1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SampleProfileLoader transformation. This pass
10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
12 // profile information in the given profile.
13 //
14 // This pass generates branch weight annotations on the IR:
15 //
16 // - prof: Represents branch weights. This annotation is added to branches
17 //      to indicate the weights of each edge coming out of the branch.
18 //      The weight of each edge is the weight of the target block for
19 //      that edge. The weight of a block B is computed as the maximum
20 //      number of samples found in B.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/Transforms/IPO/SampleProfile.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/None.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringMap.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/ADT/Twine.h"
35 #include "llvm/Analysis/AssumptionCache.h"
36 #include "llvm/Analysis/InlineCost.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
39 #include "llvm/Analysis/PostDominators.h"
40 #include "llvm/Analysis/ProfileSummaryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/CallSite.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DiagnosticInfo.h"
48 #include "llvm/IR/Dominators.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/MDBuilder.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/PassManager.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/Pass.h"
61 #include "llvm/ProfileData/InstrProf.h"
62 #include "llvm/ProfileData/SampleProf.h"
63 #include "llvm/ProfileData/SampleProfReader.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ErrorOr.h"
69 #include "llvm/Support/GenericDomTree.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/IPO.h"
72 #include "llvm/Transforms/Instrumentation.h"
73 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
74 #include "llvm/Transforms/Utils/Cloning.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstdint>
78 #include <functional>
79 #include <limits>
80 #include <map>
81 #include <memory>
82 #include <string>
83 #include <system_error>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 using namespace sampleprof;
89 using ProfileCount = Function::ProfileCount;
90 #define DEBUG_TYPE "sample-profile"
91 
92 // Command line option to specify the file to read samples from. This is
93 // mainly used for debugging.
94 static cl::opt<std::string> SampleProfileFile(
95     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
96     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
97 
98 // The named file contains a set of transformations that may have been applied
99 // to the symbol names between the program from which the sample data was
100 // collected and the current program's symbols.
101 static cl::opt<std::string> SampleProfileRemappingFile(
102     "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
103     cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
104 
105 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
106     "sample-profile-max-propagate-iterations", cl::init(100),
107     cl::desc("Maximum number of iterations to go through when propagating "
108              "sample block/edge weights through the CFG."));
109 
110 static cl::opt<unsigned> SampleProfileRecordCoverage(
111     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
112     cl::desc("Emit a warning if less than N% of records in the input profile "
113              "are matched to the IR."));
114 
115 static cl::opt<unsigned> SampleProfileSampleCoverage(
116     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
117     cl::desc("Emit a warning if less than N% of samples in the input profile "
118              "are matched to the IR."));
119 
120 static cl::opt<bool> NoWarnSampleUnused(
121     "no-warn-sample-unused", cl::init(false), cl::Hidden,
122     cl::desc("Use this option to turn off/on warnings about function with "
123              "samples but without debug information to use those samples. "));
124 
125 static cl::opt<bool> ProfileSampleAccurate(
126     "profile-sample-accurate", cl::Hidden, cl::init(false),
127     cl::desc("If the sample profile is accurate, we will mark all un-sampled "
128              "callsite and function as having 0 samples. Otherwise, treat "
129              "un-sampled callsites and functions conservatively as unknown. "));
130 
131 namespace {
132 
133 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
134 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
135 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
136 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
137 using BlockEdgeMap =
138     DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
139 
140 class SampleCoverageTracker {
141 public:
142   SampleCoverageTracker() = default;
143 
144   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
145                        uint32_t Discriminator, uint64_t Samples);
146   unsigned computeCoverage(unsigned Used, unsigned Total) const;
147   unsigned countUsedRecords(const FunctionSamples *FS,
148                             ProfileSummaryInfo *PSI) const;
149   unsigned countBodyRecords(const FunctionSamples *FS,
150                             ProfileSummaryInfo *PSI) const;
151   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
152   uint64_t countBodySamples(const FunctionSamples *FS,
153                             ProfileSummaryInfo *PSI) const;
154 
155   void clear() {
156     SampleCoverage.clear();
157     TotalUsedSamples = 0;
158   }
159 
160 private:
161   using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
162   using FunctionSamplesCoverageMap =
163       DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
164 
165   /// Coverage map for sampling records.
166   ///
167   /// This map keeps a record of sampling records that have been matched to
168   /// an IR instruction. This is used to detect some form of staleness in
169   /// profiles (see flag -sample-profile-check-coverage).
170   ///
171   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
172   /// another map that counts how many times the sample record at the
173   /// given location has been used.
174   FunctionSamplesCoverageMap SampleCoverage;
175 
176   /// Number of samples used from the profile.
177   ///
178   /// When a sampling record is used for the first time, the samples from
179   /// that record are added to this accumulator.  Coverage is later computed
180   /// based on the total number of samples available in this function and
181   /// its callsites.
182   ///
183   /// Note that this accumulator tracks samples used from a single function
184   /// and all the inlined callsites. Strictly, we should have a map of counters
185   /// keyed by FunctionSamples pointers, but these stats are cleared after
186   /// every function, so we just need to keep a single counter.
187   uint64_t TotalUsedSamples = 0;
188 };
189 
190 /// Sample profile pass.
191 ///
192 /// This pass reads profile data from the file specified by
193 /// -sample-profile-file and annotates every affected function with the
194 /// profile information found in that file.
195 class SampleProfileLoader {
196 public:
197   SampleProfileLoader(
198       StringRef Name, StringRef RemapName, bool IsThinLTOPreLink,
199       std::function<AssumptionCache &(Function &)> GetAssumptionCache,
200       std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
201       : GetAC(std::move(GetAssumptionCache)),
202         GetTTI(std::move(GetTargetTransformInfo)), Filename(Name),
203         RemappingFilename(RemapName), IsThinLTOPreLink(IsThinLTOPreLink) {}
204 
205   bool doInitialization(Module &M);
206   bool runOnModule(Module &M, ModuleAnalysisManager *AM,
207                    ProfileSummaryInfo *_PSI);
208 
209   void dump() { Reader->dump(); }
210 
211 protected:
212   bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
213   unsigned getFunctionLoc(Function &F);
214   bool emitAnnotations(Function &F);
215   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
216   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
217   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
218   std::vector<const FunctionSamples *>
219   findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
220   mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
221   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
222   bool inlineCallInstruction(Instruction *I);
223   bool inlineHotFunctions(Function &F,
224                           DenseSet<GlobalValue::GUID> &InlinedGUIDs);
225   void printEdgeWeight(raw_ostream &OS, Edge E);
226   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
227   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
228   bool computeBlockWeights(Function &F);
229   void findEquivalenceClasses(Function &F);
230   template <bool IsPostDom>
231   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
232                            DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
233 
234   void propagateWeights(Function &F);
235   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
236   void buildEdges(Function &F);
237   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
238   void computeDominanceAndLoopInfo(Function &F);
239   void clearFunctionData();
240 
241   /// Map basic blocks to their computed weights.
242   ///
243   /// The weight of a basic block is defined to be the maximum
244   /// of all the instruction weights in that block.
245   BlockWeightMap BlockWeights;
246 
247   /// Map edges to their computed weights.
248   ///
249   /// Edge weights are computed by propagating basic block weights in
250   /// SampleProfile::propagateWeights.
251   EdgeWeightMap EdgeWeights;
252 
253   /// Set of visited blocks during propagation.
254   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
255 
256   /// Set of visited edges during propagation.
257   SmallSet<Edge, 32> VisitedEdges;
258 
259   /// Equivalence classes for block weights.
260   ///
261   /// Two blocks BB1 and BB2 are in the same equivalence class if they
262   /// dominate and post-dominate each other, and they are in the same loop
263   /// nest. When this happens, the two blocks are guaranteed to execute
264   /// the same number of times.
265   EquivalenceClassMap EquivalenceClass;
266 
267   /// Map from function name to Function *. Used to find the function from
268   /// the function name. If the function name contains suffix, additional
269   /// entry is added to map from the stripped name to the function if there
270   /// is one-to-one mapping.
271   StringMap<Function *> SymbolMap;
272 
273   /// Dominance, post-dominance and loop information.
274   std::unique_ptr<DominatorTree> DT;
275   std::unique_ptr<PostDominatorTree> PDT;
276   std::unique_ptr<LoopInfo> LI;
277 
278   std::function<AssumptionCache &(Function &)> GetAC;
279   std::function<TargetTransformInfo &(Function &)> GetTTI;
280 
281   /// Predecessors for each basic block in the CFG.
282   BlockEdgeMap Predecessors;
283 
284   /// Successors for each basic block in the CFG.
285   BlockEdgeMap Successors;
286 
287   SampleCoverageTracker CoverageTracker;
288 
289   /// Profile reader object.
290   std::unique_ptr<SampleProfileReader> Reader;
291 
292   /// Samples collected for the body of this function.
293   FunctionSamples *Samples = nullptr;
294 
295   /// Name of the profile file to load.
296   std::string Filename;
297 
298   /// Name of the profile remapping file to load.
299   std::string RemappingFilename;
300 
301   /// Flag indicating whether the profile input loaded successfully.
302   bool ProfileIsValid = false;
303 
304   /// Flag indicating if the pass is invoked in ThinLTO compile phase.
305   ///
306   /// In this phase, in annotation, we should not promote indirect calls.
307   /// Instead, we will mark GUIDs that needs to be annotated to the function.
308   bool IsThinLTOPreLink;
309 
310   /// Profile Summary Info computed from sample profile.
311   ProfileSummaryInfo *PSI = nullptr;
312 
313   /// Total number of samples collected in this profile.
314   ///
315   /// This is the sum of all the samples collected in all the functions executed
316   /// at runtime.
317   uint64_t TotalCollectedSamples = 0;
318 
319   /// Optimization Remark Emitter used to emit diagnostic remarks.
320   OptimizationRemarkEmitter *ORE = nullptr;
321 
322   // Information recorded when we declined to inline a call site
323   // because we have determined it is too cold is accumulated for
324   // each callee function. Initially this is just the entry count.
325   struct NotInlinedProfileInfo {
326     uint64_t entryCount;
327   };
328   DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo;
329 };
330 
331 class SampleProfileLoaderLegacyPass : public ModulePass {
332 public:
333   // Class identification, replacement for typeinfo
334   static char ID;
335 
336   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
337                                 bool IsThinLTOPreLink = false)
338       : ModulePass(ID),
339         SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink,
340                      [&](Function &F) -> AssumptionCache & {
341                        return ACT->getAssumptionCache(F);
342                      },
343                      [&](Function &F) -> TargetTransformInfo & {
344                        return TTIWP->getTTI(F);
345                      }) {
346     initializeSampleProfileLoaderLegacyPassPass(
347         *PassRegistry::getPassRegistry());
348   }
349 
350   void dump() { SampleLoader.dump(); }
351 
352   bool doInitialization(Module &M) override {
353     return SampleLoader.doInitialization(M);
354   }
355 
356   StringRef getPassName() const override { return "Sample profile pass"; }
357   bool runOnModule(Module &M) override;
358 
359   void getAnalysisUsage(AnalysisUsage &AU) const override {
360     AU.addRequired<AssumptionCacheTracker>();
361     AU.addRequired<TargetTransformInfoWrapperPass>();
362     AU.addRequired<ProfileSummaryInfoWrapperPass>();
363   }
364 
365 private:
366   SampleProfileLoader SampleLoader;
367   AssumptionCacheTracker *ACT = nullptr;
368   TargetTransformInfoWrapperPass *TTIWP = nullptr;
369 };
370 
371 } // end anonymous namespace
372 
373 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
374 ///
375 /// Functions that were inlined in the original binary will be represented
376 /// in the inline stack in the sample profile. If the profile shows that
377 /// the original inline decision was "good" (i.e., the callsite is executed
378 /// frequently), then we will recreate the inline decision and apply the
379 /// profile from the inlined callsite.
380 ///
381 /// To decide whether an inlined callsite is hot, we compare the callsite
382 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
383 /// regarded as hot if the count is above the cutoff value.
384 static bool callsiteIsHot(const FunctionSamples *CallsiteFS,
385                           ProfileSummaryInfo *PSI) {
386   if (!CallsiteFS)
387     return false; // The callsite was not inlined in the original binary.
388 
389   assert(PSI && "PSI is expected to be non null");
390   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
391   return PSI->isHotCount(CallsiteTotalSamples);
392 }
393 
394 /// Mark as used the sample record for the given function samples at
395 /// (LineOffset, Discriminator).
396 ///
397 /// \returns true if this is the first time we mark the given record.
398 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
399                                             uint32_t LineOffset,
400                                             uint32_t Discriminator,
401                                             uint64_t Samples) {
402   LineLocation Loc(LineOffset, Discriminator);
403   unsigned &Count = SampleCoverage[FS][Loc];
404   bool FirstTime = (++Count == 1);
405   if (FirstTime)
406     TotalUsedSamples += Samples;
407   return FirstTime;
408 }
409 
410 /// Return the number of sample records that were applied from this profile.
411 ///
412 /// This count does not include records from cold inlined callsites.
413 unsigned
414 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
415                                         ProfileSummaryInfo *PSI) const {
416   auto I = SampleCoverage.find(FS);
417 
418   // The size of the coverage map for FS represents the number of records
419   // that were marked used at least once.
420   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
421 
422   // If there are inlined callsites in this function, count the samples found
423   // in the respective bodies. However, do not bother counting callees with 0
424   // total samples, these are callees that were never invoked at runtime.
425   for (const auto &I : FS->getCallsiteSamples())
426     for (const auto &J : I.second) {
427       const FunctionSamples *CalleeSamples = &J.second;
428       if (callsiteIsHot(CalleeSamples, PSI))
429         Count += countUsedRecords(CalleeSamples, PSI);
430     }
431 
432   return Count;
433 }
434 
435 /// Return the number of sample records in the body of this profile.
436 ///
437 /// This count does not include records from cold inlined callsites.
438 unsigned
439 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
440                                         ProfileSummaryInfo *PSI) const {
441   unsigned Count = FS->getBodySamples().size();
442 
443   // Only count records in hot callsites.
444   for (const auto &I : FS->getCallsiteSamples())
445     for (const auto &J : I.second) {
446       const FunctionSamples *CalleeSamples = &J.second;
447       if (callsiteIsHot(CalleeSamples, PSI))
448         Count += countBodyRecords(CalleeSamples, PSI);
449     }
450 
451   return Count;
452 }
453 
454 /// Return the number of samples collected in the body of this profile.
455 ///
456 /// This count does not include samples from cold inlined callsites.
457 uint64_t
458 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
459                                         ProfileSummaryInfo *PSI) const {
460   uint64_t Total = 0;
461   for (const auto &I : FS->getBodySamples())
462     Total += I.second.getSamples();
463 
464   // Only count samples in hot callsites.
465   for (const auto &I : FS->getCallsiteSamples())
466     for (const auto &J : I.second) {
467       const FunctionSamples *CalleeSamples = &J.second;
468       if (callsiteIsHot(CalleeSamples, PSI))
469         Total += countBodySamples(CalleeSamples, PSI);
470     }
471 
472   return Total;
473 }
474 
475 /// Return the fraction of sample records used in this profile.
476 ///
477 /// The returned value is an unsigned integer in the range 0-100 indicating
478 /// the percentage of sample records that were used while applying this
479 /// profile to the associated function.
480 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
481                                                 unsigned Total) const {
482   assert(Used <= Total &&
483          "number of used records cannot exceed the total number of records");
484   return Total > 0 ? Used * 100 / Total : 100;
485 }
486 
487 /// Clear all the per-function data used to load samples and propagate weights.
488 void SampleProfileLoader::clearFunctionData() {
489   BlockWeights.clear();
490   EdgeWeights.clear();
491   VisitedBlocks.clear();
492   VisitedEdges.clear();
493   EquivalenceClass.clear();
494   DT = nullptr;
495   PDT = nullptr;
496   LI = nullptr;
497   Predecessors.clear();
498   Successors.clear();
499   CoverageTracker.clear();
500 }
501 
502 #ifndef NDEBUG
503 /// Print the weight of edge \p E on stream \p OS.
504 ///
505 /// \param OS  Stream to emit the output to.
506 /// \param E  Edge to print.
507 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
508   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
509      << "]: " << EdgeWeights[E] << "\n";
510 }
511 
512 /// Print the equivalence class of block \p BB on stream \p OS.
513 ///
514 /// \param OS  Stream to emit the output to.
515 /// \param BB  Block to print.
516 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
517                                                 const BasicBlock *BB) {
518   const BasicBlock *Equiv = EquivalenceClass[BB];
519   OS << "equivalence[" << BB->getName()
520      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
521 }
522 
523 /// Print the weight of block \p BB on stream \p OS.
524 ///
525 /// \param OS  Stream to emit the output to.
526 /// \param BB  Block to print.
527 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
528                                            const BasicBlock *BB) const {
529   const auto &I = BlockWeights.find(BB);
530   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
531   OS << "weight[" << BB->getName() << "]: " << W << "\n";
532 }
533 #endif
534 
535 /// Get the weight for an instruction.
536 ///
537 /// The "weight" of an instruction \p Inst is the number of samples
538 /// collected on that instruction at runtime. To retrieve it, we
539 /// need to compute the line number of \p Inst relative to the start of its
540 /// function. We use HeaderLineno to compute the offset. We then
541 /// look up the samples collected for \p Inst using BodySamples.
542 ///
543 /// \param Inst Instruction to query.
544 ///
545 /// \returns the weight of \p Inst.
546 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
547   const DebugLoc &DLoc = Inst.getDebugLoc();
548   if (!DLoc)
549     return std::error_code();
550 
551   const FunctionSamples *FS = findFunctionSamples(Inst);
552   if (!FS)
553     return std::error_code();
554 
555   // Ignore all intrinsics, phinodes and branch instructions.
556   // Branch and phinodes instruction usually contains debug info from sources outside of
557   // the residing basic block, thus we ignore them during annotation.
558   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
559     return std::error_code();
560 
561   // If a direct call/invoke instruction is inlined in profile
562   // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
563   // it means that the inlined callsite has no sample, thus the call
564   // instruction should have 0 count.
565   if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
566       !ImmutableCallSite(&Inst).isIndirectCall() &&
567       findCalleeFunctionSamples(Inst))
568     return 0;
569 
570   const DILocation *DIL = DLoc;
571   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
572   uint32_t Discriminator = DIL->getBaseDiscriminator();
573   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
574   if (R) {
575     bool FirstMark =
576         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
577     if (FirstMark) {
578       ORE->emit([&]() {
579         OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
580         Remark << "Applied " << ore::NV("NumSamples", *R);
581         Remark << " samples from profile (offset: ";
582         Remark << ore::NV("LineOffset", LineOffset);
583         if (Discriminator) {
584           Remark << ".";
585           Remark << ore::NV("Discriminator", Discriminator);
586         }
587         Remark << ")";
588         return Remark;
589       });
590     }
591     LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "."
592                       << DIL->getBaseDiscriminator() << ":" << Inst
593                       << " (line offset: " << LineOffset << "."
594                       << DIL->getBaseDiscriminator() << " - weight: " << R.get()
595                       << ")\n");
596   }
597   return R;
598 }
599 
600 /// Compute the weight of a basic block.
601 ///
602 /// The weight of basic block \p BB is the maximum weight of all the
603 /// instructions in BB.
604 ///
605 /// \param BB The basic block to query.
606 ///
607 /// \returns the weight for \p BB.
608 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
609   uint64_t Max = 0;
610   bool HasWeight = false;
611   for (auto &I : BB->getInstList()) {
612     const ErrorOr<uint64_t> &R = getInstWeight(I);
613     if (R) {
614       Max = std::max(Max, R.get());
615       HasWeight = true;
616     }
617   }
618   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
619 }
620 
621 /// Compute and store the weights of every basic block.
622 ///
623 /// This populates the BlockWeights map by computing
624 /// the weights of every basic block in the CFG.
625 ///
626 /// \param F The function to query.
627 bool SampleProfileLoader::computeBlockWeights(Function &F) {
628   bool Changed = false;
629   LLVM_DEBUG(dbgs() << "Block weights\n");
630   for (const auto &BB : F) {
631     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
632     if (Weight) {
633       BlockWeights[&BB] = Weight.get();
634       VisitedBlocks.insert(&BB);
635       Changed = true;
636     }
637     LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
638   }
639 
640   return Changed;
641 }
642 
643 /// Get the FunctionSamples for a call instruction.
644 ///
645 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
646 /// instance in which that call instruction is calling to. It contains
647 /// all samples that resides in the inlined instance. We first find the
648 /// inlined instance in which the call instruction is from, then we
649 /// traverse its children to find the callsite with the matching
650 /// location.
651 ///
652 /// \param Inst Call/Invoke instruction to query.
653 ///
654 /// \returns The FunctionSamples pointer to the inlined instance.
655 const FunctionSamples *
656 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
657   const DILocation *DIL = Inst.getDebugLoc();
658   if (!DIL) {
659     return nullptr;
660   }
661 
662   StringRef CalleeName;
663   if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
664     if (Function *Callee = CI->getCalledFunction())
665       CalleeName = Callee->getName();
666 
667   const FunctionSamples *FS = findFunctionSamples(Inst);
668   if (FS == nullptr)
669     return nullptr;
670 
671   return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
672                                                 DIL->getBaseDiscriminator()),
673                                    CalleeName);
674 }
675 
676 /// Returns a vector of FunctionSamples that are the indirect call targets
677 /// of \p Inst. The vector is sorted by the total number of samples. Stores
678 /// the total call count of the indirect call in \p Sum.
679 std::vector<const FunctionSamples *>
680 SampleProfileLoader::findIndirectCallFunctionSamples(
681     const Instruction &Inst, uint64_t &Sum) const {
682   const DILocation *DIL = Inst.getDebugLoc();
683   std::vector<const FunctionSamples *> R;
684 
685   if (!DIL) {
686     return R;
687   }
688 
689   const FunctionSamples *FS = findFunctionSamples(Inst);
690   if (FS == nullptr)
691     return R;
692 
693   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
694   uint32_t Discriminator = DIL->getBaseDiscriminator();
695 
696   auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
697   Sum = 0;
698   if (T)
699     for (const auto &T_C : T.get())
700       Sum += T_C.second;
701   if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
702           FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
703     if (M->empty())
704       return R;
705     for (const auto &NameFS : *M) {
706       Sum += NameFS.second.getEntrySamples();
707       R.push_back(&NameFS.second);
708     }
709     llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) {
710       if (L->getEntrySamples() != R->getEntrySamples())
711         return L->getEntrySamples() > R->getEntrySamples();
712       return FunctionSamples::getGUID(L->getName()) <
713              FunctionSamples::getGUID(R->getName());
714     });
715   }
716   return R;
717 }
718 
719 /// Get the FunctionSamples for an instruction.
720 ///
721 /// The FunctionSamples of an instruction \p Inst is the inlined instance
722 /// in which that instruction is coming from. We traverse the inline stack
723 /// of that instruction, and match it with the tree nodes in the profile.
724 ///
725 /// \param Inst Instruction to query.
726 ///
727 /// \returns the FunctionSamples pointer to the inlined instance.
728 const FunctionSamples *
729 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
730   const DILocation *DIL = Inst.getDebugLoc();
731   if (!DIL)
732     return Samples;
733 
734   auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
735   if (it.second)
736     it.first->second = Samples->findFunctionSamples(DIL);
737   return it.first->second;
738 }
739 
740 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
741   assert(isa<CallInst>(I) || isa<InvokeInst>(I));
742   CallSite CS(I);
743   Function *CalledFunction = CS.getCalledFunction();
744   assert(CalledFunction);
745   DebugLoc DLoc = I->getDebugLoc();
746   BasicBlock *BB = I->getParent();
747   InlineParams Params = getInlineParams();
748   Params.ComputeFullInlineCost = true;
749   // Checks if there is anything in the reachable portion of the callee at
750   // this callsite that makes this inlining potentially illegal. Need to
751   // set ComputeFullInlineCost, otherwise getInlineCost may return early
752   // when cost exceeds threshold without checking all IRs in the callee.
753   // The acutal cost does not matter because we only checks isNever() to
754   // see if it is legal to inline the callsite.
755   InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC,
756                                   None, nullptr, nullptr);
757   if (Cost.isNever()) {
758     ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB)
759               << "incompatible inlining");
760     return false;
761   }
762   InlineFunctionInfo IFI(nullptr, &GetAC);
763   if (InlineFunction(CS, IFI)) {
764     // The call to InlineFunction erases I, so we can't pass it here.
765     ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB)
766               << "inlined hot callee '" << ore::NV("Callee", CalledFunction)
767               << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
768     return true;
769   }
770   return false;
771 }
772 
773 /// Iteratively inline hot callsites of a function.
774 ///
775 /// Iteratively traverse all callsites of the function \p F, and find if
776 /// the corresponding inlined instance exists and is hot in profile. If
777 /// it is hot enough, inline the callsites and adds new callsites of the
778 /// callee into the caller. If the call is an indirect call, first promote
779 /// it to direct call. Each indirect call is limited with a single target.
780 ///
781 /// \param F function to perform iterative inlining.
782 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
783 ///     inlined in the profiled binary.
784 ///
785 /// \returns True if there is any inline happened.
786 bool SampleProfileLoader::inlineHotFunctions(
787     Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
788   DenseSet<Instruction *> PromotedInsns;
789 
790   DenseMap<Instruction *, const FunctionSamples *> localNotInlinedCallSites;
791   bool Changed = false;
792   while (true) {
793     bool LocalChanged = false;
794     SmallVector<Instruction *, 10> CIS;
795     for (auto &BB : F) {
796       bool Hot = false;
797       SmallVector<Instruction *, 10> Candidates;
798       for (auto &I : BB.getInstList()) {
799         const FunctionSamples *FS = nullptr;
800         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
801             !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
802           Candidates.push_back(&I);
803           if (FS->getEntrySamples() > 0)
804             localNotInlinedCallSites.try_emplace(&I, FS);
805           if (callsiteIsHot(FS, PSI))
806             Hot = true;
807         }
808       }
809       if (Hot) {
810         CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
811       }
812     }
813     for (auto I : CIS) {
814       Function *CalledFunction = CallSite(I).getCalledFunction();
815       // Do not inline recursive calls.
816       if (CalledFunction == &F)
817         continue;
818       if (CallSite(I).isIndirectCall()) {
819         if (PromotedInsns.count(I))
820           continue;
821         uint64_t Sum;
822         for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
823           if (IsThinLTOPreLink) {
824             FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
825                                      PSI->getOrCompHotCountThreshold());
826             continue;
827           }
828           auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent());
829           // If it is a recursive call, we do not inline it as it could bloat
830           // the code exponentially. There is way to better handle this, e.g.
831           // clone the caller first, and inline the cloned caller if it is
832           // recursive. As llvm does not inline recursive calls, we will
833           // simply ignore it instead of handling it explicitly.
834           if (CalleeFunctionName == F.getName())
835             continue;
836 
837           if (!callsiteIsHot(FS, PSI))
838             continue;
839 
840           const char *Reason = "Callee function not available";
841           auto R = SymbolMap.find(CalleeFunctionName);
842           if (R != SymbolMap.end() && R->getValue() &&
843               !R->getValue()->isDeclaration() &&
844               R->getValue()->getSubprogram() &&
845               isLegalToPromote(CallSite(I), R->getValue(), &Reason)) {
846             uint64_t C = FS->getEntrySamples();
847             Instruction *DI =
848                 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
849             Sum -= C;
850             PromotedInsns.insert(I);
851             // If profile mismatches, we should not attempt to inline DI.
852             if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
853                 inlineCallInstruction(DI)) {
854               localNotInlinedCallSites.erase(I);
855               LocalChanged = true;
856             }
857           } else {
858             LLVM_DEBUG(dbgs()
859                        << "\nFailed to promote indirect call to "
860                        << CalleeFunctionName << " because " << Reason << "\n");
861           }
862         }
863       } else if (CalledFunction && CalledFunction->getSubprogram() &&
864                  !CalledFunction->isDeclaration()) {
865         if (inlineCallInstruction(I)) {
866           localNotInlinedCallSites.erase(I);
867           LocalChanged = true;
868         }
869       } else if (IsThinLTOPreLink) {
870         findCalleeFunctionSamples(*I)->findInlinedFunctions(
871             InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
872       }
873     }
874     if (LocalChanged) {
875       Changed = true;
876     } else {
877       break;
878     }
879   }
880 
881   // Accumulate not inlined callsite information into notInlinedSamples
882   for (const auto &Pair : localNotInlinedCallSites) {
883     Instruction *I = Pair.getFirst();
884     Function *Callee = CallSite(I).getCalledFunction();
885     if (!Callee || Callee->isDeclaration())
886       continue;
887     const FunctionSamples *FS = Pair.getSecond();
888     auto pair =
889         notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
890     pair.first->second.entryCount += FS->getEntrySamples();
891   }
892   return Changed;
893 }
894 
895 /// Find equivalence classes for the given block.
896 ///
897 /// This finds all the blocks that are guaranteed to execute the same
898 /// number of times as \p BB1. To do this, it traverses all the
899 /// descendants of \p BB1 in the dominator or post-dominator tree.
900 ///
901 /// A block BB2 will be in the same equivalence class as \p BB1 if
902 /// the following holds:
903 ///
904 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
905 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
906 ///    dominate BB1 in the post-dominator tree.
907 ///
908 /// 2- Both BB2 and \p BB1 must be in the same loop.
909 ///
910 /// For every block BB2 that meets those two requirements, we set BB2's
911 /// equivalence class to \p BB1.
912 ///
913 /// \param BB1  Block to check.
914 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
915 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
916 ///                 with blocks from \p BB1's dominator tree, then
917 ///                 this is the post-dominator tree, and vice versa.
918 template <bool IsPostDom>
919 void SampleProfileLoader::findEquivalencesFor(
920     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
921     DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
922   const BasicBlock *EC = EquivalenceClass[BB1];
923   uint64_t Weight = BlockWeights[EC];
924   for (const auto *BB2 : Descendants) {
925     bool IsDomParent = DomTree->dominates(BB2, BB1);
926     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
927     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
928       EquivalenceClass[BB2] = EC;
929       // If BB2 is visited, then the entire EC should be marked as visited.
930       if (VisitedBlocks.count(BB2)) {
931         VisitedBlocks.insert(EC);
932       }
933 
934       // If BB2 is heavier than BB1, make BB2 have the same weight
935       // as BB1.
936       //
937       // Note that we don't worry about the opposite situation here
938       // (when BB2 is lighter than BB1). We will deal with this
939       // during the propagation phase. Right now, we just want to
940       // make sure that BB1 has the largest weight of all the
941       // members of its equivalence set.
942       Weight = std::max(Weight, BlockWeights[BB2]);
943     }
944   }
945   if (EC == &EC->getParent()->getEntryBlock()) {
946     BlockWeights[EC] = Samples->getHeadSamples() + 1;
947   } else {
948     BlockWeights[EC] = Weight;
949   }
950 }
951 
952 /// Find equivalence classes.
953 ///
954 /// Since samples may be missing from blocks, we can fill in the gaps by setting
955 /// the weights of all the blocks in the same equivalence class to the same
956 /// weight. To compute the concept of equivalence, we use dominance and loop
957 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
958 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
959 ///
960 /// \param F The function to query.
961 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
962   SmallVector<BasicBlock *, 8> DominatedBBs;
963   LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
964   // Find equivalence sets based on dominance and post-dominance information.
965   for (auto &BB : F) {
966     BasicBlock *BB1 = &BB;
967 
968     // Compute BB1's equivalence class once.
969     if (EquivalenceClass.count(BB1)) {
970       LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
971       continue;
972     }
973 
974     // By default, blocks are in their own equivalence class.
975     EquivalenceClass[BB1] = BB1;
976 
977     // Traverse all the blocks dominated by BB1. We are looking for
978     // every basic block BB2 such that:
979     //
980     // 1- BB1 dominates BB2.
981     // 2- BB2 post-dominates BB1.
982     // 3- BB1 and BB2 are in the same loop nest.
983     //
984     // If all those conditions hold, it means that BB2 is executed
985     // as many times as BB1, so they are placed in the same equivalence
986     // class by making BB2's equivalence class be BB1.
987     DominatedBBs.clear();
988     DT->getDescendants(BB1, DominatedBBs);
989     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
990 
991     LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
992   }
993 
994   // Assign weights to equivalence classes.
995   //
996   // All the basic blocks in the same equivalence class will execute
997   // the same number of times. Since we know that the head block in
998   // each equivalence class has the largest weight, assign that weight
999   // to all the blocks in that equivalence class.
1000   LLVM_DEBUG(
1001       dbgs() << "\nAssign the same weight to all blocks in the same class\n");
1002   for (auto &BI : F) {
1003     const BasicBlock *BB = &BI;
1004     const BasicBlock *EquivBB = EquivalenceClass[BB];
1005     if (BB != EquivBB)
1006       BlockWeights[BB] = BlockWeights[EquivBB];
1007     LLVM_DEBUG(printBlockWeight(dbgs(), BB));
1008   }
1009 }
1010 
1011 /// Visit the given edge to decide if it has a valid weight.
1012 ///
1013 /// If \p E has not been visited before, we copy to \p UnknownEdge
1014 /// and increment the count of unknown edges.
1015 ///
1016 /// \param E  Edge to visit.
1017 /// \param NumUnknownEdges  Current number of unknown edges.
1018 /// \param UnknownEdge  Set if E has not been visited before.
1019 ///
1020 /// \returns E's weight, if known. Otherwise, return 0.
1021 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
1022                                         Edge *UnknownEdge) {
1023   if (!VisitedEdges.count(E)) {
1024     (*NumUnknownEdges)++;
1025     *UnknownEdge = E;
1026     return 0;
1027   }
1028 
1029   return EdgeWeights[E];
1030 }
1031 
1032 /// Propagate weights through incoming/outgoing edges.
1033 ///
1034 /// If the weight of a basic block is known, and there is only one edge
1035 /// with an unknown weight, we can calculate the weight of that edge.
1036 ///
1037 /// Similarly, if all the edges have a known count, we can calculate the
1038 /// count of the basic block, if needed.
1039 ///
1040 /// \param F  Function to process.
1041 /// \param UpdateBlockCount  Whether we should update basic block counts that
1042 ///                          has already been annotated.
1043 ///
1044 /// \returns  True if new weights were assigned to edges or blocks.
1045 bool SampleProfileLoader::propagateThroughEdges(Function &F,
1046                                                 bool UpdateBlockCount) {
1047   bool Changed = false;
1048   LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1049   for (const auto &BI : F) {
1050     const BasicBlock *BB = &BI;
1051     const BasicBlock *EC = EquivalenceClass[BB];
1052 
1053     // Visit all the predecessor and successor edges to determine
1054     // which ones have a weight assigned already. Note that it doesn't
1055     // matter that we only keep track of a single unknown edge. The
1056     // only case we are interested in handling is when only a single
1057     // edge is unknown (see setEdgeOrBlockWeight).
1058     for (unsigned i = 0; i < 2; i++) {
1059       uint64_t TotalWeight = 0;
1060       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1061       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1062 
1063       if (i == 0) {
1064         // First, visit all predecessor edges.
1065         NumTotalEdges = Predecessors[BB].size();
1066         for (auto *Pred : Predecessors[BB]) {
1067           Edge E = std::make_pair(Pred, BB);
1068           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1069           if (E.first == E.second)
1070             SelfReferentialEdge = E;
1071         }
1072         if (NumTotalEdges == 1) {
1073           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1074         }
1075       } else {
1076         // On the second round, visit all successor edges.
1077         NumTotalEdges = Successors[BB].size();
1078         for (auto *Succ : Successors[BB]) {
1079           Edge E = std::make_pair(BB, Succ);
1080           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1081         }
1082         if (NumTotalEdges == 1) {
1083           SingleEdge = std::make_pair(BB, Successors[BB][0]);
1084         }
1085       }
1086 
1087       // After visiting all the edges, there are three cases that we
1088       // can handle immediately:
1089       //
1090       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1091       //   In this case, we simply check that the sum of all the edges
1092       //   is the same as BB's weight. If not, we change BB's weight
1093       //   to match. Additionally, if BB had not been visited before,
1094       //   we mark it visited.
1095       //
1096       // - Only one edge is unknown and BB has already been visited.
1097       //   In this case, we can compute the weight of the edge by
1098       //   subtracting the total block weight from all the known
1099       //   edge weights. If the edges weight more than BB, then the
1100       //   edge of the last remaining edge is set to zero.
1101       //
1102       // - There exists a self-referential edge and the weight of BB is
1103       //   known. In this case, this edge can be based on BB's weight.
1104       //   We add up all the other known edges and set the weight on
1105       //   the self-referential edge as we did in the previous case.
1106       //
1107       // In any other case, we must continue iterating. Eventually,
1108       // all edges will get a weight, or iteration will stop when
1109       // it reaches SampleProfileMaxPropagateIterations.
1110       if (NumUnknownEdges <= 1) {
1111         uint64_t &BBWeight = BlockWeights[EC];
1112         if (NumUnknownEdges == 0) {
1113           if (!VisitedBlocks.count(EC)) {
1114             // If we already know the weight of all edges, the weight of the
1115             // basic block can be computed. It should be no larger than the sum
1116             // of all edge weights.
1117             if (TotalWeight > BBWeight) {
1118               BBWeight = TotalWeight;
1119               Changed = true;
1120               LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
1121                                 << " known. Set weight for block: ";
1122                          printBlockWeight(dbgs(), BB););
1123             }
1124           } else if (NumTotalEdges == 1 &&
1125                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1126             // If there is only one edge for the visited basic block, use the
1127             // block weight to adjust edge weight if edge weight is smaller.
1128             EdgeWeights[SingleEdge] = BlockWeights[EC];
1129             Changed = true;
1130           }
1131         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1132           // If there is a single unknown edge and the block has been
1133           // visited, then we can compute E's weight.
1134           if (BBWeight >= TotalWeight)
1135             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1136           else
1137             EdgeWeights[UnknownEdge] = 0;
1138           const BasicBlock *OtherEC;
1139           if (i == 0)
1140             OtherEC = EquivalenceClass[UnknownEdge.first];
1141           else
1142             OtherEC = EquivalenceClass[UnknownEdge.second];
1143           // Edge weights should never exceed the BB weights it connects.
1144           if (VisitedBlocks.count(OtherEC) &&
1145               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1146             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1147           VisitedEdges.insert(UnknownEdge);
1148           Changed = true;
1149           LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1150                      printEdgeWeight(dbgs(), UnknownEdge));
1151         }
1152       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1153         // If a block Weights 0, all its in/out edges should weight 0.
1154         if (i == 0) {
1155           for (auto *Pred : Predecessors[BB]) {
1156             Edge E = std::make_pair(Pred, BB);
1157             EdgeWeights[E] = 0;
1158             VisitedEdges.insert(E);
1159           }
1160         } else {
1161           for (auto *Succ : Successors[BB]) {
1162             Edge E = std::make_pair(BB, Succ);
1163             EdgeWeights[E] = 0;
1164             VisitedEdges.insert(E);
1165           }
1166         }
1167       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1168         uint64_t &BBWeight = BlockWeights[BB];
1169         // We have a self-referential edge and the weight of BB is known.
1170         if (BBWeight >= TotalWeight)
1171           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1172         else
1173           EdgeWeights[SelfReferentialEdge] = 0;
1174         VisitedEdges.insert(SelfReferentialEdge);
1175         Changed = true;
1176         LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1177                    printEdgeWeight(dbgs(), SelfReferentialEdge));
1178       }
1179       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1180         BlockWeights[EC] = TotalWeight;
1181         VisitedBlocks.insert(EC);
1182         Changed = true;
1183       }
1184     }
1185   }
1186 
1187   return Changed;
1188 }
1189 
1190 /// Build in/out edge lists for each basic block in the CFG.
1191 ///
1192 /// We are interested in unique edges. If a block B1 has multiple
1193 /// edges to another block B2, we only add a single B1->B2 edge.
1194 void SampleProfileLoader::buildEdges(Function &F) {
1195   for (auto &BI : F) {
1196     BasicBlock *B1 = &BI;
1197 
1198     // Add predecessors for B1.
1199     SmallPtrSet<BasicBlock *, 16> Visited;
1200     if (!Predecessors[B1].empty())
1201       llvm_unreachable("Found a stale predecessors list in a basic block.");
1202     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1203       BasicBlock *B2 = *PI;
1204       if (Visited.insert(B2).second)
1205         Predecessors[B1].push_back(B2);
1206     }
1207 
1208     // Add successors for B1.
1209     Visited.clear();
1210     if (!Successors[B1].empty())
1211       llvm_unreachable("Found a stale successors list in a basic block.");
1212     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1213       BasicBlock *B2 = *SI;
1214       if (Visited.insert(B2).second)
1215         Successors[B1].push_back(B2);
1216     }
1217   }
1218 }
1219 
1220 /// Returns the sorted CallTargetMap \p M by count in descending order.
1221 static SmallVector<InstrProfValueData, 2> SortCallTargets(
1222     const SampleRecord::CallTargetMap &M) {
1223   SmallVector<InstrProfValueData, 2> R;
1224   for (auto I = M.begin(); I != M.end(); ++I)
1225     R.push_back({FunctionSamples::getGUID(I->getKey()), I->getValue()});
1226   llvm::sort(R, [](const InstrProfValueData &L, const InstrProfValueData &R) {
1227     if (L.Count == R.Count)
1228       return L.Value > R.Value;
1229     else
1230       return L.Count > R.Count;
1231   });
1232   return R;
1233 }
1234 
1235 /// Propagate weights into edges
1236 ///
1237 /// The following rules are applied to every block BB in the CFG:
1238 ///
1239 /// - If BB has a single predecessor/successor, then the weight
1240 ///   of that edge is the weight of the block.
1241 ///
1242 /// - If all incoming or outgoing edges are known except one, and the
1243 ///   weight of the block is already known, the weight of the unknown
1244 ///   edge will be the weight of the block minus the sum of all the known
1245 ///   edges. If the sum of all the known edges is larger than BB's weight,
1246 ///   we set the unknown edge weight to zero.
1247 ///
1248 /// - If there is a self-referential edge, and the weight of the block is
1249 ///   known, the weight for that edge is set to the weight of the block
1250 ///   minus the weight of the other incoming edges to that block (if
1251 ///   known).
1252 void SampleProfileLoader::propagateWeights(Function &F) {
1253   bool Changed = true;
1254   unsigned I = 0;
1255 
1256   // If BB weight is larger than its corresponding loop's header BB weight,
1257   // use the BB weight to replace the loop header BB weight.
1258   for (auto &BI : F) {
1259     BasicBlock *BB = &BI;
1260     Loop *L = LI->getLoopFor(BB);
1261     if (!L) {
1262       continue;
1263     }
1264     BasicBlock *Header = L->getHeader();
1265     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1266       BlockWeights[Header] = BlockWeights[BB];
1267     }
1268   }
1269 
1270   // Before propagation starts, build, for each block, a list of
1271   // unique predecessors and successors. This is necessary to handle
1272   // identical edges in multiway branches. Since we visit all blocks and all
1273   // edges of the CFG, it is cleaner to build these lists once at the start
1274   // of the pass.
1275   buildEdges(F);
1276 
1277   // Propagate until we converge or we go past the iteration limit.
1278   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1279     Changed = propagateThroughEdges(F, false);
1280   }
1281 
1282   // The first propagation propagates BB counts from annotated BBs to unknown
1283   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1284   // to propagate edge weights.
1285   VisitedEdges.clear();
1286   Changed = true;
1287   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1288     Changed = propagateThroughEdges(F, false);
1289   }
1290 
1291   // The 3rd propagation pass allows adjust annotated BB weights that are
1292   // obviously wrong.
1293   Changed = true;
1294   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1295     Changed = propagateThroughEdges(F, true);
1296   }
1297 
1298   // Generate MD_prof metadata for every branch instruction using the
1299   // edge weights computed during propagation.
1300   LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1301   LLVMContext &Ctx = F.getContext();
1302   MDBuilder MDB(Ctx);
1303   for (auto &BI : F) {
1304     BasicBlock *BB = &BI;
1305 
1306     if (BlockWeights[BB]) {
1307       for (auto &I : BB->getInstList()) {
1308         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1309           continue;
1310         CallSite CS(&I);
1311         if (!CS.getCalledFunction()) {
1312           const DebugLoc &DLoc = I.getDebugLoc();
1313           if (!DLoc)
1314             continue;
1315           const DILocation *DIL = DLoc;
1316           uint32_t LineOffset = FunctionSamples::getOffset(DIL);
1317           uint32_t Discriminator = DIL->getBaseDiscriminator();
1318 
1319           const FunctionSamples *FS = findFunctionSamples(I);
1320           if (!FS)
1321             continue;
1322           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1323           if (!T || T.get().empty())
1324             continue;
1325           SmallVector<InstrProfValueData, 2> SortedCallTargets =
1326               SortCallTargets(T.get());
1327           uint64_t Sum;
1328           findIndirectCallFunctionSamples(I, Sum);
1329           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1330                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1331                             SortedCallTargets.size());
1332         } else if (!dyn_cast<IntrinsicInst>(&I)) {
1333           I.setMetadata(LLVMContext::MD_prof,
1334                         MDB.createBranchWeights(
1335                             {static_cast<uint32_t>(BlockWeights[BB])}));
1336         }
1337       }
1338     }
1339     Instruction *TI = BB->getTerminator();
1340     if (TI->getNumSuccessors() == 1)
1341       continue;
1342     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1343       continue;
1344 
1345     DebugLoc BranchLoc = TI->getDebugLoc();
1346     LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1347                       << ((BranchLoc) ? Twine(BranchLoc.getLine())
1348                                       : Twine("<UNKNOWN LOCATION>"))
1349                       << ".\n");
1350     SmallVector<uint32_t, 4> Weights;
1351     uint32_t MaxWeight = 0;
1352     Instruction *MaxDestInst;
1353     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1354       BasicBlock *Succ = TI->getSuccessor(I);
1355       Edge E = std::make_pair(BB, Succ);
1356       uint64_t Weight = EdgeWeights[E];
1357       LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1358       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1359       // if needed. Sample counts in profiles are 64-bit unsigned values,
1360       // but internally branch weights are expressed as 32-bit values.
1361       if (Weight > std::numeric_limits<uint32_t>::max()) {
1362         LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1363         Weight = std::numeric_limits<uint32_t>::max();
1364       }
1365       // Weight is added by one to avoid propagation errors introduced by
1366       // 0 weights.
1367       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1368       if (Weight != 0) {
1369         if (Weight > MaxWeight) {
1370           MaxWeight = Weight;
1371           MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1372         }
1373       }
1374     }
1375 
1376     uint64_t TempWeight;
1377     // Only set weights if there is at least one non-zero weight.
1378     // In any other case, let the analyzer set weights.
1379     // Do not set weights if the weights are present. In ThinLTO, the profile
1380     // annotation is done twice. If the first annotation already set the
1381     // weights, the second pass does not need to set it.
1382     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1383       LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1384       TI->setMetadata(LLVMContext::MD_prof,
1385                       MDB.createBranchWeights(Weights));
1386       ORE->emit([&]() {
1387         return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1388                << "most popular destination for conditional branches at "
1389                << ore::NV("CondBranchesLoc", BranchLoc);
1390       });
1391     } else {
1392       LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1393     }
1394   }
1395 }
1396 
1397 /// Get the line number for the function header.
1398 ///
1399 /// This looks up function \p F in the current compilation unit and
1400 /// retrieves the line number where the function is defined. This is
1401 /// line 0 for all the samples read from the profile file. Every line
1402 /// number is relative to this line.
1403 ///
1404 /// \param F  Function object to query.
1405 ///
1406 /// \returns the line number where \p F is defined. If it returns 0,
1407 ///          it means that there is no debug information available for \p F.
1408 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1409   if (DISubprogram *S = F.getSubprogram())
1410     return S->getLine();
1411 
1412   if (NoWarnSampleUnused)
1413     return 0;
1414 
1415   // If the start of \p F is missing, emit a diagnostic to inform the user
1416   // about the missed opportunity.
1417   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1418       "No debug information found in function " + F.getName() +
1419           ": Function profile not used",
1420       DS_Warning));
1421   return 0;
1422 }
1423 
1424 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1425   DT.reset(new DominatorTree);
1426   DT->recalculate(F);
1427 
1428   PDT.reset(new PostDominatorTree(F));
1429 
1430   LI.reset(new LoopInfo);
1431   LI->analyze(*DT);
1432 }
1433 
1434 /// Generate branch weight metadata for all branches in \p F.
1435 ///
1436 /// Branch weights are computed out of instruction samples using a
1437 /// propagation heuristic. Propagation proceeds in 3 phases:
1438 ///
1439 /// 1- Assignment of block weights. All the basic blocks in the function
1440 ///    are initial assigned the same weight as their most frequently
1441 ///    executed instruction.
1442 ///
1443 /// 2- Creation of equivalence classes. Since samples may be missing from
1444 ///    blocks, we can fill in the gaps by setting the weights of all the
1445 ///    blocks in the same equivalence class to the same weight. To compute
1446 ///    the concept of equivalence, we use dominance and loop information.
1447 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1448 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1449 ///
1450 /// 3- Propagation of block weights into edges. This uses a simple
1451 ///    propagation heuristic. The following rules are applied to every
1452 ///    block BB in the CFG:
1453 ///
1454 ///    - If BB has a single predecessor/successor, then the weight
1455 ///      of that edge is the weight of the block.
1456 ///
1457 ///    - If all the edges are known except one, and the weight of the
1458 ///      block is already known, the weight of the unknown edge will
1459 ///      be the weight of the block minus the sum of all the known
1460 ///      edges. If the sum of all the known edges is larger than BB's weight,
1461 ///      we set the unknown edge weight to zero.
1462 ///
1463 ///    - If there is a self-referential edge, and the weight of the block is
1464 ///      known, the weight for that edge is set to the weight of the block
1465 ///      minus the weight of the other incoming edges to that block (if
1466 ///      known).
1467 ///
1468 /// Since this propagation is not guaranteed to finalize for every CFG, we
1469 /// only allow it to proceed for a limited number of iterations (controlled
1470 /// by -sample-profile-max-propagate-iterations).
1471 ///
1472 /// FIXME: Try to replace this propagation heuristic with a scheme
1473 /// that is guaranteed to finalize. A work-list approach similar to
1474 /// the standard value propagation algorithm used by SSA-CCP might
1475 /// work here.
1476 ///
1477 /// Once all the branch weights are computed, we emit the MD_prof
1478 /// metadata on BB using the computed values for each of its branches.
1479 ///
1480 /// \param F The function to query.
1481 ///
1482 /// \returns true if \p F was modified. Returns false, otherwise.
1483 bool SampleProfileLoader::emitAnnotations(Function &F) {
1484   bool Changed = false;
1485 
1486   if (getFunctionLoc(F) == 0)
1487     return false;
1488 
1489   LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1490                     << F.getName() << ": " << getFunctionLoc(F) << "\n");
1491 
1492   DenseSet<GlobalValue::GUID> InlinedGUIDs;
1493   Changed |= inlineHotFunctions(F, InlinedGUIDs);
1494 
1495   // Compute basic block weights.
1496   Changed |= computeBlockWeights(F);
1497 
1498   if (Changed) {
1499     // Add an entry count to the function using the samples gathered at the
1500     // function entry.
1501     // Sets the GUIDs that are inlined in the profiled binary. This is used
1502     // for ThinLink to make correct liveness analysis, and also make the IR
1503     // match the profiled binary before annotation.
1504     F.setEntryCount(
1505         ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1506         &InlinedGUIDs);
1507 
1508     // Compute dominance and loop info needed for propagation.
1509     computeDominanceAndLoopInfo(F);
1510 
1511     // Find equivalence classes.
1512     findEquivalenceClasses(F);
1513 
1514     // Propagate weights to all edges.
1515     propagateWeights(F);
1516   }
1517 
1518   // If coverage checking was requested, compute it now.
1519   if (SampleProfileRecordCoverage) {
1520     unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1521     unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1522     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1523     if (Coverage < SampleProfileRecordCoverage) {
1524       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1525           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1526           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1527               Twine(Coverage) + "%) were applied",
1528           DS_Warning));
1529     }
1530   }
1531 
1532   if (SampleProfileSampleCoverage) {
1533     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1534     uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1535     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1536     if (Coverage < SampleProfileSampleCoverage) {
1537       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1538           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1539           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1540               Twine(Coverage) + "%) were applied",
1541           DS_Warning));
1542     }
1543   }
1544   return Changed;
1545 }
1546 
1547 char SampleProfileLoaderLegacyPass::ID = 0;
1548 
1549 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1550                       "Sample Profile loader", false, false)
1551 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1552 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1553 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1554 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1555                     "Sample Profile loader", false, false)
1556 
1557 bool SampleProfileLoader::doInitialization(Module &M) {
1558   auto &Ctx = M.getContext();
1559   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1560   if (std::error_code EC = ReaderOrErr.getError()) {
1561     std::string Msg = "Could not open profile: " + EC.message();
1562     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1563     return false;
1564   }
1565   Reader = std::move(ReaderOrErr.get());
1566   Reader->collectFuncsToUse(M);
1567   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1568 
1569   if (!RemappingFilename.empty()) {
1570     // Apply profile remappings to the loaded profile data if requested.
1571     // For now, we only support remapping symbols encoded using the Itanium
1572     // C++ ABI's name mangling scheme.
1573     ReaderOrErr = SampleProfileReaderItaniumRemapper::create(
1574         RemappingFilename, Ctx, std::move(Reader));
1575     if (std::error_code EC = ReaderOrErr.getError()) {
1576       std::string Msg = "Could not open profile remapping file: " + EC.message();
1577       Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1578       return false;
1579     }
1580     Reader = std::move(ReaderOrErr.get());
1581     ProfileIsValid = (Reader->read() == sampleprof_error::success);
1582   }
1583   return true;
1584 }
1585 
1586 ModulePass *llvm::createSampleProfileLoaderPass() {
1587   return new SampleProfileLoaderLegacyPass();
1588 }
1589 
1590 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1591   return new SampleProfileLoaderLegacyPass(Name);
1592 }
1593 
1594 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
1595                                       ProfileSummaryInfo *_PSI) {
1596   FunctionSamples::GUIDToFuncNameMapper Mapper(M);
1597   if (!ProfileIsValid)
1598     return false;
1599 
1600   PSI = _PSI;
1601   if (M.getProfileSummary(/* IsCS */ false) == nullptr)
1602     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
1603                         ProfileSummary::PSK_Sample);
1604 
1605   // Compute the total number of samples collected in this profile.
1606   for (const auto &I : Reader->getProfiles())
1607     TotalCollectedSamples += I.second.getTotalSamples();
1608 
1609   // Populate the symbol map.
1610   for (const auto &N_F : M.getValueSymbolTable()) {
1611     StringRef OrigName = N_F.getKey();
1612     Function *F = dyn_cast<Function>(N_F.getValue());
1613     if (F == nullptr)
1614       continue;
1615     SymbolMap[OrigName] = F;
1616     auto pos = OrigName.find('.');
1617     if (pos != StringRef::npos) {
1618       StringRef NewName = OrigName.substr(0, pos);
1619       auto r = SymbolMap.insert(std::make_pair(NewName, F));
1620       // Failiing to insert means there is already an entry in SymbolMap,
1621       // thus there are multiple functions that are mapped to the same
1622       // stripped name. In this case of name conflicting, set the value
1623       // to nullptr to avoid confusion.
1624       if (!r.second)
1625         r.first->second = nullptr;
1626     }
1627   }
1628 
1629   bool retval = false;
1630   for (auto &F : M)
1631     if (!F.isDeclaration()) {
1632       clearFunctionData();
1633       retval |= runOnFunction(F, AM);
1634     }
1635 
1636   // Account for cold calls not inlined....
1637   for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
1638        notInlinedCallInfo)
1639     updateProfileCallee(pair.first, pair.second.entryCount);
1640 
1641   return retval;
1642 }
1643 
1644 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1645   ACT = &getAnalysis<AssumptionCacheTracker>();
1646   TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1647   ProfileSummaryInfo *PSI =
1648       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1649   return SampleLoader.runOnModule(M, nullptr, PSI);
1650 }
1651 
1652 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1653 
1654   DILocation2SampleMap.clear();
1655   // By default the entry count is initialized to -1, which will be treated
1656   // conservatively by getEntryCount as the same as unknown (None). This is
1657   // to avoid newly added code to be treated as cold. If we have samples
1658   // this will be overwritten in emitAnnotations.
1659   // If ProfileSampleAccurate is true or F has profile-sample-accurate
1660   // attribute, initialize the entry count to 0 so callsites or functions
1661   // unsampled will be treated as cold.
1662   uint64_t initialEntryCount =
1663       (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate"))
1664           ? 0
1665           : -1;
1666   F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
1667   std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1668   if (AM) {
1669     auto &FAM =
1670         AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1671             .getManager();
1672     ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1673   } else {
1674     OwnedORE = make_unique<OptimizationRemarkEmitter>(&F);
1675     ORE = OwnedORE.get();
1676   }
1677   Samples = Reader->getSamplesFor(F);
1678   if (Samples && !Samples->empty())
1679     return emitAnnotations(F);
1680   return false;
1681 }
1682 
1683 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1684                                                ModuleAnalysisManager &AM) {
1685   FunctionAnalysisManager &FAM =
1686       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1687 
1688   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1689     return FAM.getResult<AssumptionAnalysis>(F);
1690   };
1691   auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1692     return FAM.getResult<TargetIRAnalysis>(F);
1693   };
1694 
1695   SampleProfileLoader SampleLoader(
1696       ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1697       ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
1698                                        : ProfileRemappingFileName,
1699       IsThinLTOPreLink, GetAssumptionCache, GetTTI);
1700 
1701   SampleLoader.doInitialization(M);
1702 
1703   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1704   if (!SampleLoader.runOnModule(M, &AM, PSI))
1705     return PreservedAnalyses::all();
1706 
1707   return PreservedAnalyses::none();
1708 }
1709