R->getValue()->isDeclaration() && 1088 R->getValue()->getSubprogram() && 1089 R->getValue()->hasFnAttribute("use-sample-profile") && 1090 R->getValue() != &F && 1091 isLegalToPromote(*I, R->getValue(), &Reason)) { 1092 uint64_t C = FS->getEntrySamples(); 1093 auto &DI = 1094 pgo::promoteIndirectCall(*I, R->getValue(), C, Sum, false, ORE); 1095 Sum -= C; 1096 PromotedInsns.insert(I); 1097 // If profile mismatches, we should not attempt to inline DI. 1098 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && 1099 inlineCallInstruction(cast<CallBase>(DI))) { 1100 if (ProfileIsCS) 1101 ContextTracker->markContextSamplesInlined(FS); 1102 localNotInlinedCallSites.erase(I); 1103 LocalChanged = true; 1104 ++NumCSInlined; 1105 } 1106 } else { 1107 LLVM_DEBUG(dbgs() 1108 << "\nFailed to promote indirect call to " 1109 << CalleeFunctionName << " because " << Reason << "\n"); 1110 } 1111 } 1112 } else if (CalledFunction && CalledFunction->getSubprogram() && 1113 !CalledFunction->isDeclaration()) { 1114 if (inlineCallInstruction(*I)) { 1115 if (ProfileIsCS) 1116 ContextTracker->markContextSamplesInlined( 1117 localNotInlinedCallSites[I]); 1118 localNotInlinedCallSites.erase(I); 1119 LocalChanged = true; 1120 ++NumCSInlined; 1121 } 1122 } else if (IsThinLTOPreLink) { 1123 findCalleeFunctionSamples(*I)->findInlinedFunctions( 1124 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold()); 1125 } 1126 } 1127 if (LocalChanged) { 1128 Changed = true; 1129 } else { 1130 break; 1131 } 1132 } 1133 1134 // Accumulate not inlined callsite information into notInlinedSamples 1135 for (const auto &Pair : localNotInlinedCallSites) { 1136 CallBase *I = Pair.getFirst(); 1137 Function *Callee = I->getCalledFunction(); 1138 if (!Callee || Callee->isDeclaration()) 1139 continue; 1140 1141 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline", 1142 I->getDebugLoc(), I->getParent()) 1143 << "previous inlining not repeated: '" 1144 << ore::NV("Callee", Callee) << "' into '" 1145 << ore::NV("Caller", &F) << "'"); 1146 1147 ++NumCSNotInlined; 1148 const FunctionSamples *FS = Pair.getSecond(); 1149 if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) { 1150 continue; 1151 } 1152 1153 if (ProfileMergeInlinee) { 1154 // A function call can be replicated by optimizations like callsite 1155 // splitting or jump threading and the replicates end up sharing the 1156 // sample nested callee profile instead of slicing the original inlinee's 1157 // profile. We want to do merge exactly once by filtering out callee 1158 // profiles with a non-zero head sample count. 1159 if (FS->getHeadSamples() == 0) { 1160 // Use entry samples as head samples during the merge, as inlinees 1161 // don't have head samples. 1162 const_cast<FunctionSamples *>(FS)->addHeadSamples( 1163 FS->getEntrySamples()); 1164 1165 // Note that we have to do the merge right after processing function. 1166 // This allows OutlineFS's profile to be used for annotation during 1167 // top-down processing of functions' annotation. 1168 FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee); 1169 OutlineFS->merge(*FS); 1170 } 1171 } else { 1172 auto pair = 1173 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0}); 1174 pair.first->second.entryCount += FS->getEntrySamples(); 1175 } 1176 } 1177 return Changed; 1178 } 1179 1180 /// Find equivalence classes for the given block. 1181 /// 1182 /// This finds all the blocks that are guaranteed to execute the same 1183 /// number of times as \p BB1. To do this, it traverses all the 1184 /// descendants of \p BB1 in the dominator or post-dominator tree. 1185 /// 1186 /// A block BB2 will be in the same equivalence class as \p BB1 if 1187 /// the following holds: 1188 /// 1189 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 1190 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 1191 /// dominate BB1 in the post-dominator tree. 1192 /// 1193 /// 2- Both BB2 and \p BB1 must be in the same loop. 1194 /// 1195 /// For every block BB2 that meets those two requirements, we set BB2's 1196 /// equivalence class to \p BB1. 1197 /// 1198 /// \param BB1 Block to check. 1199 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 1200 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 1201 /// with blocks from \p BB1's dominator tree, then 1202 /// this is the post-dominator tree, and vice versa. 1203 template <bool IsPostDom> 1204 void SampleProfileLoader::findEquivalencesFor( 1205 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 1206 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 1207 const BasicBlock *EC = EquivalenceClass[BB1]; 1208 uint64_t Weight = BlockWeights[EC]; 1209 for (const auto *BB2 : Descendants) { 1210 bool IsDomParent = DomTree->dominates(BB2, BB1); 1211 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 1212 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 1213 EquivalenceClass[BB2] = EC; 1214 // If BB2 is visited, then the entire EC should be marked as visited. 1215 if (VisitedBlocks.count(BB2)) { 1216 VisitedBlocks.insert(EC); 1217 } 1218 1219 // If BB2 is heavier than BB1, make BB2 have the same weight 1220 // as BB1. 1221 // 1222 // Note that we don't worry about the opposite situation here 1223 // (when BB2 is lighter than BB1). We will deal with this 1224 // during the propagation phase. Right now, we just want to 1225 // make sure that BB1 has the largest weight of all the 1226 // members of its equivalence set. 1227 Weight = std::max(Weight, BlockWeights[BB2]); 1228 } 1229 } 1230 if (EC == &EC->getParent()->getEntryBlock()) { 1231 BlockWeights[EC] = Samples->getHeadSamples() + 1; 1232 } else { 1233 BlockWeights[EC] = Weight; 1234 } 1235 } 1236 1237 /// Find equivalence classes. 1238 /// 1239 /// Since samples may be missing from blocks, we can fill in the gaps by setting 1240 /// the weights of all the blocks in the same equivalence class to the same 1241 /// weight. To compute the concept of equivalence, we use dominance and loop 1242 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 1243 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1244 /// 1245 /// \param F The function to query. 1246 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 1247 SmallVector<BasicBlock *, 8> DominatedBBs; 1248 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); 1249 // Find equivalence sets based on dominance and post-dominance information. 1250 for (auto &BB : F) { 1251 BasicBlock *BB1 = &BB; 1252 1253 // Compute BB1's equivalence class once. 1254 if (EquivalenceClass.count(BB1)) { 1255 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1256 continue; 1257 } 1258 1259 // By default, blocks are in their own equivalence class. 1260 EquivalenceClass[BB1] = BB1; 1261 1262 // Traverse all the blocks dominated by BB1. We are looking for 1263 // every basic block BB2 such that: 1264 // 1265 // 1- BB1 dominates BB2. 1266 // 2- BB2 post-dominates BB1. 1267 // 3- BB1 and BB2 are in the same loop nest. 1268 // 1269 // If all those conditions hold, it means that BB2 is executed 1270 // as many times as BB1, so they are placed in the same equivalence 1271 // class by making BB2's equivalence class be BB1. 1272 DominatedBBs.clear(); 1273 DT->getDescendants(BB1, DominatedBBs); 1274 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 1275 1276 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1277 } 1278 1279 // Assign weights to equivalence classes. 1280 // 1281 // All the basic blocks in the same equivalence class will execute 1282 // the same number of times. Since we know that the head block in 1283 // each equivalence class has the largest weight, assign that weight 1284 // to all the blocks in that equivalence class. 1285 LLVM_DEBUG( 1286 dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 1287 for (auto &BI : F) { 1288 const BasicBlock *BB = &BI; 1289 const BasicBlock *EquivBB = EquivalenceClass[BB]; 1290 if (BB != EquivBB) 1291 BlockWeights[BB] = BlockWeights[EquivBB]; 1292 LLVM_DEBUG(printBlockWeight(dbgs(), BB)); 1293 } 1294 } 1295 1296 /// Visit the given edge to decide if it has a valid weight. 1297 /// 1298 /// If \p E has not been visited before, we copy to \p UnknownEdge 1299 /// and increment the count of unknown edges. 1300 /// 1301 /// \param E Edge to visit. 1302 /// \param NumUnknownEdges Current number of unknown edges. 1303 /// \param UnknownEdge Set if E has not been visited before. 1304 /// 1305 /// \returns E's weight, if known. Otherwise, return 0. 1306 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 1307 Edge *UnknownEdge) { 1308 if (!VisitedEdges.count(E)) { 1309 (*NumUnknownEdges)++; 1310 *UnknownEdge = E; 1311 return 0; 1312 } 1313 1314 return EdgeWeights[E]; 1315 } 1316 1317 /// Propagate weights through incoming/outgoing edges. 1318 /// 1319 /// If the weight of a basic block is known, and there is only one edge 1320 /// with an unknown weight, we can calculate the weight of that edge. 1321 /// 1322 /// Similarly, if all the edges have a known count, we can calculate the 1323 /// count of the basic block, if needed. 1324 /// 1325 /// \param F Function to process. 1326 /// \param UpdateBlockCount Whether we should update basic block counts that 1327 /// has already been annotated. 1328 /// 1329 /// \returns True if new weights were assigned to edges or blocks. 1330 bool SampleProfileLoader::propagateThroughEdges(Function &F, 1331 bool UpdateBlockCount) { 1332 bool Changed = false; 1333 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); 1334 for (const auto &BI : F) { 1335 const BasicBlock *BB = &BI; 1336 const BasicBlock *EC = EquivalenceClass[BB]; 1337 1338 // Visit all the predecessor and successor edges to determine 1339 // which ones have a weight assigned already. Note that it doesn't 1340 // matter that we only keep track of a single unknown edge. The 1341 // only case we are interested in handling is when only a single 1342 // edge is unknown (see setEdgeOrBlockWeight). 1343 for (unsigned i = 0; i < 2; i++) { 1344 uint64_t TotalWeight = 0; 1345 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 1346 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 1347 1348 if (i == 0) { 1349 // First, visit all predecessor edges. 1350 NumTotalEdges = Predecessors[BB].size(); 1351 for (auto *Pred : Predecessors[BB]) { 1352 Edge E = std::make_pair(Pred, BB); 1353 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1354 if (E.first == E.second) 1355 SelfReferentialEdge = E; 1356 } 1357 if (NumTotalEdges == 1) { 1358 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 1359 } 1360 } else { 1361 // On the second round, visit all successor edges. 1362 NumTotalEdges = Successors[BB].size(); 1363 for (auto *Succ : Successors[BB]) { 1364 Edge E = std::make_pair(BB, Succ); 1365 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1366 } 1367 if (NumTotalEdges == 1) { 1368 SingleEdge = std::make_pair(BB, Successors[BB][0]); 1369 } 1370 } 1371 1372 // After visiting all the edges, there are three cases that we 1373 // can handle immediately: 1374 // 1375 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 1376 // In this case, we simply check that the sum of all the edges 1377 // is the same as BB's weight. If not, we change BB's weight 1378 // to match. Additionally, if BB had not been visited before, 1379 // we mark it visited. 1380 // 1381 // - Only one edge is unknown and BB has already been visited. 1382 // In this case, we can compute the weight of the edge by 1383 // subtracting the total block weight from all the known 1384 // edge weights. If the edges weight more than BB, then the 1385 // edge of the last remaining edge is set to zero. 1386 // 1387 // - There exists a self-referential edge and the weight of BB is 1388 // known. In this case, this edge can be based on BB's weight. 1389 // We add up all the other known edges and set the weight on 1390 // the self-referential edge as we did in the previous case. 1391 // 1392 // In any other case, we must continue iterating. Eventually, 1393 // all edges will get a weight, or iteration will stop when 1394 // it reaches SampleProfileMaxPropagateIterations. 1395 if (NumUnknownEdges <= 1) { 1396 uint64_t &BBWeight = BlockWeights[EC]; 1397 if (NumUnknownEdges == 0) { 1398 if (!VisitedBlocks.count(EC)) { 1399 // If we already know the weight of all edges, the weight of the 1400 // basic block can be computed. It should be no larger than the sum 1401 // of all edge weights. 1402 if (TotalWeight > BBWeight) { 1403 BBWeight = TotalWeight; 1404 Changed = true; 1405 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() 1406 << " known. Set weight for block: "; 1407 printBlockWeight(dbgs(), BB);); 1408 } 1409 } else if (NumTotalEdges == 1 && 1410 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1411 // If there is only one edge for the visited basic block, use the 1412 // block weight to adjust edge weight if edge weight is smaller. 1413 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1414 Changed = true; 1415 } 1416 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1417 // If there is a single unknown edge and the block has been 1418 // visited, then we can compute E's weight. 1419 if (BBWeight >= TotalWeight) 1420 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1421 else 1422 EdgeWeights[UnknownEdge] = 0; 1423 const BasicBlock *OtherEC; 1424 if (i == 0) 1425 OtherEC = EquivalenceClass[UnknownEdge.first]; 1426 else 1427 OtherEC = EquivalenceClass[UnknownEdge.second]; 1428 // Edge weights should never exceed the BB weights it connects. 1429 if (VisitedBlocks.count(OtherEC) && 1430 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1431 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1432 VisitedEdges.insert(UnknownEdge); 1433 Changed = true; 1434 LLVM_DEBUG(dbgs() << "Set weight for edge: "; 1435 printEdgeWeight(dbgs(), UnknownEdge)); 1436 } 1437 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1438 // If a block Weights 0, all its in/out edges should weight 0. 1439 if (i == 0) { 1440 for (auto *Pred : Predecessors[BB]) { 1441 Edge E = std::make_pair(Pred, BB); 1442 EdgeWeights[E] = 0; 1443 VisitedEdges.insert(E); 1444 } 1445 } else { 1446 for (auto *Succ : Successors[BB]) { 1447 Edge E = std::make_pair(BB, Succ); 1448 EdgeWeights[E] = 0; 1449 VisitedEdges.insert(E); 1450 } 1451 } 1452 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1453 uint64_t &BBWeight = BlockWeights[BB]; 1454 // We have a self-referential edge and the weight of BB is known. 1455 if (BBWeight >= TotalWeight) 1456 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1457 else 1458 EdgeWeights[SelfReferentialEdge] = 0; 1459 VisitedEdges.insert(SelfReferentialEdge); 1460 Changed = true; 1461 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; 1462 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1463 } 1464 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1465 BlockWeights[EC] = TotalWeight; 1466 VisitedBlocks.insert(EC); 1467 Changed = true; 1468 } 1469 } 1470 } 1471 1472 return Changed; 1473 } 1474 1475 /// Build in/out edge lists for each basic block in the CFG. 1476 /// 1477 /// We are interested in unique edges. If a block B1 has multiple 1478 /// edges to another block B2, we only add a single B1->B2 edge. 1479 void SampleProfileLoader::buildEdges(Function &F) { 1480 for (auto &BI : F) { 1481 BasicBlock *B1 = &BI; 1482 1483 // Add predecessors for B1. 1484 SmallPtrSet<BasicBlock *, 16> Visited; 1485 if (!Predecessors[B1].empty()) 1486 llvm_unreachable("Found a stale predecessors list in a basic block."); 1487 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1488 BasicBlock *B2 = *PI; 1489 if (Visited.insert(B2).second) 1490 Predecessors[B1].push_back(B2); 1491 } 1492 1493 // Add successors for B1. 1494 Visited.clear(); 1495 if (!Successors[B1].empty()) 1496 llvm_unreachable("Found a stale successors list in a basic block."); 1497 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1498 BasicBlock *B2 = *SI; 1499 if (Visited.insert(B2).second) 1500 Successors[B1].push_back(B2); 1501 } 1502 } 1503 } 1504 1505 /// Returns the sorted CallTargetMap \p M by count in descending order. 1506 static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets( 1507 const SampleRecord::CallTargetMap & M) { 1508 SmallVector<InstrProfValueData, 2> R; 1509 for (const auto &I : SampleRecord::SortCallTargets(M)) { 1510 R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second}); 1511 } 1512 return R; 1513 } 1514 1515 /// Propagate weights into edges 1516 /// 1517 /// The following rules are applied to every block BB in the CFG: 1518 /// 1519 /// - If BB has a single predecessor/successor, then the weight 1520 /// of that edge is the weight of the block. 1521 /// 1522 /// - If all incoming or outgoing edges are known except one, and the 1523 /// weight of the block is already known, the weight of the unknown 1524 /// edge will be the weight of the block minus the sum of all the known 1525 /// edges. If the sum of all the known edges is larger than BB's weight, 1526 /// we set the unknown edge weight to zero. 1527 /// 1528 /// - If there is a self-referential edge, and the weight of the block is 1529 /// known, the weight for that edge is set to the weight of the block 1530 /// minus the weight of the other incoming edges to that block (if 1531 /// known). 1532 void SampleProfileLoader::propagateWeights(Function &F) { 1533 bool Changed = true; 1534 unsigned I = 0; 1535 1536 // If BB weight is larger than its corresponding loop's header BB weight, 1537 // use the BB weight to replace the loop header BB weight. 1538 for (auto &BI : F) { 1539 BasicBlock *BB = &BI; 1540 Loop *L = LI->getLoopFor(BB); 1541 if (!L) { 1542 continue; 1543 } 1544 BasicBlock *Header = L->getHeader(); 1545 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1546 BlockWeights[Header] = BlockWeights[BB]; 1547 } 1548 } 1549 1550 // Before propagation starts, build, for each block, a list of 1551 // unique predecessors and successors. This is necessary to handle 1552 // identical edges in multiway branches. Since we visit all blocks and all 1553 // edges of the CFG, it is cleaner to build these lists once at the start 1554 // of the pass. 1555 buildEdges(F); 1556 1557 // Propagate until we converge or we go past the iteration limit. 1558 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1559 Changed = propagateThroughEdges(F, false); 1560 } 1561 1562 // The first propagation propagates BB counts from annotated BBs to unknown 1563 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1564 // to propagate edge weights. 1565 VisitedEdges.clear(); 1566 Changed = true; 1567 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1568 Changed = propagateThroughEdges(F, false); 1569 } 1570 1571 // The 3rd propagation pass allows adjust annotated BB weights that are 1572 // obviously wrong. 1573 Changed = true; 1574 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1575 Changed = propagateThroughEdges(F, true); 1576 } 1577 1578 // Generate MD_prof metadata for every branch instruction using the 1579 // edge weights computed during propagation. 1580 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1581 LLVMContext &Ctx = F.getContext(); 1582 MDBuilder MDB(Ctx); 1583 for (auto &BI : F) { 1584 BasicBlock *BB = &BI; 1585 1586 if (BlockWeights[BB]) { 1587 for (auto &I : BB->getInstList()) { 1588 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1589 continue; 1590 if (!cast<CallBase>(I).getCalledFunction()) { 1591 const DebugLoc &DLoc = I.getDebugLoc(); 1592 if (!DLoc) 1593 continue; 1594 const DILocation *DIL = DLoc; 1595 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 1596 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1597 1598 const FunctionSamples *FS = findFunctionSamples(I); 1599 if (!FS) 1600 continue; 1601 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1602 if (!T || T.get().empty()) 1603 continue; 1604 SmallVector<InstrProfValueData, 2> SortedCallTargets = 1605 GetSortedValueDataFromCallTargets(T.get()); 1606 uint64_t Sum; 1607 findIndirectCallFunctionSamples(I, Sum); 1608 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1609 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1610 SortedCallTargets.size()); 1611 } else if (!isa<IntrinsicInst>(&I)) { 1612 I.setMetadata(LLVMContext::MD_prof, 1613 MDB.createBranchWeights( 1614 {static_cast<uint32_t>(BlockWeights[BB])})); 1615 } 1616 } 1617 } 1618 Instruction *TI = BB->getTerminator(); 1619 if (TI->getNumSuccessors() == 1) 1620 continue; 1621 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1622 continue; 1623 1624 DebugLoc BranchLoc = TI->getDebugLoc(); 1625 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " 1626 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1627 : Twine("<UNKNOWN LOCATION>")) 1628 << ".\n"); 1629 SmallVector<uint32_t, 4> Weights; 1630 uint32_t MaxWeight = 0; 1631 Instruction *MaxDestInst; 1632 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1633 BasicBlock *Succ = TI->getSuccessor(I); 1634 Edge E = std::make_pair(BB, Succ); 1635 uint64_t Weight = EdgeWeights[E]; 1636 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1637 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1638 // if needed. Sample counts in profiles are 64-bit unsigned values, 1639 // but internally branch weights are expressed as 32-bit values. 1640 if (Weight > std::numeric_limits<uint32_t>::max()) { 1641 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1642 Weight = std::numeric_limits<uint32_t>::max(); 1643 } 1644 // Weight is added by one to avoid propagation errors introduced by 1645 // 0 weights. 1646 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1647 if (Weight != 0) { 1648 if (Weight > MaxWeight) { 1649 MaxWeight = Weight; 1650 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1651 } 1652 } 1653 } 1654 1655 uint64_t TempWeight; 1656 // Only set weights if there is at least one non-zero weight. 1657 // In any other case, let the analyzer set weights. 1658 // Do not set weights if the weights are present. In ThinLTO, the profile 1659 // annotation is done twice. If the first annotation already set the 1660 // weights, the second pass does not need to set it. 1661 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1662 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1663 TI->setMetadata(LLVMContext::MD_prof, 1664 MDB.createBranchWeights(Weights)); 1665 ORE->emit([&]() { 1666 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1667 << "most popular destination for conditional branches at " 1668 << ore::NV("CondBranchesLoc", BranchLoc); 1669 }); 1670 } else { 1671 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1672 } 1673 } 1674 } 1675 1676 /// Get the line number for the function header. 1677 /// 1678 /// This looks up function \p F in the current compilation unit and 1679 /// retrieves the line number where the function is defined. This is 1680 /// line 0 for all the samples read from the profile file. Every line 1681 /// number is relative to this line. 1682 /// 1683 /// \param F Function object to query. 1684 /// 1685 /// \returns the line number where \p F is defined. If it returns 0, 1686 /// it means that there is no debug information available for \p F. 1687 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1688 if (DISubprogram *S = F.getSubprogram()) 1689 return S->getLine(); 1690 1691 if (NoWarnSampleUnused) 1692 return 0; 1693 1694 // If the start of \p F is missing, emit a diagnostic to inform the user 1695 // about the missed opportunity. 1696 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1697 "No debug information found in function " + F.getName() + 1698 ": Function profile not used", 1699 DS_Warning)); 1700 return 0; 1701 } 1702 1703 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1704 DT.reset(new DominatorTree); 1705 DT->recalculate(F); 1706 1707 PDT.reset(new PostDominatorTree(F)); 1708 1709 LI.reset(new LoopInfo); 1710 LI->analyze(*DT); 1711 } 1712 1713 /// Generate branch weight metadata for all branches in \p F. 1714 /// 1715 /// Branch weights are computed out of instruction samples using a 1716 /// propagation heuristic. Propagation proceeds in 3 phases: 1717 /// 1718 /// 1- Assignment of block weights. All the basic blocks in the function 1719 /// are initial assigned the same weight as their most frequently 1720 /// executed instruction. 1721 /// 1722 /// 2- Creation of equivalence classes. Since samples may be missing from 1723 /// blocks, we can fill in the gaps by setting the weights of all the 1724 /// blocks in the same equivalence class to the same weight. To compute 1725 /// the concept of equivalence, we use dominance and loop information. 1726 /// Two blocks B1 and B2 are in the same equivalence class if B1 1727 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1728 /// 1729 /// 3- Propagation of block weights into edges. This uses a simple 1730 /// propagation heuristic. The following rules are applied to every 1731 /// block BB in the CFG: 1732 /// 1733 /// - If BB has a single predecessor/successor, then the weight 1734 /// of that edge is the weight of the block. 1735 /// 1736 /// - If all the edges are known except one, and the weight of the 1737 /// block is already known, the weight of the unknown edge will 1738 /// be the weight of the block minus the sum of all the known 1739 /// edges. If the sum of all the known edges is larger than BB's weight, 1740 /// we set the unknown edge weight to zero. 1741 /// 1742 /// - If there is a self-referential edge, and the weight of the block is 1743 /// known, the weight for that edge is set to the weight of the block 1744 /// minus the weight of the other incoming edges to that block (if 1745 /// known). 1746 /// 1747 /// Since this propagation is not guaranteed to finalize for every CFG, we 1748 /// only allow it to proceed for a limited number of iterations (controlled 1749 /// by -sample-profile-max-propagate-iterations). 1750 /// 1751 /// FIXME: Try to replace this propagation heuristic with a scheme 1752 /// that is guaranteed to finalize. A work-list approach similar to 1753 /// the standard value propagation algorithm used by SSA-CCP might 1754 /// work here. 1755 /// 1756 /// Once all the branch weights are computed, we emit the MD_prof 1757 /// metadata on BB using the computed values for each of its branches. 1758 /// 1759 /// \param F The function to query. 1760 /// 1761 /// \returns true if \p F was modified. Returns false, otherwise. 1762 bool SampleProfileLoader::emitAnnotations(Function &F) { 1763 bool Changed = false; 1764 1765 if (getFunctionLoc(F) == 0) 1766 return false; 1767 1768 LLVM_DEBUG(dbgs() << "Line number for the first instruction in " 1769 << F.getName() << ": " << getFunctionLoc(F) << "\n"); 1770 1771 DenseSet<GlobalValue::GUID> InlinedGUIDs; 1772 Changed |= inlineHotFunctions(F, InlinedGUIDs); 1773 1774 // Compute basic block weights. 1775 Changed |= computeBlockWeights(F); 1776 1777 if (Changed) { 1778 // Add an entry count to the function using the samples gathered at the 1779 // function entry. 1780 // Sets the GUIDs that are inlined in the profiled binary. This is used 1781 // for ThinLink to make correct liveness analysis, and also make the IR 1782 // match the profiled binary before annotation. 1783 F.setEntryCount( 1784 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), 1785 &InlinedGUIDs); 1786 1787 // Compute dominance and loop info needed for propagation. 1788 computeDominanceAndLoopInfo(F); 1789 1790 // Find equivalence classes. 1791 findEquivalenceClasses(F); 1792 1793 // Propagate weights to all edges. 1794 propagateWeights(F); 1795 } 1796 1797 // If coverage checking was requested, compute it now. 1798 if (SampleProfileRecordCoverage) { 1799 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); 1800 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); 1801 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1802 if (Coverage < SampleProfileRecordCoverage) { 1803 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1804 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1805 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1806 Twine(Coverage) + "%) were applied", 1807 DS_Warning)); 1808 } 1809 } 1810 1811 if (SampleProfileSampleCoverage) { 1812 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1813 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); 1814 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1815 if (Coverage < SampleProfileSampleCoverage) { 1816 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1817 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1818 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1819 Twine(Coverage) + "%) were applied", 1820 DS_Warning)); 1821 } 1822 } 1823 return Changed; 1824 } 1825 1826 char SampleProfileLoaderLegacyPass::ID = 0; 1827 1828 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1829 "Sample Profile loader", false, false) 1830 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1831 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1832 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1833 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1834 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1835 "Sample Profile loader", false, false) 1836 1837 std::vector<Function *> 1838 SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) { 1839 std::vector<Function *> FunctionOrderList; 1840 FunctionOrderList.reserve(M.size()); 1841 1842 if (!ProfileTopDownLoad || CG == nullptr) { 1843 if (ProfileMergeInlinee) { 1844 // Disable ProfileMergeInlinee if profile is not loaded in top down order, 1845 // because the profile for a function may be used for the profile 1846 // annotation of its outline copy before the profile merging of its 1847 // non-inlined inline instances, and that is not the way how 1848 // ProfileMergeInlinee is supposed to work. 1849 ProfileMergeInlinee = false; 1850 } 1851 1852 for (Function &F : M) 1853 if (!F.isDeclaration() && F.hasFnAttribute("use-sample-profile")) 1854 FunctionOrderList.push_back(&F); 1855 return FunctionOrderList; 1856 } 1857 1858 assert(&CG->getModule() == &M); 1859 scc_iterator<CallGraph *> CGI = scc_begin(CG); 1860 while (!CGI.isAtEnd()) { 1861 for (CallGraphNode *node : *CGI) { 1862 auto F = node->getFunction(); 1863 if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile")) 1864 FunctionOrderList.push_back(F); 1865 } 1866 ++CGI; 1867 } 1868 1869 std::reverse(FunctionOrderList.begin(), FunctionOrderList.end()); 1870 return FunctionOrderList; 1871 } 1872 1873 bool SampleProfileLoader::doInitialization(Module &M, 1874 FunctionAnalysisManager *FAM) { 1875 auto &Ctx = M.getContext(); 1876 1877 auto ReaderOrErr = 1878 SampleProfileReader::create(Filename, Ctx, RemappingFilename); 1879 if (std::error_code EC = ReaderOrErr.getError()) { 1880 std::string Msg = "Could not open profile: " + EC.message(); 1881 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1882 return false; 1883 } 1884 Reader = std::move(ReaderOrErr.get()); 1885 Reader->collectFuncsFrom(M); 1886 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1887 PSL = Reader->getProfileSymbolList(); 1888 1889 // While profile-sample-accurate is on, ignore symbol list. 1890 ProfAccForSymsInList = 1891 ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate; 1892 if (ProfAccForSymsInList) { 1893 NamesInProfile.clear(); 1894 if (auto NameTable = Reader->getNameTable()) 1895 NamesInProfile.insert(NameTable->begin(), NameTable->end()); 1896 } 1897 1898 if (FAM && !ProfileInlineReplayFile.empty()) { 1899 ExternalInlineAdvisor = std::make_unique<ReplayInlineAdvisor>( 1900 *FAM, Ctx, ProfileInlineReplayFile); 1901 if (!ExternalInlineAdvisor->areReplayRemarksLoaded()) 1902 ExternalInlineAdvisor.reset(); 1903 } 1904 1905 // Apply tweaks if context-sensitive profile is available. 1906 if (Reader->profileIsCS()) { 1907 ProfileIsCS = true; 1908 FunctionSamples::ProfileIsCS = true; 1909 1910 // Tracker for profiles under different context 1911 ContextTracker = 1912 std::make_unique<SampleContextTracker>(Reader->getProfiles()); 1913 } 1914 1915 return true; 1916 } 1917 1918 ModulePass *llvm::createSampleProfileLoaderPass() { 1919 return new SampleProfileLoaderLegacyPass(); 1920 } 1921 1922 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1923 return new SampleProfileLoaderLegacyPass(Name); 1924 } 1925 1926 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, 1927 ProfileSummaryInfo *_PSI, CallGraph *CG) { 1928 if (!ProfileIsValid) 1929 return false; 1930 GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap); 1931 1932 PSI = _PSI; 1933 if (M.getProfileSummary(/* IsCS */ false) == nullptr) { 1934 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()), 1935 ProfileSummary::PSK_Sample); 1936 PSI->refresh(); 1937 } 1938 // Compute the total number of samples collected in this profile. 1939 for (const auto &I : Reader->getProfiles()) 1940 TotalCollectedSamples += I.second.getTotalSamples(); 1941 1942 auto Remapper = Reader->getRemapper(); 1943 // Populate the symbol map. 1944 for (const auto &N_F : M.getValueSymbolTable()) { 1945 StringRef OrigName = N_F.getKey(); 1946 Function *F = dyn_cast<Function>(N_F.getValue()); 1947 if (F == nullptr) 1948 continue; 1949 SymbolMap[OrigName] = F; 1950 auto pos = OrigName.find('.'); 1951 if (pos != StringRef::npos) { 1952 StringRef NewName = OrigName.substr(0, pos); 1953 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1954 // Failiing to insert means there is already an entry in SymbolMap, 1955 // thus there are multiple functions that are mapped to the same 1956 // stripped name. In this case of name conflicting, set the value 1957 // to nullptr to avoid confusion. 1958 if (!r.second) 1959 r.first->second = nullptr; 1960 OrigName = NewName; 1961 } 1962 // Insert the remapped names into SymbolMap. 1963 if (Remapper) { 1964 if (auto MapName = Remapper->lookUpNameInProfile(OrigName)) { 1965 if (*MapName == OrigName) 1966 continue; 1967 SymbolMap.insert(std::make_pair(*MapName, F)); 1968 } 1969 } 1970 } 1971 1972 bool retval = false; 1973 for (auto F : buildFunctionOrder(M, CG)) { 1974 assert(!F->isDeclaration()); 1975 clearFunctionData(); 1976 retval |= runOnFunction(*F, AM); 1977 } 1978 1979 // Account for cold calls not inlined.... 1980 if (!ProfileIsCS) 1981 for (const std::pair<Function *, NotInlinedProfileInfo> &pair : 1982 notInlinedCallInfo) 1983 updateProfileCallee(pair.first, pair.second.entryCount); 1984 1985 return retval; 1986 } 1987 1988 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1989 ACT = &getAnalysis<AssumptionCacheTracker>(); 1990 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 1991 TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>(); 1992 ProfileSummaryInfo *PSI = 1993 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1994 return SampleLoader.runOnModule(M, nullptr, PSI, nullptr); 1995 } 1996 1997 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 1998 DILocation2SampleMap.clear(); 1999 // By default the entry count is initialized to -1, which will be treated 2000 // conservatively by getEntryCount as the same as unknown (None). This is 2001 // to avoid newly added code to be treated as cold. If we have samples 2002 // this will be overwritten in emitAnnotations. 2003 uint64_t initialEntryCount = -1; 2004 2005 ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL; 2006 if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) { 2007 // initialize all the function entry counts to 0. It means all the 2008 // functions without profile will be regarded as cold. 2009 initialEntryCount = 0; 2010 // profile-sample-accurate is a user assertion which has a higher precedence 2011 // than symbol list. When profile-sample-accurate is on, ignore symbol list. 2012 ProfAccForSymsInList = false; 2013 } 2014 2015 // PSL -- profile symbol list include all the symbols in sampled binary. 2016 // If ProfileAccurateForSymsInList is enabled, PSL is used to treat 2017 // old functions without samples being cold, without having to worry 2018 // about new and hot functions being mistakenly treated as cold. 2019 if (ProfAccForSymsInList) { 2020 // Initialize the entry count to 0 for functions in the list. 2021 if (PSL->contains(F.getName())) 2022 initialEntryCount = 0; 2023 2024 // Function in the symbol list but without sample will be regarded as 2025 // cold. To minimize the potential negative performance impact it could 2026 // have, we want to be a little conservative here saying if a function 2027 // shows up in the profile, no matter as outline function, inline instance 2028 // or call targets, treat the function as not being cold. This will handle 2029 // the cases such as most callsites of a function are inlined in sampled 2030 // binary but not inlined in current build (because of source code drift, 2031 // imprecise debug information, or the callsites are all cold individually 2032 // but not cold accumulatively...), so the outline function showing up as 2033 // cold in sampled binary will actually not be cold after current build. 2034 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 2035 if (NamesInProfile.count(CanonName)) 2036 initialEntryCount = -1; 2037 } 2038 2039 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real)); 2040 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 2041 if (AM) { 2042 auto &FAM = 2043 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 2044 .getManager(); 2045 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 2046 } else { 2047 OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F); 2048 ORE = OwnedORE.get(); 2049 } 2050 2051 if (ProfileIsCS) 2052 Samples = ContextTracker->getBaseSamplesFor(F); 2053 else 2054 Samples = Reader->getSamplesFor(F); 2055 2056 if (Samples && !Samples->empty()) 2057 return emitAnnotations(F); 2058 return false; 2059 } 2060 2061 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 2062 ModuleAnalysisManager &AM) { 2063 FunctionAnalysisManager &FAM = 2064 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2065 2066 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 2067 return FAM.getResult<AssumptionAnalysis>(F); 2068 }; 2069 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 2070 return FAM.getResult<TargetIRAnalysis>(F); 2071 }; 2072 auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & { 2073 return FAM.getResult<TargetLibraryAnalysis>(F); 2074 }; 2075 2076 SampleProfileLoader SampleLoader( 2077 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 2078 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile 2079 : ProfileRemappingFileName, 2080 IsThinLTOPreLink, GetAssumptionCache, GetTTI, GetTLI); 2081 2082 if (!SampleLoader.doInitialization(M, &FAM)) 2083 return PreservedAnalyses::all(); 2084 2085 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 2086 CallGraph &CG = AM.getResult<CallGraphAnalysis>(M); 2087 if (!SampleLoader.runOnModule(M, &AM, PSI, &CG)) 2088 return PreservedAnalyses::all(); 2089 2090 return PreservedAnalyses::none(); 2091 } 2092