1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/IPO/SampleProfile.h" 26 #include "llvm/ADT/ArrayRef.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/StringMap.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/ADT/Twine.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/InlineCost.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 40 #include "llvm/Analysis/PostDominators.h" 41 #include "llvm/Analysis/ProfileSummaryInfo.h" 42 #include "llvm/Analysis/TargetTransformInfo.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/CFG.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/DebugLoc.h" 48 #include "llvm/IR/DiagnosticInfo.h" 49 #include "llvm/IR/Dominators.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GlobalValue.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/IntrinsicInst.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/MDBuilder.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/PassManager.h" 60 #include "llvm/IR/ValueSymbolTable.h" 61 #include "llvm/Pass.h" 62 #include "llvm/ProfileData/InstrProf.h" 63 #include "llvm/ProfileData/SampleProf.h" 64 #include "llvm/ProfileData/SampleProfReader.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/GenericDomTree.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Transforms/IPO.h" 73 #include "llvm/Transforms/Instrumentation.h" 74 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 75 #include "llvm/Transforms/Utils/Cloning.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstdint> 79 #include <functional> 80 #include <limits> 81 #include <map> 82 #include <memory> 83 #include <string> 84 #include <system_error> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 using namespace sampleprof; 90 using ProfileCount = Function::ProfileCount; 91 #define DEBUG_TYPE "sample-profile" 92 93 // Command line option to specify the file to read samples from. This is 94 // mainly used for debugging. 95 static cl::opt<std::string> SampleProfileFile( 96 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 97 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 98 99 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 100 "sample-profile-max-propagate-iterations", cl::init(100), 101 cl::desc("Maximum number of iterations to go through when propagating " 102 "sample block/edge weights through the CFG.")); 103 104 static cl::opt<unsigned> SampleProfileRecordCoverage( 105 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 106 cl::desc("Emit a warning if less than N% of records in the input profile " 107 "are matched to the IR.")); 108 109 static cl::opt<unsigned> SampleProfileSampleCoverage( 110 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 111 cl::desc("Emit a warning if less than N% of samples in the input profile " 112 "are matched to the IR.")); 113 114 namespace { 115 116 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 117 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 118 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 119 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 120 using BlockEdgeMap = 121 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 122 123 class SampleCoverageTracker { 124 public: 125 SampleCoverageTracker() = default; 126 127 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 128 uint32_t Discriminator, uint64_t Samples); 129 unsigned computeCoverage(unsigned Used, unsigned Total) const; 130 unsigned countUsedRecords(const FunctionSamples *FS, 131 ProfileSummaryInfo *PSI) const; 132 unsigned countBodyRecords(const FunctionSamples *FS, 133 ProfileSummaryInfo *PSI) const; 134 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 135 uint64_t countBodySamples(const FunctionSamples *FS, 136 ProfileSummaryInfo *PSI) const; 137 138 void clear() { 139 SampleCoverage.clear(); 140 TotalUsedSamples = 0; 141 } 142 143 private: 144 using BodySampleCoverageMap = std::map<LineLocation, unsigned>; 145 using FunctionSamplesCoverageMap = 146 DenseMap<const FunctionSamples *, BodySampleCoverageMap>; 147 148 /// Coverage map for sampling records. 149 /// 150 /// This map keeps a record of sampling records that have been matched to 151 /// an IR instruction. This is used to detect some form of staleness in 152 /// profiles (see flag -sample-profile-check-coverage). 153 /// 154 /// Each entry in the map corresponds to a FunctionSamples instance. This is 155 /// another map that counts how many times the sample record at the 156 /// given location has been used. 157 FunctionSamplesCoverageMap SampleCoverage; 158 159 /// Number of samples used from the profile. 160 /// 161 /// When a sampling record is used for the first time, the samples from 162 /// that record are added to this accumulator. Coverage is later computed 163 /// based on the total number of samples available in this function and 164 /// its callsites. 165 /// 166 /// Note that this accumulator tracks samples used from a single function 167 /// and all the inlined callsites. Strictly, we should have a map of counters 168 /// keyed by FunctionSamples pointers, but these stats are cleared after 169 /// every function, so we just need to keep a single counter. 170 uint64_t TotalUsedSamples = 0; 171 }; 172 173 /// Sample profile pass. 174 /// 175 /// This pass reads profile data from the file specified by 176 /// -sample-profile-file and annotates every affected function with the 177 /// profile information found in that file. 178 class SampleProfileLoader { 179 public: 180 SampleProfileLoader( 181 StringRef Name, bool IsThinLTOPreLink, 182 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 183 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo) 184 : GetAC(std::move(GetAssumptionCache)), 185 GetTTI(std::move(GetTargetTransformInfo)), Filename(Name), 186 IsThinLTOPreLink(IsThinLTOPreLink) {} 187 188 bool doInitialization(Module &M); 189 bool runOnModule(Module &M, ModuleAnalysisManager *AM, 190 ProfileSummaryInfo *_PSI); 191 192 void dump() { Reader->dump(); } 193 194 protected: 195 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 196 unsigned getFunctionLoc(Function &F); 197 bool emitAnnotations(Function &F); 198 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 199 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 200 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 201 std::vector<const FunctionSamples *> 202 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 203 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 204 bool inlineCallInstruction(Instruction *I); 205 bool inlineHotFunctions(Function &F, 206 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 207 void printEdgeWeight(raw_ostream &OS, Edge E); 208 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 209 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 210 bool computeBlockWeights(Function &F); 211 void findEquivalenceClasses(Function &F); 212 template <bool IsPostDom> 213 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 214 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 215 216 void propagateWeights(Function &F); 217 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 218 void buildEdges(Function &F); 219 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 220 void computeDominanceAndLoopInfo(Function &F); 221 void clearFunctionData(); 222 223 /// Map basic blocks to their computed weights. 224 /// 225 /// The weight of a basic block is defined to be the maximum 226 /// of all the instruction weights in that block. 227 BlockWeightMap BlockWeights; 228 229 /// Map edges to their computed weights. 230 /// 231 /// Edge weights are computed by propagating basic block weights in 232 /// SampleProfile::propagateWeights. 233 EdgeWeightMap EdgeWeights; 234 235 /// Set of visited blocks during propagation. 236 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 237 238 /// Set of visited edges during propagation. 239 SmallSet<Edge, 32> VisitedEdges; 240 241 /// Equivalence classes for block weights. 242 /// 243 /// Two blocks BB1 and BB2 are in the same equivalence class if they 244 /// dominate and post-dominate each other, and they are in the same loop 245 /// nest. When this happens, the two blocks are guaranteed to execute 246 /// the same number of times. 247 EquivalenceClassMap EquivalenceClass; 248 249 /// Map from function name to Function *. Used to find the function from 250 /// the function name. If the function name contains suffix, additional 251 /// entry is added to map from the stripped name to the function if there 252 /// is one-to-one mapping. 253 StringMap<Function *> SymbolMap; 254 255 /// Dominance, post-dominance and loop information. 256 std::unique_ptr<DominatorTree> DT; 257 std::unique_ptr<PostDominatorTree> PDT; 258 std::unique_ptr<LoopInfo> LI; 259 260 std::function<AssumptionCache &(Function &)> GetAC; 261 std::function<TargetTransformInfo &(Function &)> GetTTI; 262 263 /// Predecessors for each basic block in the CFG. 264 BlockEdgeMap Predecessors; 265 266 /// Successors for each basic block in the CFG. 267 BlockEdgeMap Successors; 268 269 SampleCoverageTracker CoverageTracker; 270 271 /// Profile reader object. 272 std::unique_ptr<SampleProfileReader> Reader; 273 274 /// Samples collected for the body of this function. 275 FunctionSamples *Samples = nullptr; 276 277 /// Name of the profile file to load. 278 std::string Filename; 279 280 /// Flag indicating whether the profile input loaded successfully. 281 bool ProfileIsValid = false; 282 283 /// Flag indicating if the pass is invoked in ThinLTO compile phase. 284 /// 285 /// In this phase, in annotation, we should not promote indirect calls. 286 /// Instead, we will mark GUIDs that needs to be annotated to the function. 287 bool IsThinLTOPreLink; 288 289 /// Profile Summary Info computed from sample profile. 290 ProfileSummaryInfo *PSI = nullptr; 291 292 /// Total number of samples collected in this profile. 293 /// 294 /// This is the sum of all the samples collected in all the functions executed 295 /// at runtime. 296 uint64_t TotalCollectedSamples = 0; 297 298 /// Optimization Remark Emitter used to emit diagnostic remarks. 299 OptimizationRemarkEmitter *ORE = nullptr; 300 }; 301 302 class SampleProfileLoaderLegacyPass : public ModulePass { 303 public: 304 // Class identification, replacement for typeinfo 305 static char ID; 306 307 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, 308 bool IsThinLTOPreLink = false) 309 : ModulePass(ID), SampleLoader(Name, IsThinLTOPreLink, 310 [&](Function &F) -> AssumptionCache & { 311 return ACT->getAssumptionCache(F); 312 }, 313 [&](Function &F) -> TargetTransformInfo & { 314 return TTIWP->getTTI(F); 315 }) { 316 initializeSampleProfileLoaderLegacyPassPass( 317 *PassRegistry::getPassRegistry()); 318 } 319 320 void dump() { SampleLoader.dump(); } 321 322 bool doInitialization(Module &M) override { 323 return SampleLoader.doInitialization(M); 324 } 325 326 StringRef getPassName() const override { return "Sample profile pass"; } 327 bool runOnModule(Module &M) override; 328 329 void getAnalysisUsage(AnalysisUsage &AU) const override { 330 AU.addRequired<AssumptionCacheTracker>(); 331 AU.addRequired<TargetTransformInfoWrapperPass>(); 332 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 333 } 334 335 private: 336 SampleProfileLoader SampleLoader; 337 AssumptionCacheTracker *ACT = nullptr; 338 TargetTransformInfoWrapperPass *TTIWP = nullptr; 339 }; 340 341 } // end anonymous namespace 342 343 /// Return true if the given callsite is hot wrt to hot cutoff threshold. 344 /// 345 /// Functions that were inlined in the original binary will be represented 346 /// in the inline stack in the sample profile. If the profile shows that 347 /// the original inline decision was "good" (i.e., the callsite is executed 348 /// frequently), then we will recreate the inline decision and apply the 349 /// profile from the inlined callsite. 350 /// 351 /// To decide whether an inlined callsite is hot, we compare the callsite 352 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is 353 /// regarded as hot if the count is above the cutoff value. 354 static bool callsiteIsHot(const FunctionSamples *CallsiteFS, 355 ProfileSummaryInfo *PSI) { 356 if (!CallsiteFS) 357 return false; // The callsite was not inlined in the original binary. 358 359 assert(PSI && "PSI is expected to be non null"); 360 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 361 return PSI->isHotCount(CallsiteTotalSamples); 362 } 363 364 /// Mark as used the sample record for the given function samples at 365 /// (LineOffset, Discriminator). 366 /// 367 /// \returns true if this is the first time we mark the given record. 368 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 369 uint32_t LineOffset, 370 uint32_t Discriminator, 371 uint64_t Samples) { 372 LineLocation Loc(LineOffset, Discriminator); 373 unsigned &Count = SampleCoverage[FS][Loc]; 374 bool FirstTime = (++Count == 1); 375 if (FirstTime) 376 TotalUsedSamples += Samples; 377 return FirstTime; 378 } 379 380 /// Return the number of sample records that were applied from this profile. 381 /// 382 /// This count does not include records from cold inlined callsites. 383 unsigned 384 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS, 385 ProfileSummaryInfo *PSI) const { 386 auto I = SampleCoverage.find(FS); 387 388 // The size of the coverage map for FS represents the number of records 389 // that were marked used at least once. 390 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 391 392 // If there are inlined callsites in this function, count the samples found 393 // in the respective bodies. However, do not bother counting callees with 0 394 // total samples, these are callees that were never invoked at runtime. 395 for (const auto &I : FS->getCallsiteSamples()) 396 for (const auto &J : I.second) { 397 const FunctionSamples *CalleeSamples = &J.second; 398 if (callsiteIsHot(CalleeSamples, PSI)) 399 Count += countUsedRecords(CalleeSamples, PSI); 400 } 401 402 return Count; 403 } 404 405 /// Return the number of sample records in the body of this profile. 406 /// 407 /// This count does not include records from cold inlined callsites. 408 unsigned 409 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS, 410 ProfileSummaryInfo *PSI) const { 411 unsigned Count = FS->getBodySamples().size(); 412 413 // Only count records in hot callsites. 414 for (const auto &I : FS->getCallsiteSamples()) 415 for (const auto &J : I.second) { 416 const FunctionSamples *CalleeSamples = &J.second; 417 if (callsiteIsHot(CalleeSamples, PSI)) 418 Count += countBodyRecords(CalleeSamples, PSI); 419 } 420 421 return Count; 422 } 423 424 /// Return the number of samples collected in the body of this profile. 425 /// 426 /// This count does not include samples from cold inlined callsites. 427 uint64_t 428 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS, 429 ProfileSummaryInfo *PSI) const { 430 uint64_t Total = 0; 431 for (const auto &I : FS->getBodySamples()) 432 Total += I.second.getSamples(); 433 434 // Only count samples in hot callsites. 435 for (const auto &I : FS->getCallsiteSamples()) 436 for (const auto &J : I.second) { 437 const FunctionSamples *CalleeSamples = &J.second; 438 if (callsiteIsHot(CalleeSamples, PSI)) 439 Total += countBodySamples(CalleeSamples, PSI); 440 } 441 442 return Total; 443 } 444 445 /// Return the fraction of sample records used in this profile. 446 /// 447 /// The returned value is an unsigned integer in the range 0-100 indicating 448 /// the percentage of sample records that were used while applying this 449 /// profile to the associated function. 450 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 451 unsigned Total) const { 452 assert(Used <= Total && 453 "number of used records cannot exceed the total number of records"); 454 return Total > 0 ? Used * 100 / Total : 100; 455 } 456 457 /// Clear all the per-function data used to load samples and propagate weights. 458 void SampleProfileLoader::clearFunctionData() { 459 BlockWeights.clear(); 460 EdgeWeights.clear(); 461 VisitedBlocks.clear(); 462 VisitedEdges.clear(); 463 EquivalenceClass.clear(); 464 DT = nullptr; 465 PDT = nullptr; 466 LI = nullptr; 467 Predecessors.clear(); 468 Successors.clear(); 469 CoverageTracker.clear(); 470 } 471 472 #ifndef NDEBUG 473 /// Print the weight of edge \p E on stream \p OS. 474 /// 475 /// \param OS Stream to emit the output to. 476 /// \param E Edge to print. 477 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 478 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 479 << "]: " << EdgeWeights[E] << "\n"; 480 } 481 482 /// Print the equivalence class of block \p BB on stream \p OS. 483 /// 484 /// \param OS Stream to emit the output to. 485 /// \param BB Block to print. 486 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 487 const BasicBlock *BB) { 488 const BasicBlock *Equiv = EquivalenceClass[BB]; 489 OS << "equivalence[" << BB->getName() 490 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 491 } 492 493 /// Print the weight of block \p BB on stream \p OS. 494 /// 495 /// \param OS Stream to emit the output to. 496 /// \param BB Block to print. 497 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 498 const BasicBlock *BB) const { 499 const auto &I = BlockWeights.find(BB); 500 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 501 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 502 } 503 #endif 504 505 /// Get the weight for an instruction. 506 /// 507 /// The "weight" of an instruction \p Inst is the number of samples 508 /// collected on that instruction at runtime. To retrieve it, we 509 /// need to compute the line number of \p Inst relative to the start of its 510 /// function. We use HeaderLineno to compute the offset. We then 511 /// look up the samples collected for \p Inst using BodySamples. 512 /// 513 /// \param Inst Instruction to query. 514 /// 515 /// \returns the weight of \p Inst. 516 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 517 const DebugLoc &DLoc = Inst.getDebugLoc(); 518 if (!DLoc) 519 return std::error_code(); 520 521 const FunctionSamples *FS = findFunctionSamples(Inst); 522 if (!FS) 523 return std::error_code(); 524 525 // Ignore all intrinsics and branch instructions. 526 // Branch instruction usually contains debug info from sources outside of 527 // the residing basic block, thus we ignore them during annotation. 528 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst)) 529 return std::error_code(); 530 531 // If a direct call/invoke instruction is inlined in profile 532 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 533 // it means that the inlined callsite has no sample, thus the call 534 // instruction should have 0 count. 535 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && 536 !ImmutableCallSite(&Inst).isIndirectCall() && 537 findCalleeFunctionSamples(Inst)) 538 return 0; 539 540 const DILocation *DIL = DLoc; 541 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 542 uint32_t Discriminator = DIL->getBaseDiscriminator(); 543 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 544 if (R) { 545 bool FirstMark = 546 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 547 if (FirstMark) { 548 ORE->emit([&]() { 549 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 550 Remark << "Applied " << ore::NV("NumSamples", *R); 551 Remark << " samples from profile (offset: "; 552 Remark << ore::NV("LineOffset", LineOffset); 553 if (Discriminator) { 554 Remark << "."; 555 Remark << ore::NV("Discriminator", Discriminator); 556 } 557 Remark << ")"; 558 return Remark; 559 }); 560 } 561 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." 562 << DIL->getBaseDiscriminator() << ":" << Inst 563 << " (line offset: " << LineOffset << "." 564 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 565 << ")\n"); 566 } 567 return R; 568 } 569 570 /// Compute the weight of a basic block. 571 /// 572 /// The weight of basic block \p BB is the maximum weight of all the 573 /// instructions in BB. 574 /// 575 /// \param BB The basic block to query. 576 /// 577 /// \returns the weight for \p BB. 578 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 579 uint64_t Max = 0; 580 bool HasWeight = false; 581 for (auto &I : BB->getInstList()) { 582 const ErrorOr<uint64_t> &R = getInstWeight(I); 583 if (R) { 584 Max = std::max(Max, R.get()); 585 HasWeight = true; 586 } 587 } 588 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 589 } 590 591 /// Compute and store the weights of every basic block. 592 /// 593 /// This populates the BlockWeights map by computing 594 /// the weights of every basic block in the CFG. 595 /// 596 /// \param F The function to query. 597 bool SampleProfileLoader::computeBlockWeights(Function &F) { 598 bool Changed = false; 599 LLVM_DEBUG(dbgs() << "Block weights\n"); 600 for (const auto &BB : F) { 601 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 602 if (Weight) { 603 BlockWeights[&BB] = Weight.get(); 604 VisitedBlocks.insert(&BB); 605 Changed = true; 606 } 607 LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); 608 } 609 610 return Changed; 611 } 612 613 /// Get the FunctionSamples for a call instruction. 614 /// 615 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 616 /// instance in which that call instruction is calling to. It contains 617 /// all samples that resides in the inlined instance. We first find the 618 /// inlined instance in which the call instruction is from, then we 619 /// traverse its children to find the callsite with the matching 620 /// location. 621 /// 622 /// \param Inst Call/Invoke instruction to query. 623 /// 624 /// \returns The FunctionSamples pointer to the inlined instance. 625 const FunctionSamples * 626 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 627 const DILocation *DIL = Inst.getDebugLoc(); 628 if (!DIL) { 629 return nullptr; 630 } 631 632 StringRef CalleeName; 633 if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) 634 if (Function *Callee = CI->getCalledFunction()) 635 CalleeName = Callee->getName(); 636 637 const FunctionSamples *FS = findFunctionSamples(Inst); 638 if (FS == nullptr) 639 return nullptr; 640 641 return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL), 642 DIL->getBaseDiscriminator()), 643 CalleeName); 644 } 645 646 /// Returns a vector of FunctionSamples that are the indirect call targets 647 /// of \p Inst. The vector is sorted by the total number of samples. Stores 648 /// the total call count of the indirect call in \p Sum. 649 std::vector<const FunctionSamples *> 650 SampleProfileLoader::findIndirectCallFunctionSamples( 651 const Instruction &Inst, uint64_t &Sum) const { 652 const DILocation *DIL = Inst.getDebugLoc(); 653 std::vector<const FunctionSamples *> R; 654 655 if (!DIL) { 656 return R; 657 } 658 659 const FunctionSamples *FS = findFunctionSamples(Inst); 660 if (FS == nullptr) 661 return R; 662 663 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 664 uint32_t Discriminator = DIL->getBaseDiscriminator(); 665 666 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 667 Sum = 0; 668 if (T) 669 for (const auto &T_C : T.get()) 670 Sum += T_C.second; 671 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation( 672 FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) { 673 if (M->empty()) 674 return R; 675 for (const auto &NameFS : *M) { 676 Sum += NameFS.second.getEntrySamples(); 677 R.push_back(&NameFS.second); 678 } 679 llvm::sort(R.begin(), R.end(), 680 [](const FunctionSamples *L, const FunctionSamples *R) { 681 return L->getEntrySamples() > R->getEntrySamples(); 682 }); 683 } 684 return R; 685 } 686 687 /// Get the FunctionSamples for an instruction. 688 /// 689 /// The FunctionSamples of an instruction \p Inst is the inlined instance 690 /// in which that instruction is coming from. We traverse the inline stack 691 /// of that instruction, and match it with the tree nodes in the profile. 692 /// 693 /// \param Inst Instruction to query. 694 /// 695 /// \returns the FunctionSamples pointer to the inlined instance. 696 const FunctionSamples * 697 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 698 SmallVector<std::pair<LineLocation, StringRef>, 10> S; 699 const DILocation *DIL = Inst.getDebugLoc(); 700 if (!DIL) 701 return Samples; 702 703 return Samples->findFunctionSamples(DIL); 704 } 705 706 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) { 707 assert(isa<CallInst>(I) || isa<InvokeInst>(I)); 708 CallSite CS(I); 709 Function *CalledFunction = CS.getCalledFunction(); 710 assert(CalledFunction); 711 DebugLoc DLoc = I->getDebugLoc(); 712 BasicBlock *BB = I->getParent(); 713 InlineParams Params = getInlineParams(); 714 Params.ComputeFullInlineCost = true; 715 // Checks if there is anything in the reachable portion of the callee at 716 // this callsite that makes this inlining potentially illegal. Need to 717 // set ComputeFullInlineCost, otherwise getInlineCost may return early 718 // when cost exceeds threshold without checking all IRs in the callee. 719 // The acutal cost does not matter because we only checks isNever() to 720 // see if it is legal to inline the callsite. 721 InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC, 722 None, nullptr, nullptr); 723 if (Cost.isNever()) { 724 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB) 725 << "incompatible inlining"); 726 return false; 727 } 728 InlineFunctionInfo IFI(nullptr, &GetAC); 729 if (InlineFunction(CS, IFI)) { 730 // The call to InlineFunction erases I, so we can't pass it here. 731 ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB) 732 << "inlined hot callee '" << ore::NV("Callee", CalledFunction) 733 << "' into '" << ore::NV("Caller", BB->getParent()) << "'"); 734 return true; 735 } 736 return false; 737 } 738 739 /// Iteratively inline hot callsites of a function. 740 /// 741 /// Iteratively traverse all callsites of the function \p F, and find if 742 /// the corresponding inlined instance exists and is hot in profile. If 743 /// it is hot enough, inline the callsites and adds new callsites of the 744 /// callee into the caller. If the call is an indirect call, first promote 745 /// it to direct call. Each indirect call is limited with a single target. 746 /// 747 /// \param F function to perform iterative inlining. 748 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 749 /// inlined in the profiled binary. 750 /// 751 /// \returns True if there is any inline happened. 752 bool SampleProfileLoader::inlineHotFunctions( 753 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 754 DenseSet<Instruction *> PromotedInsns; 755 bool Changed = false; 756 while (true) { 757 bool LocalChanged = false; 758 SmallVector<Instruction *, 10> CIS; 759 for (auto &BB : F) { 760 bool Hot = false; 761 SmallVector<Instruction *, 10> Candidates; 762 for (auto &I : BB.getInstList()) { 763 const FunctionSamples *FS = nullptr; 764 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 765 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { 766 Candidates.push_back(&I); 767 if (callsiteIsHot(FS, PSI)) 768 Hot = true; 769 } 770 } 771 if (Hot) { 772 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); 773 } 774 } 775 for (auto I : CIS) { 776 Function *CalledFunction = CallSite(I).getCalledFunction(); 777 // Do not inline recursive calls. 778 if (CalledFunction == &F) 779 continue; 780 if (CallSite(I).isIndirectCall()) { 781 if (PromotedInsns.count(I)) 782 continue; 783 uint64_t Sum; 784 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 785 if (IsThinLTOPreLink) { 786 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), 787 PSI->getOrCompHotCountThreshold()); 788 continue; 789 } 790 auto CalleeFunctionName = FS->getName(); 791 // If it is a recursive call, we do not inline it as it could bloat 792 // the code exponentially. There is way to better handle this, e.g. 793 // clone the caller first, and inline the cloned caller if it is 794 // recursive. As llvm does not inline recursive calls, we will 795 // simply ignore it instead of handling it explicitly. 796 if (CalleeFunctionName == F.getName()) 797 continue; 798 799 const char *Reason = "Callee function not available"; 800 auto R = SymbolMap.find(CalleeFunctionName); 801 if (R != SymbolMap.end() && R->getValue() && 802 !R->getValue()->isDeclaration() && 803 R->getValue()->getSubprogram() && 804 isLegalToPromote(CallSite(I), R->getValue(), &Reason)) { 805 uint64_t C = FS->getEntrySamples(); 806 Instruction *DI = 807 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE); 808 Sum -= C; 809 PromotedInsns.insert(I); 810 // If profile mismatches, we should not attempt to inline DI. 811 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && 812 inlineCallInstruction(DI)) 813 LocalChanged = true; 814 } else { 815 LLVM_DEBUG(dbgs() 816 << "\nFailed to promote indirect call to " 817 << CalleeFunctionName << " because " << Reason << "\n"); 818 } 819 } 820 } else if (CalledFunction && CalledFunction->getSubprogram() && 821 !CalledFunction->isDeclaration()) { 822 if (inlineCallInstruction(I)) 823 LocalChanged = true; 824 } else if (IsThinLTOPreLink) { 825 findCalleeFunctionSamples(*I)->findInlinedFunctions( 826 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold()); 827 } 828 } 829 if (LocalChanged) { 830 Changed = true; 831 } else { 832 break; 833 } 834 } 835 return Changed; 836 } 837 838 /// Find equivalence classes for the given block. 839 /// 840 /// This finds all the blocks that are guaranteed to execute the same 841 /// number of times as \p BB1. To do this, it traverses all the 842 /// descendants of \p BB1 in the dominator or post-dominator tree. 843 /// 844 /// A block BB2 will be in the same equivalence class as \p BB1 if 845 /// the following holds: 846 /// 847 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 848 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 849 /// dominate BB1 in the post-dominator tree. 850 /// 851 /// 2- Both BB2 and \p BB1 must be in the same loop. 852 /// 853 /// For every block BB2 that meets those two requirements, we set BB2's 854 /// equivalence class to \p BB1. 855 /// 856 /// \param BB1 Block to check. 857 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 858 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 859 /// with blocks from \p BB1's dominator tree, then 860 /// this is the post-dominator tree, and vice versa. 861 template <bool IsPostDom> 862 void SampleProfileLoader::findEquivalencesFor( 863 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 864 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 865 const BasicBlock *EC = EquivalenceClass[BB1]; 866 uint64_t Weight = BlockWeights[EC]; 867 for (const auto *BB2 : Descendants) { 868 bool IsDomParent = DomTree->dominates(BB2, BB1); 869 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 870 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 871 EquivalenceClass[BB2] = EC; 872 // If BB2 is visited, then the entire EC should be marked as visited. 873 if (VisitedBlocks.count(BB2)) { 874 VisitedBlocks.insert(EC); 875 } 876 877 // If BB2 is heavier than BB1, make BB2 have the same weight 878 // as BB1. 879 // 880 // Note that we don't worry about the opposite situation here 881 // (when BB2 is lighter than BB1). We will deal with this 882 // during the propagation phase. Right now, we just want to 883 // make sure that BB1 has the largest weight of all the 884 // members of its equivalence set. 885 Weight = std::max(Weight, BlockWeights[BB2]); 886 } 887 } 888 if (EC == &EC->getParent()->getEntryBlock()) { 889 BlockWeights[EC] = Samples->getHeadSamples() + 1; 890 } else { 891 BlockWeights[EC] = Weight; 892 } 893 } 894 895 /// Find equivalence classes. 896 /// 897 /// Since samples may be missing from blocks, we can fill in the gaps by setting 898 /// the weights of all the blocks in the same equivalence class to the same 899 /// weight. To compute the concept of equivalence, we use dominance and loop 900 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 901 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 902 /// 903 /// \param F The function to query. 904 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 905 SmallVector<BasicBlock *, 8> DominatedBBs; 906 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); 907 // Find equivalence sets based on dominance and post-dominance information. 908 for (auto &BB : F) { 909 BasicBlock *BB1 = &BB; 910 911 // Compute BB1's equivalence class once. 912 if (EquivalenceClass.count(BB1)) { 913 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 914 continue; 915 } 916 917 // By default, blocks are in their own equivalence class. 918 EquivalenceClass[BB1] = BB1; 919 920 // Traverse all the blocks dominated by BB1. We are looking for 921 // every basic block BB2 such that: 922 // 923 // 1- BB1 dominates BB2. 924 // 2- BB2 post-dominates BB1. 925 // 3- BB1 and BB2 are in the same loop nest. 926 // 927 // If all those conditions hold, it means that BB2 is executed 928 // as many times as BB1, so they are placed in the same equivalence 929 // class by making BB2's equivalence class be BB1. 930 DominatedBBs.clear(); 931 DT->getDescendants(BB1, DominatedBBs); 932 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 933 934 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 935 } 936 937 // Assign weights to equivalence classes. 938 // 939 // All the basic blocks in the same equivalence class will execute 940 // the same number of times. Since we know that the head block in 941 // each equivalence class has the largest weight, assign that weight 942 // to all the blocks in that equivalence class. 943 LLVM_DEBUG( 944 dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 945 for (auto &BI : F) { 946 const BasicBlock *BB = &BI; 947 const BasicBlock *EquivBB = EquivalenceClass[BB]; 948 if (BB != EquivBB) 949 BlockWeights[BB] = BlockWeights[EquivBB]; 950 LLVM_DEBUG(printBlockWeight(dbgs(), BB)); 951 } 952 } 953 954 /// Visit the given edge to decide if it has a valid weight. 955 /// 956 /// If \p E has not been visited before, we copy to \p UnknownEdge 957 /// and increment the count of unknown edges. 958 /// 959 /// \param E Edge to visit. 960 /// \param NumUnknownEdges Current number of unknown edges. 961 /// \param UnknownEdge Set if E has not been visited before. 962 /// 963 /// \returns E's weight, if known. Otherwise, return 0. 964 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 965 Edge *UnknownEdge) { 966 if (!VisitedEdges.count(E)) { 967 (*NumUnknownEdges)++; 968 *UnknownEdge = E; 969 return 0; 970 } 971 972 return EdgeWeights[E]; 973 } 974 975 /// Propagate weights through incoming/outgoing edges. 976 /// 977 /// If the weight of a basic block is known, and there is only one edge 978 /// with an unknown weight, we can calculate the weight of that edge. 979 /// 980 /// Similarly, if all the edges have a known count, we can calculate the 981 /// count of the basic block, if needed. 982 /// 983 /// \param F Function to process. 984 /// \param UpdateBlockCount Whether we should update basic block counts that 985 /// has already been annotated. 986 /// 987 /// \returns True if new weights were assigned to edges or blocks. 988 bool SampleProfileLoader::propagateThroughEdges(Function &F, 989 bool UpdateBlockCount) { 990 bool Changed = false; 991 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); 992 for (const auto &BI : F) { 993 const BasicBlock *BB = &BI; 994 const BasicBlock *EC = EquivalenceClass[BB]; 995 996 // Visit all the predecessor and successor edges to determine 997 // which ones have a weight assigned already. Note that it doesn't 998 // matter that we only keep track of a single unknown edge. The 999 // only case we are interested in handling is when only a single 1000 // edge is unknown (see setEdgeOrBlockWeight). 1001 for (unsigned i = 0; i < 2; i++) { 1002 uint64_t TotalWeight = 0; 1003 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 1004 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 1005 1006 if (i == 0) { 1007 // First, visit all predecessor edges. 1008 NumTotalEdges = Predecessors[BB].size(); 1009 for (auto *Pred : Predecessors[BB]) { 1010 Edge E = std::make_pair(Pred, BB); 1011 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1012 if (E.first == E.second) 1013 SelfReferentialEdge = E; 1014 } 1015 if (NumTotalEdges == 1) { 1016 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 1017 } 1018 } else { 1019 // On the second round, visit all successor edges. 1020 NumTotalEdges = Successors[BB].size(); 1021 for (auto *Succ : Successors[BB]) { 1022 Edge E = std::make_pair(BB, Succ); 1023 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1024 } 1025 if (NumTotalEdges == 1) { 1026 SingleEdge = std::make_pair(BB, Successors[BB][0]); 1027 } 1028 } 1029 1030 // After visiting all the edges, there are three cases that we 1031 // can handle immediately: 1032 // 1033 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 1034 // In this case, we simply check that the sum of all the edges 1035 // is the same as BB's weight. If not, we change BB's weight 1036 // to match. Additionally, if BB had not been visited before, 1037 // we mark it visited. 1038 // 1039 // - Only one edge is unknown and BB has already been visited. 1040 // In this case, we can compute the weight of the edge by 1041 // subtracting the total block weight from all the known 1042 // edge weights. If the edges weight more than BB, then the 1043 // edge of the last remaining edge is set to zero. 1044 // 1045 // - There exists a self-referential edge and the weight of BB is 1046 // known. In this case, this edge can be based on BB's weight. 1047 // We add up all the other known edges and set the weight on 1048 // the self-referential edge as we did in the previous case. 1049 // 1050 // In any other case, we must continue iterating. Eventually, 1051 // all edges will get a weight, or iteration will stop when 1052 // it reaches SampleProfileMaxPropagateIterations. 1053 if (NumUnknownEdges <= 1) { 1054 uint64_t &BBWeight = BlockWeights[EC]; 1055 if (NumUnknownEdges == 0) { 1056 if (!VisitedBlocks.count(EC)) { 1057 // If we already know the weight of all edges, the weight of the 1058 // basic block can be computed. It should be no larger than the sum 1059 // of all edge weights. 1060 if (TotalWeight > BBWeight) { 1061 BBWeight = TotalWeight; 1062 Changed = true; 1063 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() 1064 << " known. Set weight for block: "; 1065 printBlockWeight(dbgs(), BB);); 1066 } 1067 } else if (NumTotalEdges == 1 && 1068 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1069 // If there is only one edge for the visited basic block, use the 1070 // block weight to adjust edge weight if edge weight is smaller. 1071 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1072 Changed = true; 1073 } 1074 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1075 // If there is a single unknown edge and the block has been 1076 // visited, then we can compute E's weight. 1077 if (BBWeight >= TotalWeight) 1078 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1079 else 1080 EdgeWeights[UnknownEdge] = 0; 1081 const BasicBlock *OtherEC; 1082 if (i == 0) 1083 OtherEC = EquivalenceClass[UnknownEdge.first]; 1084 else 1085 OtherEC = EquivalenceClass[UnknownEdge.second]; 1086 // Edge weights should never exceed the BB weights it connects. 1087 if (VisitedBlocks.count(OtherEC) && 1088 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1089 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1090 VisitedEdges.insert(UnknownEdge); 1091 Changed = true; 1092 LLVM_DEBUG(dbgs() << "Set weight for edge: "; 1093 printEdgeWeight(dbgs(), UnknownEdge)); 1094 } 1095 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1096 // If a block Weights 0, all its in/out edges should weight 0. 1097 if (i == 0) { 1098 for (auto *Pred : Predecessors[BB]) { 1099 Edge E = std::make_pair(Pred, BB); 1100 EdgeWeights[E] = 0; 1101 VisitedEdges.insert(E); 1102 } 1103 } else { 1104 for (auto *Succ : Successors[BB]) { 1105 Edge E = std::make_pair(BB, Succ); 1106 EdgeWeights[E] = 0; 1107 VisitedEdges.insert(E); 1108 } 1109 } 1110 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1111 uint64_t &BBWeight = BlockWeights[BB]; 1112 // We have a self-referential edge and the weight of BB is known. 1113 if (BBWeight >= TotalWeight) 1114 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1115 else 1116 EdgeWeights[SelfReferentialEdge] = 0; 1117 VisitedEdges.insert(SelfReferentialEdge); 1118 Changed = true; 1119 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; 1120 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1121 } 1122 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1123 BlockWeights[EC] = TotalWeight; 1124 VisitedBlocks.insert(EC); 1125 Changed = true; 1126 } 1127 } 1128 } 1129 1130 return Changed; 1131 } 1132 1133 /// Build in/out edge lists for each basic block in the CFG. 1134 /// 1135 /// We are interested in unique edges. If a block B1 has multiple 1136 /// edges to another block B2, we only add a single B1->B2 edge. 1137 void SampleProfileLoader::buildEdges(Function &F) { 1138 for (auto &BI : F) { 1139 BasicBlock *B1 = &BI; 1140 1141 // Add predecessors for B1. 1142 SmallPtrSet<BasicBlock *, 16> Visited; 1143 if (!Predecessors[B1].empty()) 1144 llvm_unreachable("Found a stale predecessors list in a basic block."); 1145 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1146 BasicBlock *B2 = *PI; 1147 if (Visited.insert(B2).second) 1148 Predecessors[B1].push_back(B2); 1149 } 1150 1151 // Add successors for B1. 1152 Visited.clear(); 1153 if (!Successors[B1].empty()) 1154 llvm_unreachable("Found a stale successors list in a basic block."); 1155 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1156 BasicBlock *B2 = *SI; 1157 if (Visited.insert(B2).second) 1158 Successors[B1].push_back(B2); 1159 } 1160 } 1161 } 1162 1163 /// Returns the sorted CallTargetMap \p M by count in descending order. 1164 static SmallVector<InstrProfValueData, 2> SortCallTargets( 1165 const SampleRecord::CallTargetMap &M) { 1166 SmallVector<InstrProfValueData, 2> R; 1167 for (auto I = M.begin(); I != M.end(); ++I) 1168 R.push_back({Function::getGUID(I->getKey()), I->getValue()}); 1169 llvm::sort(R.begin(), R.end(), 1170 [](const InstrProfValueData &L, const InstrProfValueData &R) { 1171 if (L.Count == R.Count) 1172 return L.Value > R.Value; 1173 else 1174 return L.Count > R.Count; 1175 }); 1176 return R; 1177 } 1178 1179 /// Propagate weights into edges 1180 /// 1181 /// The following rules are applied to every block BB in the CFG: 1182 /// 1183 /// - If BB has a single predecessor/successor, then the weight 1184 /// of that edge is the weight of the block. 1185 /// 1186 /// - If all incoming or outgoing edges are known except one, and the 1187 /// weight of the block is already known, the weight of the unknown 1188 /// edge will be the weight of the block minus the sum of all the known 1189 /// edges. If the sum of all the known edges is larger than BB's weight, 1190 /// we set the unknown edge weight to zero. 1191 /// 1192 /// - If there is a self-referential edge, and the weight of the block is 1193 /// known, the weight for that edge is set to the weight of the block 1194 /// minus the weight of the other incoming edges to that block (if 1195 /// known). 1196 void SampleProfileLoader::propagateWeights(Function &F) { 1197 bool Changed = true; 1198 unsigned I = 0; 1199 1200 // If BB weight is larger than its corresponding loop's header BB weight, 1201 // use the BB weight to replace the loop header BB weight. 1202 for (auto &BI : F) { 1203 BasicBlock *BB = &BI; 1204 Loop *L = LI->getLoopFor(BB); 1205 if (!L) { 1206 continue; 1207 } 1208 BasicBlock *Header = L->getHeader(); 1209 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1210 BlockWeights[Header] = BlockWeights[BB]; 1211 } 1212 } 1213 1214 // Before propagation starts, build, for each block, a list of 1215 // unique predecessors and successors. This is necessary to handle 1216 // identical edges in multiway branches. Since we visit all blocks and all 1217 // edges of the CFG, it is cleaner to build these lists once at the start 1218 // of the pass. 1219 buildEdges(F); 1220 1221 // Propagate until we converge or we go past the iteration limit. 1222 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1223 Changed = propagateThroughEdges(F, false); 1224 } 1225 1226 // The first propagation propagates BB counts from annotated BBs to unknown 1227 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1228 // to propagate edge weights. 1229 VisitedEdges.clear(); 1230 Changed = true; 1231 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1232 Changed = propagateThroughEdges(F, false); 1233 } 1234 1235 // The 3rd propagation pass allows adjust annotated BB weights that are 1236 // obviously wrong. 1237 Changed = true; 1238 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1239 Changed = propagateThroughEdges(F, true); 1240 } 1241 1242 // Generate MD_prof metadata for every branch instruction using the 1243 // edge weights computed during propagation. 1244 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1245 LLVMContext &Ctx = F.getContext(); 1246 MDBuilder MDB(Ctx); 1247 for (auto &BI : F) { 1248 BasicBlock *BB = &BI; 1249 1250 if (BlockWeights[BB]) { 1251 for (auto &I : BB->getInstList()) { 1252 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1253 continue; 1254 CallSite CS(&I); 1255 if (!CS.getCalledFunction()) { 1256 const DebugLoc &DLoc = I.getDebugLoc(); 1257 if (!DLoc) 1258 continue; 1259 const DILocation *DIL = DLoc; 1260 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 1261 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1262 1263 const FunctionSamples *FS = findFunctionSamples(I); 1264 if (!FS) 1265 continue; 1266 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1267 if (!T || T.get().empty()) 1268 continue; 1269 SmallVector<InstrProfValueData, 2> SortedCallTargets = 1270 SortCallTargets(T.get()); 1271 uint64_t Sum; 1272 findIndirectCallFunctionSamples(I, Sum); 1273 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1274 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1275 SortedCallTargets.size()); 1276 } else if (!dyn_cast<IntrinsicInst>(&I)) { 1277 SmallVector<uint32_t, 1> Weights; 1278 Weights.push_back(BlockWeights[BB]); 1279 I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); 1280 } 1281 } 1282 } 1283 TerminatorInst *TI = BB->getTerminator(); 1284 if (TI->getNumSuccessors() == 1) 1285 continue; 1286 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1287 continue; 1288 1289 DebugLoc BranchLoc = TI->getDebugLoc(); 1290 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " 1291 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1292 : Twine("<UNKNOWN LOCATION>")) 1293 << ".\n"); 1294 SmallVector<uint32_t, 4> Weights; 1295 uint32_t MaxWeight = 0; 1296 Instruction *MaxDestInst; 1297 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1298 BasicBlock *Succ = TI->getSuccessor(I); 1299 Edge E = std::make_pair(BB, Succ); 1300 uint64_t Weight = EdgeWeights[E]; 1301 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1302 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1303 // if needed. Sample counts in profiles are 64-bit unsigned values, 1304 // but internally branch weights are expressed as 32-bit values. 1305 if (Weight > std::numeric_limits<uint32_t>::max()) { 1306 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1307 Weight = std::numeric_limits<uint32_t>::max(); 1308 } 1309 // Weight is added by one to avoid propagation errors introduced by 1310 // 0 weights. 1311 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1312 if (Weight != 0) { 1313 if (Weight > MaxWeight) { 1314 MaxWeight = Weight; 1315 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1316 } 1317 } 1318 } 1319 1320 uint64_t TempWeight; 1321 // Only set weights if there is at least one non-zero weight. 1322 // In any other case, let the analyzer set weights. 1323 // Do not set weights if the weights are present. In ThinLTO, the profile 1324 // annotation is done twice. If the first annotation already set the 1325 // weights, the second pass does not need to set it. 1326 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1327 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1328 TI->setMetadata(LLVMContext::MD_prof, 1329 MDB.createBranchWeights(Weights)); 1330 ORE->emit([&]() { 1331 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1332 << "most popular destination for conditional branches at " 1333 << ore::NV("CondBranchesLoc", BranchLoc); 1334 }); 1335 } else { 1336 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1337 } 1338 } 1339 } 1340 1341 /// Get the line number for the function header. 1342 /// 1343 /// This looks up function \p F in the current compilation unit and 1344 /// retrieves the line number where the function is defined. This is 1345 /// line 0 for all the samples read from the profile file. Every line 1346 /// number is relative to this line. 1347 /// 1348 /// \param F Function object to query. 1349 /// 1350 /// \returns the line number where \p F is defined. If it returns 0, 1351 /// it means that there is no debug information available for \p F. 1352 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1353 if (DISubprogram *S = F.getSubprogram()) 1354 return S->getLine(); 1355 1356 // If the start of \p F is missing, emit a diagnostic to inform the user 1357 // about the missed opportunity. 1358 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1359 "No debug information found in function " + F.getName() + 1360 ": Function profile not used", 1361 DS_Warning)); 1362 return 0; 1363 } 1364 1365 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1366 DT.reset(new DominatorTree); 1367 DT->recalculate(F); 1368 1369 PDT.reset(new PostDominatorTree(F)); 1370 1371 LI.reset(new LoopInfo); 1372 LI->analyze(*DT); 1373 } 1374 1375 /// Generate branch weight metadata for all branches in \p F. 1376 /// 1377 /// Branch weights are computed out of instruction samples using a 1378 /// propagation heuristic. Propagation proceeds in 3 phases: 1379 /// 1380 /// 1- Assignment of block weights. All the basic blocks in the function 1381 /// are initial assigned the same weight as their most frequently 1382 /// executed instruction. 1383 /// 1384 /// 2- Creation of equivalence classes. Since samples may be missing from 1385 /// blocks, we can fill in the gaps by setting the weights of all the 1386 /// blocks in the same equivalence class to the same weight. To compute 1387 /// the concept of equivalence, we use dominance and loop information. 1388 /// Two blocks B1 and B2 are in the same equivalence class if B1 1389 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1390 /// 1391 /// 3- Propagation of block weights into edges. This uses a simple 1392 /// propagation heuristic. The following rules are applied to every 1393 /// block BB in the CFG: 1394 /// 1395 /// - If BB has a single predecessor/successor, then the weight 1396 /// of that edge is the weight of the block. 1397 /// 1398 /// - If all the edges are known except one, and the weight of the 1399 /// block is already known, the weight of the unknown edge will 1400 /// be the weight of the block minus the sum of all the known 1401 /// edges. If the sum of all the known edges is larger than BB's weight, 1402 /// we set the unknown edge weight to zero. 1403 /// 1404 /// - If there is a self-referential edge, and the weight of the block is 1405 /// known, the weight for that edge is set to the weight of the block 1406 /// minus the weight of the other incoming edges to that block (if 1407 /// known). 1408 /// 1409 /// Since this propagation is not guaranteed to finalize for every CFG, we 1410 /// only allow it to proceed for a limited number of iterations (controlled 1411 /// by -sample-profile-max-propagate-iterations). 1412 /// 1413 /// FIXME: Try to replace this propagation heuristic with a scheme 1414 /// that is guaranteed to finalize. A work-list approach similar to 1415 /// the standard value propagation algorithm used by SSA-CCP might 1416 /// work here. 1417 /// 1418 /// Once all the branch weights are computed, we emit the MD_prof 1419 /// metadata on BB using the computed values for each of its branches. 1420 /// 1421 /// \param F The function to query. 1422 /// 1423 /// \returns true if \p F was modified. Returns false, otherwise. 1424 bool SampleProfileLoader::emitAnnotations(Function &F) { 1425 bool Changed = false; 1426 1427 if (getFunctionLoc(F) == 0) 1428 return false; 1429 1430 LLVM_DEBUG(dbgs() << "Line number for the first instruction in " 1431 << F.getName() << ": " << getFunctionLoc(F) << "\n"); 1432 1433 DenseSet<GlobalValue::GUID> InlinedGUIDs; 1434 Changed |= inlineHotFunctions(F, InlinedGUIDs); 1435 1436 // Compute basic block weights. 1437 Changed |= computeBlockWeights(F); 1438 1439 if (Changed) { 1440 // Add an entry count to the function using the samples gathered at the 1441 // function entry. 1442 // Sets the GUIDs that are inlined in the profiled binary. This is used 1443 // for ThinLink to make correct liveness analysis, and also make the IR 1444 // match the profiled binary before annotation. 1445 F.setEntryCount( 1446 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), 1447 &InlinedGUIDs); 1448 1449 // Compute dominance and loop info needed for propagation. 1450 computeDominanceAndLoopInfo(F); 1451 1452 // Find equivalence classes. 1453 findEquivalenceClasses(F); 1454 1455 // Propagate weights to all edges. 1456 propagateWeights(F); 1457 } 1458 1459 // If coverage checking was requested, compute it now. 1460 if (SampleProfileRecordCoverage) { 1461 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); 1462 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); 1463 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1464 if (Coverage < SampleProfileRecordCoverage) { 1465 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1466 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1467 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1468 Twine(Coverage) + "%) were applied", 1469 DS_Warning)); 1470 } 1471 } 1472 1473 if (SampleProfileSampleCoverage) { 1474 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1475 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); 1476 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1477 if (Coverage < SampleProfileSampleCoverage) { 1478 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1479 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1480 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1481 Twine(Coverage) + "%) were applied", 1482 DS_Warning)); 1483 } 1484 } 1485 return Changed; 1486 } 1487 1488 char SampleProfileLoaderLegacyPass::ID = 0; 1489 1490 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1491 "Sample Profile loader", false, false) 1492 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1493 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1494 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1495 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1496 "Sample Profile loader", false, false) 1497 1498 bool SampleProfileLoader::doInitialization(Module &M) { 1499 auto &Ctx = M.getContext(); 1500 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1501 if (std::error_code EC = ReaderOrErr.getError()) { 1502 std::string Msg = "Could not open profile: " + EC.message(); 1503 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1504 return false; 1505 } 1506 Reader = std::move(ReaderOrErr.get()); 1507 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1508 return true; 1509 } 1510 1511 ModulePass *llvm::createSampleProfileLoaderPass() { 1512 return new SampleProfileLoaderLegacyPass(SampleProfileFile); 1513 } 1514 1515 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1516 return new SampleProfileLoaderLegacyPass(Name); 1517 } 1518 1519 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, 1520 ProfileSummaryInfo *_PSI) { 1521 if (!ProfileIsValid) 1522 return false; 1523 1524 PSI = _PSI; 1525 if (M.getProfileSummary() == nullptr) 1526 M.setProfileSummary(Reader->getSummary().getMD(M.getContext())); 1527 1528 // Compute the total number of samples collected in this profile. 1529 for (const auto &I : Reader->getProfiles()) 1530 TotalCollectedSamples += I.second.getTotalSamples(); 1531 1532 // Populate the symbol map. 1533 for (const auto &N_F : M.getValueSymbolTable()) { 1534 StringRef OrigName = N_F.getKey(); 1535 Function *F = dyn_cast<Function>(N_F.getValue()); 1536 if (F == nullptr) 1537 continue; 1538 SymbolMap[OrigName] = F; 1539 auto pos = OrigName.find('.'); 1540 if (pos != StringRef::npos) { 1541 StringRef NewName = OrigName.substr(0, pos); 1542 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1543 // Failiing to insert means there is already an entry in SymbolMap, 1544 // thus there are multiple functions that are mapped to the same 1545 // stripped name. In this case of name conflicting, set the value 1546 // to nullptr to avoid confusion. 1547 if (!r.second) 1548 r.first->second = nullptr; 1549 } 1550 } 1551 1552 bool retval = false; 1553 for (auto &F : M) 1554 if (!F.isDeclaration()) { 1555 clearFunctionData(); 1556 retval |= runOnFunction(F, AM); 1557 } 1558 return retval; 1559 } 1560 1561 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1562 ACT = &getAnalysis<AssumptionCacheTracker>(); 1563 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 1564 ProfileSummaryInfo *PSI = 1565 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1566 return SampleLoader.runOnModule(M, nullptr, PSI); 1567 } 1568 1569 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 1570 // Initialize the entry count to -1, which will be treated conservatively 1571 // by getEntryCount as the same as unknown (None). If we have samples this 1572 // will be overwritten in emitAnnotations. 1573 F.setEntryCount(ProfileCount(-1, Function::PCT_Real)); 1574 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 1575 if (AM) { 1576 auto &FAM = 1577 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 1578 .getManager(); 1579 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1580 } else { 1581 OwnedORE = make_unique<OptimizationRemarkEmitter>(&F); 1582 ORE = OwnedORE.get(); 1583 } 1584 Samples = Reader->getSamplesFor(F); 1585 if (Samples && !Samples->empty()) 1586 return emitAnnotations(F); 1587 return false; 1588 } 1589 1590 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1591 ModuleAnalysisManager &AM) { 1592 FunctionAnalysisManager &FAM = 1593 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1594 1595 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 1596 return FAM.getResult<AssumptionAnalysis>(F); 1597 }; 1598 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 1599 return FAM.getResult<TargetIRAnalysis>(F); 1600 }; 1601 1602 SampleProfileLoader SampleLoader( 1603 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 1604 IsThinLTOPreLink, GetAssumptionCache, GetTTI); 1605 1606 SampleLoader.doInitialization(M); 1607 1608 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 1609 if (!SampleLoader.runOnModule(M, &AM, PSI)) 1610 return PreservedAnalyses::all(); 1611 1612 return PreservedAnalyses::none(); 1613 } 1614